blob: 783b995c726540ebb9d11ff850a5c20ca1cae0ab [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_S390
#include "src/api-arguments.h"
#include "src/assembler-inl.h"
#include "src/base/bits.h"
#include "src/bootstrapper.h"
#include "src/code-stubs.h"
#include "src/frame-constants.h"
#include "src/frames.h"
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
#include "src/isolate.h"
#include "src/regexp/jsregexp.h"
#include "src/regexp/regexp-macro-assembler.h"
#include "src/runtime/runtime.h"
#include "src/s390/code-stubs-s390.h" // Cannot be the first include.
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) {
__ ShiftLeftP(r1, r2, Operand(kPointerSizeLog2));
__ StoreP(r3, MemOperand(sp, r1));
__ push(r3);
__ push(r4);
__ AddP(r2, r2, Operand(3));
__ TailCallRuntime(Runtime::kNewArray);
}
void DoubleToIStub::Generate(MacroAssembler* masm) {
Label out_of_range, only_low, negate, done, fastpath_done;
Register result_reg = destination();
// Immediate values for this stub fit in instructions, so it's safe to use ip.
Register scratch = GetRegisterThatIsNotOneOf(result_reg);
Register scratch_low = GetRegisterThatIsNotOneOf(result_reg, scratch);
Register scratch_high =
GetRegisterThatIsNotOneOf(result_reg, scratch, scratch_low);
DoubleRegister double_scratch = kScratchDoubleReg;
__ push(scratch);
// Account for saved regs.
int argument_offset = 1 * kPointerSize;
// Load double input.
__ LoadDouble(double_scratch, MemOperand(sp, argument_offset));
// Do fast-path convert from double to int.
__ ConvertDoubleToInt64(result_reg, double_scratch);
// Test for overflow
__ TestIfInt32(result_reg);
__ beq(&fastpath_done, Label::kNear);
__ Push(scratch_high, scratch_low);
// Account for saved regs.
argument_offset += 2 * kPointerSize;
__ LoadlW(scratch_high,
MemOperand(sp, argument_offset + Register::kExponentOffset));
__ LoadlW(scratch_low,
MemOperand(sp, argument_offset + Register::kMantissaOffset));
__ ExtractBitMask(scratch, scratch_high, HeapNumber::kExponentMask);
// Load scratch with exponent - 1. This is faster than loading
// with exponent because Bias + 1 = 1024 which is a *S390* immediate value.
STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
__ SubP(scratch, Operand(HeapNumber::kExponentBias + 1));
// If exponent is greater than or equal to 84, the 32 less significant
// bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
// the result is 0.
// Compare exponent with 84 (compare exponent - 1 with 83).
__ CmpP(scratch, Operand(83));
__ bge(&out_of_range, Label::kNear);
// If we reach this code, 31 <= exponent <= 83.
// So, we don't have to handle cases where 0 <= exponent <= 20 for
// which we would need to shift right the high part of the mantissa.
// Scratch contains exponent - 1.
// Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
__ Load(r0, Operand(51));
__ SubP(scratch, r0, scratch);
__ CmpP(scratch, Operand::Zero());
__ ble(&only_low, Label::kNear);
// 21 <= exponent <= 51, shift scratch_low and scratch_high
// to generate the result.
__ ShiftRight(scratch_low, scratch_low, scratch);
// Scratch contains: 52 - exponent.
// We needs: exponent - 20.
// So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
__ Load(r0, Operand(32));
__ SubP(scratch, r0, scratch);
__ ExtractBitMask(result_reg, scratch_high, HeapNumber::kMantissaMask);
// Set the implicit 1 before the mantissa part in scratch_high.
STATIC_ASSERT(HeapNumber::kMantissaBitsInTopWord >= 16);
__ Load(r0, Operand(1 << ((HeapNumber::kMantissaBitsInTopWord)-16)));
__ ShiftLeftP(r0, r0, Operand(16));
__ OrP(result_reg, result_reg, r0);
__ ShiftLeft(r0, result_reg, scratch);
__ OrP(result_reg, scratch_low, r0);
__ b(&negate, Label::kNear);
__ bind(&out_of_range);
__ mov(result_reg, Operand::Zero());
__ b(&done, Label::kNear);
__ bind(&only_low);
// 52 <= exponent <= 83, shift only scratch_low.
// On entry, scratch contains: 52 - exponent.
__ LoadComplementRR(scratch, scratch);
__ ShiftLeft(result_reg, scratch_low, scratch);
__ bind(&negate);
// If input was positive, scratch_high ASR 31 equals 0 and
// scratch_high LSR 31 equals zero.
// New result = (result eor 0) + 0 = result.
// If the input was negative, we have to negate the result.
// Input_high ASR 31 equals 0xFFFFFFFF and scratch_high LSR 31 equals 1.
// New result = (result eor 0xFFFFFFFF) + 1 = 0 - result.
__ ShiftRightArith(r0, scratch_high, Operand(31));
#if V8_TARGET_ARCH_S390X
__ lgfr(r0, r0);
__ ShiftRightP(r0, r0, Operand(32));
#endif
__ XorP(result_reg, r0);
__ ShiftRight(r0, scratch_high, Operand(31));
__ AddP(result_reg, r0);
__ bind(&done);
__ Pop(scratch_high, scratch_low);
__ bind(&fastpath_done);
__ pop(scratch);
__ Ret();
}
void MathPowStub::Generate(MacroAssembler* masm) {
const Register exponent = MathPowTaggedDescriptor::exponent();
DCHECK(exponent == r4);
const DoubleRegister double_base = d1;
const DoubleRegister double_exponent = d2;
const DoubleRegister double_result = d3;
const DoubleRegister double_scratch = d0;
const Register scratch = r1;
const Register scratch2 = r9;
Label call_runtime, done, int_exponent;
if (exponent_type() == TAGGED) {
// Base is already in double_base.
__ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
__ LoadDouble(double_exponent,
FieldMemOperand(exponent, HeapNumber::kValueOffset));
}
if (exponent_type() != INTEGER) {
// Detect integer exponents stored as double.
__ TryDoubleToInt32Exact(scratch, double_exponent, scratch2,
double_scratch);
__ beq(&int_exponent, Label::kNear);
__ push(r14);
{
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(0, 2, scratch);
__ MovToFloatParameters(double_base, double_exponent);
__ CallCFunction(
ExternalReference::power_double_double_function(isolate()), 0, 2);
}
__ pop(r14);
__ MovFromFloatResult(double_result);
__ b(&done);
}
// Calculate power with integer exponent.
__ bind(&int_exponent);
// Get two copies of exponent in the registers scratch and exponent.
if (exponent_type() == INTEGER) {
__ LoadRR(scratch, exponent);
} else {
// Exponent has previously been stored into scratch as untagged integer.
__ LoadRR(exponent, scratch);
}
__ ldr(double_scratch, double_base); // Back up base.
__ LoadImmP(scratch2, Operand(1));
__ ConvertIntToDouble(double_result, scratch2);
// Get absolute value of exponent.
Label positive_exponent;
__ CmpP(scratch, Operand::Zero());
__ bge(&positive_exponent, Label::kNear);
__ LoadComplementRR(scratch, scratch);
__ bind(&positive_exponent);
Label while_true, no_carry, loop_end;
__ bind(&while_true);
__ mov(scratch2, Operand(1));
__ AndP(scratch2, scratch);
__ beq(&no_carry, Label::kNear);
__ mdbr(double_result, double_scratch);
__ bind(&no_carry);
__ ShiftRightP(scratch, scratch, Operand(1));
__ LoadAndTestP(scratch, scratch);
__ beq(&loop_end, Label::kNear);
__ mdbr(double_scratch, double_scratch);
__ b(&while_true);
__ bind(&loop_end);
__ CmpP(exponent, Operand::Zero());
__ bge(&done);
// get 1/double_result:
__ ldr(double_scratch, double_result);
__ LoadImmP(scratch2, Operand(1));
__ ConvertIntToDouble(double_result, scratch2);
__ ddbr(double_result, double_scratch);
// Test whether result is zero. Bail out to check for subnormal result.
// Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
__ lzdr(kDoubleRegZero);
__ cdbr(double_result, kDoubleRegZero);
__ bne(&done, Label::kNear);
// double_exponent may not containe the exponent value if the input was a
// smi. We set it with exponent value before bailing out.
__ ConvertIntToDouble(double_exponent, exponent);
// Returning or bailing out.
__ push(r14);
{
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(0, 2, scratch);
__ MovToFloatParameters(double_base, double_exponent);
__ CallCFunction(
ExternalReference::power_double_double_function(isolate()), 0, 2);
}
__ pop(r14);
__ MovFromFloatResult(double_result);
__ bind(&done);
__ Ret();
}
Movability CEntryStub::NeedsImmovableCode() { return kImmovable; }
void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
CEntryStub::GenerateAheadOfTime(isolate);
CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate);
StoreFastElementStub::GenerateAheadOfTime(isolate);
}
void CodeStub::GenerateFPStubs(Isolate* isolate) {
SaveFPRegsMode mode = kSaveFPRegs;
CEntryStub(isolate, 1, mode).GetCode();
}
void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
CEntryStub stub(isolate, 1, kDontSaveFPRegs);
stub.GetCode();
CEntryStub save_doubles(isolate, 1, kSaveFPRegs);
save_doubles.GetCode();
}
void CEntryStub::Generate(MacroAssembler* masm) {
// Called from JavaScript; parameters are on stack as if calling JS function.
// r2: number of arguments including receiver
// r3: pointer to builtin function
// fp: frame pointer (restored after C call)
// sp: stack pointer (restored as callee's sp after C call)
// cp: current context (C callee-saved)
//
// If argv_in_register():
// r4: pointer to the first argument
ProfileEntryHookStub::MaybeCallEntryHook(masm);
__ LoadRR(r7, r3);
if (argv_in_register()) {
// Move argv into the correct register.
__ LoadRR(r3, r4);
} else {
// Compute the argv pointer.
__ ShiftLeftP(r3, r2, Operand(kPointerSizeLog2));
__ lay(r3, MemOperand(r3, sp, -kPointerSize));
}
// Enter the exit frame that transitions from JavaScript to C++.
FrameScope scope(masm, StackFrame::MANUAL);
// Need at least one extra slot for return address location.
int arg_stack_space = 1;
// Pass buffer for return value on stack if necessary
bool needs_return_buffer =
result_size() == 2 && !ABI_RETURNS_OBJECTPAIR_IN_REGS;
if (needs_return_buffer) {
arg_stack_space += result_size();
}
#if V8_TARGET_ARCH_S390X
// 64-bit linux pass Argument object by reference not value
arg_stack_space += 2;
#endif
__ EnterExitFrame(save_doubles(), arg_stack_space, is_builtin_exit()
? StackFrame::BUILTIN_EXIT
: StackFrame::EXIT);
// Store a copy of argc, argv in callee-saved registers for later.
__ LoadRR(r6, r2);
__ LoadRR(r8, r3);
// r2, r6: number of arguments including receiver (C callee-saved)
// r3, r8: pointer to the first argument
// r7: pointer to builtin function (C callee-saved)
// Result returned in registers or stack, depending on result size and ABI.
Register isolate_reg = r4;
if (needs_return_buffer) {
// The return value is 16-byte non-scalar value.
// Use frame storage reserved by calling function to pass return
// buffer as implicit first argument in R2. Shfit original parameters
// by one register each.
__ LoadRR(r4, r3);
__ LoadRR(r3, r2);
__ la(r2, MemOperand(sp, (kStackFrameExtraParamSlot + 1) * kPointerSize));
isolate_reg = r5;
}
// Call C built-in.
__ mov(isolate_reg, Operand(ExternalReference::isolate_address(isolate())));
Register target = r7;
// To let the GC traverse the return address of the exit frames, we need to
// know where the return address is. The CEntryStub is unmovable, so
// we can store the address on the stack to be able to find it again and
// we never have to restore it, because it will not change.
{
Label return_label;
__ larl(r14, &return_label); // Generate the return addr of call later.
__ StoreP(r14, MemOperand(sp, kStackFrameRASlot * kPointerSize));
// zLinux ABI requires caller's frame to have sufficient space for callee
// preserved regsiter save area.
// __ lay(sp, MemOperand(sp, -kCalleeRegisterSaveAreaSize));
__ b(target);
__ bind(&return_label);
// __ la(sp, MemOperand(sp, +kCalleeRegisterSaveAreaSize));
}
// If return value is on the stack, pop it to registers.
if (needs_return_buffer) {
__ LoadP(r3, MemOperand(r2, kPointerSize));
__ LoadP(r2, MemOperand(r2));
}
// Check result for exception sentinel.
Label exception_returned;
__ CompareRoot(r2, Heap::kExceptionRootIndex);
__ beq(&exception_returned, Label::kNear);
// Check that there is no pending exception, otherwise we
// should have returned the exception sentinel.
if (FLAG_debug_code) {
Label okay;
ExternalReference pending_exception_address(
IsolateAddressId::kPendingExceptionAddress, isolate());
__ mov(r1, Operand(pending_exception_address));
__ LoadP(r1, MemOperand(r1));
__ CompareRoot(r1, Heap::kTheHoleValueRootIndex);
// Cannot use check here as it attempts to generate call into runtime.
__ beq(&okay, Label::kNear);
__ stop("Unexpected pending exception");
__ bind(&okay);
}
// Exit C frame and return.
// r2:r3: result
// sp: stack pointer
// fp: frame pointer
Register argc = argv_in_register()
// We don't want to pop arguments so set argc to no_reg.
? no_reg
// r6: still holds argc (callee-saved).
: r6;
__ LeaveExitFrame(save_doubles(), argc);
__ b(r14);
// Handling of exception.
__ bind(&exception_returned);
ExternalReference pending_handler_context_address(
IsolateAddressId::kPendingHandlerContextAddress, isolate());
ExternalReference pending_handler_entrypoint_address(
IsolateAddressId::kPendingHandlerEntrypointAddress, isolate());
ExternalReference pending_handler_fp_address(
IsolateAddressId::kPendingHandlerFPAddress, isolate());
ExternalReference pending_handler_sp_address(
IsolateAddressId::kPendingHandlerSPAddress, isolate());
// Ask the runtime for help to determine the handler. This will set r3 to
// contain the current pending exception, don't clobber it.
ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
isolate());
{
FrameScope scope(masm, StackFrame::MANUAL);
__ PrepareCallCFunction(3, 0, r2);
__ LoadImmP(r2, Operand::Zero());
__ LoadImmP(r3, Operand::Zero());
__ mov(r4, Operand(ExternalReference::isolate_address(isolate())));
__ CallCFunction(find_handler, 3);
}
// Retrieve the handler context, SP and FP.
__ mov(cp, Operand(pending_handler_context_address));
__ LoadP(cp, MemOperand(cp));
__ mov(sp, Operand(pending_handler_sp_address));
__ LoadP(sp, MemOperand(sp));
__ mov(fp, Operand(pending_handler_fp_address));
__ LoadP(fp, MemOperand(fp));
// If the handler is a JS frame, restore the context to the frame. Note that
// the context will be set to (cp == 0) for non-JS frames.
Label skip;
__ CmpP(cp, Operand::Zero());
__ beq(&skip, Label::kNear);
__ StoreP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ bind(&skip);
// Compute the handler entry address and jump to it.
__ mov(r3, Operand(pending_handler_entrypoint_address));
__ LoadP(r3, MemOperand(r3));
__ Jump(r3);
}
void JSEntryStub::Generate(MacroAssembler* masm) {
// r2: code entry
// r3: function
// r4: receiver
// r5: argc
// r6: argv
Label invoke, handler_entry, exit;
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// saving floating point registers
#if V8_TARGET_ARCH_S390X
// 64bit ABI requires f8 to f15 be saved
__ lay(sp, MemOperand(sp, -8 * kDoubleSize));
__ std(d8, MemOperand(sp));
__ std(d9, MemOperand(sp, 1 * kDoubleSize));
__ std(d10, MemOperand(sp, 2 * kDoubleSize));
__ std(d11, MemOperand(sp, 3 * kDoubleSize));
__ std(d12, MemOperand(sp, 4 * kDoubleSize));
__ std(d13, MemOperand(sp, 5 * kDoubleSize));
__ std(d14, MemOperand(sp, 6 * kDoubleSize));
__ std(d15, MemOperand(sp, 7 * kDoubleSize));
#else
// 31bit ABI requires you to store f4 and f6:
// http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_s390.html#AEN417
__ lay(sp, MemOperand(sp, -2 * kDoubleSize));
__ std(d4, MemOperand(sp));
__ std(d6, MemOperand(sp, kDoubleSize));
#endif
// zLinux ABI
// Incoming parameters:
// r2: code entry
// r3: function
// r4: receiver
// r5: argc
// r6: argv
// Requires us to save the callee-preserved registers r6-r13
// General convention is to also save r14 (return addr) and
// sp/r15 as well in a single STM/STMG
__ lay(sp, MemOperand(sp, -10 * kPointerSize));
__ StoreMultipleP(r6, sp, MemOperand(sp, 0));
// Set up the reserved register for 0.0.
// __ LoadDoubleLiteral(kDoubleRegZero, 0.0, r0);
// Push a frame with special values setup to mark it as an entry frame.
// Bad FP (-1)
// SMI Marker
// SMI Marker
// kCEntryFPAddress
// Frame type
__ lay(sp, MemOperand(sp, -5 * kPointerSize));
// Push a bad frame pointer to fail if it is used.
__ LoadImmP(r10, Operand(-1));
StackFrame::Type marker = type();
__ Load(r9, Operand(StackFrame::TypeToMarker(marker)));
__ Load(r8, Operand(StackFrame::TypeToMarker(marker)));
// Save copies of the top frame descriptor on the stack.
__ mov(r7, Operand(ExternalReference(IsolateAddressId::kCEntryFPAddress,
isolate())));
__ LoadP(r7, MemOperand(r7));
__ StoreMultipleP(r7, r10, MemOperand(sp, kPointerSize));
// Set up frame pointer for the frame to be pushed.
// Need to add kPointerSize, because sp has one extra
// frame already for the frame type being pushed later.
__ lay(fp,
MemOperand(sp, -EntryFrameConstants::kCallerFPOffset + kPointerSize));
__ InitializeRootRegister();
// If this is the outermost JS call, set js_entry_sp value.
Label non_outermost_js;
ExternalReference js_entry_sp(IsolateAddressId::kJSEntrySPAddress, isolate());
__ mov(r7, Operand(ExternalReference(js_entry_sp)));
__ LoadAndTestP(r8, MemOperand(r7));
__ bne(&non_outermost_js, Label::kNear);
__ StoreP(fp, MemOperand(r7));
__ Load(ip, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
Label cont;
__ b(&cont, Label::kNear);
__ bind(&non_outermost_js);
__ Load(ip, Operand(StackFrame::INNER_JSENTRY_FRAME));
__ bind(&cont);
__ StoreP(ip, MemOperand(sp)); // frame-type
// Jump to a faked try block that does the invoke, with a faked catch
// block that sets the pending exception.
__ b(&invoke, Label::kNear);
__ bind(&handler_entry);
handler_offset_ = handler_entry.pos();
// Caught exception: Store result (exception) in the pending exception
// field in the JSEnv and return a failure sentinel. Coming in here the
// fp will be invalid because the PushStackHandler below sets it to 0 to
// signal the existence of the JSEntry frame.
__ mov(ip, Operand(ExternalReference(
IsolateAddressId::kPendingExceptionAddress, isolate())));
__ StoreP(r2, MemOperand(ip));
__ LoadRoot(r2, Heap::kExceptionRootIndex);
__ b(&exit, Label::kNear);
// Invoke: Link this frame into the handler chain.
__ bind(&invoke);
// Must preserve r2-r6.
__ PushStackHandler();
// If an exception not caught by another handler occurs, this handler
// returns control to the code after the b(&invoke) above, which
// restores all kCalleeSaved registers (including cp and fp) to their
// saved values before returning a failure to C.
// Invoke the function by calling through JS entry trampoline builtin.
// Notice that we cannot store a reference to the trampoline code directly in
// this stub, because runtime stubs are not traversed when doing GC.
// Expected registers by Builtins::JSEntryTrampoline
// r2: code entry
// r3: function
// r4: receiver
// r5: argc
// r6: argv
__ Call(EntryTrampoline(), RelocInfo::CODE_TARGET);
// Unlink this frame from the handler chain.
__ PopStackHandler();
__ bind(&exit); // r2 holds result
// Check if the current stack frame is marked as the outermost JS frame.
Label non_outermost_js_2;
__ pop(r7);
__ CmpP(r7, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
__ bne(&non_outermost_js_2, Label::kNear);
__ mov(r8, Operand::Zero());
__ mov(r7, Operand(ExternalReference(js_entry_sp)));
__ StoreP(r8, MemOperand(r7));
__ bind(&non_outermost_js_2);
// Restore the top frame descriptors from the stack.
__ pop(r5);
__ mov(ip, Operand(ExternalReference(IsolateAddressId::kCEntryFPAddress,
isolate())));
__ StoreP(r5, MemOperand(ip));
// Reset the stack to the callee saved registers.
__ lay(sp, MemOperand(sp, -EntryFrameConstants::kCallerFPOffset));
// Reload callee-saved preserved regs, return address reg (r14) and sp
__ LoadMultipleP(r6, sp, MemOperand(sp, 0));
__ la(sp, MemOperand(sp, 10 * kPointerSize));
// saving floating point registers
#if V8_TARGET_ARCH_S390X
// 64bit ABI requires f8 to f15 be saved
__ ld(d8, MemOperand(sp));
__ ld(d9, MemOperand(sp, 1 * kDoubleSize));
__ ld(d10, MemOperand(sp, 2 * kDoubleSize));
__ ld(d11, MemOperand(sp, 3 * kDoubleSize));
__ ld(d12, MemOperand(sp, 4 * kDoubleSize));
__ ld(d13, MemOperand(sp, 5 * kDoubleSize));
__ ld(d14, MemOperand(sp, 6 * kDoubleSize));
__ ld(d15, MemOperand(sp, 7 * kDoubleSize));
__ la(sp, MemOperand(sp, 8 * kDoubleSize));
#else
// 31bit ABI requires you to store f4 and f6:
// http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_s390.html#AEN417
__ ld(d4, MemOperand(sp));
__ ld(d6, MemOperand(sp, kDoubleSize));
__ la(sp, MemOperand(sp, 2 * kDoubleSize));
#endif
__ b(r14);
}
// This stub is paired with DirectCEntryStub::GenerateCall
void DirectCEntryStub::Generate(MacroAssembler* masm) {
__ CleanseP(r14);
__ b(ip); // Callee will return to R14 directly
}
void DirectCEntryStub::GenerateCall(MacroAssembler* masm, Register target) {
#if ABI_USES_FUNCTION_DESCRIPTORS && !defined(USE_SIMULATOR)
// Native AIX/S390X Linux use a function descriptor.
__ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(target, kPointerSize));
__ LoadP(target, MemOperand(target, 0)); // Instruction address
#else
// ip needs to be set for DirectCEentryStub::Generate, and also
// for ABI_CALL_VIA_IP.
__ Move(ip, target);
#endif
__ call(GetCode(), RelocInfo::CODE_TARGET); // Call the stub.
}
void ProfileEntryHookStub::MaybeCallEntryHookDelayed(TurboAssembler* tasm,
Zone* zone) {
if (tasm->isolate()->function_entry_hook() != nullptr) {
PredictableCodeSizeScope predictable(tasm,
#if V8_TARGET_ARCH_S390X
40);
#elif V8_HOST_ARCH_S390
36);
#else
32);
#endif
tasm->CleanseP(r14);
tasm->Push(r14, ip);
tasm->CallStubDelayed(new (zone) ProfileEntryHookStub(nullptr));
tasm->Pop(r14, ip);
}
}
void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
if (masm->isolate()->function_entry_hook() != nullptr) {
PredictableCodeSizeScope predictable(masm,
#if V8_TARGET_ARCH_S390X
40);
#elif V8_HOST_ARCH_S390
36);
#else
32);
#endif
ProfileEntryHookStub stub(masm->isolate());
__ CleanseP(r14);
__ Push(r14, ip);
__ CallStub(&stub); // BRASL
__ Pop(r14, ip);
}
}
void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
// The entry hook is a "push lr" instruction (LAY+ST/STG), followed by a call.
#if V8_TARGET_ARCH_S390X
const int32_t kReturnAddressDistanceFromFunctionStart =
Assembler::kCallTargetAddressOffset + 18; // LAY + STG * 2
#elif V8_HOST_ARCH_S390
const int32_t kReturnAddressDistanceFromFunctionStart =
Assembler::kCallTargetAddressOffset + 18; // NILH + LAY + ST * 2
#else
const int32_t kReturnAddressDistanceFromFunctionStart =
Assembler::kCallTargetAddressOffset + 14; // LAY + ST * 2
#endif
// This should contain all kJSCallerSaved registers.
const RegList kSavedRegs = kJSCallerSaved | // Caller saved registers.
r7.bit(); // Saved stack pointer.
// We also save r14+ip, so count here is one higher than the mask indicates.
const int32_t kNumSavedRegs = kNumJSCallerSaved + 3;
// Save all caller-save registers as this may be called from anywhere.
__ CleanseP(r14);
__ LoadRR(ip, r14);
__ MultiPush(kSavedRegs | ip.bit());
// Compute the function's address for the first argument.
__ SubP(r2, ip, Operand(kReturnAddressDistanceFromFunctionStart));
// The caller's return address is two slots above the saved temporaries.
// Grab that for the second argument to the hook.
__ lay(r3, MemOperand(sp, kNumSavedRegs * kPointerSize));
// Align the stack if necessary.
int frame_alignment = masm->ActivationFrameAlignment();
if (frame_alignment > kPointerSize) {
__ LoadRR(r7, sp);
DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
__ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
}
#if !defined(USE_SIMULATOR)
uintptr_t entry_hook =
reinterpret_cast<uintptr_t>(isolate()->function_entry_hook());
__ mov(ip, Operand(entry_hook));
#if ABI_USES_FUNCTION_DESCRIPTORS
// Function descriptor
__ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(ip, kPointerSize));
__ LoadP(ip, MemOperand(ip, 0));
// ip already set.
#endif
#endif
// zLinux ABI requires caller's frame to have sufficient space for callee
// preserved regsiter save area.
__ LoadImmP(r0, Operand::Zero());
__ lay(sp, MemOperand(sp, -kCalleeRegisterSaveAreaSize -
kNumRequiredStackFrameSlots * kPointerSize));
__ StoreP(r0, MemOperand(sp));
#if defined(USE_SIMULATOR)
// Under the simulator we need to indirect the entry hook through a
// trampoline function at a known address.
// It additionally takes an isolate as a third parameter
__ mov(r4, Operand(ExternalReference::isolate_address(isolate())));
ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
__ mov(ip, Operand(ExternalReference(
&dispatcher, ExternalReference::BUILTIN_CALL, isolate())));
#endif
__ Call(ip);
// zLinux ABI requires caller's frame to have sufficient space for callee
// preserved regsiter save area.
__ la(sp, MemOperand(sp, kCalleeRegisterSaveAreaSize +
kNumRequiredStackFrameSlots * kPointerSize));
// Restore the stack pointer if needed.
if (frame_alignment > kPointerSize) {
__ LoadRR(sp, r7);
}
// Also pop lr to get Ret(0).
__ MultiPop(kSavedRegs | ip.bit());
__ LoadRR(r14, ip);
__ Ret();
}
template <class T>
static void CreateArrayDispatch(MacroAssembler* masm,
AllocationSiteOverrideMode mode) {
if (mode == DISABLE_ALLOCATION_SITES) {
T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
__ TailCallStub(&stub);
} else if (mode == DONT_OVERRIDE) {
int last_index =
GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= last_index; ++i) {
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
__ CmpP(r5, Operand(kind));
T stub(masm->isolate(), kind);
__ TailCallStub(&stub, eq);
}
// If we reached this point there is a problem.
__ Abort(AbortReason::kUnexpectedElementsKindInArrayConstructor);
} else {
UNREACHABLE();
}
}
static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
AllocationSiteOverrideMode mode) {
// r4 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
// r5 - kind (if mode != DISABLE_ALLOCATION_SITES)
// r2 - number of arguments
// r3 - constructor?
// sp[0] - last argument
STATIC_ASSERT(PACKED_SMI_ELEMENTS == 0);
STATIC_ASSERT(HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(PACKED_ELEMENTS == 2);
STATIC_ASSERT(HOLEY_ELEMENTS == 3);
STATIC_ASSERT(PACKED_DOUBLE_ELEMENTS == 4);
STATIC_ASSERT(HOLEY_DOUBLE_ELEMENTS == 5);
if (mode == DISABLE_ALLOCATION_SITES) {
ElementsKind initial = GetInitialFastElementsKind();
ElementsKind holey_initial = GetHoleyElementsKind(initial);
ArraySingleArgumentConstructorStub stub_holey(
masm->isolate(), holey_initial, DISABLE_ALLOCATION_SITES);
__ TailCallStub(&stub_holey);
} else if (mode == DONT_OVERRIDE) {
Label normal_sequence;
// is the low bit set? If so, we are holey and that is good.
__ AndP(r0, r5, Operand(1));
__ bne(&normal_sequence);
// We are going to create a holey array, but our kind is non-holey.
// Fix kind and retry (only if we have an allocation site in the slot).
__ AddP(r5, r5, Operand(1));
if (FLAG_debug_code) {
__ LoadP(r7, FieldMemOperand(r4, 0));
__ CompareRoot(r7, Heap::kAllocationSiteMapRootIndex);
__ Assert(eq, AbortReason::kExpectedAllocationSite);
}
// Save the resulting elements kind in type info. We can't just store r5
// in the AllocationSite::transition_info field because elements kind is
// restricted to a portion of the field...upper bits need to be left alone.
STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
__ LoadP(r6, FieldMemOperand(
r4, AllocationSite::kTransitionInfoOrBoilerplateOffset));
__ AddSmiLiteral(r6, r6, Smi::FromInt(kFastElementsKindPackedToHoley), r0);
__ StoreP(r6, FieldMemOperand(
r4, AllocationSite::kTransitionInfoOrBoilerplateOffset));
__ bind(&normal_sequence);
int last_index =
GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= last_index; ++i) {
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
__ CmpP(r5, Operand(kind));
ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
__ TailCallStub(&stub, eq);
}
// If we reached this point there is a problem.
__ Abort(AbortReason::kUnexpectedElementsKindInArrayConstructor);
} else {
UNREACHABLE();
}
}
template <class T>
static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
int to_index =
GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= to_index; ++i) {
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
T stub(isolate, kind);
stub.GetCode();
if (AllocationSite::ShouldTrack(kind)) {
T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
stub1.GetCode();
}
}
}
void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) {
ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
isolate);
ArrayNArgumentsConstructorStub stub(isolate);
stub.GetCode();
ElementsKind kinds[2] = {PACKED_ELEMENTS, HOLEY_ELEMENTS};
for (int i = 0; i < 2; i++) {
// For internal arrays we only need a few things
InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
stubh1.GetCode();
InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
stubh2.GetCode();
}
}
void ArrayConstructorStub::GenerateDispatchToArrayStub(
MacroAssembler* masm, AllocationSiteOverrideMode mode) {
Label not_zero_case, not_one_case;
__ CmpP(r2, Operand::Zero());
__ bne(&not_zero_case);
CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
__ bind(&not_zero_case);
__ CmpP(r2, Operand(1));
__ bgt(&not_one_case);
CreateArrayDispatchOneArgument(masm, mode);
__ bind(&not_one_case);
ArrayNArgumentsConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
void ArrayConstructorStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : argc (only if argument_count() == ANY)
// -- r3 : constructor
// -- r4 : AllocationSite or undefined
// -- r5 : new target
// -- sp[0] : return address
// -- sp[4] : last argument
// -----------------------------------
if (FLAG_debug_code) {
// The array construct code is only set for the global and natives
// builtin Array functions which always have maps.
// Initial map for the builtin Array function should be a map.
__ LoadP(r6, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a nullptr and a Smi.
__ TestIfSmi(r6);
__ Assert(ne, AbortReason::kUnexpectedInitialMapForArrayFunction, cr0);
__ CompareObjectType(r6, r6, r7, MAP_TYPE);
__ Assert(eq, AbortReason::kUnexpectedInitialMapForArrayFunction);
// We should either have undefined in r4 or a valid AllocationSite
__ AssertUndefinedOrAllocationSite(r4, r6);
}
// Enter the context of the Array function.
__ LoadP(cp, FieldMemOperand(r3, JSFunction::kContextOffset));
Label subclassing;
__ CmpP(r5, r3);
__ bne(&subclassing, Label::kNear);
Label no_info;
// Get the elements kind and case on that.
__ CompareRoot(r4, Heap::kUndefinedValueRootIndex);
__ beq(&no_info);
__ LoadP(r5, FieldMemOperand(
r4, AllocationSite::kTransitionInfoOrBoilerplateOffset));
__ SmiUntag(r5);
STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
__ AndP(r5, Operand(AllocationSite::ElementsKindBits::kMask));
GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
__ bind(&no_info);
GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
__ bind(&subclassing);
__ ShiftLeftP(r1, r2, Operand(kPointerSizeLog2));
__ StoreP(r3, MemOperand(sp, r1));
__ AddP(r2, r2, Operand(3));
__ Push(r5, r4);
__ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
}
void InternalArrayConstructorStub::GenerateCase(MacroAssembler* masm,
ElementsKind kind) {
__ CmpLogicalP(r2, Operand(1));
InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
__ TailCallStub(&stub0, lt);
ArrayNArgumentsConstructorStub stubN(isolate());
__ TailCallStub(&stubN, gt);
if (IsFastPackedElementsKind(kind)) {
// We might need to create a holey array
// look at the first argument
__ LoadP(r5, MemOperand(sp, 0));
__ CmpP(r5, Operand::Zero());
InternalArraySingleArgumentConstructorStub stub1_holey(
isolate(), GetHoleyElementsKind(kind));
__ TailCallStub(&stub1_holey, ne);
}
InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
__ TailCallStub(&stub1);
}
void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : argc
// -- r3 : constructor
// -- sp[0] : return address
// -- sp[4] : last argument
// -----------------------------------
if (FLAG_debug_code) {
// The array construct code is only set for the global and natives
// builtin Array functions which always have maps.
// Initial map for the builtin Array function should be a map.
__ LoadP(r5, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a nullptr and a Smi.
__ TestIfSmi(r5);
__ Assert(ne, AbortReason::kUnexpectedInitialMapForArrayFunction, cr0);
__ CompareObjectType(r5, r5, r6, MAP_TYPE);
__ Assert(eq, AbortReason::kUnexpectedInitialMapForArrayFunction);
}
// Figure out the right elements kind
__ LoadP(r5, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset));
// Load the map's "bit field 2" into |result|.
__ LoadlB(r5, FieldMemOperand(r5, Map::kBitField2Offset));
// Retrieve elements_kind from bit field 2.
__ DecodeField<Map::ElementsKindBits>(r5);
if (FLAG_debug_code) {
Label done;
__ CmpP(r5, Operand(PACKED_ELEMENTS));
__ beq(&done);
__ CmpP(r5, Operand(HOLEY_ELEMENTS));
__ Assert(
eq,
AbortReason::kInvalidElementsKindForInternalArrayOrInternalPackedArray);
__ bind(&done);
}
Label fast_elements_case;
__ CmpP(r5, Operand(PACKED_ELEMENTS));
__ beq(&fast_elements_case);
GenerateCase(masm, HOLEY_ELEMENTS);
__ bind(&fast_elements_case);
GenerateCase(masm, PACKED_ELEMENTS);
}
static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
return ref0.address() - ref1.address();
}
// Calls an API function. Allocates HandleScope, extracts returned value
// from handle and propagates exceptions. Restores context. stack_space
// - space to be unwound on exit (includes the call JS arguments space and
// the additional space allocated for the fast call).
static void CallApiFunctionAndReturn(MacroAssembler* masm,
Register function_address,
ExternalReference thunk_ref,
int stack_space,
MemOperand* stack_space_operand,
MemOperand return_value_operand) {
Isolate* isolate = masm->isolate();
ExternalReference next_address =
ExternalReference::handle_scope_next_address(isolate);
const int kNextOffset = 0;
const int kLimitOffset = AddressOffset(
ExternalReference::handle_scope_limit_address(isolate), next_address);
const int kLevelOffset = AddressOffset(
ExternalReference::handle_scope_level_address(isolate), next_address);
// Additional parameter is the address of the actual callback.
DCHECK(function_address == r3 || function_address == r4);
Register scratch = r5;
__ mov(scratch, Operand(ExternalReference::is_profiling_address(isolate)));
__ LoadlB(scratch, MemOperand(scratch, 0));
__ CmpP(scratch, Operand::Zero());
Label profiler_disabled;
Label end_profiler_check;
__ beq(&profiler_disabled, Label::kNear);
__ mov(scratch, Operand(thunk_ref));
__ b(&end_profiler_check, Label::kNear);
__ bind(&profiler_disabled);
__ LoadRR(scratch, function_address);
__ bind(&end_profiler_check);
// Allocate HandleScope in callee-save registers.
// r9 - next_address
// r6 - next_address->kNextOffset
// r7 - next_address->kLimitOffset
// r8 - next_address->kLevelOffset
__ mov(r9, Operand(next_address));
__ LoadP(r6, MemOperand(r9, kNextOffset));
__ LoadP(r7, MemOperand(r9, kLimitOffset));
__ LoadlW(r8, MemOperand(r9, kLevelOffset));
__ AddP(r8, Operand(1));
__ StoreW(r8, MemOperand(r9, kLevelOffset));
if (FLAG_log_timer_events) {
FrameScope frame(masm, StackFrame::MANUAL);
__ PushSafepointRegisters();
__ PrepareCallCFunction(1, r2);
__ mov(r2, Operand(ExternalReference::isolate_address(isolate)));
__ CallCFunction(ExternalReference::log_enter_external_function(isolate),
1);
__ PopSafepointRegisters();
}
// Native call returns to the DirectCEntry stub which redirects to the
// return address pushed on stack (could have moved after GC).
// DirectCEntry stub itself is generated early and never moves.
DirectCEntryStub stub(isolate);
stub.GenerateCall(masm, scratch);
if (FLAG_log_timer_events) {
FrameScope frame(masm, StackFrame::MANUAL);
__ PushSafepointRegisters();
__ PrepareCallCFunction(1, r2);
__ mov(r2, Operand(ExternalReference::isolate_address(isolate)));
__ CallCFunction(ExternalReference::log_leave_external_function(isolate),
1);
__ PopSafepointRegisters();
}
Label promote_scheduled_exception;
Label delete_allocated_handles;
Label leave_exit_frame;
Label return_value_loaded;
// load value from ReturnValue
__ LoadP(r2, return_value_operand);
__ bind(&return_value_loaded);
// No more valid handles (the result handle was the last one). Restore
// previous handle scope.
__ StoreP(r6, MemOperand(r9, kNextOffset));
if (__ emit_debug_code()) {
__ LoadlW(r3, MemOperand(r9, kLevelOffset));
__ CmpP(r3, r8);
__ Check(eq, AbortReason::kUnexpectedLevelAfterReturnFromApiCall);
}
__ SubP(r8, Operand(1));
__ StoreW(r8, MemOperand(r9, kLevelOffset));
__ CmpP(r7, MemOperand(r9, kLimitOffset));
__ bne(&delete_allocated_handles, Label::kNear);
// Leave the API exit frame.
__ bind(&leave_exit_frame);
// LeaveExitFrame expects unwind space to be in a register.
if (stack_space_operand != nullptr) {
__ l(r6, *stack_space_operand);
} else {
__ mov(r6, Operand(stack_space));
}
__ LeaveExitFrame(false, r6, stack_space_operand != nullptr);
// Check if the function scheduled an exception.
__ mov(r7, Operand(ExternalReference::scheduled_exception_address(isolate)));
__ LoadP(r7, MemOperand(r7));
__ CompareRoot(r7, Heap::kTheHoleValueRootIndex);
__ bne(&promote_scheduled_exception, Label::kNear);
__ b(r14);
// Re-throw by promoting a scheduled exception.
__ bind(&promote_scheduled_exception);
__ TailCallRuntime(Runtime::kPromoteScheduledException);
// HandleScope limit has changed. Delete allocated extensions.
__ bind(&delete_allocated_handles);
__ StoreP(r7, MemOperand(r9, kLimitOffset));
__ LoadRR(r6, r2);
__ PrepareCallCFunction(1, r7);
__ mov(r2, Operand(ExternalReference::isolate_address(isolate)));
__ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate),
1);
__ LoadRR(r2, r6);
__ b(&leave_exit_frame, Label::kNear);
}
void CallApiCallbackStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r6 : call_data
// -- r4 : holder
// -- r3 : api_function_address
// -- cp : context
// --
// -- sp[0] : last argument
// -- ...
// -- sp[(argc - 1) * 4] : first argument
// -- sp[argc * 4] : receiver
// -----------------------------------
Register call_data = r6;
Register holder = r4;
Register api_function_address = r3;
typedef FunctionCallbackArguments FCA;
STATIC_ASSERT(FCA::kArgsLength == 6);
STATIC_ASSERT(FCA::kNewTargetIndex == 5);
STATIC_ASSERT(FCA::kDataIndex == 4);
STATIC_ASSERT(FCA::kReturnValueOffset == 3);
STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
STATIC_ASSERT(FCA::kIsolateIndex == 1);
STATIC_ASSERT(FCA::kHolderIndex == 0);
// new target
__ PushRoot(Heap::kUndefinedValueRootIndex);
// call data
__ push(call_data);
Register scratch = call_data;
__ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
// return value
__ push(scratch);
// return value default
__ push(scratch);
// isolate
__ mov(scratch, Operand(ExternalReference::isolate_address(masm->isolate())));
__ push(scratch);
// holder
__ push(holder);
// Prepare arguments.
__ LoadRR(scratch, sp);
// Allocate the v8::Arguments structure in the arguments' space since
// it's not controlled by GC.
// S390 LINUX ABI:
//
// Create 4 extra slots on stack:
// [0] space for DirectCEntryStub's LR save
// [1-3] FunctionCallbackInfo
const int kApiStackSpace = 4;
const int kFunctionCallbackInfoOffset =
(kStackFrameExtraParamSlot + 1) * kPointerSize;
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(false, kApiStackSpace);
DCHECK(api_function_address != r2 && scratch != r2);
// r2 = FunctionCallbackInfo&
// Arguments is after the return address.
__ AddP(r2, sp, Operand(kFunctionCallbackInfoOffset));
// FunctionCallbackInfo::implicit_args_
__ StoreP(scratch, MemOperand(r2, 0 * kPointerSize));
// FunctionCallbackInfo::values_
__ AddP(ip, scratch, Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize));
__ StoreP(ip, MemOperand(r2, 1 * kPointerSize));
// FunctionCallbackInfo::length_ = argc
__ LoadImmP(ip, Operand(argc()));
__ StoreW(ip, MemOperand(r2, 2 * kPointerSize));
ExternalReference thunk_ref =
ExternalReference::invoke_function_callback(masm->isolate());
AllowExternalCallThatCantCauseGC scope(masm);
// Stores return the first js argument
int return_value_offset = 2 + FCA::kReturnValueOffset;
MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
const int stack_space = argc() + FCA::kArgsLength + 1;
MemOperand* stack_space_operand = nullptr;
CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space,
stack_space_operand, return_value_operand);
}
void CallApiGetterStub::Generate(MacroAssembler* masm) {
int arg0Slot = 0;
int accessorInfoSlot = 0;
int apiStackSpace = 0;
// Build v8::PropertyCallbackInfo::args_ array on the stack and push property
// name below the exit frame to make GC aware of them.
STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
Register receiver = ApiGetterDescriptor::ReceiverRegister();
Register holder = ApiGetterDescriptor::HolderRegister();
Register callback = ApiGetterDescriptor::CallbackRegister();
Register scratch = r6;
DCHECK(!AreAliased(receiver, holder, callback, scratch));
Register api_function_address = r4;
__ push(receiver);
// Push data from AccessorInfo.
__ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset));
__ push(scratch);
__ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
__ Push(scratch, scratch);
__ mov(scratch, Operand(ExternalReference::isolate_address(isolate())));
__ Push(scratch, holder);
__ Push(Smi::kZero); // should_throw_on_error -> false
__ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset));
__ push(scratch);
// v8::PropertyCallbackInfo::args_ array and name handle.
const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
// Load address of v8::PropertyAccessorInfo::args_ array and name handle.
__ LoadRR(r2, sp); // r2 = Handle<Name>
__ AddP(r3, r2, Operand(1 * kPointerSize)); // r3 = v8::PCI::args_
// If ABI passes Handles (pointer-sized struct) in a register:
//
// Create 2 extra slots on stack:
// [0] space for DirectCEntryStub's LR save
// [1] AccessorInfo&
//
// Otherwise:
//
// Create 3 extra slots on stack:
// [0] space for DirectCEntryStub's LR save
// [1] copy of Handle (first arg)
// [2] AccessorInfo&
if (ABI_PASSES_HANDLES_IN_REGS) {
accessorInfoSlot = kStackFrameExtraParamSlot + 1;
apiStackSpace = 2;
} else {
arg0Slot = kStackFrameExtraParamSlot + 1;
accessorInfoSlot = arg0Slot + 1;
apiStackSpace = 3;
}
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(false, apiStackSpace);
if (!ABI_PASSES_HANDLES_IN_REGS) {
// pass 1st arg by reference
__ StoreP(r2, MemOperand(sp, arg0Slot * kPointerSize));
__ AddP(r2, sp, Operand(arg0Slot * kPointerSize));
}
// Create v8::PropertyCallbackInfo object on the stack and initialize
// it's args_ field.
__ StoreP(r3, MemOperand(sp, accessorInfoSlot * kPointerSize));
__ AddP(r3, sp, Operand(accessorInfoSlot * kPointerSize));
// r3 = v8::PropertyCallbackInfo&
ExternalReference thunk_ref =
ExternalReference::invoke_accessor_getter_callback(isolate());
__ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset));
__ LoadP(api_function_address,
FieldMemOperand(scratch, Foreign::kForeignAddressOffset));
// +3 is to skip prolog, return address and name handle.
MemOperand return_value_operand(
fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
kStackUnwindSpace, nullptr, return_value_operand);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_S390