| // Copyright 2014 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // Declares a Simulator for PPC instructions if we are not generating a native |
| // PPC binary. This Simulator allows us to run and debug PPC code generation on |
| // regular desktop machines. |
| // V8 calls into generated code via the GeneratedCode wrapper, |
| // which will start execution in the Simulator or forwards to the real entry |
| // on a PPC HW platform. |
| |
| #ifndef V8_PPC_SIMULATOR_PPC_H_ |
| #define V8_PPC_SIMULATOR_PPC_H_ |
| |
| #include "src/allocation.h" |
| |
| #if defined(USE_SIMULATOR) |
| // Running with a simulator. |
| |
| #include "src/assembler.h" |
| #include "src/base/hashmap.h" |
| #include "src/ppc/constants-ppc.h" |
| #include "src/simulator-base.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| class CachePage { |
| public: |
| static const int LINE_VALID = 0; |
| static const int LINE_INVALID = 1; |
| |
| static const int kPageShift = 12; |
| static const int kPageSize = 1 << kPageShift; |
| static const int kPageMask = kPageSize - 1; |
| static const int kLineShift = 2; // The cache line is only 4 bytes right now. |
| static const int kLineLength = 1 << kLineShift; |
| static const int kLineMask = kLineLength - 1; |
| |
| CachePage() { memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); } |
| |
| char* ValidityByte(int offset) { |
| return &validity_map_[offset >> kLineShift]; |
| } |
| |
| char* CachedData(int offset) { return &data_[offset]; } |
| |
| private: |
| char data_[kPageSize]; // The cached data. |
| static const int kValidityMapSize = kPageSize >> kLineShift; |
| char validity_map_[kValidityMapSize]; // One byte per line. |
| }; |
| |
| class Simulator : public SimulatorBase { |
| public: |
| friend class PPCDebugger; |
| enum Register { |
| no_reg = -1, |
| r0 = 0, |
| sp, |
| r2, |
| r3, |
| r4, |
| r5, |
| r6, |
| r7, |
| r8, |
| r9, |
| r10, |
| r11, |
| r12, |
| r13, |
| r14, |
| r15, |
| r16, |
| r17, |
| r18, |
| r19, |
| r20, |
| r21, |
| r22, |
| r23, |
| r24, |
| r25, |
| r26, |
| r27, |
| r28, |
| r29, |
| r30, |
| fp, |
| kNumGPRs = 32, |
| d0 = 0, |
| d1, |
| d2, |
| d3, |
| d4, |
| d5, |
| d6, |
| d7, |
| d8, |
| d9, |
| d10, |
| d11, |
| d12, |
| d13, |
| d14, |
| d15, |
| d16, |
| d17, |
| d18, |
| d19, |
| d20, |
| d21, |
| d22, |
| d23, |
| d24, |
| d25, |
| d26, |
| d27, |
| d28, |
| d29, |
| d30, |
| d31, |
| kNumFPRs = 32 |
| }; |
| |
| explicit Simulator(Isolate* isolate); |
| ~Simulator(); |
| |
| // The currently executing Simulator instance. Potentially there can be one |
| // for each native thread. |
| static Simulator* current(v8::internal::Isolate* isolate); |
| |
| // Accessors for register state. |
| void set_register(int reg, intptr_t value); |
| intptr_t get_register(int reg) const; |
| double get_double_from_register_pair(int reg); |
| void set_d_register_from_double(int dreg, const double dbl) { |
| DCHECK(dreg >= 0 && dreg < kNumFPRs); |
| *bit_cast<double*>(&fp_registers_[dreg]) = dbl; |
| } |
| double get_double_from_d_register(int dreg) { |
| DCHECK(dreg >= 0 && dreg < kNumFPRs); |
| return *bit_cast<double*>(&fp_registers_[dreg]); |
| } |
| void set_d_register(int dreg, int64_t value) { |
| DCHECK(dreg >= 0 && dreg < kNumFPRs); |
| fp_registers_[dreg] = value; |
| } |
| int64_t get_d_register(int dreg) { |
| DCHECK(dreg >= 0 && dreg < kNumFPRs); |
| return fp_registers_[dreg]; |
| } |
| |
| // Special case of set_register and get_register to access the raw PC value. |
| void set_pc(intptr_t value); |
| intptr_t get_pc() const; |
| |
| Address get_sp() const { |
| return reinterpret_cast<Address>(static_cast<intptr_t>(get_register(sp))); |
| } |
| |
| // Accessor to the internal simulator stack area. |
| uintptr_t StackLimit(uintptr_t c_limit) const; |
| |
| // Executes PPC instructions until the PC reaches end_sim_pc. |
| void Execute(); |
| |
| template <typename Return, typename... Args> |
| Return Call(byte* entry, Args... args) { |
| return VariadicCall<Return>(this, &Simulator::CallImpl, entry, args...); |
| } |
| |
| // Alternative: call a 2-argument double function. |
| void CallFP(byte* entry, double d0, double d1); |
| int32_t CallFPReturnsInt(byte* entry, double d0, double d1); |
| double CallFPReturnsDouble(byte* entry, double d0, double d1); |
| |
| // Push an address onto the JS stack. |
| uintptr_t PushAddress(uintptr_t address); |
| |
| // Pop an address from the JS stack. |
| uintptr_t PopAddress(); |
| |
| // Debugger input. |
| void set_last_debugger_input(char* input); |
| char* last_debugger_input() { return last_debugger_input_; } |
| |
| // Redirection support. |
| static void SetRedirectInstruction(Instruction* instruction); |
| |
| // ICache checking. |
| static void FlushICache(base::CustomMatcherHashMap* i_cache, void* start, |
| size_t size); |
| |
| // Returns true if pc register contains one of the 'special_values' defined |
| // below (bad_lr, end_sim_pc). |
| bool has_bad_pc() const; |
| |
| private: |
| enum special_values { |
| // Known bad pc value to ensure that the simulator does not execute |
| // without being properly setup. |
| bad_lr = -1, |
| // A pc value used to signal the simulator to stop execution. Generally |
| // the lr is set to this value on transition from native C code to |
| // simulated execution, so that the simulator can "return" to the native |
| // C code. |
| end_sim_pc = -2 |
| }; |
| |
| intptr_t CallImpl(byte* entry, int argument_count, const intptr_t* arguments); |
| |
| enum BCType { BC_OFFSET, BC_LINK_REG, BC_CTR_REG }; |
| |
| // Unsupported instructions use Format to print an error and stop execution. |
| void Format(Instruction* instr, const char* format); |
| |
| // Helper functions to set the conditional flags in the architecture state. |
| bool CarryFrom(int32_t left, int32_t right, int32_t carry = 0); |
| bool BorrowFrom(int32_t left, int32_t right); |
| bool OverflowFrom(int32_t alu_out, int32_t left, int32_t right, |
| bool addition); |
| |
| // Helper functions to decode common "addressing" modes |
| int32_t GetShiftRm(Instruction* instr, bool* carry_out); |
| int32_t GetImm(Instruction* instr, bool* carry_out); |
| void ProcessPUW(Instruction* instr, int num_regs, int operand_size, |
| intptr_t* start_address, intptr_t* end_address); |
| void HandleRList(Instruction* instr, bool load); |
| void HandleVList(Instruction* inst); |
| void SoftwareInterrupt(Instruction* instr); |
| |
| // Stop helper functions. |
| inline bool isStopInstruction(Instruction* instr); |
| inline bool isWatchedStop(uint32_t bkpt_code); |
| inline bool isEnabledStop(uint32_t bkpt_code); |
| inline void EnableStop(uint32_t bkpt_code); |
| inline void DisableStop(uint32_t bkpt_code); |
| inline void IncreaseStopCounter(uint32_t bkpt_code); |
| void PrintStopInfo(uint32_t code); |
| |
| // Read and write memory. |
| inline uint8_t ReadBU(intptr_t addr); |
| inline uint8_t ReadExBU(intptr_t addr); |
| inline int8_t ReadB(intptr_t addr); |
| inline void WriteB(intptr_t addr, uint8_t value); |
| inline int WriteExB(intptr_t addr, uint8_t value); |
| inline void WriteB(intptr_t addr, int8_t value); |
| |
| inline uint16_t ReadHU(intptr_t addr, Instruction* instr); |
| inline uint16_t ReadExHU(intptr_t addr, Instruction* instr); |
| inline int16_t ReadH(intptr_t addr, Instruction* instr); |
| // Note: Overloaded on the sign of the value. |
| inline void WriteH(intptr_t addr, uint16_t value, Instruction* instr); |
| inline int WriteExH(intptr_t addr, uint16_t value, Instruction* instr); |
| inline void WriteH(intptr_t addr, int16_t value, Instruction* instr); |
| |
| inline uint32_t ReadWU(intptr_t addr, Instruction* instr); |
| inline uint32_t ReadExWU(intptr_t addr, Instruction* instr); |
| inline int32_t ReadW(intptr_t addr, Instruction* instr); |
| inline void WriteW(intptr_t addr, uint32_t value, Instruction* instr); |
| inline int WriteExW(intptr_t addr, uint32_t value, Instruction* instr); |
| inline void WriteW(intptr_t addr, int32_t value, Instruction* instr); |
| |
| intptr_t* ReadDW(intptr_t addr); |
| void WriteDW(intptr_t addr, int64_t value); |
| |
| void Trace(Instruction* instr); |
| void SetCR0(intptr_t result, bool setSO = false); |
| void ExecuteBranchConditional(Instruction* instr, BCType type); |
| void ExecuteExt1(Instruction* instr); |
| bool ExecuteExt2_10bit_part1(Instruction* instr); |
| bool ExecuteExt2_10bit_part2(Instruction* instr); |
| bool ExecuteExt2_9bit_part1(Instruction* instr); |
| bool ExecuteExt2_9bit_part2(Instruction* instr); |
| void ExecuteExt2_5bit(Instruction* instr); |
| void ExecuteExt2(Instruction* instr); |
| void ExecuteExt3(Instruction* instr); |
| void ExecuteExt4(Instruction* instr); |
| #if V8_TARGET_ARCH_PPC64 |
| void ExecuteExt5(Instruction* instr); |
| #endif |
| void ExecuteExt6(Instruction* instr); |
| void ExecuteGeneric(Instruction* instr); |
| |
| void SetFPSCR(int bit) { fp_condition_reg_ |= (1 << (31 - bit)); } |
| void ClearFPSCR(int bit) { fp_condition_reg_ &= ~(1 << (31 - bit)); } |
| |
| // Executes one instruction. |
| void ExecuteInstruction(Instruction* instr); |
| |
| // ICache. |
| static void CheckICache(base::CustomMatcherHashMap* i_cache, |
| Instruction* instr); |
| static void FlushOnePage(base::CustomMatcherHashMap* i_cache, intptr_t start, |
| int size); |
| static CachePage* GetCachePage(base::CustomMatcherHashMap* i_cache, |
| void* page); |
| |
| // Handle arguments and return value for runtime FP functions. |
| void GetFpArgs(double* x, double* y, intptr_t* z); |
| void SetFpResult(const double& result); |
| void TrashCallerSaveRegisters(); |
| |
| void CallInternal(byte* entry); |
| |
| // Architecture state. |
| // Saturating instructions require a Q flag to indicate saturation. |
| // There is currently no way to read the CPSR directly, and thus read the Q |
| // flag, so this is left unimplemented. |
| intptr_t registers_[kNumGPRs]; |
| int32_t condition_reg_; |
| int32_t fp_condition_reg_; |
| intptr_t special_reg_lr_; |
| intptr_t special_reg_pc_; |
| intptr_t special_reg_ctr_; |
| int32_t special_reg_xer_; |
| |
| int64_t fp_registers_[kNumFPRs]; |
| |
| // Simulator support. |
| char* stack_; |
| static const size_t stack_protection_size_ = 256 * kPointerSize; |
| bool pc_modified_; |
| int icount_; |
| |
| // Debugger input. |
| char* last_debugger_input_; |
| |
| // Icache simulation |
| base::CustomMatcherHashMap* i_cache_; |
| |
| // Registered breakpoints. |
| Instruction* break_pc_; |
| Instr break_instr_; |
| |
| v8::internal::Isolate* isolate_; |
| |
| // A stop is watched if its code is less than kNumOfWatchedStops. |
| // Only watched stops support enabling/disabling and the counter feature. |
| static const uint32_t kNumOfWatchedStops = 256; |
| |
| // Breakpoint is disabled if bit 31 is set. |
| static const uint32_t kStopDisabledBit = 1 << 31; |
| |
| // A stop is enabled, meaning the simulator will stop when meeting the |
| // instruction, if bit 31 of watched_stops_[code].count is unset. |
| // The value watched_stops_[code].count & ~(1 << 31) indicates how many times |
| // the breakpoint was hit or gone through. |
| struct StopCountAndDesc { |
| uint32_t count; |
| char* desc; |
| }; |
| StopCountAndDesc watched_stops_[kNumOfWatchedStops]; |
| |
| // Synchronization primitives. See ARM DDI 0406C.b, A2.9. |
| enum class MonitorAccess { |
| Open, |
| Exclusive, |
| }; |
| |
| enum class TransactionSize { |
| None = 0, |
| Byte = 1, |
| HalfWord = 2, |
| Word = 4, |
| }; |
| |
| class LocalMonitor { |
| public: |
| LocalMonitor(); |
| |
| // These functions manage the state machine for the local monitor, but do |
| // not actually perform loads and stores. NotifyStoreExcl only returns |
| // true if the exclusive store is allowed; the global monitor will still |
| // have to be checked to see whether the memory should be updated. |
| void NotifyLoad(int32_t addr); |
| void NotifyLoadExcl(int32_t addr, TransactionSize size); |
| void NotifyStore(int32_t addr); |
| bool NotifyStoreExcl(int32_t addr, TransactionSize size); |
| |
| private: |
| void Clear(); |
| |
| MonitorAccess access_state_; |
| int32_t tagged_addr_; |
| TransactionSize size_; |
| }; |
| |
| class GlobalMonitor { |
| public: |
| GlobalMonitor(); |
| |
| class Processor { |
| public: |
| Processor(); |
| |
| private: |
| friend class GlobalMonitor; |
| // These functions manage the state machine for the global monitor, but do |
| // not actually perform loads and stores. |
| void Clear_Locked(); |
| void NotifyLoadExcl_Locked(int32_t addr); |
| void NotifyStore_Locked(int32_t addr, bool is_requesting_processor); |
| bool NotifyStoreExcl_Locked(int32_t addr, bool is_requesting_processor); |
| |
| MonitorAccess access_state_; |
| int32_t tagged_addr_; |
| Processor* next_; |
| Processor* prev_; |
| }; |
| |
| // Exposed so it can be accessed by Simulator::{Read,Write}Ex*. |
| base::Mutex mutex; |
| |
| void NotifyLoadExcl_Locked(int32_t addr, Processor* processor); |
| void NotifyStore_Locked(int32_t addr, Processor* processor); |
| bool NotifyStoreExcl_Locked(int32_t addr, Processor* processor); |
| |
| // Called when the simulator is destroyed. |
| void RemoveProcessor(Processor* processor); |
| |
| private: |
| bool IsProcessorInLinkedList_Locked(Processor* processor) const; |
| void PrependProcessor_Locked(Processor* processor); |
| |
| Processor* head_; |
| }; |
| |
| LocalMonitor local_monitor_; |
| GlobalMonitor::Processor global_monitor_processor_; |
| static base::LazyInstance<GlobalMonitor>::type global_monitor_; |
| }; |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // defined(USE_SIMULATOR) |
| #endif // V8_PPC_SIMULATOR_PPC_H_ |