| // Copyright 2014 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include <assert.h> // For assert |
| #include <limits.h> // For LONG_MIN, LONG_MAX. |
| |
| #if V8_TARGET_ARCH_S390 |
| |
| #include "src/base/bits.h" |
| #include "src/base/division-by-constant.h" |
| #include "src/bootstrapper.h" |
| #include "src/callable.h" |
| #include "src/code-stubs.h" |
| #include "src/debug/debug.h" |
| #include "src/external-reference-table.h" |
| #include "src/frames-inl.h" |
| #include "src/register-configuration.h" |
| #include "src/runtime/runtime.h" |
| |
| #include "src/s390/macro-assembler-s390.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| MacroAssembler::MacroAssembler(Isolate* isolate, void* buffer, int size, |
| CodeObjectRequired create_code_object) |
| : TurboAssembler(isolate, buffer, size, create_code_object) {} |
| |
| TurboAssembler::TurboAssembler(Isolate* isolate, void* buffer, int buffer_size, |
| CodeObjectRequired create_code_object) |
| : Assembler(isolate, buffer, buffer_size), isolate_(isolate) { |
| if (create_code_object == CodeObjectRequired::kYes) { |
| code_object_ = |
| Handle<HeapObject>::New(isolate->heap()->undefined_value(), isolate); |
| } |
| } |
| |
| int TurboAssembler::RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode, |
| Register exclusion1, |
| Register exclusion2, |
| Register exclusion3) const { |
| int bytes = 0; |
| RegList exclusions = 0; |
| if (exclusion1 != no_reg) { |
| exclusions |= exclusion1.bit(); |
| if (exclusion2 != no_reg) { |
| exclusions |= exclusion2.bit(); |
| if (exclusion3 != no_reg) { |
| exclusions |= exclusion3.bit(); |
| } |
| } |
| } |
| |
| RegList list = kJSCallerSaved & ~exclusions; |
| bytes += NumRegs(list) * kPointerSize; |
| |
| if (fp_mode == kSaveFPRegs) { |
| bytes += NumRegs(kCallerSavedDoubles) * kDoubleSize; |
| } |
| |
| return bytes; |
| } |
| |
| int TurboAssembler::PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, |
| Register exclusion2, Register exclusion3) { |
| int bytes = 0; |
| RegList exclusions = 0; |
| if (exclusion1 != no_reg) { |
| exclusions |= exclusion1.bit(); |
| if (exclusion2 != no_reg) { |
| exclusions |= exclusion2.bit(); |
| if (exclusion3 != no_reg) { |
| exclusions |= exclusion3.bit(); |
| } |
| } |
| } |
| |
| RegList list = kJSCallerSaved & ~exclusions; |
| MultiPush(list); |
| bytes += NumRegs(list) * kPointerSize; |
| |
| if (fp_mode == kSaveFPRegs) { |
| MultiPushDoubles(kCallerSavedDoubles); |
| bytes += NumRegs(kCallerSavedDoubles) * kDoubleSize; |
| } |
| |
| return bytes; |
| } |
| |
| int TurboAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, |
| Register exclusion2, Register exclusion3) { |
| int bytes = 0; |
| if (fp_mode == kSaveFPRegs) { |
| MultiPopDoubles(kCallerSavedDoubles); |
| bytes += NumRegs(kCallerSavedDoubles) * kDoubleSize; |
| } |
| |
| RegList exclusions = 0; |
| if (exclusion1 != no_reg) { |
| exclusions |= exclusion1.bit(); |
| if (exclusion2 != no_reg) { |
| exclusions |= exclusion2.bit(); |
| if (exclusion3 != no_reg) { |
| exclusions |= exclusion3.bit(); |
| } |
| } |
| } |
| |
| RegList list = kJSCallerSaved & ~exclusions; |
| MultiPop(list); |
| bytes += NumRegs(list) * kPointerSize; |
| |
| return bytes; |
| } |
| |
| void TurboAssembler::Jump(Register target) { b(target); } |
| |
| void MacroAssembler::JumpToJSEntry(Register target) { |
| Move(ip, target); |
| Jump(ip); |
| } |
| |
| void TurboAssembler::Jump(intptr_t target, RelocInfo::Mode rmode, |
| Condition cond, CRegister) { |
| Label skip; |
| |
| if (cond != al) b(NegateCondition(cond), &skip); |
| |
| DCHECK(rmode == RelocInfo::CODE_TARGET || rmode == RelocInfo::RUNTIME_ENTRY); |
| |
| mov(ip, Operand(target, rmode)); |
| b(ip); |
| |
| bind(&skip); |
| } |
| |
| void TurboAssembler::Jump(Address target, RelocInfo::Mode rmode, Condition cond, |
| CRegister cr) { |
| DCHECK(!RelocInfo::IsCodeTarget(rmode)); |
| Jump(reinterpret_cast<intptr_t>(target), rmode, cond, cr); |
| } |
| |
| void TurboAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode, |
| Condition cond) { |
| DCHECK(RelocInfo::IsCodeTarget(rmode)); |
| jump(code, rmode, cond); |
| } |
| |
| int TurboAssembler::CallSize(Register target) { return 2; } // BASR |
| |
| void TurboAssembler::Call(Register target) { |
| Label start; |
| bind(&start); |
| |
| // Branch to target via indirect branch |
| basr(r14, target); |
| |
| DCHECK_EQ(CallSize(target), SizeOfCodeGeneratedSince(&start)); |
| } |
| |
| void MacroAssembler::CallJSEntry(Register target) { |
| DCHECK(target == ip); |
| Call(target); |
| } |
| |
| int TurboAssembler::CallSize(Address target, RelocInfo::Mode rmode, |
| Condition cond) { |
| // S390 Assembler::move sequence is IILF / IIHF |
| int size; |
| #if V8_TARGET_ARCH_S390X |
| size = 14; // IILF + IIHF + BASR |
| #else |
| size = 8; // IILF + BASR |
| #endif |
| return size; |
| } |
| |
| int MacroAssembler::CallSizeNotPredictableCodeSize(Address target, |
| RelocInfo::Mode rmode, |
| Condition cond) { |
| // S390 Assembler::move sequence is IILF / IIHF |
| int size; |
| #if V8_TARGET_ARCH_S390X |
| size = 14; // IILF + IIHF + BASR |
| #else |
| size = 8; // IILF + BASR |
| #endif |
| return size; |
| } |
| |
| void TurboAssembler::Call(Address target, RelocInfo::Mode rmode, |
| Condition cond) { |
| DCHECK(cond == al); |
| |
| #ifdef DEBUG |
| // Check the expected size before generating code to ensure we assume the same |
| // constant pool availability (e.g., whether constant pool is full or not). |
| int expected_size = CallSize(target, rmode, cond); |
| Label start; |
| bind(&start); |
| #endif |
| |
| mov(ip, Operand(reinterpret_cast<intptr_t>(target), rmode)); |
| basr(r14, ip); |
| |
| DCHECK_EQ(expected_size, SizeOfCodeGeneratedSince(&start)); |
| } |
| |
| int TurboAssembler::CallSize(Handle<Code> code, RelocInfo::Mode rmode, |
| Condition cond) { |
| return 6; // BRASL |
| } |
| |
| void TurboAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode, |
| Condition cond) { |
| DCHECK(RelocInfo::IsCodeTarget(rmode) && cond == al); |
| |
| #ifdef DEBUG |
| // Check the expected size before generating code to ensure we assume the same |
| // constant pool availability (e.g., whether constant pool is full or not). |
| int expected_size = CallSize(code, rmode, cond); |
| Label start; |
| bind(&start); |
| #endif |
| call(code, rmode); |
| DCHECK_EQ(expected_size, SizeOfCodeGeneratedSince(&start)); |
| } |
| |
| void TurboAssembler::Drop(int count) { |
| if (count > 0) { |
| int total = count * kPointerSize; |
| if (is_uint12(total)) { |
| la(sp, MemOperand(sp, total)); |
| } else if (is_int20(total)) { |
| lay(sp, MemOperand(sp, total)); |
| } else { |
| AddP(sp, Operand(total)); |
| } |
| } |
| } |
| |
| void TurboAssembler::Drop(Register count, Register scratch) { |
| ShiftLeftP(scratch, count, Operand(kPointerSizeLog2)); |
| AddP(sp, sp, scratch); |
| } |
| |
| void TurboAssembler::Call(Label* target) { b(r14, target); } |
| |
| void TurboAssembler::Push(Handle<HeapObject> handle) { |
| mov(r0, Operand(handle)); |
| push(r0); |
| } |
| |
| void TurboAssembler::Push(Smi* smi) { |
| mov(r0, Operand(smi)); |
| push(r0); |
| } |
| |
| void TurboAssembler::Move(Register dst, Handle<HeapObject> value) { |
| mov(dst, Operand(value)); |
| } |
| |
| void TurboAssembler::Move(Register dst, Register src, Condition cond) { |
| if (dst != src) { |
| LoadRR(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Move(DoubleRegister dst, DoubleRegister src) { |
| if (dst != src) { |
| ldr(dst, src); |
| } |
| } |
| |
| void TurboAssembler::MultiPush(RegList regs, Register location) { |
| int16_t num_to_push = base::bits::CountPopulation(regs); |
| int16_t stack_offset = num_to_push * kPointerSize; |
| |
| SubP(location, location, Operand(stack_offset)); |
| for (int16_t i = Register::kNumRegisters - 1; i >= 0; i--) { |
| if ((regs & (1 << i)) != 0) { |
| stack_offset -= kPointerSize; |
| StoreP(ToRegister(i), MemOperand(location, stack_offset)); |
| } |
| } |
| } |
| |
| void TurboAssembler::MultiPop(RegList regs, Register location) { |
| int16_t stack_offset = 0; |
| |
| for (int16_t i = 0; i < Register::kNumRegisters; i++) { |
| if ((regs & (1 << i)) != 0) { |
| LoadP(ToRegister(i), MemOperand(location, stack_offset)); |
| stack_offset += kPointerSize; |
| } |
| } |
| AddP(location, location, Operand(stack_offset)); |
| } |
| |
| void TurboAssembler::MultiPushDoubles(RegList dregs, Register location) { |
| int16_t num_to_push = base::bits::CountPopulation(dregs); |
| int16_t stack_offset = num_to_push * kDoubleSize; |
| |
| SubP(location, location, Operand(stack_offset)); |
| for (int16_t i = DoubleRegister::kNumRegisters - 1; i >= 0; i--) { |
| if ((dregs & (1 << i)) != 0) { |
| DoubleRegister dreg = DoubleRegister::from_code(i); |
| stack_offset -= kDoubleSize; |
| StoreDouble(dreg, MemOperand(location, stack_offset)); |
| } |
| } |
| } |
| |
| void TurboAssembler::MultiPopDoubles(RegList dregs, Register location) { |
| int16_t stack_offset = 0; |
| |
| for (int16_t i = 0; i < DoubleRegister::kNumRegisters; i++) { |
| if ((dregs & (1 << i)) != 0) { |
| DoubleRegister dreg = DoubleRegister::from_code(i); |
| LoadDouble(dreg, MemOperand(location, stack_offset)); |
| stack_offset += kDoubleSize; |
| } |
| } |
| AddP(location, location, Operand(stack_offset)); |
| } |
| |
| void TurboAssembler::LoadRoot(Register destination, Heap::RootListIndex index, |
| Condition) { |
| LoadP(destination, MemOperand(kRootRegister, index << kPointerSizeLog2), r0); |
| } |
| |
| void MacroAssembler::RecordWriteField(Register object, int offset, |
| Register value, Register dst, |
| LinkRegisterStatus lr_status, |
| SaveFPRegsMode save_fp, |
| RememberedSetAction remembered_set_action, |
| SmiCheck smi_check) { |
| // First, check if a write barrier is even needed. The tests below |
| // catch stores of Smis. |
| Label done; |
| |
| // Skip barrier if writing a smi. |
| if (smi_check == INLINE_SMI_CHECK) { |
| JumpIfSmi(value, &done); |
| } |
| |
| // Although the object register is tagged, the offset is relative to the start |
| // of the object, so so offset must be a multiple of kPointerSize. |
| DCHECK(IsAligned(offset, kPointerSize)); |
| |
| lay(dst, MemOperand(object, offset - kHeapObjectTag)); |
| if (emit_debug_code()) { |
| Label ok; |
| AndP(r0, dst, Operand(kPointerSize - 1)); |
| beq(&ok, Label::kNear); |
| stop("Unaligned cell in write barrier"); |
| bind(&ok); |
| } |
| |
| RecordWrite(object, dst, value, lr_status, save_fp, remembered_set_action, |
| OMIT_SMI_CHECK); |
| |
| bind(&done); |
| |
| // Clobber clobbered input registers when running with the debug-code flag |
| // turned on to provoke errors. |
| if (emit_debug_code()) { |
| mov(value, Operand(bit_cast<intptr_t>(kZapValue + 4))); |
| mov(dst, Operand(bit_cast<intptr_t>(kZapValue + 8))); |
| } |
| } |
| |
| void TurboAssembler::SaveRegisters(RegList registers) { |
| DCHECK_GT(NumRegs(registers), 0); |
| RegList regs = 0; |
| for (int i = 0; i < Register::kNumRegisters; ++i) { |
| if ((registers >> i) & 1u) { |
| regs |= Register::from_code(i).bit(); |
| } |
| } |
| MultiPush(regs); |
| } |
| |
| void TurboAssembler::RestoreRegisters(RegList registers) { |
| DCHECK_GT(NumRegs(registers), 0); |
| RegList regs = 0; |
| for (int i = 0; i < Register::kNumRegisters; ++i) { |
| if ((registers >> i) & 1u) { |
| regs |= Register::from_code(i).bit(); |
| } |
| } |
| MultiPop(regs); |
| } |
| |
| void TurboAssembler::CallRecordWriteStub( |
| Register object, Register address, |
| RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode) { |
| // TODO(albertnetymk): For now we ignore remembered_set_action and fp_mode, |
| // i.e. always emit remember set and save FP registers in RecordWriteStub. If |
| // large performance regression is observed, we should use these values to |
| // avoid unnecessary work. |
| |
| Callable const callable = |
| Builtins::CallableFor(isolate(), Builtins::kRecordWrite); |
| RegList registers = callable.descriptor().allocatable_registers(); |
| |
| SaveRegisters(registers); |
| Register object_parameter(callable.descriptor().GetRegisterParameter( |
| RecordWriteDescriptor::kObject)); |
| Register slot_parameter( |
| callable.descriptor().GetRegisterParameter(RecordWriteDescriptor::kSlot)); |
| Register isolate_parameter(callable.descriptor().GetRegisterParameter( |
| RecordWriteDescriptor::kIsolate)); |
| Register remembered_set_parameter(callable.descriptor().GetRegisterParameter( |
| RecordWriteDescriptor::kRememberedSet)); |
| Register fp_mode_parameter(callable.descriptor().GetRegisterParameter( |
| RecordWriteDescriptor::kFPMode)); |
| |
| Push(object); |
| Push(address); |
| |
| Pop(slot_parameter); |
| Pop(object_parameter); |
| |
| mov(isolate_parameter, |
| Operand(ExternalReference::isolate_address(isolate()))); |
| Move(remembered_set_parameter, Smi::FromEnum(remembered_set_action)); |
| Move(fp_mode_parameter, Smi::FromEnum(fp_mode)); |
| Call(callable.code(), RelocInfo::CODE_TARGET); |
| |
| RestoreRegisters(registers); |
| } |
| |
| // Will clobber 4 registers: object, address, scratch, ip. The |
| // register 'object' contains a heap object pointer. The heap object |
| // tag is shifted away. |
| void MacroAssembler::RecordWrite(Register object, Register address, |
| Register value, LinkRegisterStatus lr_status, |
| SaveFPRegsMode fp_mode, |
| RememberedSetAction remembered_set_action, |
| SmiCheck smi_check) { |
| DCHECK(object != value); |
| if (emit_debug_code()) { |
| CmpP(value, MemOperand(address)); |
| Check(eq, AbortReason::kWrongAddressOrValuePassedToRecordWrite); |
| } |
| |
| if (remembered_set_action == OMIT_REMEMBERED_SET && |
| !FLAG_incremental_marking) { |
| return; |
| } |
| // First, check if a write barrier is even needed. The tests below |
| // catch stores of smis and stores into the young generation. |
| Label done; |
| |
| if (smi_check == INLINE_SMI_CHECK) { |
| JumpIfSmi(value, &done); |
| } |
| |
| CheckPageFlag(value, |
| value, // Used as scratch. |
| MemoryChunk::kPointersToHereAreInterestingMask, eq, &done); |
| CheckPageFlag(object, |
| value, // Used as scratch. |
| MemoryChunk::kPointersFromHereAreInterestingMask, eq, &done); |
| |
| // Record the actual write. |
| if (lr_status == kLRHasNotBeenSaved) { |
| push(r14); |
| } |
| CallRecordWriteStub(object, address, remembered_set_action, fp_mode); |
| if (lr_status == kLRHasNotBeenSaved) { |
| pop(r14); |
| } |
| |
| bind(&done); |
| |
| // Count number of write barriers in generated code. |
| isolate()->counters()->write_barriers_static()->Increment(); |
| IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, ip, |
| value); |
| |
| // Clobber clobbered registers when running with the debug-code flag |
| // turned on to provoke errors. |
| if (emit_debug_code()) { |
| mov(address, Operand(bit_cast<intptr_t>(kZapValue + 12))); |
| mov(value, Operand(bit_cast<intptr_t>(kZapValue + 16))); |
| } |
| } |
| |
| void TurboAssembler::PushCommonFrame(Register marker_reg) { |
| int fp_delta = 0; |
| CleanseP(r14); |
| if (marker_reg.is_valid()) { |
| Push(r14, fp, marker_reg); |
| fp_delta = 1; |
| } else { |
| Push(r14, fp); |
| fp_delta = 0; |
| } |
| la(fp, MemOperand(sp, fp_delta * kPointerSize)); |
| } |
| |
| void TurboAssembler::PopCommonFrame(Register marker_reg) { |
| if (marker_reg.is_valid()) { |
| Pop(r14, fp, marker_reg); |
| } else { |
| Pop(r14, fp); |
| } |
| } |
| |
| void TurboAssembler::PushStandardFrame(Register function_reg) { |
| int fp_delta = 0; |
| CleanseP(r14); |
| if (function_reg.is_valid()) { |
| Push(r14, fp, cp, function_reg); |
| fp_delta = 2; |
| } else { |
| Push(r14, fp, cp); |
| fp_delta = 1; |
| } |
| la(fp, MemOperand(sp, fp_delta * kPointerSize)); |
| } |
| |
| void TurboAssembler::RestoreFrameStateForTailCall() { |
| // if (FLAG_enable_embedded_constant_pool) { |
| // LoadP(kConstantPoolRegister, |
| // MemOperand(fp, StandardFrameConstants::kConstantPoolOffset)); |
| // set_constant_pool_available(false); |
| // } |
| DCHECK(!FLAG_enable_embedded_constant_pool); |
| LoadP(r14, MemOperand(fp, StandardFrameConstants::kCallerPCOffset)); |
| LoadP(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| } |
| |
| // Push and pop all registers that can hold pointers. |
| void MacroAssembler::PushSafepointRegisters() { |
| // Safepoints expect a block of kNumSafepointRegisters values on the |
| // stack, so adjust the stack for unsaved registers. |
| const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; |
| DCHECK_GE(num_unsaved, 0); |
| if (num_unsaved > 0) { |
| lay(sp, MemOperand(sp, -(num_unsaved * kPointerSize))); |
| } |
| MultiPush(kSafepointSavedRegisters); |
| } |
| |
| void MacroAssembler::PopSafepointRegisters() { |
| const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; |
| MultiPop(kSafepointSavedRegisters); |
| if (num_unsaved > 0) { |
| la(sp, MemOperand(sp, num_unsaved * kPointerSize)); |
| } |
| } |
| |
| int MacroAssembler::SafepointRegisterStackIndex(int reg_code) { |
| // The registers are pushed starting with the highest encoding, |
| // which means that lowest encodings are closest to the stack pointer. |
| RegList regs = kSafepointSavedRegisters; |
| int index = 0; |
| |
| DCHECK(reg_code >= 0 && reg_code < kNumRegisters); |
| |
| for (int16_t i = 0; i < reg_code; i++) { |
| if ((regs & (1 << i)) != 0) { |
| index++; |
| } |
| } |
| |
| return index; |
| } |
| |
| void TurboAssembler::CanonicalizeNaN(const DoubleRegister dst, |
| const DoubleRegister src) { |
| // Turn potential sNaN into qNaN |
| if (dst != src) ldr(dst, src); |
| lzdr(kDoubleRegZero); |
| sdbr(dst, kDoubleRegZero); |
| } |
| |
| void TurboAssembler::ConvertIntToDouble(DoubleRegister dst, Register src) { |
| cdfbr(dst, src); |
| } |
| |
| void TurboAssembler::ConvertUnsignedIntToDouble(DoubleRegister dst, |
| Register src) { |
| if (CpuFeatures::IsSupported(FLOATING_POINT_EXT)) { |
| cdlfbr(Condition(5), Condition(0), dst, src); |
| } else { |
| // zero-extend src |
| llgfr(src, src); |
| // convert to double |
| cdgbr(dst, src); |
| } |
| } |
| |
| void TurboAssembler::ConvertIntToFloat(DoubleRegister dst, Register src) { |
| cefbr(Condition(4), dst, src); |
| } |
| |
| void TurboAssembler::ConvertUnsignedIntToFloat(DoubleRegister dst, |
| Register src) { |
| celfbr(Condition(4), Condition(0), dst, src); |
| } |
| |
| void TurboAssembler::ConvertInt64ToFloat(DoubleRegister double_dst, |
| Register src) { |
| cegbr(double_dst, src); |
| } |
| |
| void TurboAssembler::ConvertInt64ToDouble(DoubleRegister double_dst, |
| Register src) { |
| cdgbr(double_dst, src); |
| } |
| |
| void TurboAssembler::ConvertUnsignedInt64ToFloat(DoubleRegister double_dst, |
| Register src) { |
| celgbr(Condition(0), Condition(0), double_dst, src); |
| } |
| |
| void TurboAssembler::ConvertUnsignedInt64ToDouble(DoubleRegister double_dst, |
| Register src) { |
| cdlgbr(Condition(0), Condition(0), double_dst, src); |
| } |
| |
| void TurboAssembler::ConvertFloat32ToInt64(const Register dst, |
| const DoubleRegister double_input, |
| FPRoundingMode rounding_mode) { |
| Condition m = Condition(0); |
| switch (rounding_mode) { |
| case kRoundToZero: |
| m = Condition(5); |
| break; |
| case kRoundToNearest: |
| UNIMPLEMENTED(); |
| break; |
| case kRoundToPlusInf: |
| m = Condition(6); |
| break; |
| case kRoundToMinusInf: |
| m = Condition(7); |
| break; |
| default: |
| UNIMPLEMENTED(); |
| break; |
| } |
| cgebr(m, dst, double_input); |
| } |
| |
| void TurboAssembler::ConvertDoubleToInt64(const Register dst, |
| const DoubleRegister double_input, |
| FPRoundingMode rounding_mode) { |
| Condition m = Condition(0); |
| switch (rounding_mode) { |
| case kRoundToZero: |
| m = Condition(5); |
| break; |
| case kRoundToNearest: |
| UNIMPLEMENTED(); |
| break; |
| case kRoundToPlusInf: |
| m = Condition(6); |
| break; |
| case kRoundToMinusInf: |
| m = Condition(7); |
| break; |
| default: |
| UNIMPLEMENTED(); |
| break; |
| } |
| cgdbr(m, dst, double_input); |
| } |
| |
| void TurboAssembler::ConvertDoubleToInt32(const Register dst, |
| const DoubleRegister double_input, |
| FPRoundingMode rounding_mode) { |
| Condition m = Condition(0); |
| switch (rounding_mode) { |
| case kRoundToZero: |
| m = Condition(5); |
| break; |
| case kRoundToNearest: |
| m = Condition(4); |
| break; |
| case kRoundToPlusInf: |
| m = Condition(6); |
| break; |
| case kRoundToMinusInf: |
| m = Condition(7); |
| break; |
| default: |
| UNIMPLEMENTED(); |
| break; |
| } |
| cfdbr(m, dst, double_input); |
| } |
| |
| void TurboAssembler::ConvertFloat32ToInt32(const Register result, |
| const DoubleRegister double_input, |
| FPRoundingMode rounding_mode) { |
| Condition m = Condition(0); |
| switch (rounding_mode) { |
| case kRoundToZero: |
| m = Condition(5); |
| break; |
| case kRoundToNearest: |
| m = Condition(4); |
| break; |
| case kRoundToPlusInf: |
| m = Condition(6); |
| break; |
| case kRoundToMinusInf: |
| m = Condition(7); |
| break; |
| default: |
| UNIMPLEMENTED(); |
| break; |
| } |
| cfebr(m, result, double_input); |
| } |
| |
| void TurboAssembler::ConvertFloat32ToUnsignedInt32( |
| const Register result, const DoubleRegister double_input, |
| FPRoundingMode rounding_mode) { |
| Condition m = Condition(0); |
| switch (rounding_mode) { |
| case kRoundToZero: |
| m = Condition(5); |
| break; |
| case kRoundToNearest: |
| UNIMPLEMENTED(); |
| break; |
| case kRoundToPlusInf: |
| m = Condition(6); |
| break; |
| case kRoundToMinusInf: |
| m = Condition(7); |
| break; |
| default: |
| UNIMPLEMENTED(); |
| break; |
| } |
| clfebr(m, Condition(0), result, double_input); |
| } |
| |
| void TurboAssembler::ConvertFloat32ToUnsignedInt64( |
| const Register result, const DoubleRegister double_input, |
| FPRoundingMode rounding_mode) { |
| Condition m = Condition(0); |
| switch (rounding_mode) { |
| case kRoundToZero: |
| m = Condition(5); |
| break; |
| case kRoundToNearest: |
| UNIMPLEMENTED(); |
| break; |
| case kRoundToPlusInf: |
| m = Condition(6); |
| break; |
| case kRoundToMinusInf: |
| m = Condition(7); |
| break; |
| default: |
| UNIMPLEMENTED(); |
| break; |
| } |
| clgebr(m, Condition(0), result, double_input); |
| } |
| |
| void TurboAssembler::ConvertDoubleToUnsignedInt64( |
| const Register dst, const DoubleRegister double_input, |
| FPRoundingMode rounding_mode) { |
| Condition m = Condition(0); |
| switch (rounding_mode) { |
| case kRoundToZero: |
| m = Condition(5); |
| break; |
| case kRoundToNearest: |
| UNIMPLEMENTED(); |
| break; |
| case kRoundToPlusInf: |
| m = Condition(6); |
| break; |
| case kRoundToMinusInf: |
| m = Condition(7); |
| break; |
| default: |
| UNIMPLEMENTED(); |
| break; |
| } |
| clgdbr(m, Condition(0), dst, double_input); |
| } |
| |
| void TurboAssembler::ConvertDoubleToUnsignedInt32( |
| const Register dst, const DoubleRegister double_input, |
| FPRoundingMode rounding_mode) { |
| Condition m = Condition(0); |
| switch (rounding_mode) { |
| case kRoundToZero: |
| m = Condition(5); |
| break; |
| case kRoundToNearest: |
| UNIMPLEMENTED(); |
| break; |
| case kRoundToPlusInf: |
| m = Condition(6); |
| break; |
| case kRoundToMinusInf: |
| m = Condition(7); |
| break; |
| default: |
| UNIMPLEMENTED(); |
| break; |
| } |
| clfdbr(m, Condition(0), dst, double_input); |
| } |
| |
| #if !V8_TARGET_ARCH_S390X |
| void TurboAssembler::ShiftLeftPair(Register dst_low, Register dst_high, |
| Register src_low, Register src_high, |
| Register scratch, Register shift) { |
| LoadRR(r0, src_high); |
| LoadRR(r1, src_low); |
| sldl(r0, shift, Operand::Zero()); |
| LoadRR(dst_high, r0); |
| LoadRR(dst_low, r1); |
| } |
| |
| void TurboAssembler::ShiftLeftPair(Register dst_low, Register dst_high, |
| Register src_low, Register src_high, |
| uint32_t shift) { |
| LoadRR(r0, src_high); |
| LoadRR(r1, src_low); |
| sldl(r0, r0, Operand(shift)); |
| LoadRR(dst_high, r0); |
| LoadRR(dst_low, r1); |
| } |
| |
| void TurboAssembler::ShiftRightPair(Register dst_low, Register dst_high, |
| Register src_low, Register src_high, |
| Register scratch, Register shift) { |
| LoadRR(r0, src_high); |
| LoadRR(r1, src_low); |
| srdl(r0, shift, Operand::Zero()); |
| LoadRR(dst_high, r0); |
| LoadRR(dst_low, r1); |
| } |
| |
| void TurboAssembler::ShiftRightPair(Register dst_low, Register dst_high, |
| Register src_low, Register src_high, |
| uint32_t shift) { |
| LoadRR(r0, src_high); |
| LoadRR(r1, src_low); |
| srdl(r0, r0, Operand(shift)); |
| LoadRR(dst_high, r0); |
| LoadRR(dst_low, r1); |
| } |
| |
| void TurboAssembler::ShiftRightArithPair(Register dst_low, Register dst_high, |
| Register src_low, Register src_high, |
| Register scratch, Register shift) { |
| LoadRR(r0, src_high); |
| LoadRR(r1, src_low); |
| srda(r0, shift, Operand::Zero()); |
| LoadRR(dst_high, r0); |
| LoadRR(dst_low, r1); |
| } |
| |
| void TurboAssembler::ShiftRightArithPair(Register dst_low, Register dst_high, |
| Register src_low, Register src_high, |
| uint32_t shift) { |
| LoadRR(r0, src_high); |
| LoadRR(r1, src_low); |
| srda(r0, r0, Operand(shift)); |
| LoadRR(dst_high, r0); |
| LoadRR(dst_low, r1); |
| } |
| #endif |
| |
| void TurboAssembler::MovDoubleToInt64(Register dst, DoubleRegister src) { |
| lgdr(dst, src); |
| } |
| |
| void TurboAssembler::MovInt64ToDouble(DoubleRegister dst, Register src) { |
| ldgr(dst, src); |
| } |
| |
| void TurboAssembler::StubPrologue(StackFrame::Type type, Register base, |
| int prologue_offset) { |
| { |
| ConstantPoolUnavailableScope constant_pool_unavailable(this); |
| Load(r1, Operand(StackFrame::TypeToMarker(type))); |
| PushCommonFrame(r1); |
| } |
| } |
| |
| void TurboAssembler::Prologue(Register base, int prologue_offset) { |
| DCHECK(base != no_reg); |
| PushStandardFrame(r3); |
| } |
| |
| void TurboAssembler::EnterFrame(StackFrame::Type type, |
| bool load_constant_pool_pointer_reg) { |
| // We create a stack frame with: |
| // Return Addr <-- old sp |
| // Old FP <-- new fp |
| // CP |
| // type |
| // CodeObject <-- new sp |
| |
| Load(ip, Operand(StackFrame::TypeToMarker(type))); |
| PushCommonFrame(ip); |
| |
| if (type == StackFrame::INTERNAL) { |
| mov(r0, Operand(CodeObject())); |
| push(r0); |
| } |
| } |
| |
| int TurboAssembler::LeaveFrame(StackFrame::Type type, int stack_adjustment) { |
| // Drop the execution stack down to the frame pointer and restore |
| // the caller frame pointer, return address and constant pool pointer. |
| LoadP(r14, MemOperand(fp, StandardFrameConstants::kCallerPCOffset)); |
| if (is_int20(StandardFrameConstants::kCallerSPOffset + stack_adjustment)) { |
| lay(r1, MemOperand(fp, StandardFrameConstants::kCallerSPOffset + |
| stack_adjustment)); |
| } else { |
| AddP(r1, fp, |
| Operand(StandardFrameConstants::kCallerSPOffset + stack_adjustment)); |
| } |
| LoadP(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| LoadRR(sp, r1); |
| int frame_ends = pc_offset(); |
| return frame_ends; |
| } |
| |
| // ExitFrame layout (probably wrongish.. needs updating) |
| // |
| // SP -> previousSP |
| // LK reserved |
| // code |
| // sp_on_exit (for debug?) |
| // oldSP->prev SP |
| // LK |
| // <parameters on stack> |
| |
| // Prior to calling EnterExitFrame, we've got a bunch of parameters |
| // on the stack that we need to wrap a real frame around.. so first |
| // we reserve a slot for LK and push the previous SP which is captured |
| // in the fp register (r11) |
| // Then - we buy a new frame |
| |
| // r14 |
| // oldFP <- newFP |
| // SP |
| // Code |
| // Floats |
| // gaps |
| // Args |
| // ABIRes <- newSP |
| void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space, |
| StackFrame::Type frame_type) { |
| DCHECK(frame_type == StackFrame::EXIT || |
| frame_type == StackFrame::BUILTIN_EXIT); |
| // Set up the frame structure on the stack. |
| DCHECK_EQ(2 * kPointerSize, ExitFrameConstants::kCallerSPDisplacement); |
| DCHECK_EQ(1 * kPointerSize, ExitFrameConstants::kCallerPCOffset); |
| DCHECK_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset); |
| DCHECK_GT(stack_space, 0); |
| |
| // This is an opportunity to build a frame to wrap |
| // all of the pushes that have happened inside of V8 |
| // since we were called from C code |
| CleanseP(r14); |
| Load(r1, Operand(StackFrame::TypeToMarker(frame_type))); |
| PushCommonFrame(r1); |
| // Reserve room for saved entry sp and code object. |
| lay(sp, MemOperand(fp, -ExitFrameConstants::kFixedFrameSizeFromFp)); |
| |
| if (emit_debug_code()) { |
| StoreP(MemOperand(fp, ExitFrameConstants::kSPOffset), Operand::Zero(), r1); |
| } |
| mov(r1, Operand(CodeObject())); |
| StoreP(r1, MemOperand(fp, ExitFrameConstants::kCodeOffset)); |
| |
| // Save the frame pointer and the context in top. |
| mov(r1, Operand(ExternalReference(IsolateAddressId::kCEntryFPAddress, |
| isolate()))); |
| StoreP(fp, MemOperand(r1)); |
| mov(r1, |
| Operand(ExternalReference(IsolateAddressId::kContextAddress, isolate()))); |
| StoreP(cp, MemOperand(r1)); |
| |
| // Optionally save all volatile double registers. |
| if (save_doubles) { |
| MultiPushDoubles(kCallerSavedDoubles); |
| // Note that d0 will be accessible at |
| // fp - ExitFrameConstants::kFrameSize - |
| // kNumCallerSavedDoubles * kDoubleSize, |
| // since the sp slot and code slot were pushed after the fp. |
| } |
| |
| lay(sp, MemOperand(sp, -stack_space * kPointerSize)); |
| |
| // Allocate and align the frame preparing for calling the runtime |
| // function. |
| const int frame_alignment = TurboAssembler::ActivationFrameAlignment(); |
| if (frame_alignment > 0) { |
| DCHECK_EQ(frame_alignment, 8); |
| ClearRightImm(sp, sp, Operand(3)); // equivalent to &= -8 |
| } |
| |
| lay(sp, MemOperand(sp, -kNumRequiredStackFrameSlots * kPointerSize)); |
| StoreP(MemOperand(sp), Operand::Zero(), r0); |
| // Set the exit frame sp value to point just before the return address |
| // location. |
| lay(r1, MemOperand(sp, kStackFrameSPSlot * kPointerSize)); |
| StoreP(r1, MemOperand(fp, ExitFrameConstants::kSPOffset)); |
| } |
| |
| int TurboAssembler::ActivationFrameAlignment() { |
| #if !defined(USE_SIMULATOR) |
| // Running on the real platform. Use the alignment as mandated by the local |
| // environment. |
| // Note: This will break if we ever start generating snapshots on one S390 |
| // platform for another S390 platform with a different alignment. |
| return base::OS::ActivationFrameAlignment(); |
| #else // Simulated |
| // If we are using the simulator then we should always align to the expected |
| // alignment. As the simulator is used to generate snapshots we do not know |
| // if the target platform will need alignment, so this is controlled from a |
| // flag. |
| return FLAG_sim_stack_alignment; |
| #endif |
| } |
| |
| void MacroAssembler::LeaveExitFrame(bool save_doubles, Register argument_count, |
| bool argument_count_is_length) { |
| // Optionally restore all double registers. |
| if (save_doubles) { |
| // Calculate the stack location of the saved doubles and restore them. |
| const int kNumRegs = kNumCallerSavedDoubles; |
| lay(r5, MemOperand(fp, -(ExitFrameConstants::kFixedFrameSizeFromFp + |
| kNumRegs * kDoubleSize))); |
| MultiPopDoubles(kCallerSavedDoubles, r5); |
| } |
| |
| // Clear top frame. |
| mov(ip, Operand(ExternalReference(IsolateAddressId::kCEntryFPAddress, |
| isolate()))); |
| StoreP(MemOperand(ip), Operand(0, kRelocInfo_NONEPTR), r0); |
| |
| // Restore current context from top and clear it in debug mode. |
| mov(ip, |
| Operand(ExternalReference(IsolateAddressId::kContextAddress, isolate()))); |
| LoadP(cp, MemOperand(ip)); |
| |
| #ifdef DEBUG |
| mov(r1, Operand(Context::kInvalidContext)); |
| mov(ip, |
| Operand(ExternalReference(IsolateAddressId::kContextAddress, isolate()))); |
| StoreP(r1, MemOperand(ip)); |
| #endif |
| |
| // Tear down the exit frame, pop the arguments, and return. |
| LeaveFrame(StackFrame::EXIT); |
| |
| if (argument_count.is_valid()) { |
| if (!argument_count_is_length) { |
| ShiftLeftP(argument_count, argument_count, Operand(kPointerSizeLog2)); |
| } |
| la(sp, MemOperand(sp, argument_count)); |
| } |
| } |
| |
| void TurboAssembler::MovFromFloatResult(const DoubleRegister dst) { |
| Move(dst, d0); |
| } |
| |
| void TurboAssembler::MovFromFloatParameter(const DoubleRegister dst) { |
| Move(dst, d0); |
| } |
| |
| void TurboAssembler::PrepareForTailCall(const ParameterCount& callee_args_count, |
| Register caller_args_count_reg, |
| Register scratch0, Register scratch1) { |
| #if DEBUG |
| if (callee_args_count.is_reg()) { |
| DCHECK(!AreAliased(callee_args_count.reg(), caller_args_count_reg, scratch0, |
| scratch1)); |
| } else { |
| DCHECK(!AreAliased(caller_args_count_reg, scratch0, scratch1)); |
| } |
| #endif |
| |
| // Calculate the end of destination area where we will put the arguments |
| // after we drop current frame. We AddP kPointerSize to count the receiver |
| // argument which is not included into formal parameters count. |
| Register dst_reg = scratch0; |
| ShiftLeftP(dst_reg, caller_args_count_reg, Operand(kPointerSizeLog2)); |
| AddP(dst_reg, fp, dst_reg); |
| AddP(dst_reg, dst_reg, |
| Operand(StandardFrameConstants::kCallerSPOffset + kPointerSize)); |
| |
| Register src_reg = caller_args_count_reg; |
| // Calculate the end of source area. +kPointerSize is for the receiver. |
| if (callee_args_count.is_reg()) { |
| ShiftLeftP(src_reg, callee_args_count.reg(), Operand(kPointerSizeLog2)); |
| AddP(src_reg, sp, src_reg); |
| AddP(src_reg, src_reg, Operand(kPointerSize)); |
| } else { |
| mov(src_reg, Operand((callee_args_count.immediate() + 1) * kPointerSize)); |
| AddP(src_reg, src_reg, sp); |
| } |
| |
| if (FLAG_debug_code) { |
| CmpLogicalP(src_reg, dst_reg); |
| Check(lt, AbortReason::kStackAccessBelowStackPointer); |
| } |
| |
| // Restore caller's frame pointer and return address now as they will be |
| // overwritten by the copying loop. |
| RestoreFrameStateForTailCall(); |
| |
| // Now copy callee arguments to the caller frame going backwards to avoid |
| // callee arguments corruption (source and destination areas could overlap). |
| |
| // Both src_reg and dst_reg are pointing to the word after the one to copy, |
| // so they must be pre-decremented in the loop. |
| Register tmp_reg = scratch1; |
| Label loop; |
| if (callee_args_count.is_reg()) { |
| AddP(tmp_reg, callee_args_count.reg(), Operand(1)); // +1 for receiver |
| } else { |
| mov(tmp_reg, Operand(callee_args_count.immediate() + 1)); |
| } |
| LoadRR(r1, tmp_reg); |
| bind(&loop); |
| LoadP(tmp_reg, MemOperand(src_reg, -kPointerSize)); |
| StoreP(tmp_reg, MemOperand(dst_reg, -kPointerSize)); |
| lay(src_reg, MemOperand(src_reg, -kPointerSize)); |
| lay(dst_reg, MemOperand(dst_reg, -kPointerSize)); |
| BranchOnCount(r1, &loop); |
| |
| // Leave current frame. |
| LoadRR(sp, dst_reg); |
| } |
| |
| void MacroAssembler::InvokePrologue(const ParameterCount& expected, |
| const ParameterCount& actual, Label* done, |
| bool* definitely_mismatches, |
| InvokeFlag flag) { |
| bool definitely_matches = false; |
| *definitely_mismatches = false; |
| Label regular_invoke; |
| |
| // Check whether the expected and actual arguments count match. If not, |
| // setup registers according to contract with ArgumentsAdaptorTrampoline: |
| // r2: actual arguments count |
| // r3: function (passed through to callee) |
| // r4: expected arguments count |
| |
| // The code below is made a lot easier because the calling code already sets |
| // up actual and expected registers according to the contract if values are |
| // passed in registers. |
| |
| // ARM has some sanity checks as per below, considering add them for S390 |
| // DCHECK(actual.is_immediate() || actual.reg() == r2); |
| // DCHECK(expected.is_immediate() || expected.reg() == r4); |
| |
| if (expected.is_immediate()) { |
| DCHECK(actual.is_immediate()); |
| mov(r2, Operand(actual.immediate())); |
| if (expected.immediate() == actual.immediate()) { |
| definitely_matches = true; |
| } else { |
| const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; |
| if (expected.immediate() == sentinel) { |
| // Don't worry about adapting arguments for builtins that |
| // don't want that done. Skip adaption code by making it look |
| // like we have a match between expected and actual number of |
| // arguments. |
| definitely_matches = true; |
| } else { |
| *definitely_mismatches = true; |
| mov(r4, Operand(expected.immediate())); |
| } |
| } |
| } else { |
| if (actual.is_immediate()) { |
| mov(r2, Operand(actual.immediate())); |
| CmpPH(expected.reg(), Operand(actual.immediate())); |
| beq(®ular_invoke); |
| } else { |
| CmpP(expected.reg(), actual.reg()); |
| beq(®ular_invoke); |
| } |
| } |
| |
| if (!definitely_matches) { |
| Handle<Code> adaptor = BUILTIN_CODE(isolate(), ArgumentsAdaptorTrampoline); |
| if (flag == CALL_FUNCTION) { |
| Call(adaptor); |
| if (!*definitely_mismatches) { |
| b(done); |
| } |
| } else { |
| Jump(adaptor, RelocInfo::CODE_TARGET); |
| } |
| bind(®ular_invoke); |
| } |
| } |
| |
| void MacroAssembler::CheckDebugHook(Register fun, Register new_target, |
| const ParameterCount& expected, |
| const ParameterCount& actual) { |
| Label skip_hook; |
| ExternalReference debug_hook_avtive = |
| ExternalReference::debug_hook_on_function_call_address(isolate()); |
| mov(r6, Operand(debug_hook_avtive)); |
| LoadB(r6, MemOperand(r6)); |
| CmpP(r6, Operand::Zero()); |
| beq(&skip_hook); |
| { |
| FrameScope frame(this, |
| has_frame() ? StackFrame::NONE : StackFrame::INTERNAL); |
| if (expected.is_reg()) { |
| SmiTag(expected.reg()); |
| Push(expected.reg()); |
| } |
| if (actual.is_reg()) { |
| SmiTag(actual.reg()); |
| Push(actual.reg()); |
| } |
| if (new_target.is_valid()) { |
| Push(new_target); |
| } |
| Push(fun, fun); |
| CallRuntime(Runtime::kDebugOnFunctionCall); |
| Pop(fun); |
| if (new_target.is_valid()) { |
| Pop(new_target); |
| } |
| if (actual.is_reg()) { |
| Pop(actual.reg()); |
| SmiUntag(actual.reg()); |
| } |
| if (expected.is_reg()) { |
| Pop(expected.reg()); |
| SmiUntag(expected.reg()); |
| } |
| } |
| bind(&skip_hook); |
| } |
| |
| void MacroAssembler::InvokeFunctionCode(Register function, Register new_target, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| InvokeFlag flag) { |
| // You can't call a function without a valid frame. |
| DCHECK(flag == JUMP_FUNCTION || has_frame()); |
| |
| DCHECK(function == r3); |
| DCHECK_IMPLIES(new_target.is_valid(), new_target == r5); |
| |
| // On function call, call into the debugger if necessary. |
| CheckDebugHook(function, new_target, expected, actual); |
| |
| // Clear the new.target register if not given. |
| if (!new_target.is_valid()) { |
| LoadRoot(r5, Heap::kUndefinedValueRootIndex); |
| } |
| |
| Label done; |
| bool definitely_mismatches = false; |
| InvokePrologue(expected, actual, &done, &definitely_mismatches, flag); |
| if (!definitely_mismatches) { |
| // We call indirectly through the code field in the function to |
| // allow recompilation to take effect without changing any of the |
| // call sites. |
| Register code = ip; |
| LoadP(code, FieldMemOperand(function, JSFunction::kCodeOffset)); |
| AddP(code, code, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| if (flag == CALL_FUNCTION) { |
| CallJSEntry(code); |
| } else { |
| DCHECK(flag == JUMP_FUNCTION); |
| JumpToJSEntry(code); |
| } |
| |
| // Continue here if InvokePrologue does handle the invocation due to |
| // mismatched parameter counts. |
| bind(&done); |
| } |
| } |
| |
| void MacroAssembler::InvokeFunction(Register fun, Register new_target, |
| const ParameterCount& actual, |
| InvokeFlag flag) { |
| // You can't call a function without a valid frame. |
| DCHECK(flag == JUMP_FUNCTION || has_frame()); |
| |
| // Contract with called JS functions requires that function is passed in r3. |
| DCHECK(fun == r3); |
| |
| Register expected_reg = r4; |
| Register temp_reg = r6; |
| LoadP(temp_reg, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset)); |
| LoadP(cp, FieldMemOperand(r3, JSFunction::kContextOffset)); |
| LoadW(expected_reg, |
| FieldMemOperand(temp_reg, |
| SharedFunctionInfo::kFormalParameterCountOffset)); |
| |
| ParameterCount expected(expected_reg); |
| InvokeFunctionCode(fun, new_target, expected, actual, flag); |
| } |
| |
| void MacroAssembler::InvokeFunction(Register function, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| InvokeFlag flag) { |
| // You can't call a function without a valid frame. |
| DCHECK(flag == JUMP_FUNCTION || has_frame()); |
| |
| // Contract with called JS functions requires that function is passed in r3. |
| DCHECK(function == r3); |
| |
| // Get the function and setup the context. |
| LoadP(cp, FieldMemOperand(r3, JSFunction::kContextOffset)); |
| |
| InvokeFunctionCode(r3, no_reg, expected, actual, flag); |
| } |
| |
| void MacroAssembler::InvokeFunction(Handle<JSFunction> function, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| InvokeFlag flag) { |
| Move(r3, function); |
| InvokeFunction(r3, expected, actual, flag); |
| } |
| |
| void MacroAssembler::MaybeDropFrames() { |
| // Check whether we need to drop frames to restart a function on the stack. |
| ExternalReference restart_fp = |
| ExternalReference::debug_restart_fp_address(isolate()); |
| mov(r3, Operand(restart_fp)); |
| LoadP(r3, MemOperand(r3)); |
| CmpP(r3, Operand::Zero()); |
| Jump(BUILTIN_CODE(isolate(), FrameDropperTrampoline), RelocInfo::CODE_TARGET, |
| ne); |
| } |
| |
| void MacroAssembler::PushStackHandler() { |
| // Adjust this code if not the case. |
| STATIC_ASSERT(StackHandlerConstants::kSize == 2 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); |
| |
| // Link the current handler as the next handler. |
| mov(r7, |
| Operand(ExternalReference(IsolateAddressId::kHandlerAddress, isolate()))); |
| |
| // Buy the full stack frame for 5 slots. |
| lay(sp, MemOperand(sp, -StackHandlerConstants::kSize)); |
| |
| // Store padding. |
| mov(r0, Operand(Smi::kZero)); |
| StoreP(r0, MemOperand(sp)); // Padding. |
| |
| // Copy the old handler into the next handler slot. |
| mvc(MemOperand(sp, StackHandlerConstants::kNextOffset), MemOperand(r7), |
| kPointerSize); |
| // Set this new handler as the current one. |
| StoreP(sp, MemOperand(r7)); |
| } |
| |
| void MacroAssembler::PopStackHandler() { |
| STATIC_ASSERT(StackHandlerConstants::kSize == 2 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| |
| // Pop the Next Handler into r3 and store it into Handler Address reference. |
| Pop(r3); |
| mov(ip, |
| Operand(ExternalReference(IsolateAddressId::kHandlerAddress, isolate()))); |
| StoreP(r3, MemOperand(ip)); |
| |
| Drop(1); // Drop padding. |
| } |
| |
| void MacroAssembler::CompareObjectType(Register object, Register map, |
| Register type_reg, InstanceType type) { |
| const Register temp = type_reg == no_reg ? r0 : type_reg; |
| |
| LoadP(map, FieldMemOperand(object, HeapObject::kMapOffset)); |
| CompareInstanceType(map, temp, type); |
| } |
| |
| void MacroAssembler::CompareInstanceType(Register map, Register type_reg, |
| InstanceType type) { |
| STATIC_ASSERT(Map::kInstanceTypeOffset < 4096); |
| STATIC_ASSERT(LAST_TYPE <= 0xFFFF); |
| LoadHalfWordP(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); |
| CmpP(type_reg, Operand(type)); |
| } |
| |
| void MacroAssembler::CompareRoot(Register obj, Heap::RootListIndex index) { |
| CmpP(obj, MemOperand(kRootRegister, index << kPointerSizeLog2)); |
| } |
| |
| void MacroAssembler::CallStub(CodeStub* stub, Condition cond) { |
| DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs. |
| Call(stub->GetCode(), RelocInfo::CODE_TARGET, cond); |
| } |
| |
| void TurboAssembler::CallStubDelayed(CodeStub* stub) { |
| DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs. |
| call(stub); |
| } |
| |
| void MacroAssembler::TailCallStub(CodeStub* stub, Condition cond) { |
| Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond); |
| } |
| |
| bool TurboAssembler::AllowThisStubCall(CodeStub* stub) { |
| return has_frame_ || !stub->SometimesSetsUpAFrame(); |
| } |
| |
| void MacroAssembler::TryDoubleToInt32Exact(Register result, |
| DoubleRegister double_input, |
| Register scratch, |
| DoubleRegister double_scratch) { |
| Label done; |
| DCHECK(double_input != double_scratch); |
| |
| ConvertDoubleToInt64(result, double_input); |
| |
| TestIfInt32(result); |
| bne(&done); |
| |
| // convert back and compare |
| cdfbr(double_scratch, result); |
| cdbr(double_scratch, double_input); |
| bind(&done); |
| } |
| |
| void TurboAssembler::TruncateDoubleToIDelayed(Zone* zone, Register result, |
| DoubleRegister double_input) { |
| Label done; |
| |
| TryInlineTruncateDoubleToI(result, double_input, &done); |
| |
| // If we fell through then inline version didn't succeed - call stub instead. |
| push(r14); |
| // Put input on stack. |
| lay(sp, MemOperand(sp, -kDoubleSize)); |
| StoreDouble(double_input, MemOperand(sp)); |
| |
| CallStubDelayed(new (zone) DoubleToIStub(nullptr, result)); |
| |
| la(sp, MemOperand(sp, kDoubleSize)); |
| pop(r14); |
| |
| bind(&done); |
| } |
| |
| void TurboAssembler::TryInlineTruncateDoubleToI(Register result, |
| DoubleRegister double_input, |
| Label* done) { |
| ConvertDoubleToInt64(result, double_input); |
| |
| // Test for overflow |
| TestIfInt32(result); |
| beq(done); |
| } |
| |
| void TurboAssembler::CallRuntimeDelayed(Zone* zone, Runtime::FunctionId fid, |
| SaveFPRegsMode save_doubles) { |
| const Runtime::Function* f = Runtime::FunctionForId(fid); |
| mov(r2, Operand(f->nargs)); |
| mov(r3, Operand(ExternalReference(f, isolate()))); |
| CallStubDelayed(new (zone) CEntryStub(nullptr, |
| #if V8_TARGET_ARCH_S390X |
| f->result_size, |
| #else |
| 1, |
| #endif |
| save_doubles)); |
| } |
| |
| void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments, |
| SaveFPRegsMode save_doubles) { |
| // All parameters are on the stack. r2 has the return value after call. |
| |
| // If the expected number of arguments of the runtime function is |
| // constant, we check that the actual number of arguments match the |
| // expectation. |
| CHECK(f->nargs < 0 || f->nargs == num_arguments); |
| |
| // TODO(1236192): Most runtime routines don't need the number of |
| // arguments passed in because it is constant. At some point we |
| // should remove this need and make the runtime routine entry code |
| // smarter. |
| mov(r2, Operand(num_arguments)); |
| mov(r3, Operand(ExternalReference(f, isolate()))); |
| CEntryStub stub(isolate(), |
| #if V8_TARGET_ARCH_S390X |
| f->result_size, |
| #else |
| 1, |
| #endif |
| save_doubles); |
| CallStub(&stub); |
| } |
| |
| void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) { |
| const Runtime::Function* function = Runtime::FunctionForId(fid); |
| DCHECK_EQ(1, function->result_size); |
| if (function->nargs >= 0) { |
| mov(r2, Operand(function->nargs)); |
| } |
| JumpToExternalReference(ExternalReference(fid, isolate())); |
| } |
| |
| void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin, |
| bool builtin_exit_frame) { |
| mov(r3, Operand(builtin)); |
| CEntryStub stub(isolate(), 1, kDontSaveFPRegs, kArgvOnStack, |
| builtin_exit_frame); |
| Jump(stub.GetCode(), RelocInfo::CODE_TARGET); |
| } |
| |
| void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, |
| Register scratch1, Register scratch2) { |
| DCHECK(value > 0 && is_int8(value)); |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| mov(scratch1, Operand(ExternalReference(counter))); |
| // @TODO(john.yan): can be optimized by asi() |
| LoadW(scratch2, MemOperand(scratch1)); |
| AddP(scratch2, Operand(value)); |
| StoreW(scratch2, MemOperand(scratch1)); |
| } |
| } |
| |
| void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, |
| Register scratch1, Register scratch2) { |
| DCHECK(value > 0 && is_int8(value)); |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| mov(scratch1, Operand(ExternalReference(counter))); |
| // @TODO(john.yan): can be optimized by asi() |
| LoadW(scratch2, MemOperand(scratch1)); |
| AddP(scratch2, Operand(-value)); |
| StoreW(scratch2, MemOperand(scratch1)); |
| } |
| } |
| |
| void TurboAssembler::Assert(Condition cond, AbortReason reason, CRegister cr) { |
| if (emit_debug_code()) Check(cond, reason, cr); |
| } |
| |
| void TurboAssembler::Check(Condition cond, AbortReason reason, CRegister cr) { |
| Label L; |
| b(cond, &L); |
| Abort(reason); |
| // will not return here |
| bind(&L); |
| } |
| |
| void TurboAssembler::Abort(AbortReason reason) { |
| Label abort_start; |
| bind(&abort_start); |
| #ifdef DEBUG |
| const char* msg = GetAbortReason(reason); |
| if (msg != nullptr) { |
| RecordComment("Abort message: "); |
| RecordComment(msg); |
| } |
| |
| if (FLAG_trap_on_abort) { |
| stop(msg); |
| return; |
| } |
| #endif |
| |
| LoadSmiLiteral(r3, Smi::FromInt(static_cast<int>(reason))); |
| |
| // Disable stub call restrictions to always allow calls to abort. |
| if (!has_frame_) { |
| // We don't actually want to generate a pile of code for this, so just |
| // claim there is a stack frame, without generating one. |
| FrameScope scope(this, StackFrame::NONE); |
| Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); |
| } else { |
| Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); |
| } |
| // will not return here |
| } |
| |
| void MacroAssembler::LoadNativeContextSlot(int index, Register dst) { |
| LoadP(dst, NativeContextMemOperand()); |
| LoadP(dst, ContextMemOperand(dst, index)); |
| } |
| |
| void MacroAssembler::UntagAndJumpIfSmi(Register dst, Register src, |
| Label* smi_case) { |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagSize == 1); |
| // this won't work if src == dst |
| DCHECK(src.code() != dst.code()); |
| SmiUntag(dst, src); |
| TestIfSmi(src); |
| beq(smi_case); |
| } |
| |
| void MacroAssembler::JumpIfEitherSmi(Register reg1, Register reg2, |
| Label* on_either_smi) { |
| STATIC_ASSERT(kSmiTag == 0); |
| JumpIfSmi(reg1, on_either_smi); |
| JumpIfSmi(reg2, on_either_smi); |
| } |
| |
| void MacroAssembler::AssertNotSmi(Register object) { |
| if (emit_debug_code()) { |
| STATIC_ASSERT(kSmiTag == 0); |
| TestIfSmi(object); |
| Check(ne, AbortReason::kOperandIsASmi, cr0); |
| } |
| } |
| |
| void MacroAssembler::AssertSmi(Register object) { |
| if (emit_debug_code()) { |
| STATIC_ASSERT(kSmiTag == 0); |
| TestIfSmi(object); |
| Check(eq, AbortReason::kOperandIsNotASmi, cr0); |
| } |
| } |
| |
| void MacroAssembler::AssertFixedArray(Register object) { |
| if (emit_debug_code()) { |
| STATIC_ASSERT(kSmiTag == 0); |
| TestIfSmi(object); |
| Check(ne, AbortReason::kOperandIsASmiAndNotAFixedArray, cr0); |
| push(object); |
| CompareObjectType(object, object, object, FIXED_ARRAY_TYPE); |
| pop(object); |
| Check(eq, AbortReason::kOperandIsNotAFixedArray); |
| } |
| } |
| |
| void MacroAssembler::AssertFunction(Register object) { |
| if (emit_debug_code()) { |
| STATIC_ASSERT(kSmiTag == 0); |
| TestIfSmi(object); |
| Check(ne, AbortReason::kOperandIsASmiAndNotAFunction, cr0); |
| push(object); |
| CompareObjectType(object, object, object, JS_FUNCTION_TYPE); |
| pop(object); |
| Check(eq, AbortReason::kOperandIsNotAFunction); |
| } |
| } |
| |
| void MacroAssembler::AssertBoundFunction(Register object) { |
| if (emit_debug_code()) { |
| STATIC_ASSERT(kSmiTag == 0); |
| TestIfSmi(object); |
| Check(ne, AbortReason::kOperandIsASmiAndNotABoundFunction, cr0); |
| push(object); |
| CompareObjectType(object, object, object, JS_BOUND_FUNCTION_TYPE); |
| pop(object); |
| Check(eq, AbortReason::kOperandIsNotABoundFunction); |
| } |
| } |
| |
| void MacroAssembler::AssertGeneratorObject(Register object) { |
| if (!emit_debug_code()) return; |
| TestIfSmi(object); |
| Check(ne, AbortReason::kOperandIsASmiAndNotAGeneratorObject, cr0); |
| |
| // Load map |
| Register map = object; |
| push(object); |
| LoadP(map, FieldMemOperand(object, HeapObject::kMapOffset)); |
| |
| // Check if JSGeneratorObject |
| Label do_check; |
| Register instance_type = object; |
| CompareInstanceType(map, instance_type, JS_GENERATOR_OBJECT_TYPE); |
| beq(&do_check); |
| |
| // Check if JSAsyncGeneratorObject (See MacroAssembler::CompareInstanceType) |
| CmpP(instance_type, Operand(JS_ASYNC_GENERATOR_OBJECT_TYPE)); |
| |
| bind(&do_check); |
| // Restore generator object to register and perform assertion |
| pop(object); |
| Check(eq, AbortReason::kOperandIsNotAGeneratorObject); |
| } |
| |
| void MacroAssembler::AssertUndefinedOrAllocationSite(Register object, |
| Register scratch) { |
| if (emit_debug_code()) { |
| Label done_checking; |
| AssertNotSmi(object); |
| CompareRoot(object, Heap::kUndefinedValueRootIndex); |
| beq(&done_checking, Label::kNear); |
| LoadP(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); |
| CompareRoot(scratch, Heap::kAllocationSiteMapRootIndex); |
| Assert(eq, AbortReason::kExpectedUndefinedOrCell); |
| bind(&done_checking); |
| } |
| } |
| |
| static const int kRegisterPassedArguments = 5; |
| |
| int TurboAssembler::CalculateStackPassedWords(int num_reg_arguments, |
| int num_double_arguments) { |
| int stack_passed_words = 0; |
| if (num_double_arguments > DoubleRegister::kNumRegisters) { |
| stack_passed_words += |
| 2 * (num_double_arguments - DoubleRegister::kNumRegisters); |
| } |
| // Up to five simple arguments are passed in registers r2..r6 |
| if (num_reg_arguments > kRegisterPassedArguments) { |
| stack_passed_words += num_reg_arguments - kRegisterPassedArguments; |
| } |
| return stack_passed_words; |
| } |
| |
| void TurboAssembler::PrepareCallCFunction(int num_reg_arguments, |
| int num_double_arguments, |
| Register scratch) { |
| int frame_alignment = ActivationFrameAlignment(); |
| int stack_passed_arguments = |
| CalculateStackPassedWords(num_reg_arguments, num_double_arguments); |
| int stack_space = kNumRequiredStackFrameSlots; |
| if (frame_alignment > kPointerSize) { |
| // Make stack end at alignment and make room for stack arguments |
| // -- preserving original value of sp. |
| LoadRR(scratch, sp); |
| lay(sp, MemOperand(sp, -(stack_passed_arguments + 1) * kPointerSize)); |
| DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); |
| ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment))); |
| StoreP(scratch, MemOperand(sp, (stack_passed_arguments)*kPointerSize)); |
| } else { |
| stack_space += stack_passed_arguments; |
| } |
| lay(sp, MemOperand(sp, -(stack_space)*kPointerSize)); |
| } |
| |
| void TurboAssembler::PrepareCallCFunction(int num_reg_arguments, |
| Register scratch) { |
| PrepareCallCFunction(num_reg_arguments, 0, scratch); |
| } |
| |
| void TurboAssembler::MovToFloatParameter(DoubleRegister src) { Move(d0, src); } |
| |
| void TurboAssembler::MovToFloatResult(DoubleRegister src) { Move(d0, src); } |
| |
| void TurboAssembler::MovToFloatParameters(DoubleRegister src1, |
| DoubleRegister src2) { |
| if (src2 == d0) { |
| DCHECK(src1 != d2); |
| Move(d2, src2); |
| Move(d0, src1); |
| } else { |
| Move(d0, src1); |
| Move(d2, src2); |
| } |
| } |
| |
| void TurboAssembler::CallCFunction(ExternalReference function, |
| int num_reg_arguments, |
| int num_double_arguments) { |
| mov(ip, Operand(function)); |
| CallCFunctionHelper(ip, num_reg_arguments, num_double_arguments); |
| } |
| |
| void TurboAssembler::CallCFunction(Register function, int num_reg_arguments, |
| int num_double_arguments) { |
| CallCFunctionHelper(function, num_reg_arguments, num_double_arguments); |
| } |
| |
| void TurboAssembler::CallCFunction(ExternalReference function, |
| int num_arguments) { |
| CallCFunction(function, num_arguments, 0); |
| } |
| |
| void TurboAssembler::CallCFunction(Register function, int num_arguments) { |
| CallCFunction(function, num_arguments, 0); |
| } |
| |
| void TurboAssembler::CallCFunctionHelper(Register function, |
| int num_reg_arguments, |
| int num_double_arguments) { |
| DCHECK_LE(num_reg_arguments + num_double_arguments, kMaxCParameters); |
| DCHECK(has_frame()); |
| |
| // Just call directly. The function called cannot cause a GC, or |
| // allow preemption, so the return address in the link register |
| // stays correct. |
| Register dest = function; |
| if (ABI_CALL_VIA_IP) { |
| Move(ip, function); |
| dest = ip; |
| } |
| |
| Call(dest); |
| |
| int stack_passed_arguments = |
| CalculateStackPassedWords(num_reg_arguments, num_double_arguments); |
| int stack_space = kNumRequiredStackFrameSlots + stack_passed_arguments; |
| if (ActivationFrameAlignment() > kPointerSize) { |
| // Load the original stack pointer (pre-alignment) from the stack |
| LoadP(sp, MemOperand(sp, stack_space * kPointerSize)); |
| } else { |
| la(sp, MemOperand(sp, stack_space * kPointerSize)); |
| } |
| } |
| |
| void TurboAssembler::CheckPageFlag( |
| Register object, |
| Register scratch, // scratch may be same register as object |
| int mask, Condition cc, Label* condition_met) { |
| DCHECK(cc == ne || cc == eq); |
| ClearRightImm(scratch, object, Operand(kPageSizeBits)); |
| |
| if (base::bits::IsPowerOfTwo(mask)) { |
| // If it's a power of two, we can use Test-Under-Mask Memory-Imm form |
| // which allows testing of a single byte in memory. |
| int32_t byte_offset = 4; |
| uint32_t shifted_mask = mask; |
| // Determine the byte offset to be tested |
| if (mask <= 0x80) { |
| byte_offset = kPointerSize - 1; |
| } else if (mask < 0x8000) { |
| byte_offset = kPointerSize - 2; |
| shifted_mask = mask >> 8; |
| } else if (mask < 0x800000) { |
| byte_offset = kPointerSize - 3; |
| shifted_mask = mask >> 16; |
| } else { |
| byte_offset = kPointerSize - 4; |
| shifted_mask = mask >> 24; |
| } |
| #if V8_TARGET_LITTLE_ENDIAN |
| // Reverse the byte_offset if emulating on little endian platform |
| byte_offset = kPointerSize - byte_offset - 1; |
| #endif |
| tm(MemOperand(scratch, MemoryChunk::kFlagsOffset + byte_offset), |
| Operand(shifted_mask)); |
| } else { |
| LoadP(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset)); |
| AndP(r0, scratch, Operand(mask)); |
| } |
| // Should be okay to remove rc |
| |
| if (cc == ne) { |
| bne(condition_met); |
| } |
| if (cc == eq) { |
| beq(condition_met); |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // |
| // New MacroAssembler Interfaces added for S390 |
| // |
| //////////////////////////////////////////////////////////////////////////////// |
| // Primarily used for loading constants |
| // This should really move to be in macro-assembler as it |
| // is really a pseudo instruction |
| // Some usages of this intend for a FIXED_SEQUENCE to be used |
| // @TODO - break this dependency so we can optimize mov() in general |
| // and only use the generic version when we require a fixed sequence |
| void MacroAssembler::LoadRepresentation(Register dst, const MemOperand& mem, |
| Representation r, Register scratch) { |
| DCHECK(!r.IsDouble()); |
| if (r.IsInteger8()) { |
| LoadB(dst, mem); |
| } else if (r.IsUInteger8()) { |
| LoadlB(dst, mem); |
| } else if (r.IsInteger16()) { |
| LoadHalfWordP(dst, mem, scratch); |
| } else if (r.IsUInteger16()) { |
| LoadHalfWordP(dst, mem, scratch); |
| #if V8_TARGET_ARCH_S390X |
| } else if (r.IsInteger32()) { |
| LoadW(dst, mem, scratch); |
| #endif |
| } else { |
| LoadP(dst, mem, scratch); |
| } |
| } |
| |
| void MacroAssembler::StoreRepresentation(Register src, const MemOperand& mem, |
| Representation r, Register scratch) { |
| DCHECK(!r.IsDouble()); |
| if (r.IsInteger8() || r.IsUInteger8()) { |
| StoreByte(src, mem, scratch); |
| } else if (r.IsInteger16() || r.IsUInteger16()) { |
| StoreHalfWord(src, mem, scratch); |
| #if V8_TARGET_ARCH_S390X |
| } else if (r.IsInteger32()) { |
| StoreW(src, mem, scratch); |
| #endif |
| } else { |
| if (r.IsHeapObject()) { |
| AssertNotSmi(src); |
| } else if (r.IsSmi()) { |
| AssertSmi(src); |
| } |
| StoreP(src, mem, scratch); |
| } |
| } |
| |
| Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2, Register reg3, |
| Register reg4, Register reg5, |
| Register reg6) { |
| RegList regs = 0; |
| if (reg1.is_valid()) regs |= reg1.bit(); |
| if (reg2.is_valid()) regs |= reg2.bit(); |
| if (reg3.is_valid()) regs |= reg3.bit(); |
| if (reg4.is_valid()) regs |= reg4.bit(); |
| if (reg5.is_valid()) regs |= reg5.bit(); |
| if (reg6.is_valid()) regs |= reg6.bit(); |
| |
| const RegisterConfiguration* config = RegisterConfiguration::Default(); |
| for (int i = 0; i < config->num_allocatable_general_registers(); ++i) { |
| int code = config->GetAllocatableGeneralCode(i); |
| Register candidate = Register::from_code(code); |
| if (regs & candidate.bit()) continue; |
| return candidate; |
| } |
| UNREACHABLE(); |
| } |
| |
| void TurboAssembler::mov(Register dst, const Operand& src) { |
| #if V8_TARGET_ARCH_S390X |
| int64_t value; |
| #else |
| int value; |
| #endif |
| if (src.is_heap_object_request()) { |
| RequestHeapObject(src.heap_object_request()); |
| value = 0; |
| } else { |
| value = src.immediate(); |
| } |
| |
| if (src.rmode() != kRelocInfo_NONEPTR) { |
| // some form of relocation needed |
| RecordRelocInfo(src.rmode(), value); |
| } |
| |
| #if V8_TARGET_ARCH_S390X |
| int32_t hi_32 = static_cast<int64_t>(value) >> 32; |
| int32_t lo_32 = static_cast<int32_t>(value); |
| |
| iihf(dst, Operand(hi_32)); |
| iilf(dst, Operand(lo_32)); |
| #else |
| iilf(dst, Operand(value)); |
| #endif |
| } |
| |
| void TurboAssembler::Mul32(Register dst, const MemOperand& src1) { |
| if (is_uint12(src1.offset())) { |
| ms(dst, src1); |
| } else if (is_int20(src1.offset())) { |
| msy(dst, src1); |
| } else { |
| UNIMPLEMENTED(); |
| } |
| } |
| |
| void TurboAssembler::Mul32(Register dst, Register src1) { msr(dst, src1); } |
| |
| void TurboAssembler::Mul32(Register dst, const Operand& src1) { |
| msfi(dst, src1); |
| } |
| |
| #define Generate_MulHigh32(instr) \ |
| { \ |
| lgfr(dst, src1); \ |
| instr(dst, src2); \ |
| srlg(dst, dst, Operand(32)); \ |
| } |
| |
| void TurboAssembler::MulHigh32(Register dst, Register src1, |
| const MemOperand& src2) { |
| Generate_MulHigh32(msgf); |
| } |
| |
| void TurboAssembler::MulHigh32(Register dst, Register src1, Register src2) { |
| if (dst == src2) { |
| std::swap(src1, src2); |
| } |
| Generate_MulHigh32(msgfr); |
| } |
| |
| void TurboAssembler::MulHigh32(Register dst, Register src1, |
| const Operand& src2) { |
| Generate_MulHigh32(msgfi); |
| } |
| |
| #undef Generate_MulHigh32 |
| |
| #define Generate_MulHighU32(instr) \ |
| { \ |
| lr(r1, src1); \ |
| instr(r0, src2); \ |
| LoadlW(dst, r0); \ |
| } |
| |
| void TurboAssembler::MulHighU32(Register dst, Register src1, |
| const MemOperand& src2) { |
| Generate_MulHighU32(ml); |
| } |
| |
| void TurboAssembler::MulHighU32(Register dst, Register src1, Register src2) { |
| Generate_MulHighU32(mlr); |
| } |
| |
| void TurboAssembler::MulHighU32(Register dst, Register src1, |
| const Operand& src2) { |
| USE(dst); |
| USE(src1); |
| USE(src2); |
| UNREACHABLE(); |
| } |
| |
| #undef Generate_MulHighU32 |
| |
| #define Generate_Mul32WithOverflowIfCCUnequal(instr) \ |
| { \ |
| lgfr(dst, src1); \ |
| instr(dst, src2); \ |
| cgfr(dst, dst); \ |
| } |
| |
| void TurboAssembler::Mul32WithOverflowIfCCUnequal(Register dst, Register src1, |
| const MemOperand& src2) { |
| Register result = dst; |
| if (src2.rx() == dst || src2.rb() == dst) dst = r0; |
| Generate_Mul32WithOverflowIfCCUnequal(msgf); |
| if (result != dst) llgfr(result, dst); |
| } |
| |
| void TurboAssembler::Mul32WithOverflowIfCCUnequal(Register dst, Register src1, |
| Register src2) { |
| if (dst == src2) { |
| std::swap(src1, src2); |
| } |
| Generate_Mul32WithOverflowIfCCUnequal(msgfr); |
| } |
| |
| void TurboAssembler::Mul32WithOverflowIfCCUnequal(Register dst, Register src1, |
| const Operand& src2) { |
| Generate_Mul32WithOverflowIfCCUnequal(msgfi); |
| } |
| |
| #undef Generate_Mul32WithOverflowIfCCUnequal |
| |
| void TurboAssembler::Mul64(Register dst, const MemOperand& src1) { |
| if (is_int20(src1.offset())) { |
| msg(dst, src1); |
| } else { |
| UNIMPLEMENTED(); |
| } |
| } |
| |
| void TurboAssembler::Mul64(Register dst, Register src1) { msgr(dst, src1); } |
| |
| void TurboAssembler::Mul64(Register dst, const Operand& src1) { |
| msgfi(dst, src1); |
| } |
| |
| void TurboAssembler::Mul(Register dst, Register src1, Register src2) { |
| if (CpuFeatures::IsSupported(MISC_INSTR_EXT2)) { |
| MulPWithCondition(dst, src1, src2); |
| } else { |
| if (dst == src2) { |
| MulP(dst, src1); |
| } else if (dst == src1) { |
| MulP(dst, src2); |
| } else { |
| Move(dst, src1); |
| MulP(dst, src2); |
| } |
| } |
| } |
| |
| void TurboAssembler::DivP(Register dividend, Register divider) { |
| // have to make sure the src and dst are reg pairs |
| DCHECK_EQ(dividend.code() % 2, 0); |
| #if V8_TARGET_ARCH_S390X |
| dsgr(dividend, divider); |
| #else |
| dr(dividend, divider); |
| #endif |
| } |
| |
| #define Generate_Div32(instr) \ |
| { \ |
| lgfr(r1, src1); \ |
| instr(r0, src2); \ |
| LoadlW(dst, r1); \ |
| } |
| |
| void TurboAssembler::Div32(Register dst, Register src1, |
| const MemOperand& src2) { |
| Generate_Div32(dsgf); |
| } |
| |
| void TurboAssembler::Div32(Register dst, Register src1, Register src2) { |
| Generate_Div32(dsgfr); |
| } |
| |
| #undef Generate_Div32 |
| |
| #define Generate_DivU32(instr) \ |
| { \ |
| lr(r0, src1); \ |
| srdl(r0, Operand(32)); \ |
| instr(r0, src2); \ |
| LoadlW(dst, r1); \ |
| } |
| |
| void TurboAssembler::DivU32(Register dst, Register src1, |
| const MemOperand& src2) { |
| Generate_DivU32(dl); |
| } |
| |
| void TurboAssembler::DivU32(Register dst, Register src1, Register src2) { |
| Generate_DivU32(dlr); |
| } |
| |
| #undef Generate_DivU32 |
| |
| #define Generate_Div64(instr) \ |
| { \ |
| lgr(r1, src1); \ |
| instr(r0, src2); \ |
| lgr(dst, r1); \ |
| } |
| |
| void TurboAssembler::Div64(Register dst, Register src1, |
| const MemOperand& src2) { |
| Generate_Div64(dsg); |
| } |
| |
| void TurboAssembler::Div64(Register dst, Register src1, Register src2) { |
| Generate_Div64(dsgr); |
| } |
| |
| #undef Generate_Div64 |
| |
| #define Generate_DivU64(instr) \ |
| { \ |
| lgr(r1, src1); \ |
| lghi(r0, Operand::Zero()); \ |
| instr(r0, src2); \ |
| lgr(dst, r1); \ |
| } |
| |
| void TurboAssembler::DivU64(Register dst, Register src1, |
| const MemOperand& src2) { |
| Generate_DivU64(dlg); |
| } |
| |
| void TurboAssembler::DivU64(Register dst, Register src1, Register src2) { |
| Generate_DivU64(dlgr); |
| } |
| |
| #undef Generate_DivU64 |
| |
| #define Generate_Mod32(instr) \ |
| { \ |
| lgfr(r1, src1); \ |
| instr(r0, src2); \ |
| LoadlW(dst, r0); \ |
| } |
| |
| void TurboAssembler::Mod32(Register dst, Register src1, |
| const MemOperand& src2) { |
| Generate_Mod32(dsgf); |
| } |
| |
| void TurboAssembler::Mod32(Register dst, Register src1, Register src2) { |
| Generate_Mod32(dsgfr); |
| } |
| |
| #undef Generate_Mod32 |
| |
| #define Generate_ModU32(instr) \ |
| { \ |
| lr(r0, src1); \ |
| srdl(r0, Operand(32)); \ |
| instr(r0, src2); \ |
| LoadlW(dst, r0); \ |
| } |
| |
| void TurboAssembler::ModU32(Register dst, Register src1, |
| const MemOperand& src2) { |
| Generate_ModU32(dl); |
| } |
| |
| void TurboAssembler::ModU32(Register dst, Register src1, Register src2) { |
| Generate_ModU32(dlr); |
| } |
| |
| #undef Generate_ModU32 |
| |
| #define Generate_Mod64(instr) \ |
| { \ |
| lgr(r1, src1); \ |
| instr(r0, src2); \ |
| lgr(dst, r0); \ |
| } |
| |
| void TurboAssembler::Mod64(Register dst, Register src1, |
| const MemOperand& src2) { |
| Generate_Mod64(dsg); |
| } |
| |
| void TurboAssembler::Mod64(Register dst, Register src1, Register src2) { |
| Generate_Mod64(dsgr); |
| } |
| |
| #undef Generate_Mod64 |
| |
| #define Generate_ModU64(instr) \ |
| { \ |
| lgr(r1, src1); \ |
| lghi(r0, Operand::Zero()); \ |
| instr(r0, src2); \ |
| lgr(dst, r0); \ |
| } |
| |
| void TurboAssembler::ModU64(Register dst, Register src1, |
| const MemOperand& src2) { |
| Generate_ModU64(dlg); |
| } |
| |
| void TurboAssembler::ModU64(Register dst, Register src1, Register src2) { |
| Generate_ModU64(dlgr); |
| } |
| |
| #undef Generate_ModU64 |
| |
| void TurboAssembler::MulP(Register dst, const Operand& opnd) { |
| #if V8_TARGET_ARCH_S390X |
| msgfi(dst, opnd); |
| #else |
| msfi(dst, opnd); |
| #endif |
| } |
| |
| void TurboAssembler::MulP(Register dst, Register src) { |
| #if V8_TARGET_ARCH_S390X |
| msgr(dst, src); |
| #else |
| msr(dst, src); |
| #endif |
| } |
| |
| void TurboAssembler::MulPWithCondition(Register dst, Register src1, |
| Register src2) { |
| CHECK(CpuFeatures::IsSupported(MISC_INSTR_EXT2)); |
| #if V8_TARGET_ARCH_S390X |
| msgrkc(dst, src1, src2); |
| #else |
| msrkc(dst, src1, src2); |
| #endif |
| } |
| |
| void TurboAssembler::MulP(Register dst, const MemOperand& opnd) { |
| #if V8_TARGET_ARCH_S390X |
| if (is_uint16(opnd.offset())) { |
| ms(dst, opnd); |
| } else if (is_int20(opnd.offset())) { |
| msy(dst, opnd); |
| } else { |
| UNIMPLEMENTED(); |
| } |
| #else |
| if (is_int20(opnd.offset())) { |
| msg(dst, opnd); |
| } else { |
| UNIMPLEMENTED(); |
| } |
| #endif |
| } |
| |
| void TurboAssembler::Sqrt(DoubleRegister result, DoubleRegister input) { |
| sqdbr(result, input); |
| } |
| void TurboAssembler::Sqrt(DoubleRegister result, const MemOperand& input) { |
| if (is_uint12(input.offset())) { |
| sqdb(result, input); |
| } else { |
| ldy(result, input); |
| sqdbr(result, result); |
| } |
| } |
| //---------------------------------------------------------------------------- |
| // Add Instructions |
| //---------------------------------------------------------------------------- |
| |
| // Add 32-bit (Register dst = Register dst + Immediate opnd) |
| void TurboAssembler::Add32(Register dst, const Operand& opnd) { |
| if (is_int16(opnd.immediate())) |
| ahi(dst, opnd); |
| else |
| afi(dst, opnd); |
| } |
| |
| // Add 32-bit (Register dst = Register dst + Immediate opnd) |
| void TurboAssembler::Add32_RI(Register dst, const Operand& opnd) { |
| // Just a wrapper for above |
| Add32(dst, opnd); |
| } |
| |
| // Add Pointer Size (Register dst = Register dst + Immediate opnd) |
| void TurboAssembler::AddP(Register dst, const Operand& opnd) { |
| #if V8_TARGET_ARCH_S390X |
| if (is_int16(opnd.immediate())) |
| aghi(dst, opnd); |
| else |
| agfi(dst, opnd); |
| #else |
| Add32(dst, opnd); |
| #endif |
| } |
| |
| // Add 32-bit (Register dst = Register src + Immediate opnd) |
| void TurboAssembler::Add32(Register dst, Register src, const Operand& opnd) { |
| if (dst != src) { |
| if (CpuFeatures::IsSupported(DISTINCT_OPS) && is_int16(opnd.immediate())) { |
| ahik(dst, src, opnd); |
| return; |
| } |
| lr(dst, src); |
| } |
| Add32(dst, opnd); |
| } |
| |
| // Add 32-bit (Register dst = Register src + Immediate opnd) |
| void TurboAssembler::Add32_RRI(Register dst, Register src, |
| const Operand& opnd) { |
| // Just a wrapper for above |
| Add32(dst, src, opnd); |
| } |
| |
| // Add Pointer Size (Register dst = Register src + Immediate opnd) |
| void TurboAssembler::AddP(Register dst, Register src, const Operand& opnd) { |
| if (dst != src) { |
| if (CpuFeatures::IsSupported(DISTINCT_OPS) && is_int16(opnd.immediate())) { |
| AddPImm_RRI(dst, src, opnd); |
| return; |
| } |
| LoadRR(dst, src); |
| } |
| AddP(dst, opnd); |
| } |
| |
| // Add 32-bit (Register dst = Register dst + Register src) |
| void TurboAssembler::Add32(Register dst, Register src) { ar(dst, src); } |
| |
| // Add Pointer Size (Register dst = Register dst + Register src) |
| void TurboAssembler::AddP(Register dst, Register src) { AddRR(dst, src); } |
| |
| // Add Pointer Size with src extension |
| // (Register dst(ptr) = Register dst (ptr) + Register src (32 | 32->64)) |
| // src is treated as a 32-bit signed integer, which is sign extended to |
| // 64-bit if necessary. |
| void TurboAssembler::AddP_ExtendSrc(Register dst, Register src) { |
| #if V8_TARGET_ARCH_S390X |
| agfr(dst, src); |
| #else |
| ar(dst, src); |
| #endif |
| } |
| |
| // Add 32-bit (Register dst = Register src1 + Register src2) |
| void TurboAssembler::Add32(Register dst, Register src1, Register src2) { |
| if (dst != src1 && dst != src2) { |
| // We prefer to generate AR/AGR, over the non clobbering ARK/AGRK |
| // as AR is a smaller instruction |
| if (CpuFeatures::IsSupported(DISTINCT_OPS)) { |
| ark(dst, src1, src2); |
| return; |
| } else { |
| lr(dst, src1); |
| } |
| } else if (dst == src2) { |
| src2 = src1; |
| } |
| ar(dst, src2); |
| } |
| |
| // Add Pointer Size (Register dst = Register src1 + Register src2) |
| void TurboAssembler::AddP(Register dst, Register src1, Register src2) { |
| if (dst != src1 && dst != src2) { |
| // We prefer to generate AR/AGR, over the non clobbering ARK/AGRK |
| // as AR is a smaller instruction |
| if (CpuFeatures::IsSupported(DISTINCT_OPS)) { |
| AddP_RRR(dst, src1, src2); |
| return; |
| } else { |
| LoadRR(dst, src1); |
| } |
| } else if (dst == src2) { |
| src2 = src1; |
| } |
| AddRR(dst, src2); |
| } |
| |
| // Add Pointer Size with src extension |
| // (Register dst (ptr) = Register dst (ptr) + Register src1 (ptr) + |
| // Register src2 (32 | 32->64)) |
| // src is treated as a 32-bit signed integer, which is sign extended to |
| // 64-bit if necessary. |
| void TurboAssembler::AddP_ExtendSrc(Register dst, Register src1, |
| Register src2) { |
| #if V8_TARGET_ARCH_S390X |
| if (dst == src2) { |
| // The source we need to sign extend is the same as result. |
| lgfr(dst, src2); |
| agr(dst, src1); |
| } else { |
| if (dst != src1) LoadRR(dst, src1); |
| agfr(dst, src2); |
| } |
| #else |
| AddP(dst, src1, src2); |
| #endif |
| } |
| |
| // Add 32-bit (Register-Memory) |
| void TurboAssembler::Add32(Register dst, const MemOperand& opnd) { |
| DCHECK(is_int20(opnd.offset())); |
| if (is_uint12(opnd.offset())) |
| a(dst, opnd); |
| else |
| ay(dst, opnd); |
| } |
| |
| // Add Pointer Size (Register-Memory) |
| void TurboAssembler::AddP(Register dst, const MemOperand& opnd) { |
| #if V8_TARGET_ARCH_S390X |
| DCHECK(is_int20(opnd.offset())); |
| ag(dst, opnd); |
| #else |
| Add32(dst, opnd); |
| #endif |
| } |
| |
| // Add Pointer Size with src extension |
| // (Register dst (ptr) = Register dst (ptr) + Mem opnd (32 | 32->64)) |
| // src is treated as a 32-bit signed integer, which is sign extended to |
| // 64-bit if necessary. |
| void TurboAssembler::AddP_ExtendSrc(Register dst, const MemOperand& opnd) { |
| #if V8_TARGET_ARCH_S390X |
| DCHECK(is_int20(opnd.offset())); |
| agf(dst, opnd); |
| #else |
| Add32(dst, opnd); |
| #endif |
| } |
| |
| // Add 32-bit (Memory - Immediate) |
| void TurboAssembler::Add32(const MemOperand& opnd, const Operand& imm) { |
| DCHECK(is_int8(imm.immediate())); |
| DCHECK(is_int20(opnd.offset())); |
| DCHECK(CpuFeatures::IsSupported(GENERAL_INSTR_EXT)); |
| asi(opnd, imm); |
| } |
| |
| // Add Pointer-sized (Memory - Immediate) |
| void TurboAssembler::AddP(const MemOperand& opnd, const Operand& imm) { |
| DCHECK(is_int8(imm.immediate())); |
| DCHECK(is_int20(opnd.offset())); |
| DCHECK(CpuFeatures::IsSupported(GENERAL_INSTR_EXT)); |
| #if V8_TARGET_ARCH_S390X |
| agsi(opnd, imm); |
| #else |
| asi(opnd, imm); |
| #endif |
| } |
| |
| //---------------------------------------------------------------------------- |
| // Add Logical Instructions |
| //---------------------------------------------------------------------------- |
| |
| // Add Logical With Carry 32-bit (Register dst = Register src1 + Register src2) |
| void TurboAssembler::AddLogicalWithCarry32(Register dst, Register src1, |
| Register src2) { |
| if (dst != src2 && dst != src1) { |
| lr(dst, src1); |
| alcr(dst, src2); |
| } else if (dst != src2) { |
| // dst == src1 |
| DCHECK(dst == src1); |
| alcr(dst, src2); |
| } else { |
| // dst == src2 |
| DCHECK(dst == src2); |
| alcr(dst, src1); |
| } |
| } |
| |
| // Add Logical 32-bit (Register dst = Register src1 + Register src2) |
| void TurboAssembler::AddLogical32(Register dst, Register src1, Register src2) { |
| if (dst != src2 && dst != src1) { |
| lr(dst, src1); |
| alr(dst, src2); |
| } else if (dst != src2) { |
| // dst == src1 |
| DCHECK(dst == src1); |
| alr(dst, src2); |
| } else { |
| // dst == src2 |
| DCHECK(dst == src2); |
| alr(dst, src1); |
| } |
| } |
| |
| // Add Logical 32-bit (Register dst = Register dst + Immediate opnd) |
| void TurboAssembler::AddLogical(Register dst, const Operand& imm) { |
| alfi(dst, imm); |
| } |
| |
| // Add Logical Pointer Size (Register dst = Register dst + Immediate opnd) |
| void TurboAssembler::AddLogicalP(Register dst, const Operand& imm) { |
| #ifdef V8_TARGET_ARCH_S390X |
| algfi(dst, imm); |
| #else |
| AddLogical(dst, imm); |
| #endif |
| } |
| |
| // Add Logical 32-bit (Register-Memory) |
| void TurboAssembler::AddLogical(Register dst, const MemOperand& opnd) { |
| DCHECK(is_int20(opnd.offset())); |
| if (is_uint12(opnd.offset())) |
| al_z(dst, opnd); |
| else |
| aly(dst, opnd); |
| } |
| |
| // Add Logical Pointer Size (Register-Memory) |
| void TurboAssembler::AddLogicalP(Register dst, const MemOperand& opnd) { |
| #if V8_TARGET_ARCH_S390X |
| DCHECK(is_int20(opnd.offset())); |
| alg(dst, opnd); |
| #else |
| AddLogical(dst, opnd); |
| #endif |
| } |
| |
| //---------------------------------------------------------------------------- |
| // Subtract Instructions |
| //---------------------------------------------------------------------------- |
| |
| // Subtract Logical With Carry 32-bit (Register dst = Register src1 - Register |
| // src2) |
| void TurboAssembler::SubLogicalWithBorrow32(Register dst, Register src1, |
| Register src2) { |
| if (dst != src2 && dst != src1) { |
| lr(dst, src1); |
| slbr(dst, src2); |
| } else if (dst != src2) { |
| // dst == src1 |
| DCHECK(dst == src1); |
| slbr(dst, src2); |
| } else { |
| // dst == src2 |
| DCHECK(dst == src2); |
| lr(r0, dst); |
| SubLogicalWithBorrow32(dst, src1, r0); |
| } |
| } |
| |
| // Subtract Logical 32-bit (Register dst = Register src1 - Register src2) |
| void TurboAssembler::SubLogical32(Register dst, Register src1, Register src2) { |
| if (dst != src2 && dst != src1) { |
| lr(dst, src1); |
| slr(dst, src2); |
| } else if (dst != src2) { |
| // dst == src1 |
| DCHECK(dst == src1); |
| slr(dst, src2); |
| } else { |
| // dst == src2 |
| DCHECK(dst == src2); |
| lr(r0, dst); |
| SubLogical32(dst, src1, r0); |
| } |
| } |
| |
| // Subtract 32-bit (Register dst = Register dst - Immediate opnd) |
| void TurboAssembler::Sub32(Register dst, const Operand& imm) { |
| Add32(dst, Operand(-(imm.immediate()))); |
| } |
| |
| // Subtract Pointer Size (Register dst = Register dst - Immediate opnd) |
| void TurboAssembler::SubP(Register dst, const Operand& imm) { |
| AddP(dst, Operand(-(imm.immediate()))); |
| } |
| |
| // Subtract 32-bit (Register dst = Register src - Immediate opnd) |
| void TurboAssembler::Sub32(Register dst, Register src, const Operand& imm) { |
| Add32(dst, src, Operand(-(imm.immediate()))); |
| } |
| |
| // Subtract Pointer Sized (Register dst = Register src - Immediate opnd) |
| void TurboAssembler::SubP(Register dst, Register src, const Operand& imm) { |
| AddP(dst, src, Operand(-(imm.immediate()))); |
| } |
| |
| // Subtract 32-bit (Register dst = Register dst - Register src) |
| void TurboAssembler::Sub32(Register dst, Register src) { sr(dst, src); } |
| |
| // Subtract Pointer Size (Register dst = Register dst - Register src) |
| void TurboAssembler::SubP(Register dst, Register src) { SubRR(dst, src); } |
| |
| // Subtract Pointer Size with src extension |
| // (Register dst(ptr) = Register dst (ptr) - Register src (32 | 32->64)) |
| // src is treated as a 32-bit signed integer, which is sign extended to |
| // 64-bit if necessary. |
| void TurboAssembler::SubP_ExtendSrc(Register dst, Register src) { |
| #if V8_TARGET_ARCH_S390X |
| sgfr(dst, src); |
| #else |
| sr(dst, src); |
| #endif |
| } |
| |
| // Subtract 32-bit (Register = Register - Register) |
| void TurboAssembler::Sub32(Register dst, Register src1, Register src2) { |
| // Use non-clobbering version if possible |
| if (CpuFeatures::IsSupported(DISTINCT_OPS)) { |
| srk(dst, src1, src2); |
| return; |
| } |
| if (dst != src1 && dst != src2) lr(dst, src1); |
| // In scenario where we have dst = src - dst, we need to swap and negate |
| if (dst != src1 && dst == src2) { |
| Label done; |
| lcr(dst, dst); // dst = -dst |
| b(overflow, &done); |
| ar(dst, src1); // dst = dst + src |
| bind(&done); |
| } else { |
| sr(dst, src2); |
| } |
| } |
| |
| // Subtract Pointer Sized (Register = Register - Register) |
| void TurboAssembler::SubP(Register dst, Register src1, Register src2) { |
| // Use non-clobbering version if possible |
| if (CpuFeatures::IsSupported(DISTINCT_OPS)) { |
| SubP_RRR(dst, src1, src2); |
| return; |
| } |
| if (dst != src1 && dst != src2) LoadRR(dst, src1); |
| // In scenario where we have dst = src - dst, we need to swap and negate |
| if (dst != src1 && dst == src2) { |
| Label done; |
| LoadComplementRR(dst, dst); // dst = -dst |
| b(overflow, &done); |
| AddP(dst, src1); // dst = dst + src |
| bind(&done); |
| } else { |
| SubP(dst, src2); |
| } |
| } |
| |
| // Subtract Pointer Size with src extension |
| // (Register dst(ptr) = Register dst (ptr) - Register src (32 | 32->64)) |
| // src is treated as a 32-bit signed integer, which is sign extended to |
| // 64-bit if necessary. |
| void TurboAssembler::SubP_ExtendSrc(Register dst, Register src1, |
| Register src2) { |
| #if V8_TARGET_ARCH_S390X |
| if (dst != src1 && dst != src2) LoadRR(dst, src1); |
| |
| // In scenario where we have dst = src - dst, we need to swap and negate |
| if (dst != src1 && dst == src2) { |
| lgfr(dst, dst); // Sign extend this operand first. |
| LoadComplementRR(dst, dst); // dst = -dst |
| AddP(dst, src1); // dst = -dst + src |
| } else { |
| sgfr(dst, src2); |
| } |
| #else |
| SubP(dst, src1, src2); |
| #endif |
| } |
| |
| // Subtract 32-bit (Register-Memory) |
| void TurboAssembler::Sub32(Register dst, const MemOperand& opnd) { |
| DCHECK(is_int20(opnd.offset())); |
| if (is_uint12(opnd.offset())) |
| s(dst, opnd); |
| else |
| sy(dst, opnd); |
| } |
| |
| // Subtract Pointer Sized (Register - Memory) |
| void TurboAssembler::SubP(Register dst, const MemOperand& opnd) { |
| #if V8_TARGET_ARCH_S390X |
| sg(dst, opnd); |
| #else |
| Sub32(dst, opnd); |
| #endif |
| } |
| |
| void TurboAssembler::MovIntToFloat(DoubleRegister dst, Register src) { |
| sllg(r0, src, Operand(32)); |
| ldgr(dst, r0); |
| } |
| |
| void TurboAssembler::MovFloatToInt(Register dst, DoubleRegister src) { |
| lgdr(dst, src); |
| srlg(dst, dst, Operand(32)); |
| } |
| |
| void TurboAssembler::SubP_ExtendSrc(Register dst, const MemOperand& opnd) { |
| #if V8_TARGET_ARCH_S390X |
| DCHECK(is_int20(opnd.offset())); |
| sgf(dst, opnd); |
| #else |
| Sub32(dst, opnd); |
| #endif |
| } |
| |
| //---------------------------------------------------------------------------- |
| // Subtract Logical Instructions |
| //---------------------------------------------------------------------------- |
| |
| // Subtract Logical 32-bit (Register - Memory) |
| void TurboAssembler::SubLogical(Register dst, const MemOperand& opnd) { |
| DCHECK(is_int20(opnd.offset())); |
| if (is_uint12(opnd.offset())) |
| sl(dst, opnd); |
| else |
| sly(dst, opnd); |
| } |
| |
| // Subtract Logical Pointer Sized (Register - Memory) |
| void TurboAssembler::SubLogicalP(Register dst, const MemOperand& opnd) { |
| DCHECK(is_int20(opnd.offset())); |
| #if V8_TARGET_ARCH_S390X |
| slgf(dst, opnd); |
| #else |
| SubLogical(dst, opnd); |
| #endif |
| } |
| |
| // Subtract Logical Pointer Size with src extension |
| // (Register dst (ptr) = Register dst (ptr) - Mem opnd (32 | 32->64)) |
| // src is treated as a 32-bit signed integer, which is sign extended to |
| // 64-bit if necessary. |
| void TurboAssembler::SubLogicalP_ExtendSrc(Register dst, |
| const MemOperand& opnd) { |
| #if V8_TARGET_ARCH_S390X |
| DCHECK(is_int20(opnd.offset())); |
| slgf(dst, opnd); |
| #else |
| SubLogical(dst, opnd); |
| #endif |
| } |
| |
| //---------------------------------------------------------------------------- |
| // Bitwise Operations |
| //---------------------------------------------------------------------------- |
| |
| // AND 32-bit - dst = dst & src |
| void TurboAssembler::And(Register dst, Register src) { nr(dst, src); } |
| |
| // AND Pointer Size - dst = dst & src |
| void TurboAssembler::AndP(Register dst, Register src) { AndRR(dst, src); } |
| |
| // Non-clobbering AND 32-bit - dst = src1 & src1 |
| void TurboAssembler::And(Register dst, Register src1, Register src2) { |
| if (dst != src1 && dst != src2) { |
| // We prefer to generate XR/XGR, over the non clobbering XRK/XRK |
| // as XR is a smaller instruction |
| if (CpuFeatures::IsSupported(DISTINCT_OPS)) { |
| nrk(dst, src1, src2); |
| return; |
| } else { |
| lr(dst, src1); |
| } |
| } else if (dst == src2) { |
| src2 = src1; |
| } |
| And(dst, src2); |
| } |
| |
| // Non-clobbering AND pointer size - dst = src1 & src1 |
| void TurboAssembler::AndP(Register dst, Register src1, Register src2) { |
| if (dst != src1 && dst != src2) { |
| // We prefer to generate XR/XGR, over the non clobbering XRK/XRK |
| // as XR is a smaller instruction |
| if (CpuFeatures::IsSupported(DISTINCT_OPS)) { |
| AndP_RRR(dst, src1, src2); |
| return; |
| } else { |
| LoadRR(dst, src1); |
| } |
| } else if (dst == src2) { |
| src2 = src1; |
| } |
| AndP(dst, src2); |
| } |
| |
| // AND 32-bit (Reg - Mem) |
| void TurboAssembler::And(Register dst, const MemOperand& opnd) { |
| DCHECK(is_int20(opnd.offset())); |
| if (is_uint12(opnd.offset())) |
| n(dst, opnd); |
| else |
| ny(dst, opnd); |
| } |
| |
| // AND Pointer Size (Reg - Mem) |
| void TurboAssembler::AndP(Register dst, const MemOperand& opnd) { |
| DCHECK(is_int20(opnd.offset())); |
| #if V8_TARGET_ARCH_S390X |
| ng(dst, opnd); |
| #else |
| And(dst, opnd); |
| #endif |
| } |
| |
| // AND 32-bit - dst = dst & imm |
| void TurboAssembler::And(Register dst, const Operand& opnd) { nilf(dst, opnd); } |
| |
| // AND Pointer Size - dst = dst & imm |
| void TurboAssembler::AndP(Register dst, const Operand& opnd) { |
| #if V8_TARGET_ARCH_S390X |
| intptr_t value = opnd.immediate(); |
| if (value >> 32 != -1) { |
| // this may not work b/c condition code won't be set correctly |
| nihf(dst, Operand(value >> 32)); |
| } |
| nilf(dst, Operand(value & 0xFFFFFFFF)); |
| #else |
| And(dst, opnd); |
| #endif |
| } |
| |
| // AND 32-bit - dst = src & imm |
| void TurboAssembler::And(Register dst, Register src, const Operand& opnd) { |
| if (dst != src) lr(dst, src); |
| nilf(dst, opnd); |
| } |
| |
| // AND Pointer Size - dst = src & imm |
| void TurboAssembler::AndP(Register dst, Register src, const Operand& opnd) { |
| // Try to exploit RISBG first |
| intptr_t value = opnd.immediate(); |
| if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) { |
| intptr_t shifted_value = value; |
| int trailing_zeros = 0; |
| |
| // We start checking how many trailing zeros are left at the end. |
| while ((0 != shifted_value) && (0 == (shifted_value & 1))) { |
| trailing_zeros++; |
| shifted_value >>= 1; |
| } |
| |
| // If temp (value with right-most set of zeros shifted out) is 1 less |
| // than power of 2, we have consecutive bits of 1. |
| // Special case: If shift_value is zero, we cannot use RISBG, as it requires |
| // selection of at least 1 bit. |
| if ((0 != shifted_value) && base::bits::IsPowerOfTwo(shifted_value + 1)) { |
| int startBit = |
| base::bits::CountLeadingZeros64(shifted_value) - trailing_zeros; |
| int endBit = 63 - trailing_zeros; |
| // Start: startBit, End: endBit, Shift = 0, true = zero unselected bits. |
| risbg(dst, src, Operand(startBit), Operand(endBit), Operand::Zero(), |
| true); |
| return; |
| } else if (-1 == shifted_value) { |
| // A Special case in which all top bits up to MSB are 1's. In this case, |
| // we can set startBit to be 0. |
| int endBit = 63 - trailing_zeros; |
| risbg(dst, src, Operand::Zero(), Operand(endBit), Operand::Zero(), true); |
| return; |
| } |
| } |
| |
| // If we are &'ing zero, we can just whack the dst register and skip copy |
| if (dst != src && (0 != value)) LoadRR(dst, src); |
| AndP(dst, opnd); |
| } |
| |
| // OR 32-bit - dst = dst & src |
| void TurboAssembler::Or(Register dst, Register src) { or_z(dst, src); } |
| |
| // OR Pointer Size - dst = dst & src |
| void TurboAssembler::OrP(Register dst, Register src) { OrRR(dst, src); } |
| |
| // Non-clobbering OR 32-bit - dst = src1 & src1 |
| void TurboAssembler::Or(Register dst, Register src1 |