blob: 544b9d463e24d814ccfaa479d3a5427fa43cb0d3 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Declares a Simulator for PPC instructions if we are not generating a native
// PPC binary. This Simulator allows us to run and debug PPC code generation on
// regular desktop machines.
// V8 calls into generated code via the GeneratedCode wrapper,
// which will start execution in the Simulator or forwards to the real entry
// on a PPC HW platform.
#ifndef V8_PPC_SIMULATOR_PPC_H_
#define V8_PPC_SIMULATOR_PPC_H_
#include "src/allocation.h"
#if defined(USE_SIMULATOR)
// Running with a simulator.
#include "src/assembler.h"
#include "src/base/hashmap.h"
#include "src/ppc/constants-ppc.h"
#include "src/simulator-base.h"
namespace v8 {
namespace internal {
class CachePage {
public:
static const int LINE_VALID = 0;
static const int LINE_INVALID = 1;
static const int kPageShift = 12;
static const int kPageSize = 1 << kPageShift;
static const int kPageMask = kPageSize - 1;
static const int kLineShift = 2; // The cache line is only 4 bytes right now.
static const int kLineLength = 1 << kLineShift;
static const int kLineMask = kLineLength - 1;
CachePage() { memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); }
char* ValidityByte(int offset) {
return &validity_map_[offset >> kLineShift];
}
char* CachedData(int offset) { return &data_[offset]; }
private:
char data_[kPageSize]; // The cached data.
static const int kValidityMapSize = kPageSize >> kLineShift;
char validity_map_[kValidityMapSize]; // One byte per line.
};
class Simulator : public SimulatorBase {
public:
friend class PPCDebugger;
enum Register {
no_reg = -1,
r0 = 0,
sp,
r2,
r3,
r4,
r5,
r6,
r7,
r8,
r9,
r10,
r11,
r12,
r13,
r14,
r15,
r16,
r17,
r18,
r19,
r20,
r21,
r22,
r23,
r24,
r25,
r26,
r27,
r28,
r29,
r30,
fp,
kNumGPRs = 32,
d0 = 0,
d1,
d2,
d3,
d4,
d5,
d6,
d7,
d8,
d9,
d10,
d11,
d12,
d13,
d14,
d15,
d16,
d17,
d18,
d19,
d20,
d21,
d22,
d23,
d24,
d25,
d26,
d27,
d28,
d29,
d30,
d31,
kNumFPRs = 32
};
explicit Simulator(Isolate* isolate);
~Simulator();
// The currently executing Simulator instance. Potentially there can be one
// for each native thread.
static Simulator* current(v8::internal::Isolate* isolate);
// Accessors for register state.
void set_register(int reg, intptr_t value);
intptr_t get_register(int reg) const;
double get_double_from_register_pair(int reg);
void set_d_register_from_double(int dreg, const double dbl) {
DCHECK(dreg >= 0 && dreg < kNumFPRs);
*bit_cast<double*>(&fp_registers_[dreg]) = dbl;
}
double get_double_from_d_register(int dreg) {
DCHECK(dreg >= 0 && dreg < kNumFPRs);
return *bit_cast<double*>(&fp_registers_[dreg]);
}
void set_d_register(int dreg, int64_t value) {
DCHECK(dreg >= 0 && dreg < kNumFPRs);
fp_registers_[dreg] = value;
}
int64_t get_d_register(int dreg) {
DCHECK(dreg >= 0 && dreg < kNumFPRs);
return fp_registers_[dreg];
}
// Special case of set_register and get_register to access the raw PC value.
void set_pc(intptr_t value);
intptr_t get_pc() const;
Address get_sp() const {
return reinterpret_cast<Address>(static_cast<intptr_t>(get_register(sp)));
}
// Accessor to the internal simulator stack area.
uintptr_t StackLimit(uintptr_t c_limit) const;
// Executes PPC instructions until the PC reaches end_sim_pc.
void Execute();
template <typename Return, typename... Args>
Return Call(byte* entry, Args... args) {
return VariadicCall<Return>(this, &Simulator::CallImpl, entry, args...);
}
// Alternative: call a 2-argument double function.
void CallFP(byte* entry, double d0, double d1);
int32_t CallFPReturnsInt(byte* entry, double d0, double d1);
double CallFPReturnsDouble(byte* entry, double d0, double d1);
// Push an address onto the JS stack.
uintptr_t PushAddress(uintptr_t address);
// Pop an address from the JS stack.
uintptr_t PopAddress();
// Debugger input.
void set_last_debugger_input(char* input);
char* last_debugger_input() { return last_debugger_input_; }
// Redirection support.
static void SetRedirectInstruction(Instruction* instruction);
// ICache checking.
static void FlushICache(base::CustomMatcherHashMap* i_cache, void* start,
size_t size);
// Returns true if pc register contains one of the 'special_values' defined
// below (bad_lr, end_sim_pc).
bool has_bad_pc() const;
private:
enum special_values {
// Known bad pc value to ensure that the simulator does not execute
// without being properly setup.
bad_lr = -1,
// A pc value used to signal the simulator to stop execution. Generally
// the lr is set to this value on transition from native C code to
// simulated execution, so that the simulator can "return" to the native
// C code.
end_sim_pc = -2
};
intptr_t CallImpl(byte* entry, int argument_count, const intptr_t* arguments);
enum BCType { BC_OFFSET, BC_LINK_REG, BC_CTR_REG };
// Unsupported instructions use Format to print an error and stop execution.
void Format(Instruction* instr, const char* format);
// Helper functions to set the conditional flags in the architecture state.
bool CarryFrom(int32_t left, int32_t right, int32_t carry = 0);
bool BorrowFrom(int32_t left, int32_t right);
bool OverflowFrom(int32_t alu_out, int32_t left, int32_t right,
bool addition);
// Helper functions to decode common "addressing" modes
int32_t GetShiftRm(Instruction* instr, bool* carry_out);
int32_t GetImm(Instruction* instr, bool* carry_out);
void ProcessPUW(Instruction* instr, int num_regs, int operand_size,
intptr_t* start_address, intptr_t* end_address);
void HandleRList(Instruction* instr, bool load);
void HandleVList(Instruction* inst);
void SoftwareInterrupt(Instruction* instr);
// Stop helper functions.
inline bool isStopInstruction(Instruction* instr);
inline bool isWatchedStop(uint32_t bkpt_code);
inline bool isEnabledStop(uint32_t bkpt_code);
inline void EnableStop(uint32_t bkpt_code);
inline void DisableStop(uint32_t bkpt_code);
inline void IncreaseStopCounter(uint32_t bkpt_code);
void PrintStopInfo(uint32_t code);
// Read and write memory.
inline uint8_t ReadBU(intptr_t addr);
inline uint8_t ReadExBU(intptr_t addr);
inline int8_t ReadB(intptr_t addr);
inline void WriteB(intptr_t addr, uint8_t value);
inline int WriteExB(intptr_t addr, uint8_t value);
inline void WriteB(intptr_t addr, int8_t value);
inline uint16_t ReadHU(intptr_t addr, Instruction* instr);
inline uint16_t ReadExHU(intptr_t addr, Instruction* instr);
inline int16_t ReadH(intptr_t addr, Instruction* instr);
// Note: Overloaded on the sign of the value.
inline void WriteH(intptr_t addr, uint16_t value, Instruction* instr);
inline int WriteExH(intptr_t addr, uint16_t value, Instruction* instr);
inline void WriteH(intptr_t addr, int16_t value, Instruction* instr);
inline uint32_t ReadWU(intptr_t addr, Instruction* instr);
inline uint32_t ReadExWU(intptr_t addr, Instruction* instr);
inline int32_t ReadW(intptr_t addr, Instruction* instr);
inline void WriteW(intptr_t addr, uint32_t value, Instruction* instr);
inline int WriteExW(intptr_t addr, uint32_t value, Instruction* instr);
inline void WriteW(intptr_t addr, int32_t value, Instruction* instr);
intptr_t* ReadDW(intptr_t addr);
void WriteDW(intptr_t addr, int64_t value);
void Trace(Instruction* instr);
void SetCR0(intptr_t result, bool setSO = false);
void ExecuteBranchConditional(Instruction* instr, BCType type);
void ExecuteExt1(Instruction* instr);
bool ExecuteExt2_10bit_part1(Instruction* instr);
bool ExecuteExt2_10bit_part2(Instruction* instr);
bool ExecuteExt2_9bit_part1(Instruction* instr);
bool ExecuteExt2_9bit_part2(Instruction* instr);
void ExecuteExt2_5bit(Instruction* instr);
void ExecuteExt2(Instruction* instr);
void ExecuteExt3(Instruction* instr);
void ExecuteExt4(Instruction* instr);
#if V8_TARGET_ARCH_PPC64
void ExecuteExt5(Instruction* instr);
#endif
void ExecuteExt6(Instruction* instr);
void ExecuteGeneric(Instruction* instr);
void SetFPSCR(int bit) { fp_condition_reg_ |= (1 << (31 - bit)); }
void ClearFPSCR(int bit) { fp_condition_reg_ &= ~(1 << (31 - bit)); }
// Executes one instruction.
void ExecuteInstruction(Instruction* instr);
// ICache.
static void CheckICache(base::CustomMatcherHashMap* i_cache,
Instruction* instr);
static void FlushOnePage(base::CustomMatcherHashMap* i_cache, intptr_t start,
int size);
static CachePage* GetCachePage(base::CustomMatcherHashMap* i_cache,
void* page);
// Handle arguments and return value for runtime FP functions.
void GetFpArgs(double* x, double* y, intptr_t* z);
void SetFpResult(const double& result);
void TrashCallerSaveRegisters();
void CallInternal(byte* entry);
// Architecture state.
// Saturating instructions require a Q flag to indicate saturation.
// There is currently no way to read the CPSR directly, and thus read the Q
// flag, so this is left unimplemented.
intptr_t registers_[kNumGPRs];
int32_t condition_reg_;
int32_t fp_condition_reg_;
intptr_t special_reg_lr_;
intptr_t special_reg_pc_;
intptr_t special_reg_ctr_;
int32_t special_reg_xer_;
int64_t fp_registers_[kNumFPRs];
// Simulator support.
char* stack_;
static const size_t stack_protection_size_ = 256 * kPointerSize;
bool pc_modified_;
int icount_;
// Debugger input.
char* last_debugger_input_;
// Icache simulation
base::CustomMatcherHashMap* i_cache_;
// Registered breakpoints.
Instruction* break_pc_;
Instr break_instr_;
v8::internal::Isolate* isolate_;
// A stop is watched if its code is less than kNumOfWatchedStops.
// Only watched stops support enabling/disabling and the counter feature.
static const uint32_t kNumOfWatchedStops = 256;
// Breakpoint is disabled if bit 31 is set.
static const uint32_t kStopDisabledBit = 1 << 31;
// A stop is enabled, meaning the simulator will stop when meeting the
// instruction, if bit 31 of watched_stops_[code].count is unset.
// The value watched_stops_[code].count & ~(1 << 31) indicates how many times
// the breakpoint was hit or gone through.
struct StopCountAndDesc {
uint32_t count;
char* desc;
};
StopCountAndDesc watched_stops_[kNumOfWatchedStops];
// Synchronization primitives. See ARM DDI 0406C.b, A2.9.
enum class MonitorAccess {
Open,
Exclusive,
};
enum class TransactionSize {
None = 0,
Byte = 1,
HalfWord = 2,
Word = 4,
};
class LocalMonitor {
public:
LocalMonitor();
// These functions manage the state machine for the local monitor, but do
// not actually perform loads and stores. NotifyStoreExcl only returns
// true if the exclusive store is allowed; the global monitor will still
// have to be checked to see whether the memory should be updated.
void NotifyLoad(int32_t addr);
void NotifyLoadExcl(int32_t addr, TransactionSize size);
void NotifyStore(int32_t addr);
bool NotifyStoreExcl(int32_t addr, TransactionSize size);
private:
void Clear();
MonitorAccess access_state_;
int32_t tagged_addr_;
TransactionSize size_;
};
class GlobalMonitor {
public:
GlobalMonitor();
class Processor {
public:
Processor();
private:
friend class GlobalMonitor;
// These functions manage the state machine for the global monitor, but do
// not actually perform loads and stores.
void Clear_Locked();
void NotifyLoadExcl_Locked(int32_t addr);
void NotifyStore_Locked(int32_t addr, bool is_requesting_processor);
bool NotifyStoreExcl_Locked(int32_t addr, bool is_requesting_processor);
MonitorAccess access_state_;
int32_t tagged_addr_;
Processor* next_;
Processor* prev_;
};
// Exposed so it can be accessed by Simulator::{Read,Write}Ex*.
base::Mutex mutex;
void NotifyLoadExcl_Locked(int32_t addr, Processor* processor);
void NotifyStore_Locked(int32_t addr, Processor* processor);
bool NotifyStoreExcl_Locked(int32_t addr, Processor* processor);
// Called when the simulator is destroyed.
void RemoveProcessor(Processor* processor);
private:
bool IsProcessorInLinkedList_Locked(Processor* processor) const;
void PrependProcessor_Locked(Processor* processor);
Processor* head_;
};
LocalMonitor local_monitor_;
GlobalMonitor::Processor global_monitor_processor_;
static base::LazyInstance<GlobalMonitor>::type global_monitor_;
};
} // namespace internal
} // namespace v8
#endif // defined(USE_SIMULATOR)
#endif // V8_PPC_SIMULATOR_PPC_H_