| // Copyright (c) 1994-2006 Sun Microsystems Inc. |
| // All Rights Reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions |
| // are met: |
| // |
| // - Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // |
| // - Redistribution in binary form must reproduce the above copyright |
| // notice, this list of conditions and the following disclaimer in the |
| // documentation and/or other materials provided with the |
| // distribution. |
| // |
| // - Neither the name of Sun Microsystems or the names of contributors may |
| // be used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| // OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // The original source code covered by the above license above has been |
| // modified significantly by Google Inc. |
| // Copyright 2014 the V8 project authors. All rights reserved. |
| |
| // A light-weight S390 Assembler |
| // Generates user mode instructions for z/Architecture |
| |
| #ifndef V8_S390_ASSEMBLER_S390_H_ |
| #define V8_S390_ASSEMBLER_S390_H_ |
| #include <stdio.h> |
| #if V8_HOST_ARCH_S390 |
| // elf.h include is required for auxv check for STFLE facility used |
| // for hardware detection, which is sensible only on s390 hosts. |
| #include <elf.h> |
| #endif |
| |
| #include <fcntl.h> |
| #include <unistd.h> |
| #include <vector> |
| |
| #include "src/assembler.h" |
| #include "src/s390/constants-s390.h" |
| |
| #define ABI_USES_FUNCTION_DESCRIPTORS 0 |
| |
| #define ABI_PASSES_HANDLES_IN_REGS 1 |
| |
| // ObjectPair is defined under runtime/runtime-util.h. |
| // On 31-bit, ObjectPair == uint64_t. ABI dictates long long |
| // be returned with the lower addressed half in r2 |
| // and the higher addressed half in r3. (Returns in Regs) |
| // On 64-bit, ObjectPair is a Struct. ABI dictaes Structs be |
| // returned in a storage buffer allocated by the caller, |
| // with the address of this buffer passed as a hidden |
| // argument in r2. (Does NOT return in Regs) |
| // For x86 linux, ObjectPair is returned in registers. |
| #if V8_TARGET_ARCH_S390X |
| #define ABI_RETURNS_OBJECTPAIR_IN_REGS 0 |
| #else |
| #define ABI_RETURNS_OBJECTPAIR_IN_REGS 1 |
| #endif |
| |
| #define ABI_CALL_VIA_IP 1 |
| |
| #define INSTR_AND_DATA_CACHE_COHERENCY LWSYNC |
| |
| namespace v8 { |
| namespace internal { |
| |
| // clang-format off |
| #define GENERAL_REGISTERS(V) \ |
| V(r0) V(r1) V(r2) V(r3) V(r4) V(r5) V(r6) V(r7) \ |
| V(r8) V(r9) V(r10) V(fp) V(ip) V(r13) V(r14) V(sp) |
| |
| #define ALLOCATABLE_GENERAL_REGISTERS(V) \ |
| V(r2) V(r3) V(r4) V(r5) V(r6) V(r7) \ |
| V(r8) V(r9) V(r13) |
| |
| #define DOUBLE_REGISTERS(V) \ |
| V(d0) V(d1) V(d2) V(d3) V(d4) V(d5) V(d6) V(d7) \ |
| V(d8) V(d9) V(d10) V(d11) V(d12) V(d13) V(d14) V(d15) |
| |
| #define FLOAT_REGISTERS DOUBLE_REGISTERS |
| #define SIMD128_REGISTERS DOUBLE_REGISTERS |
| |
| #define ALLOCATABLE_DOUBLE_REGISTERS(V) \ |
| V(d1) V(d2) V(d3) V(d4) V(d5) V(d6) V(d7) \ |
| V(d8) V(d9) V(d10) V(d11) V(d12) V(d15) V(d0) |
| |
| #define C_REGISTERS(V) \ |
| V(cr0) V(cr1) V(cr2) V(cr3) V(cr4) V(cr5) V(cr6) V(cr7) \ |
| V(cr8) V(cr9) V(cr10) V(cr11) V(cr12) V(cr15) |
| // clang-format on |
| |
| // Register list in load/store instructions |
| // Note that the bit values must match those used in actual instruction encoding |
| const int kNumRegs = 16; |
| |
| // Caller-saved/arguments registers |
| const RegList kJSCallerSaved = 1 << 1 | 1 << 2 | // r2 a1 |
| 1 << 3 | // r3 a2 |
| 1 << 4 | // r4 a3 |
| 1 << 5; // r5 a4 |
| |
| const int kNumJSCallerSaved = 5; |
| |
| // Callee-saved registers preserved when switching from C to JavaScript |
| const RegList kCalleeSaved = |
| 1 << 6 | // r6 (argument passing in CEntryStub) |
| // (HandleScope logic in MacroAssembler) |
| 1 << 7 | // r7 (argument passing in CEntryStub) |
| // (HandleScope logic in MacroAssembler) |
| 1 << 8 | // r8 (argument passing in CEntryStub) |
| // (HandleScope logic in MacroAssembler) |
| 1 << 9 | // r9 (HandleScope logic in MacroAssembler) |
| 1 << 10 | // r10 (Roots register in Javascript) |
| 1 << 11 | // r11 (fp in Javascript) |
| 1 << 12 | // r12 (ip in Javascript) |
| 1 << 13; // r13 (cp in Javascript) |
| // 1 << 15; // r15 (sp in Javascript) |
| |
| const int kNumCalleeSaved = 8; |
| |
| #ifdef V8_TARGET_ARCH_S390X |
| |
| const RegList kCallerSavedDoubles = 1 << 0 | // d0 |
| 1 << 1 | // d1 |
| 1 << 2 | // d2 |
| 1 << 3 | // d3 |
| 1 << 4 | // d4 |
| 1 << 5 | // d5 |
| 1 << 6 | // d6 |
| 1 << 7; // d7 |
| |
| const int kNumCallerSavedDoubles = 8; |
| |
| const RegList kCalleeSavedDoubles = 1 << 8 | // d8 |
| 1 << 9 | // d9 |
| 1 << 10 | // d10 |
| 1 << 11 | // d11 |
| 1 << 12 | // d12 |
| 1 << 13 | // d12 |
| 1 << 14 | // d12 |
| 1 << 15; // d13 |
| |
| const int kNumCalleeSavedDoubles = 8; |
| |
| #else |
| |
| const RegList kCallerSavedDoubles = 1 << 14 | // d14 |
| 1 << 15 | // d15 |
| 1 << 0 | // d0 |
| 1 << 1 | // d1 |
| 1 << 2 | // d2 |
| 1 << 3 | // d3 |
| 1 << 5 | // d5 |
| 1 << 7 | // d7 |
| 1 << 8 | // d8 |
| 1 << 9 | // d9 |
| 1 << 10 | // d10 |
| 1 << 11 | // d10 |
| 1 << 12 | // d10 |
| 1 << 13; // d11 |
| |
| const int kNumCallerSavedDoubles = 14; |
| |
| const RegList kCalleeSavedDoubles = 1 << 4 | // d4 |
| 1 << 6; // d6 |
| |
| const int kNumCalleeSavedDoubles = 2; |
| |
| #endif |
| |
| // Number of registers for which space is reserved in safepoints. Must be a |
| // multiple of 8. |
| // TODO(regis): Only 8 registers may actually be sufficient. Revisit. |
| const int kNumSafepointRegisters = 16; |
| |
| // Define the list of registers actually saved at safepoints. |
| // Note that the number of saved registers may be smaller than the reserved |
| // space, i.e. kNumSafepointSavedRegisters <= kNumSafepointRegisters. |
| const RegList kSafepointSavedRegisters = kJSCallerSaved | kCalleeSaved; |
| const int kNumSafepointSavedRegisters = kNumJSCallerSaved + kNumCalleeSaved; |
| |
| // The following constants describe the stack frame linkage area as |
| // defined by the ABI. |
| |
| #if V8_TARGET_ARCH_S390X |
| // [0] Back Chain |
| // [1] Reserved for compiler use |
| // [2] GPR 2 |
| // [3] GPR 3 |
| // ... |
| // [15] GPR 15 |
| // [16] FPR 0 |
| // [17] FPR 2 |
| // [18] FPR 4 |
| // [19] FPR 6 |
| const int kNumRequiredStackFrameSlots = 20; |
| const int kStackFrameRASlot = 14; |
| const int kStackFrameSPSlot = 15; |
| const int kStackFrameExtraParamSlot = 20; |
| #else |
| // [0] Back Chain |
| // [1] Reserved for compiler use |
| // [2] GPR 2 |
| // [3] GPR 3 |
| // ... |
| // [15] GPR 15 |
| // [16..17] FPR 0 |
| // [18..19] FPR 2 |
| // [20..21] FPR 4 |
| // [22..23] FPR 6 |
| const int kNumRequiredStackFrameSlots = 24; |
| const int kStackFrameRASlot = 14; |
| const int kStackFrameSPSlot = 15; |
| const int kStackFrameExtraParamSlot = 24; |
| #endif |
| |
| // zLinux ABI requires caller frames to include sufficient space for |
| // callee preserved register save area. |
| #if V8_TARGET_ARCH_S390X |
| const int kCalleeRegisterSaveAreaSize = 160; |
| #elif V8_TARGET_ARCH_S390 |
| const int kCalleeRegisterSaveAreaSize = 96; |
| #else |
| const int kCalleeRegisterSaveAreaSize = 0; |
| #endif |
| |
| enum RegisterCode { |
| #define REGISTER_CODE(R) kRegCode_##R, |
| GENERAL_REGISTERS(REGISTER_CODE) |
| #undef REGISTER_CODE |
| kRegAfterLast |
| }; |
| |
| class Register : public RegisterBase<Register, kRegAfterLast> { |
| public: |
| #if V8_TARGET_LITTLE_ENDIAN |
| static constexpr int kMantissaOffset = 0; |
| static constexpr int kExponentOffset = 4; |
| #else |
| static constexpr int kMantissaOffset = 4; |
| static constexpr int kExponentOffset = 0; |
| #endif |
| |
| private: |
| friend class RegisterBase; |
| explicit constexpr Register(int code) : RegisterBase(code) {} |
| }; |
| |
| static_assert(IS_TRIVIALLY_COPYABLE(Register) && |
| sizeof(Register) == sizeof(int), |
| "Register can efficiently be passed by value"); |
| |
| #define DEFINE_REGISTER(R) \ |
| constexpr Register R = Register::from_code<kRegCode_##R>(); |
| GENERAL_REGISTERS(DEFINE_REGISTER) |
| #undef DEFINE_REGISTER |
| constexpr Register no_reg = Register::no_reg(); |
| |
| // Register aliases |
| constexpr Register kLithiumScratch = r1; // lithium scratch. |
| constexpr Register kRootRegister = r10; // Roots array pointer. |
| constexpr Register cp = r13; // JavaScript context pointer. |
| |
| constexpr bool kPadArguments = false; |
| constexpr bool kSimpleFPAliasing = true; |
| constexpr bool kSimdMaskRegisters = false; |
| |
| enum DoubleRegisterCode { |
| #define REGISTER_CODE(R) kDoubleCode_##R, |
| DOUBLE_REGISTERS(REGISTER_CODE) |
| #undef REGISTER_CODE |
| kDoubleAfterLast |
| }; |
| |
| // Double word VFP register. |
| class DoubleRegister : public RegisterBase<DoubleRegister, kDoubleAfterLast> { |
| public: |
| // A few double registers are reserved: one as a scratch register and one to |
| // hold 0.0, that does not fit in the immediate field of vmov instructions. |
| // d14: 0.0 |
| // d15: scratch register. |
| static constexpr int kSizeInBytes = 8; |
| inline static int NumRegisters(); |
| |
| private: |
| friend class RegisterBase; |
| |
| explicit constexpr DoubleRegister(int code) : RegisterBase(code) {} |
| }; |
| |
| static_assert(IS_TRIVIALLY_COPYABLE(DoubleRegister) && |
| sizeof(DoubleRegister) == sizeof(int), |
| "DoubleRegister can efficiently be passed by value"); |
| |
| typedef DoubleRegister FloatRegister; |
| |
| // TODO(john.yan) Define SIMD registers. |
| typedef DoubleRegister Simd128Register; |
| |
| #define DEFINE_REGISTER(R) \ |
| constexpr DoubleRegister R = DoubleRegister::from_code<kDoubleCode_##R>(); |
| DOUBLE_REGISTERS(DEFINE_REGISTER) |
| #undef DEFINE_REGISTER |
| constexpr DoubleRegister no_dreg = DoubleRegister::no_reg(); |
| |
| constexpr DoubleRegister kDoubleRegZero = d14; |
| constexpr DoubleRegister kScratchDoubleReg = d13; |
| |
| Register ToRegister(int num); |
| |
| enum CRegisterCode { |
| #define REGISTER_CODE(R) kCCode_##R, |
| C_REGISTERS(REGISTER_CODE) |
| #undef REGISTER_CODE |
| kCAfterLast |
| }; |
| |
| // Coprocessor register |
| class CRegister : public RegisterBase<CRegister, kCAfterLast> { |
| friend class RegisterBase; |
| explicit constexpr CRegister(int code) : RegisterBase(code) {} |
| }; |
| |
| constexpr CRegister no_creg = CRegister::no_reg(); |
| #define DECLARE_C_REGISTER(R) \ |
| constexpr CRegister R = CRegister::from_code<kCCode_##R>(); |
| C_REGISTERS(DECLARE_C_REGISTER) |
| #undef DECLARE_C_REGISTER |
| |
| // ----------------------------------------------------------------------------- |
| // Machine instruction Operands |
| |
| #if V8_TARGET_ARCH_S390X |
| constexpr RelocInfo::Mode kRelocInfo_NONEPTR = RelocInfo::NONE64; |
| #else |
| constexpr RelocInfo::Mode kRelocInfo_NONEPTR = RelocInfo::NONE32; |
| #endif |
| |
| // Class Operand represents a shifter operand in data processing instructions |
| // defining immediate numbers and masks |
| typedef uint8_t Length; |
| |
| struct Mask { |
| uint8_t mask; |
| uint8_t value() { return mask; } |
| static Mask from_value(uint8_t input) { |
| DCHECK_LE(input, 0x0F); |
| Mask m = {input}; |
| return m; |
| } |
| }; |
| |
| class Operand BASE_EMBEDDED { |
| public: |
| // immediate |
| INLINE(explicit Operand(intptr_t immediate, |
| RelocInfo::Mode rmode = kRelocInfo_NONEPTR) |
| : rmode_(rmode)) { |
| value_.immediate = immediate; |
| } |
| INLINE(static Operand Zero()) { return Operand(static_cast<intptr_t>(0)); } |
| INLINE(explicit Operand(const ExternalReference& f) |
| : rmode_(RelocInfo::EXTERNAL_REFERENCE)) { |
| value_.immediate = reinterpret_cast<intptr_t>(f.address()); |
| } |
| explicit Operand(Handle<HeapObject> handle); |
| INLINE(explicit Operand(Smi* value) : rmode_(kRelocInfo_NONEPTR)) { |
| value_.immediate = reinterpret_cast<intptr_t>(value); |
| } |
| |
| // rm |
| INLINE(explicit Operand(Register rm)); |
| |
| static Operand EmbeddedNumber(double value); // Smi or HeapNumber |
| |
| // Return true if this is a register operand. |
| INLINE(bool is_reg() const) { return rm_.is_valid(); } |
| |
| bool must_output_reloc_info(const Assembler* assembler) const; |
| |
| inline intptr_t immediate() const { |
| DCHECK(!rm_.is_valid()); |
| DCHECK(!is_heap_object_request()); |
| return value_.immediate; |
| } |
| |
| HeapObjectRequest heap_object_request() const { |
| DCHECK(is_heap_object_request()); |
| return value_.heap_object_request; |
| } |
| |
| inline void setBits(int n) { |
| value_.immediate = |
| (static_cast<uint32_t>(value_.immediate) << (32 - n)) >> (32 - n); |
| } |
| |
| Register rm() const { return rm_; } |
| |
| bool is_heap_object_request() const { |
| DCHECK_IMPLIES(is_heap_object_request_, !rm_.is_valid()); |
| DCHECK_IMPLIES(is_heap_object_request_, |
| rmode_ == RelocInfo::EMBEDDED_OBJECT || |
| rmode_ == RelocInfo::CODE_TARGET); |
| return is_heap_object_request_; |
| } |
| |
| RelocInfo::Mode rmode() const { return rmode_; } |
| |
| private: |
| Register rm_ = no_reg; |
| union Value { |
| Value() {} |
| HeapObjectRequest heap_object_request; // if is_heap_object_request_ |
| intptr_t immediate; // otherwise |
| } value_; // valid if rm_ == no_reg |
| bool is_heap_object_request_ = false; |
| |
| RelocInfo::Mode rmode_; |
| |
| friend class Assembler; |
| friend class MacroAssembler; |
| }; |
| |
| typedef int32_t Disp; |
| |
| // Class MemOperand represents a memory operand in load and store instructions |
| // On S390, we have various flavours of memory operands: |
| // 1) a base register + 16 bit unsigned displacement |
| // 2) a base register + index register + 16 bit unsigned displacement |
| // 3) a base register + index register + 20 bit signed displacement |
| class MemOperand BASE_EMBEDDED { |
| public: |
| explicit MemOperand(Register rx, Disp offset = 0); |
| explicit MemOperand(Register rx, Register rb, Disp offset = 0); |
| |
| int32_t offset() const { return offset_; } |
| uint32_t getDisplacement() const { return offset(); } |
| |
| // Base register |
| Register rb() const { |
| DCHECK(baseRegister != no_reg); |
| return baseRegister; |
| } |
| |
| Register getBaseRegister() const { return rb(); } |
| |
| // Index Register |
| Register rx() const { |
| DCHECK(indexRegister != no_reg); |
| return indexRegister; |
| } |
| Register getIndexRegister() const { return rx(); } |
| |
| private: |
| Register baseRegister; // base |
| Register indexRegister; // index |
| int32_t offset_; // offset |
| |
| friend class Assembler; |
| }; |
| |
| class DeferredRelocInfo { |
| public: |
| DeferredRelocInfo() {} |
| DeferredRelocInfo(int position, RelocInfo::Mode rmode, intptr_t data) |
| : position_(position), rmode_(rmode), data_(data) {} |
| |
| int position() const { return position_; } |
| RelocInfo::Mode rmode() const { return rmode_; } |
| intptr_t data() const { return data_; } |
| |
| private: |
| int position_; |
| RelocInfo::Mode rmode_; |
| intptr_t data_; |
| }; |
| |
| class Assembler : public AssemblerBase { |
| public: |
| // Create an assembler. Instructions and relocation information are emitted |
| // into a buffer, with the instructions starting from the beginning and the |
| // relocation information starting from the end of the buffer. See CodeDesc |
| // for a detailed comment on the layout (globals.h). |
| // |
| // If the provided buffer is nullptr, the assembler allocates and grows its |
| // own buffer, and buffer_size determines the initial buffer size. The buffer |
| // is owned by the assembler and deallocated upon destruction of the |
| // assembler. |
| // |
| // If the provided buffer is not nullptr, the assembler uses the provided |
| // buffer for code generation and assumes its size to be buffer_size. If the |
| // buffer is too small, a fatal error occurs. No deallocation of the buffer is |
| // done upon destruction of the assembler. |
| Assembler(Isolate* isolate, void* buffer, int buffer_size) |
| : Assembler(IsolateData(isolate), buffer, buffer_size) {} |
| Assembler(IsolateData isolate_data, void* buffer, int buffer_size); |
| virtual ~Assembler() {} |
| |
| // GetCode emits any pending (non-emitted) code and fills the descriptor |
| // desc. GetCode() is idempotent; it returns the same result if no other |
| // Assembler functions are invoked in between GetCode() calls. |
| void GetCode(Isolate* isolate, CodeDesc* desc); |
| |
| // Label operations & relative jumps (PPUM Appendix D) |
| // |
| // Takes a branch opcode (cc) and a label (L) and generates |
| // either a backward branch or a forward branch and links it |
| // to the label fixup chain. Usage: |
| // |
| // Label L; // unbound label |
| // j(cc, &L); // forward branch to unbound label |
| // bind(&L); // bind label to the current pc |
| // j(cc, &L); // backward branch to bound label |
| // bind(&L); // illegal: a label may be bound only once |
| // |
| // Note: The same Label can be used for forward and backward branches |
| // but it may be bound only once. |
| |
| void bind(Label* L); // binds an unbound label L to the current code position |
| |
| // Links a label at the current pc_offset(). If already bound, returns the |
| // bound position. If already linked, returns the position of the prior link. |
| // Otherwise, returns the current pc_offset(). |
| int link(Label* L); |
| |
| // Determines if Label is bound and near enough so that a single |
| // branch instruction can be used to reach it. |
| bool is_near(Label* L, Condition cond); |
| |
| // Returns the branch offset to the given label from the current code position |
| // Links the label to the current position if it is still unbound |
| int branch_offset(Label* L) { return link(L) - pc_offset(); } |
| |
| // Puts a labels target address at the given position. |
| // The high 8 bits are set to zero. |
| void label_at_put(Label* L, int at_offset); |
| void load_label_offset(Register r1, Label* L); |
| |
| // Read/Modify the code target address in the branch/call instruction at pc. |
| // The isolate argument is unused (and may be nullptr) when skipping flushing. |
| INLINE(static Address target_address_at(Address pc, Address constant_pool)); |
| INLINE(static void set_target_address_at( |
| Isolate* isolate, Address pc, Address constant_pool, Address target, |
| ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)); |
| |
| // Return the code target address at a call site from the return address |
| // of that call in the instruction stream. |
| inline static Address target_address_from_return_address(Address pc); |
| |
| // Given the address of the beginning of a call, return the address |
| // in the instruction stream that the call will return to. |
| INLINE(static Address return_address_from_call_start(Address pc)); |
| |
| inline Handle<Object> code_target_object_handle_at(Address pc); |
| // This sets the branch destination. |
| // This is for calls and branches within generated code. |
| inline static void deserialization_set_special_target_at( |
| Isolate* isolate, Address instruction_payload, Code* code, |
| Address target); |
| |
| // This sets the internal reference at the pc. |
| inline static void deserialization_set_target_internal_reference_at( |
| Isolate* isolate, Address pc, Address target, |
| RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE); |
| |
| // Here we are patching the address in the IIHF/IILF instruction pair. |
| // These values are used in the serialization process and must be zero for |
| // S390 platform, as Code, Embedded Object or External-reference pointers |
| // are split across two consecutive instructions and don't exist separately |
| // in the code, so the serializer should not step forwards in memory after |
| // a target is resolved and written. |
| static constexpr int kSpecialTargetSize = 0; |
| |
| // Number of bytes for instructions used to store pointer sized constant. |
| #if V8_TARGET_ARCH_S390X |
| static constexpr int kBytesForPtrConstant = 12; // IIHF + IILF |
| #else |
| static constexpr int kBytesForPtrConstant = 6; // IILF |
| #endif |
| |
| // Distance between the instruction referring to the address of the call |
| // target and the return address. |
| |
| // Offset between call target address and return address |
| // for BRASL calls |
| // Patch will be appiled to other FIXED_SEQUENCE call |
| static constexpr int kCallTargetAddressOffset = 6; |
| |
| // The length of FIXED_SEQUENCE call |
| // iihf r8, <address_hi> // <64-bit only> |
| // iilf r8, <address_lo> |
| // basr r14, r8 |
| #if V8_TARGET_ARCH_S390X |
| static constexpr int kCallSequenceLength = 14; |
| #else |
| static constexpr int kCallSequenceLength = 8; |
| #endif |
| |
| static inline int encode_crbit(const CRegister& cr, enum CRBit crbit) { |
| return ((cr.code() * CRWIDTH) + crbit); |
| } |
| |
| // --------------------------------------------------------------------------- |
| // Code generation |
| |
| template <class T, int size, int lo, int hi> |
| inline T getfield(T value) { |
| DCHECK(lo < hi); |
| DCHECK_GT(size, 0); |
| int mask = hi - lo; |
| int shift = size * 8 - hi; |
| uint32_t mask_value = (mask == 32) ? 0xffffffff : (1 << mask) - 1; |
| return (value & mask_value) << shift; |
| } |
| |
| // Declare generic instruction formats by fields |
| inline void e_format(Opcode opcode) { |
| emit2bytes(getfield<uint16_t, 2, 0, 16>(opcode)); |
| } |
| |
| inline void i_format(Opcode opcode, int f1) { |
| emit2bytes(getfield<uint16_t, 2, 0, 8>(opcode) | |
| getfield<uint16_t, 2, 8, 16>(f1)); |
| } |
| |
| inline void ie_format(Opcode opcode, int f1, int f2) { |
| emit4bytes(getfield<uint32_t, 4, 0, 16>(opcode) | |
| getfield<uint32_t, 4, 24, 28>(f1) | |
| getfield<uint32_t, 4, 28, 32>(f2)); |
| } |
| inline void mii_format(Opcode opcode, int f1, int f2, int f3) { |
| emit6bytes( |
| getfield<uint64_t, 6, 0, 8>(opcode) | getfield<uint64_t, 6, 8, 12>(f1) | |
| getfield<uint64_t, 6, 12, 24>(f2) | getfield<uint64_t, 6, 24, 48>(f3)); |
| } |
| |
| inline void ri_format(Opcode opcode, int f1, int f2) { |
| uint32_t op1 = opcode >> 4; |
| uint32_t op2 = opcode & 0xf; |
| emit4bytes( |
| getfield<uint32_t, 4, 0, 8>(op1) | getfield<uint32_t, 4, 8, 12>(f1) | |
| getfield<uint32_t, 4, 12, 16>(op2) | getfield<uint32_t, 4, 16, 32>(f2)); |
| } |
| |
| inline void rie_1_format(Opcode opcode, int f1, int f2, int f3, int f4) { |
| uint32_t op1 = opcode >> 8; |
| uint32_t op2 = opcode & 0xff; |
| emit6bytes( |
| getfield<uint64_t, 6, 0, 8>(op1) | getfield<uint64_t, 6, 8, 12>(f1) | |
| getfield<uint64_t, 6, 12, 16>(f2) | getfield<uint64_t, 6, 16, 32>(f3) | |
| getfield<uint64_t, 6, 32, 36>(f4) | getfield<uint64_t, 6, 40, 48>(op2)); |
| } |
| |
| inline void rie_2_format(Opcode opcode, int f1, int f2, int f3, int f4) { |
| uint32_t op1 = opcode >> 8; |
| uint32_t op2 = opcode & 0xff; |
| emit6bytes( |
| getfield<uint64_t, 6, 0, 8>(op1) | getfield<uint64_t, 6, 8, 12>(f1) | |
| getfield<uint64_t, 6, 12, 16>(f2) | getfield<uint64_t, 6, 16, 32>(f3) | |
| getfield<uint64_t, 6, 32, 40>(f4) | getfield<uint64_t, 6, 40, 48>(op2)); |
| } |
| |
| inline void rie_3_format(Opcode opcode, int f1, int f2, int f3, int f4, |
| int f5) { |
| uint32_t op1 = opcode >> 8; |
| uint32_t op2 = opcode & 0xff; |
| emit6bytes( |
| getfield<uint64_t, 6, 0, 8>(op1) | getfield<uint64_t, 6, 8, 12>(f1) | |
| getfield<uint64_t, 6, 12, 16>(f2) | getfield<uint64_t, 6, 16, 24>(f3) | |
| getfield<uint64_t, 6, 24, 32>(f4) | getfield<uint64_t, 6, 32, 40>(f5) | |
| getfield<uint64_t, 6, 40, 48>(op2)); |
| } |
| |
| #define DECLARE_S390_RIL_AB_INSTRUCTIONS(name, op_name, op_value) \ |
| template <class R1> \ |
| inline void name(R1 r1, const Operand& i2) { \ |
| ril_format(op_name, r1.code(), i2.immediate()); \ |
| } |
| #define DECLARE_S390_RIL_C_INSTRUCTIONS(name, op_name, op_value) \ |
| inline void name(Condition m1, const Operand& i2) { \ |
| ril_format(op_name, m1, i2.immediate()); \ |
| } |
| |
| inline void ril_format(Opcode opcode, int f1, int f2) { |
| uint32_t op1 = opcode >> 4; |
| uint32_t op2 = opcode & 0xf; |
| emit6bytes( |
| getfield<uint64_t, 6, 0, 8>(op1) | getfield<uint64_t, 6, 8, 12>(f1) | |
| getfield<uint64_t, 6, 12, 16>(op2) | getfield<uint64_t, 6, 16, 48>(f2)); |
| } |
| S390_RIL_A_OPCODE_LIST(DECLARE_S390_RIL_AB_INSTRUCTIONS) |
| S390_RIL_B_OPCODE_LIST(DECLARE_S390_RIL_AB_INSTRUCTIONS) |
| S390_RIL_C_OPCODE_LIST(DECLARE_S390_RIL_C_INSTRUCTIONS) |
| #undef DECLARE_S390_RIL_AB_INSTRUCTIONS |
| #undef DECLARE_S390_RIL_C_INSTRUCTIONS |
| |
| inline void ris_format(Opcode opcode, int f1, int f2, int f3, int f4, |
| int f5) { |
| uint32_t op1 = opcode >> 8; |
| uint32_t op2 = opcode & 0xff; |
| emit6bytes( |
| getfield<uint64_t, 6, 0, 8>(op1) | getfield<uint64_t, 6, 8, 12>(f1) | |
| getfield<uint64_t, 6, 12, 16>(f2) | getfield<uint64_t, 6, 16, 20>(f3) | |
| getfield<uint64_t, 6, 20, 32>(f4) | getfield<uint64_t, 6, 32, 40>(f5) | |
| getfield<uint64_t, 6, 40, 48>(op2)); |
| } |
| |
| #define DECLARE_S390_RR_INSTRUCTIONS(name, op_name, op_value) \ |
| inline void name(Register r1, Register r2) { \ |
| rr_format(op_name, r1.code(), r2.code()); \ |
| } \ |
| inline void name(DoubleRegister r1, DoubleRegister r2) { \ |
| rr_format(op_name, r1.code(), r2.code()); \ |
| } \ |
| inline void name(Condition m1, Register r2) { \ |
| rr_format(op_name, m1, r2.code()); \ |
| } |
| |
| inline void rr_format(Opcode opcode, int f1, int f2) { |
| emit2bytes(getfield<uint16_t, 2, 0, 8>(opcode) | |
| getfield<uint16_t, 2, 8, 12>(f1) | |
| getfield<uint16_t, 2, 12, 16>(f2)); |
| } |
| S390_RR_OPCODE_LIST(DECLARE_S390_RR_INSTRUCTIONS) |
| #undef DECLARE_S390_RR_INSTRUCTIONS |
| |
| #define DECLARE_S390_RRD_INSTRUCTIONS(name, op_name, op_value) \ |
| template <class R1, class R2, class R3> \ |
| inline void name(R1 r1, R3 r3, R2 r2) { \ |
| rrd_format(op_name, r1.code(), r3.code(), r2.code()); \ |
| } |
| inline void rrd_format(Opcode opcode, int f1, int f2, int f3) { |
| emit4bytes(getfield<uint32_t, 4, 0, 16>(opcode) | |
| getfield<uint32_t, 4, 16, 20>(f1) | |
| getfield<uint32_t, 4, 24, 28>(f2) | |
| getfield<uint32_t, 4, 28, 32>(f3)); |
| } |
| S390_RRD_OPCODE_LIST(DECLARE_S390_RRD_INSTRUCTIONS) |
| #undef DECLARE_S390_RRD_INSTRUCTIONS |
| |
| #define DECLARE_S390_RRE_INSTRUCTIONS(name, op_name, op_value) \ |
| template <class R1, class R2> \ |
| inline void name(R1 r1, R2 r2) { \ |
| rre_format(op_name, r1.code(), r2.code()); \ |
| } |
| inline void rre_format(Opcode opcode, int f1, int f2) { |
| emit4bytes(getfield<uint32_t, 4, 0, 16>(opcode) | |
| getfield<uint32_t, 4, 24, 28>(f1) | |
| getfield<uint32_t, 4, 28, 32>(f2)); |
| } |
| S390_RRE_OPCODE_LIST(DECLARE_S390_RRE_INSTRUCTIONS) |
| // Special format |
| void lzdr(DoubleRegister r1) { rre_format(LZDR, r1.code(), 0); } |
| #undef DECLARE_S390_RRE_INSTRUCTIONS |
| |
| inline void rrf_format(Opcode opcode, int f1, int f2, int f3, int f4) { |
| emit4bytes( |
| getfield<uint32_t, 4, 0, 16>(opcode) | |
| getfield<uint32_t, 4, 16, 20>(f1) | getfield<uint32_t, 4, 20, 24>(f2) | |
| getfield<uint32_t, 4, 24, 28>(f3) | getfield<uint32_t, 4, 28, 32>(f4)); |
| } |
| |
| #define DECLARE_S390_RX_INSTRUCTIONS(name, op_name, op_value) \ |
| template <class R1> \ |
| inline void name(R1 r1, Register x2, Register b2, Disp d2) { \ |
| rx_format(op_name, r1.code(), x2.code(), b2.code(), d2); \ |
| } \ |
| template <class R1> \ |
| inline void name(R1 r1, const MemOperand& opnd) { \ |
| name(r1, opnd.getIndexRegister(), \ |
| opnd.getBaseRegister(), opnd.getDisplacement()); \ |
| } |
| |
| inline void rx_format(Opcode opcode, int f1, int f2, int f3, int f4) { |
| DCHECK(is_uint8(opcode)); |
| DCHECK(is_uint12(f4)); |
| emit4bytes(getfield<uint32_t, 4, 0, 8>(opcode) | |
| getfield<uint32_t, 4, 8, 12>(f1) | |
| getfield<uint32_t, 4, 12, 16>(f2) | |
| getfield<uint32_t, 4, 16, 20>(f3) | |
| getfield<uint32_t, 4, 20, 32>(f4)); |
| } |
| S390_RX_A_OPCODE_LIST(DECLARE_S390_RX_INSTRUCTIONS) |
| |
| void bc(Condition cond, const MemOperand& opnd) { |
| bc(cond, opnd.getIndexRegister(), |
| opnd.getBaseRegister(), opnd.getDisplacement()); |
| } |
| void bc(Condition cond, Register x2, Register b2, Disp d2) { |
| rx_format(BC, cond, x2.code(), b2.code(), d2); |
| } |
| #undef DECLARE_S390_RX_INSTRUCTIONS |
| |
| #define DECLARE_S390_RXY_INSTRUCTIONS(name, op_name, op_value) \ |
| template <class R1, class R2> \ |
| inline void name(R1 r1, R2 r2, Register b2, Disp d2) { \ |
| rxy_format(op_name, r1.code(), r2.code(), b2.code(), d2); \ |
| } \ |
| template <class R1> \ |
| inline void name(R1 r1, const MemOperand& opnd) { \ |
| name(r1, opnd.getIndexRegister(), \ |
| opnd.getBaseRegister(), opnd.getDisplacement()); \ |
| } |
| |
| inline void rxy_format(Opcode opcode, int f1, int f2, int f3, int f4) { |
| DCHECK(is_uint16(opcode)); |
| DCHECK(is_int20(f4)); |
| emit6bytes(getfield<uint64_t, 6, 0, 8>(opcode >> 8) | |
| getfield<uint64_t, 6, 8, 12>(f1) | |
| getfield<uint64_t, 6, 12, 16>(f2) | |
| getfield<uint64_t, 6, 16, 20>(f3) | |
| getfield<uint64_t, 6, 20, 32>(f4 & 0x0fff) | |
| getfield<uint64_t, 6, 32, 40>(f4 >> 12) | |
| getfield<uint64_t, 6, 40, 48>(opcode & 0x00ff)); |
| } |
| S390_RXY_A_OPCODE_LIST(DECLARE_S390_RXY_INSTRUCTIONS) |
| |
| void pfd(Condition cond, const MemOperand& opnd) { |
| pfd(cond, opnd.getIndexRegister(), |
| opnd.getBaseRegister(), opnd.getDisplacement()); |
| } |
| void pfd(Condition cond, Register x2, Register b2, Disp d2) { |
| rxy_format(PFD, cond, x2.code(), b2.code(), d2); |
| } |
| #undef DECLARE_S390_RXY_INSTRUCTIONS |
| |
| // Helper for unconditional branch to Label with update to save register |
| void b(Register r, Label* l) { |
| int32_t halfwords = branch_offset(l) / 2; |
| brasl(r, Operand(halfwords)); |
| } |
| |
| // Conditional Branch Instruction - Generates either BRC / BRCL |
| void branchOnCond(Condition c, int branch_offset, bool is_bound = false); |
| |
| // Helpers for conditional branch to Label |
| void b(Condition cond, Label* l, Label::Distance dist = Label::kFar) { |
| branchOnCond(cond, branch_offset(l), |
| l->is_bound() || (dist == Label::kNear)); |
| } |
| |
| void bc_short(Condition cond, Label* l, Label::Distance dist = Label::kFar) { |
| b(cond, l, Label::kNear); |
| } |
| // Helpers for conditional branch to Label |
| void beq(Label* l, Label::Distance dist = Label::kFar) { b(eq, l, dist); } |
| void bne(Label* l, Label::Distance dist = Label::kFar) { b(ne, l, dist); } |
| void blt(Label* l, Label::Distance dist = Label::kFar) { b(lt, l, dist); } |
| void ble(Label* l, Label::Distance dist = Label::kFar) { b(le, l, dist); } |
| void bgt(Label* l, Label::Distance dist = Label::kFar) { b(gt, l, dist); } |
| void bge(Label* l, Label::Distance dist = Label::kFar) { b(ge, l, dist); } |
| void b(Label* l, Label::Distance dist = Label::kFar) { b(al, l, dist); } |
| void jmp(Label* l, Label::Distance dist = Label::kFar) { b(al, l, dist); } |
| void bunordered(Label* l, Label::Distance dist = Label::kFar) { |
| b(unordered, l, dist); |
| } |
| void bordered(Label* l, Label::Distance dist = Label::kFar) { |
| b(ordered, l, dist); |
| } |
| |
| // Helpers for conditional indirect branch off register |
| void b(Condition cond, Register r) { bcr(cond, r); } |
| void beq(Register r) { b(eq, r); } |
| void bne(Register r) { b(ne, r); } |
| void blt(Register r) { b(lt, r); } |
| void ble(Register r) { b(le, r); } |
| void bgt(Register r) { b(gt, r); } |
| void bge(Register r) { b(ge, r); } |
| void b(Register r) { b(al, r); } |
| void jmp(Register r) { b(al, r); } |
| void bunordered(Register r) { b(unordered, r); } |
| void bordered(Register r) { b(ordered, r); } |
| |
| // --------------------------------------------------------------------------- |
| // Code generation |
| |
| // Insert the smallest number of nop instructions |
| // possible to align the pc offset to a multiple |
| // of m. m must be a power of 2 (>= 4). |
| void Align(int m); |
| // Insert the smallest number of zero bytes possible to align the pc offset |
| // to a mulitple of m. m must be a power of 2 (>= 2). |
| void DataAlign(int m); |
| // Aligns code to something that's optimal for a jump target for the platform. |
| void CodeTargetAlign(); |
| |
| void breakpoint(bool do_print) { |
| if (do_print) { |
| PrintF("DebugBreak is inserted to %p\n", static_cast<void*>(pc_)); |
| } |
| #if V8_HOST_ARCH_64_BIT |
| int64_t value = reinterpret_cast<uint64_t>(&v8::base::OS::DebugBreak); |
| int32_t hi_32 = static_cast<int64_t>(value) >> 32; |
| int32_t lo_32 = static_cast<int32_t>(value); |
| |
| iihf(r1, Operand(hi_32)); |
| iilf(r1, Operand(lo_32)); |
| #else |
| iilf(r1, Operand(reinterpret_cast<uint32_t>(&v8::base::OS::DebugBreak))); |
| #endif |
| basr(r14, r1); |
| } |
| |
| void call(Handle<Code> target, RelocInfo::Mode rmode); |
| void call(CodeStub* stub); |
| void jump(Handle<Code> target, RelocInfo::Mode rmode, Condition cond); |
| |
| // S390 instruction generation |
| #define I_FORM(name) void name(const Operand& i) |
| |
| #define RR_FORM(name) void name(Register r1, Register r2) |
| |
| #define RR2_FORM(name) void name(Condition m1, Register r2) |
| |
| #define RI1_FORM(name) void name(Register r, const Operand& i) |
| |
| #define RI2_FORM(name) void name(Condition m, const Operand& i) |
| |
| #define RIE_FORM(name) void name(Register r1, Register R3, const Operand& i) |
| |
| #define RIE_F_FORM(name) \ |
| void name(Register r1, Register r2, const Operand& i3, const Operand& i4, \ |
| const Operand& i5) |
| |
| #define RXE_FORM(name) \ |
| void name(Register r1, const MemOperand& opnd); \ |
| void name(Register r1, Register b2, Register x2, Disp d2) |
| |
| #define RXF_FORM(name) \ |
| void name(Register r1, Register r3, const MemOperand& opnd); \ |
| void name(Register r1, Register r3, Register b2, Register x2, Disp d2) |
| |
| #define RSI_FORM(name) void name(Register r1, Register r3, const Operand& i) |
| |
| #define RIS_FORM(name) \ |
| void name(Register r1, Condition m3, Register b4, Disp d4, \ |
| const Operand& i2); \ |
| void name(Register r1, const Operand& i2, Condition m3, \ |
| const MemOperand& opnd) |
| |
| #define SI_FORM(name) \ |
| void name(const MemOperand& opnd, const Operand& i); \ |
| void name(const Operand& i2, Register b1, Disp d1) |
| |
| #define SIL_FORM(name) \ |
| void name(Register b1, Disp d1, const Operand& i2); \ |
| void name(const MemOperand& opnd, const Operand& i2) |
| |
| #define RRF1_FORM(name) void name(Register r1, Register r2, Register r3) |
| |
| #define RRF2_FORM(name) void name(Condition m1, Register r1, Register r2) |
| |
| #define RRF3_FORM(name) \ |
| void name(Register r3, Condition m4, Register r1, Register r2) |
| |
| #define RS1_FORM(name) \ |
| void name(Register r1, Register r3, const MemOperand& opnd); \ |
| void name(Register r1, Register r3, Register b2, Disp d2) |
| |
| #define RS2_FORM(name) \ |
| void name(Register r1, Condition m3, const MemOperand& opnd); \ |
| void name(Register r1, Condition m3, Register b2, Disp d2) |
| |
| #define RSE_FORM(name) \ |
| void name(Register r1, Register r3, const MemOperand& opnd); \ |
| void name(Register r1, Register r3, Register b2, Disp d2) |
| |
| #define RSL_FORM(name) \ |
| void name(Length l, Register b2, Disp d2); \ |
| void name(const MemOperand& opnd) |
| |
| #define RSY1_FORM(name) \ |
| void name(Register r1, Register r3, Register b2, Disp d2); \ |
| void name(Register r1, Register r3, const MemOperand& opnd) |
| |
| #define RSY2_FORM(name) \ |
| void name(Register r1, Condition m3, Register b2, Disp d2); \ |
| void name(Register r1, Condition m3, const MemOperand& opnd) |
| |
| #define RRS_FORM(name) \ |
| void name(Register r1, Register r2, Register b4, Disp d4, Condition m3); \ |
| void name(Register r1, Register r2, Condition m3, const MemOperand& opnd) |
| |
| #define S_FORM(name) \ |
| void name(Register b2, Disp d2); \ |
| void name(const MemOperand& opnd) |
| |
| #define SIY_FORM(name) \ |
| void name(const Operand& i2, Register b1, Disp d1); \ |
| void name(const MemOperand& opnd, const Operand& i) |
| |
| #define SS1_FORM(name) \ |
| void name(Register b1, Disp d1, Register b3, Disp d2, Length length); \ |
| void name(const MemOperand& opnd1, const MemOperand& opnd2, Length length) |
| |
| #define SS2_FORM(name) \ |
| void name(const MemOperand& opnd1, const MemOperand& opnd2, Length length1, \ |
| Length length2); \ |
| void name(Register b1, Disp d1, Register b2, Disp d2, Length l1, Length l2) |
| |
| #define SS3_FORM(name) \ |
| void name(const MemOperand& opnd1, const MemOperand& opnd2, Length length); \ |
| void name(const Operand& i3, Register b1, Disp d1, Register b2, Disp d2, \ |
| Length l1) |
| |
| #define SS4_FORM(name) \ |
| void name(const MemOperand& opnd1, const MemOperand& opnd2); \ |
| void name(Register r1, Register r3, Register b1, Disp d1, Register b2, \ |
| Disp d2) |
| |
| #define SS5_FORM(name) \ |
| void name(const MemOperand& opnd1, const MemOperand& opnd2); \ |
| void name(Register r1, Register r3, Register b3, Disp d2, Register b4, \ |
| Disp d4) |
| |
| #define SSE_FORM(name) \ |
| void name(Register b1, Disp d1, Register b2, Disp d2); \ |
| void name(const MemOperand& opnd1, const MemOperand& opnd2) |
| |
| #define SSF_FORM(name) \ |
| void name(Register r3, Register b1, Disp d1, Register b2, Disp d2); \ |
| void name(Register r3, const MemOperand& opnd1, const MemOperand& opnd2) |
| |
| #define DECLARE_VRR_A_INSTRUCTIONS(name, opcode_name, opcode_value) \ |
| void name(DoubleRegister v1, DoubleRegister v2, Condition m5, Condition m4, \ |
| Condition m3) { \ |
| uint64_t code = (static_cast<uint64_t>(opcode_value & 0xFF00)) * B32 | \ |
| (static_cast<uint64_t>(v1.code())) * B36 | \ |
| (static_cast<uint64_t>(v2.code())) * B32 | \ |
| (static_cast<uint64_t>(m5 & 0xF)) * B20 | \ |
| (static_cast<uint64_t>(m4 & 0xF)) * B16 | \ |
| (static_cast<uint64_t>(m3 & 0xF)) * B12 | \ |
| (static_cast<uint64_t>(opcode_value & 0x00FF)); \ |
| emit6bytes(code); \ |
| } |
| S390_VRR_A_OPCODE_LIST(DECLARE_VRR_A_INSTRUCTIONS) |
| #undef DECLARE_VRR_A_INSTRUCTIONS |
| |
| #define DECLARE_VRR_C_INSTRUCTIONS(name, opcode_name, opcode_value) \ |
| void name(DoubleRegister v1, DoubleRegister v2, DoubleRegister v3, \ |
| Condition m6, Condition m5, Condition m4) { \ |
| uint64_t code = (static_cast<uint64_t>(opcode_value & 0xFF00)) * B32 | \ |
| (static_cast<uint64_t>(v1.code())) * B36 | \ |
| (static_cast<uint64_t>(v2.code())) * B32 | \ |
| (static_cast<uint64_t>(v3.code())) * B28 | \ |
| (static_cast<uint64_t>(m6 & 0xF)) * B20 | \ |
| (static_cast<uint64_t>(m5 & 0xF)) * B16 | \ |
| (static_cast<uint64_t>(m4 & 0xF)) * B12 | \ |
| (static_cast<uint64_t>(opcode_value & 0x00FF)); \ |
| emit6bytes(code); \ |
| } |
| S390_VRR_C_OPCODE_LIST(DECLARE_VRR_C_INSTRUCTIONS) |
| #undef DECLARE_VRR_C_INSTRUCTIONS |
| |
| // Single Element format |
| void vfa(DoubleRegister v1, DoubleRegister v2, DoubleRegister v3) { |
| vfa(v1, v2, v3, static_cast<Condition>(0), static_cast<Condition>(8), |
| static_cast<Condition>(3)); |
| } |
| void vfs(DoubleRegister v1, DoubleRegister v2, DoubleRegister v3) { |
| vfs(v1, v2, v3, static_cast<Condition>(0), static_cast<Condition>(8), |
| static_cast<Condition>(3)); |
| } |
| void vfm(DoubleRegister v1, DoubleRegister v2, DoubleRegister v3) { |
| vfm(v1, v2, v3, static_cast<Condition>(0), static_cast<Condition>(8), |
| static_cast<Condition>(3)); |
| } |
| void vfd(DoubleRegister v1, DoubleRegister v2, DoubleRegister v3) { |
| vfd(v1, v2, v3, static_cast<Condition>(0), static_cast<Condition>(8), |
| static_cast<Condition>(3)); |
| } |
| |
| // S390 instruction sets |
| RXE_FORM(ddb); |
| SS1_FORM(ed); |
| RRF2_FORM(fidbr); |
| RI1_FORM(iihh); |
| RI1_FORM(iihl); |
| RI1_FORM(iilh); |
| RI1_FORM(iill); |
| RSY1_FORM(loc); |
| RXE_FORM(mdb); |
| SS4_FORM(mvck); |
| SSF_FORM(mvcos); |
| SS4_FORM(mvcs); |
| SS1_FORM(mvn); |
| SS1_FORM(nc); |
| SI_FORM(ni); |
| RI1_FORM(nilh); |
| RI1_FORM(nill); |
| RI1_FORM(oill); |
| RXE_FORM(sdb); |
| RS1_FORM(srdl); |
| RI1_FORM(tmll); |
| SS1_FORM(tr); |
| S_FORM(ts); |
| |
| // Load Address Instructions |
| void larl(Register r, Label* l); |
| |
| // Load Instructions |
| void lhi(Register r, const Operand& imm); |
| void lghi(Register r, const Operand& imm); |
| |
| // Load Multiple Instructions |
| void lm(Register r1, Register r2, const MemOperand& src); |
| void lmy(Register r1, Register r2, const MemOperand& src); |
| void lmg(Register r1, Register r2, const MemOperand& src); |
| |
| // Load On Condition Instructions |
| void locr(Condition m3, Register r1, Register r2); |
| void locgr(Condition m3, Register r1, Register r2); |
| void loc(Condition m3, Register r1, const MemOperand& src); |
| void locg(Condition m3, Register r1, const MemOperand& src); |
| |
| // Store Instructions |
| |
| // Store Multiple Instructions |
| void stm(Register r1, Register r2, const MemOperand& src); |
| void stmy(Register r1, Register r2, const MemOperand& src); |
| void stmg(Register r1, Register r2, const MemOperand& src); |
| |
| // Compare Instructions |
| void chi(Register r, const Operand& opnd); |
| void cghi(Register r, const Operand& opnd); |
| |
| // Compare Logical Instructions |
| void cli(const MemOperand& mem, const Operand& imm); |
| void cliy(const MemOperand& mem, const Operand& imm); |
| void clc(const MemOperand& opnd1, const MemOperand& opnd2, Length length); |
| |
| // Compare and Swap Instructions |
| void cs(Register r1, Register r2, const MemOperand& src); |
| void csy(Register r1, Register r2, const MemOperand& src); |
| void csg(Register r1, Register r2, const MemOperand& src); |
| |
| // Test Under Mask Instructions |
| void tm(const MemOperand& mem, const Operand& imm); |
| void tmy(const MemOperand& mem, const Operand& imm); |
| |
| // Rotate Instructions |
| void rll(Register r1, Register r3, Register opnd); |
| void rll(Register r1, Register r3, const Operand& opnd); |
| void rll(Register r1, Register r3, Register r2, const Operand& opnd); |
| void rllg(Register r1, Register r3, const Operand& opnd); |
| void rllg(Register r1, Register r3, const Register opnd); |
| void rllg(Register r1, Register r3, Register r2, const Operand& opnd); |
| |
| // Shift Instructions (32) |
| void sll(Register r1, Register opnd); |
| void sll(Register r1, const Operand& opnd); |
| void sllk(Register r1, Register r3, Register opnd); |
| void sllk(Register r1, Register r3, const Operand& opnd); |
| void srl(Register r1, Register opnd); |
| void srl(Register r1, const Operand& opnd); |
| void srlk(Register r1, Register r3, Register opnd); |
| void srlk(Register r1, Register r3, const Operand& opnd); |
| void sra(Register r1, Register opnd); |
| void sra(Register r1, const Operand& opnd); |
| void srak(Register r1, Register r3, Register opnd); |
| void srak(Register r1, Register r3, const Operand& opnd); |
| void sla(Register r1, Register opnd); |
| void sla(Register r1, const Operand& opnd); |
| void slak(Register r1, Register r3, Register opnd); |
| void slak(Register r1, Register r3, const Operand& opnd); |
| |
| // Shift Instructions (64) |
| void sllg(Register r1, Register r3, const Operand& opnd); |
| void sllg(Register r1, Register r3, const Register opnd); |
| void srlg(Register r1, Register r3, const Operand& opnd); |
| void srlg(Register r1, Register r3, const Register opnd); |
| void srag(Register r1, Register r3, const Operand& opnd); |
| void srag(Register r1, Register r3, const Register opnd); |
| void srda(Register r1, const Operand& opnd); |
| void srdl(Register r1, const Operand& opnd); |
| void slag(Register r1, Register r3, const Operand& opnd); |
| void slag(Register r1, Register r3, const Register opnd); |
| void sldl(Register r1, Register b2, const Operand& opnd); |
| void srdl(Register r1, Register b2, const Operand& opnd); |
| void srda(Register r1, Register b2, const Operand& opnd); |
| |
| // Rotate and Insert Selected Bits |
| void risbg(Register dst, Register src, const Operand& startBit, |
| const Operand& endBit, const Operand& shiftAmt, |
| bool zeroBits = true); |
| void risbgn(Register dst, Register src, const Operand& startBit, |
| const Operand& endBit, const Operand& shiftAmt, |
| bool zeroBits = true); |
| |
| // Move Character (Mem to Mem) |
| void mvc(const MemOperand& opnd1, const MemOperand& opnd2, uint32_t length); |
| |
| // Branch Instructions |
| void bras(Register r, const Operand& opnd); |
| void brc(Condition c, const Operand& opnd); |
| void brct(Register r1, const Operand& opnd); |
| void brctg(Register r1, const Operand& opnd); |
| |
| // 32-bit Add Instructions |
| void ahi(Register r1, const Operand& opnd); |
| void ahik(Register r1, Register r3, const Operand& opnd); |
| void ark(Register r1, Register r2, Register r3); |
| void asi(const MemOperand&, const Operand&); |
| |
| // 64-bit Add Instructions |
| void aghi(Register r1, const Operand& opnd); |
| void aghik(Register r1, Register r3, const Operand& opnd); |
| void agrk(Register r1, Register r2, Register r3); |
| void agsi(const MemOperand&, const Operand&); |
| |
| // 32-bit Add Logical Instructions |
| void alrk(Register r1, Register r2, Register r3); |
| |
| // 64-bit Add Logical Instructions |
| void algrk(Register r1, Register r2, Register r3); |
| |
| // 32-bit Subtract Instructions |
| void srk(Register r1, Register r2, Register r3); |
| |
| // 64-bit Subtract Instructions |
| void sgrk(Register r1, Register r2, Register r3); |
| |
| // 32-bit Subtract Logical Instructions |
| void slrk(Register r1, Register r2, Register r3); |
| |
| // 64-bit Subtract Logical Instructions |
| void slgrk(Register r1, Register r2, Register r3); |
| |
| // 32-bit Multiply Instructions |
| void mhi(Register r1, const Operand& opnd); |
| void msrkc(Register r1, Register r2, Register r3); |
| void msgrkc(Register r1, Register r2, Register r3); |
| |
| // 64-bit Multiply Instructions |
| void mghi(Register r1, const Operand& opnd); |
| |
| // Bitwise Instructions (AND / OR / XOR) |
| void nrk(Register r1, Register r2, Register r3); |
| void ngrk(Register r1, Register r2, Register r3); |
| void ork(Register r1, Register r2, Register r3); |
| void ogrk(Register r1, Register r2, Register r3); |
| void xrk(Register r1, Register r2, Register r3); |
| void xgrk(Register r1, Register r2, Register r3); |
| void xc(const MemOperand& opnd1, const MemOperand& opnd2, Length length); |
| |
| // Floating <-> Fixed Point Conversion Instructions |
| void cdlfbr(Condition m3, Condition m4, DoubleRegister fltReg, |
| Register fixReg); |
| void cdlgbr(Condition m3, Condition m4, DoubleRegister fltReg, |
| Register fixReg); |
| void celgbr(Condition m3, Condition m4, DoubleRegister fltReg, |
| Register fixReg); |
| void celfbr(Condition m3, Condition m4, DoubleRegister fltReg, |
| Register fixReg); |
| void clfdbr(Condition m3, Condition m4, Register fixReg, |
| DoubleRegister fltReg); |
| void clfebr(Condition m3, Condition m4, Register fixReg, |
| DoubleRegister fltReg); |
| void clgdbr(Condition m3, Condition m4, Register fixReg, |
| DoubleRegister fltReg); |
| void clgebr(Condition m3, Condition m4, Register fixReg, |
| DoubleRegister fltReg); |
| void cfdbr(Condition m, Register fixReg, DoubleRegister fltReg); |
| void cgebr(Condition m, Register fixReg, DoubleRegister fltReg); |
| void cgdbr(Condition m, Register fixReg, DoubleRegister fltReg); |
| void cfebr(Condition m3, Register fixReg, DoubleRegister fltReg); |
| void cefbr(Condition m3, DoubleRegister fltReg, Register fixReg); |
| |
| // Floating Point Compare Instructions |
| void cdb(DoubleRegister r1, const MemOperand& opnd); |
| void ceb(DoubleRegister r1, const MemOperand& opnd); |
| |
| // Floating Point Arithmetic Instructions |
| void adb(DoubleRegister r1, const MemOperand& opnd); |
| void aeb(DoubleRegister r1, const MemOperand& opnd); |
| void sdb(DoubleRegister r1, const MemOperand& opnd); |
| void seb(DoubleRegister r1, const MemOperand& opnd); |
| void mdb(DoubleRegister r1, const MemOperand& opnd); |
| void meeb(DoubleRegister r1, const MemOperand& opnd); |
| void ddb(DoubleRegister r1, const MemOperand& opnd); |
| void deb(DoubleRegister r1, const MemOperand& opnd); |
| void sqdb(DoubleRegister r1, const MemOperand& opnd); |
| void ldeb(DoubleRegister r1, const MemOperand& opnd); |
| |
| enum FIDBRA_MASK3 { |
| FIDBRA_CURRENT_ROUNDING_MODE = 0, |
| FIDBRA_ROUND_TO_NEAREST_AWAY_FROM_0 = 1, |
| // ... |
| FIDBRA_ROUND_TOWARD_0 = 5, |
| FIDBRA_ROUND_TOWARD_POS_INF = 6, |
| FIDBRA_ROUND_TOWARD_NEG_INF = 7 |
| }; |
| void fiebra(DoubleRegister d1, DoubleRegister d2, FIDBRA_MASK3 m3); |
| void fidbra(DoubleRegister d1, DoubleRegister d2, FIDBRA_MASK3 m3); |
| |
| // Move integer |
| void mvhi(const MemOperand& opnd1, const Operand& i2); |
| void mvghi(const MemOperand& opnd1, const Operand& i2); |
| |
| // Exception-generating instructions and debugging support |
| void stop(const char* msg, Condition cond = al, |
| int32_t code = kDefaultStopCode, CRegister cr = cr7); |
| |
| void bkpt(uint32_t imm16); // v5 and above |
| |
| // Different nop operations are used by the code generator to detect certain |
| // states of the generated code. |
| enum NopMarkerTypes { |
| NON_MARKING_NOP = 0, |
| GROUP_ENDING_NOP, |
| DEBUG_BREAK_NOP, |
| // IC markers. |
| PROPERTY_ACCESS_INLINED, |
| PROPERTY_ACCESS_INLINED_CONTEXT, |
| PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE, |
| // Helper values. |
| LAST_CODE_MARKER, |
| FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED |
| }; |
| |
| void nop(int type = 0); // 0 is the default non-marking type. |
| |
| void dumy(int r1, int x2, int b2, int d2); |
| |
| // Check the code size generated from label to here. |
| int SizeOfCodeGeneratedSince(Label* label) { |
| return pc_offset() - label->pos(); |
| } |
| |
| // Record a comment relocation entry that can be used by a disassembler. |
| // Use --code-comments to enable. |
| void RecordComment(const char* msg); |
| |
| // Record a deoptimization reason that can be used by a log or cpu profiler. |
| // Use --trace-deopt to enable. |
| void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position, |
| int id); |
| |
| // Writes a single byte or word of data in the code stream. Used |
| // for inline tables, e.g., jump-tables. |
| void db(uint8_t data); |
| void dd(uint32_t data); |
| void dq(uint64_t data); |
| void dp(uintptr_t data); |
| |
| void PatchConstantPoolAccessInstruction(int pc_offset, int offset, |
| ConstantPoolEntry::Access access, |
| ConstantPoolEntry::Type type) { |
| // No embedded constant pool support. |
| UNREACHABLE(); |
| } |
| |
| // Read/patch instructions |
| SixByteInstr instr_at(int pos) { |
| return Instruction::InstructionBits(buffer_ + pos); |
| } |
| template <typename T> |
| void instr_at_put(int pos, T instr) { |
| Instruction::SetInstructionBits<T>(buffer_ + pos, instr); |
| } |
| |
| // Decodes instruction at pos, and returns its length |
| int32_t instr_length_at(int pos) { |
| return Instruction::InstructionLength(buffer_ + pos); |
| } |
| |
| static SixByteInstr instr_at(byte* pc) { |
| return Instruction::InstructionBits(pc); |
| } |
| |
| static Condition GetCondition(Instr instr); |
| |
| static bool IsBranch(Instr instr); |
| #if V8_TARGET_ARCH_S390X |
| static bool Is64BitLoadIntoIP(SixByteInstr instr1, SixByteInstr instr2); |
| #else |
| static bool Is32BitLoadIntoIP(SixByteInstr instr); |
| #endif |
| |
| static bool IsCmpRegister(Instr instr); |
| static bool IsCmpImmediate(Instr instr); |
| static bool IsNop(SixByteInstr instr, int type = NON_MARKING_NOP); |
| |
| // The code currently calls CheckBuffer() too often. This has the side |
| // effect of randomly growing the buffer in the middle of multi-instruction |
| // sequences. |
| // |
| // This function allows outside callers to check and grow the buffer |
| void EnsureSpaceFor(int space_needed); |
| |
| void EmitRelocations(); |
| void emit_label_addr(Label* label); |
| |
| public: |
| byte* buffer_pos() const { return buffer_; } |
| void RequestHeapObject(HeapObjectRequest request); |
| |
| protected: |
| int buffer_space() const { return reloc_info_writer.pos() - pc_; } |
| |
| // Decode instruction(s) at pos and return backchain to previous |
| // label reference or kEndOfChain. |
| int target_at(int pos); |
| |
| // Patch instruction(s) at pos to target target_pos (e.g. branch) |
| void target_at_put(int pos, int target_pos, bool* is_branch = nullptr); |
| |
| // Record reloc info for current pc_ |
| void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0); |
| |
| private: |
| // Avoid overflows for displacements etc. |
| static const int kMaximalBufferSize = 512 * MB; |
| |
| // Code generation |
| // The relocation writer's position is at least kGap bytes below the end of |
| // the generated instructions. This is so that multi-instruction sequences do |
| // not have to check for overflow. The same is true for writes of large |
| // relocation info entries. |
| static constexpr int kGap = 32; |
| |
| // Relocation info generation |
| // Each relocation is encoded as a variable size value |
| static constexpr int kMaxRelocSize = RelocInfoWriter::kMaxSize; |
| RelocInfoWriter reloc_info_writer; |
| std::vector<DeferredRelocInfo> relocations_; |
| |
| // The bound position, before this we cannot do instruction elimination. |
| int last_bound_pos_; |
| |
| // Code emission |
| void CheckBuffer() { |
| if (buffer_space() <= kGap) { |
| GrowBuffer(); |
| } |
| } |
| void GrowBuffer(int needed = 0); |
| inline void TrackBranch(); |
| inline void UntrackBranch(); |
| |
| inline int32_t emit_code_target( |
| Handle<Code> target, RelocInfo::Mode rmode); |
| |
| // Helper to emit the binary encoding of a 2 byte instruction |
| void emit2bytes(uint16_t x) { |
| CheckBuffer(); |
| #if V8_TARGET_LITTLE_ENDIAN |
| // We need to emit instructions in big endian format as disassembler / |
| // simulator require the first byte of the instruction in order to decode |
| // the instruction length. Swap the bytes. |
| x = ((x & 0x00FF) << 8) | ((x & 0xFF00) >> 8); |
| #endif |
| *reinterpret_cast<uint16_t*>(pc_) = x; |
| pc_ += 2; |
| } |
| |
| // Helper to emit the binary encoding of a 4 byte instruction |
| void emit4bytes(uint32_t x) { |
| CheckBuffer(); |
| #if V8_TARGET_LITTLE_ENDIAN |
| // We need to emit instructions in big endian format as disassembler / |
| // simulator require the first byte of the instruction in order to decode |
| // the instruction length. Swap the bytes. |
| x = ((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) | |
| ((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24); |
| #endif |
| *reinterpret_cast<uint32_t*>(pc_) = x; |
| pc_ += 4; |
| } |
| |
| // Helper to emit the binary encoding of a 6 byte instruction |
| void emit6bytes(uint64_t x) { |
| CheckBuffer(); |
| #if V8_TARGET_LITTLE_ENDIAN |
| // We need to emit instructions in big endian format as disassembler / |
| // simulator require the first byte of the instruction in order to decode |
| // the instruction length. Swap the bytes. |
| x = (static_cast<uint64_t>(x & 0xFF) << 40) | |
| (static_cast<uint64_t>((x >> 8) & 0xFF) << 32) | |
| (static_cast<uint64_t>((x >> 16) & 0xFF) << 24) | |
| (static_cast<uint64_t>((x >> 24) & 0xFF) << 16) | |
| (static_cast<uint64_t>((x >> 32) & 0xFF) << 8) | |
| (static_cast<uint64_t>((x >> 40) & 0xFF)); |
| x |= (*reinterpret_cast<uint64_t*>(pc_) >> 48) << 48; |
| #else |
| // We need to pad two bytes of zeros in order to get the 6-bytes |
| // stored from low address. |
| x = x << 16; |
| x |= *reinterpret_cast<uint64_t*>(pc_) & 0xFFFF; |
| #endif |
| // It is safe to store 8-bytes, as CheckBuffer() guarantees we have kGap |
| // space left over. |
| *reinterpret_cast<uint64_t*>(pc_) = x; |
| pc_ += 6; |
| } |
| |
| // Helpers to emit binary encoding for various instruction formats. |
| |
| inline void rr2_form(uint8_t op, Condition m1, Register r2); |
| |
| inline void ri_form(Opcode op, Register r1, const Operand& i2); |
| inline void ri_form(Opcode op, Condition m1, const Operand& i2); |
| |
| inline void rie_form(Opcode op, Register r1, Register r3, const Operand& i2); |
| inline void rie_f_form(Opcode op, Register r1, Register r2, const Operand& i3, |
| const Operand& i4, const Operand& i5); |
| |
| inline void ris_form(Opcode op, Register r1, Condition m3, Register b4, |
| Disp d4, const Operand& i2); |
| |
| inline void rrf1_form(Opcode op, Register r1, Register r2, Register r3); |
| inline void rrf1_form(uint32_t x); |
| inline void rrf2_form(uint32_t x); |
| inline void rrf3_form(uint32_t x); |
| inline void rrfe_form(Opcode op, Condition m3, Condition m4, Register r1, |
| Register r2); |
| |
| inline void rrs_form(Opcode op, Register r1, Register r2, Register b4, |
| Disp d4, Condition m3); |
| |
| inline void rs_form(Opcode op, Register r1, Condition m3, Register b2, |
| const Disp d2); |
| inline void rs_form(Opcode op, Register r1, Register r3, Register b2, |
| const Disp d2); |
| |
| inline void rsi_form(Opcode op, Register r1, Register r3, const Operand& i2); |
| inline void rsl_form(Opcode op, Length l1, Register b2, Disp d2); |
| |
| inline void rsy_form(Opcode op, Register r1, Register r3, Register b2, |
| const Disp d2); |
| inline void rsy_form(Opcode op, Register r1, Condition m3, Register b2, |
| const Disp d2); |
| |
| inline void rxe_form(Opcode op, Register r1, Register x2, Register b2, |
| Disp d2); |
| |
| inline void rxf_form(Opcode op, Register r1, Register r3, Register b2, |
| Register x2, Disp d2); |
| |
| inline void s_form(Opcode op, Register b1, Disp d2); |
| |
| inline void si_form(Opcode op, const Operand& i2, Register b1, Disp d1); |
| inline void siy_form(Opcode op, const Operand& i2, Register b1, Disp d1); |
| |
| inline void sil_form(Opcode op, Register b1, Disp d1, const Operand& i2); |
| |
| inline void ss_form(Opcode op, Length l, Register b1, Disp d1, Register b2, |
| Disp d2); |
| inline void ss_form(Opcode op, Length l1, Length l2, Register b1, Disp d1, |
| Register b2, Disp d2); |
| inline void ss_form(Opcode op, Length l1, const Operand& i3, Register b1, |
| Disp d1, Register b2, Disp d2); |
| inline void ss_form(Opcode op, Register r1, Register r2, Register b1, Disp d1, |
| Register b2, Disp d2); |
| inline void sse_form(Opcode op, Register b1, Disp d1, Register b2, Disp d2); |
| inline void ssf_form(Opcode op, Register r3, Register b1, Disp d1, |
| Register b2, Disp d2); |
| |
| // Labels |
| void print(Label* L); |
| int max_reach_from(int pos); |
| void bind_to(Label* L, int pos); |
| void next(Label* L); |
| |
| // The following functions help with avoiding allocations of embedded heap |
| // objects during the code assembly phase. {RequestHeapObject} records the |
| // need for a future heap number allocation or code stub generation. After |
| // code assembly, {AllocateAndInstallRequestedHeapObjects} will allocate these |
| // objects and place them where they are expected (determined by the pc offset |
| // associated with each request). That is, for each request, it will patch the |
| // dummy heap object handle that we emitted during code assembly with the |
| // actual heap object handle. |
| void AllocateAndInstallRequestedHeapObjects(Isolate* isolate); |
| std::forward_list<HeapObjectRequest> heap_object_requests_; |
| |
| friend class RegExpMacroAssemblerS390; |
| friend class RelocInfo; |
| |
| std::vector<Handle<Code>> code_targets_; |
| friend class EnsureSpace; |
| }; |
| |
| class EnsureSpace BASE_EMBEDDED { |
| public: |
| explicit EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); } |
| }; |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_S390_ASSEMBLER_S390_H_ |