blob: fcc62f21a986e2b077939d972108943d6416a804 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_S390_MACRO_ASSEMBLER_S390_H_
#define V8_S390_MACRO_ASSEMBLER_S390_H_
#include "src/assembler.h"
#include "src/bailout-reason.h"
#include "src/globals.h"
#include "src/s390/assembler-s390.h"
namespace v8 {
namespace internal {
// Give alias names to registers for calling conventions.
const Register kReturnRegister0 = r2;
const Register kReturnRegister1 = r3;
const Register kReturnRegister2 = r4;
const Register kJSFunctionRegister = r3;
const Register kContextRegister = r13;
const Register kAllocateSizeRegister = r3;
const Register kInterpreterAccumulatorRegister = r2;
const Register kInterpreterBytecodeOffsetRegister = r6;
const Register kInterpreterBytecodeArrayRegister = r7;
const Register kInterpreterDispatchTableRegister = r8;
const Register kJavaScriptCallArgCountRegister = r2;
const Register kJavaScriptCallNewTargetRegister = r5;
const Register kRuntimeCallFunctionRegister = r3;
const Register kRuntimeCallArgCountRegister = r2;
// ----------------------------------------------------------------------------
// Static helper functions
// Generate a MemOperand for loading a field from an object.
inline MemOperand FieldMemOperand(Register object, int offset) {
return MemOperand(object, offset - kHeapObjectTag);
}
// Generate a MemOperand for loading a field from an object.
inline MemOperand FieldMemOperand(Register object, Register index, int offset) {
return MemOperand(object, index, offset - kHeapObjectTag);
}
// Generate a MemOperand for loading a field from Root register
inline MemOperand RootMemOperand(Heap::RootListIndex index) {
return MemOperand(kRootRegister, index << kPointerSizeLog2);
}
// Flags used for AllocateHeapNumber
enum TaggingMode {
// Tag the result.
TAG_RESULT,
// Don't tag
DONT_TAG_RESULT
};
enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg,
Register reg3 = no_reg,
Register reg4 = no_reg,
Register reg5 = no_reg,
Register reg6 = no_reg);
#ifdef DEBUG
bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
Register reg4 = no_reg, Register reg5 = no_reg,
Register reg6 = no_reg, Register reg7 = no_reg,
Register reg8 = no_reg, Register reg9 = no_reg,
Register reg10 = no_reg);
bool AreAliased(DoubleRegister reg1, DoubleRegister reg2,
DoubleRegister reg3 = no_dreg, DoubleRegister reg4 = no_dreg,
DoubleRegister reg5 = no_dreg, DoubleRegister reg6 = no_dreg,
DoubleRegister reg7 = no_dreg, DoubleRegister reg8 = no_dreg,
DoubleRegister reg9 = no_dreg, DoubleRegister reg10 = no_dreg);
#endif
// These exist to provide portability between 32 and 64bit
#if V8_TARGET_ARCH_S390X
#define Div divd
// The length of the arithmetic operation is the length
// of the register.
// Length:
// H = halfword
// W = word
// arithmetics and bitwise
#define AddMI agsi
#define AddRR agr
#define SubRR sgr
#define AndRR ngr
#define OrRR ogr
#define XorRR xgr
#define LoadComplementRR lcgr
#define LoadNegativeRR lngr
// Distinct Operands
#define AddP_RRR agrk
#define AddPImm_RRI aghik
#define AddLogicalP_RRR algrk
#define SubP_RRR sgrk
#define SubLogicalP_RRR slgrk
#define AndP_RRR ngrk
#define OrP_RRR ogrk
#define XorP_RRR xgrk
// Load / Store
#define LoadRR lgr
#define LoadAndTestRR ltgr
#define LoadImmP lghi
// Compare
#define CmpPH cghi
#define CmpLogicalPW clgfi
// Shifts
#define ShiftLeftP sllg
#define ShiftRightP srlg
#define ShiftLeftArithP slag
#define ShiftRightArithP srag
#else
// arithmetics and bitwise
// Reg2Reg
#define AddMI asi
#define AddRR ar
#define SubRR sr
#define AndRR nr
#define OrRR or_z
#define XorRR xr
#define LoadComplementRR lcr
#define LoadNegativeRR lnr
// Distinct Operands
#define AddP_RRR ark
#define AddPImm_RRI ahik
#define AddLogicalP_RRR alrk
#define SubP_RRR srk
#define SubLogicalP_RRR slrk
#define AndP_RRR nrk
#define OrP_RRR ork
#define XorP_RRR xrk
// Load / Store
#define LoadRR lr
#define LoadAndTestRR ltr
#define LoadImmP lhi
// Compare
#define CmpPH chi
#define CmpLogicalPW clfi
// Shifts
#define ShiftLeftP ShiftLeft
#define ShiftRightP ShiftRight
#define ShiftLeftArithP ShiftLeftArith
#define ShiftRightArithP ShiftRightArith
#endif
class TurboAssembler : public Assembler {
public:
TurboAssembler(Isolate* isolate, void* buffer, int buffer_size,
CodeObjectRequired create_code_object);
Isolate* isolate() const { return isolate_; }
Handle<HeapObject> CodeObject() {
DCHECK(!code_object_.is_null());
return code_object_;
}
// Returns the size of a call in instructions.
static int CallSize(Register target);
int CallSize(Address target, RelocInfo::Mode rmode, Condition cond = al);
// Jump, Call, and Ret pseudo instructions implementing inter-working.
void Jump(Register target);
void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al,
CRegister cr = cr7);
void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
// Jump the register contains a smi.
inline void JumpIfSmi(Register value, Label* smi_label) {
TestIfSmi(value);
beq(smi_label /*, cr0*/); // branch if SMI
}
void Call(Register target);
void Call(Address target, RelocInfo::Mode rmode, Condition cond = al);
int CallSize(Handle<Code> code,
RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
Condition cond = al);
void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
Condition cond = al);
void Ret() { b(r14); }
void Ret(Condition cond) { b(cond, r14); }
void CallForDeoptimization(Address target, RelocInfo::Mode rmode) {
Call(target, rmode);
}
// Emit code to discard a non-negative number of pointer-sized elements
// from the stack, clobbering only the sp register.
void Drop(int count);
void Drop(Register count, Register scratch = r0);
void Ret(int drop) {
Drop(drop);
Ret();
}
void Call(Label* target);
// Register move. May do nothing if the registers are identical.
void Move(Register dst, Smi* smi) { LoadSmiLiteral(dst, smi); }
void Move(Register dst, Handle<HeapObject> value);
void Move(Register dst, Register src, Condition cond = al);
void Move(DoubleRegister dst, DoubleRegister src);
void SaveRegisters(RegList registers);
void RestoreRegisters(RegList registers);
void CallRecordWriteStub(Register object, Register address,
RememberedSetAction remembered_set_action,
SaveFPRegsMode fp_mode);
void MultiPush(RegList regs, Register location = sp);
void MultiPop(RegList regs, Register location = sp);
void MultiPushDoubles(RegList dregs, Register location = sp);
void MultiPopDoubles(RegList dregs, Register location = sp);
// Calculate how much stack space (in bytes) are required to store caller
// registers excluding those specified in the arguments.
int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg) const;
// Push caller saved registers on the stack, and return the number of bytes
// stack pointer is adjusted.
int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg);
// Restore caller saved registers from the stack, and return the number of
// bytes stack pointer is adjusted.
int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg);
// Load an object from the root table.
void LoadRoot(Register destination, Heap::RootListIndex index,
Condition cond = al);
//--------------------------------------------------------------------------
// S390 Macro Assemblers for Instructions
//--------------------------------------------------------------------------
// Arithmetic Operations
// Add (Register - Immediate)
void Add32(Register dst, const Operand& imm);
void Add32_RI(Register dst, const Operand& imm);
void AddP(Register dst, const Operand& imm);
void Add32(Register dst, Register src, const Operand& imm);
void Add32_RRI(Register dst, Register src, const Operand& imm);
void AddP(Register dst, Register src, const Operand& imm);
// Add (Register - Register)
void Add32(Register dst, Register src);
void AddP(Register dst, Register src);
void AddP_ExtendSrc(Register dst, Register src);
void Add32(Register dst, Register src1, Register src2);
void AddP(Register dst, Register src1, Register src2);
void AddP_ExtendSrc(Register dst, Register src1, Register src2);
// Add (Register - Mem)
void Add32(Register dst, const MemOperand& opnd);
void AddP(Register dst, const MemOperand& opnd);
void AddP_ExtendSrc(Register dst, const MemOperand& opnd);
// Add (Mem - Immediate)
void Add32(const MemOperand& opnd, const Operand& imm);
void AddP(const MemOperand& opnd, const Operand& imm);
// Add Logical (Register - Register)
void AddLogical32(Register dst, Register src1, Register src2);
// Add Logical With Carry (Register - Register)
void AddLogicalWithCarry32(Register dst, Register src1, Register src2);
// Add Logical (Register - Immediate)
void AddLogical(Register dst, const Operand& imm);
void AddLogicalP(Register dst, const Operand& imm);
// Add Logical (Register - Mem)
void AddLogical(Register dst, const MemOperand& opnd);
void AddLogicalP(Register dst, const MemOperand& opnd);
// Subtract (Register - Immediate)
void Sub32(Register dst, const Operand& imm);
void Sub32_RI(Register dst, const Operand& imm) { Sub32(dst, imm); }
void SubP(Register dst, const Operand& imm);
void Sub32(Register dst, Register src, const Operand& imm);
void Sub32_RRI(Register dst, Register src, const Operand& imm) {
Sub32(dst, src, imm);
}
void SubP(Register dst, Register src, const Operand& imm);
// Subtract (Register - Register)
void Sub32(Register dst, Register src);
void SubP(Register dst, Register src);
void SubP_ExtendSrc(Register dst, Register src);
void Sub32(Register dst, Register src1, Register src2);
void SubP(Register dst, Register src1, Register src2);
void SubP_ExtendSrc(Register dst, Register src1, Register src2);
// Subtract (Register - Mem)
void Sub32(Register dst, const MemOperand& opnd);
void SubP(Register dst, const MemOperand& opnd);
void SubP_ExtendSrc(Register dst, const MemOperand& opnd);
// Subtract Logical (Register - Mem)
void SubLogical(Register dst, const MemOperand& opnd);
void SubLogicalP(Register dst, const MemOperand& opnd);
void SubLogicalP_ExtendSrc(Register dst, const MemOperand& opnd);
// Subtract Logical 32-bit
void SubLogical32(Register dst, Register src1, Register src2);
// Subtract Logical With Borrow 32-bit
void SubLogicalWithBorrow32(Register dst, Register src1, Register src2);
// Multiply
void MulP(Register dst, const Operand& opnd);
void MulP(Register dst, Register src);
void MulP(Register dst, const MemOperand& opnd);
void Mul(Register dst, Register src1, Register src2);
void Mul32(Register dst, const MemOperand& src1);
void Mul32(Register dst, Register src1);
void Mul32(Register dst, const Operand& src1);
void MulHigh32(Register dst, Register src1, const MemOperand& src2);
void MulHigh32(Register dst, Register src1, Register src2);
void MulHigh32(Register dst, Register src1, const Operand& src2);
void MulHighU32(Register dst, Register src1, const MemOperand& src2);
void MulHighU32(Register dst, Register src1, Register src2);
void MulHighU32(Register dst, Register src1, const Operand& src2);
void Mul32WithOverflowIfCCUnequal(Register dst, Register src1,
const MemOperand& src2);
void Mul32WithOverflowIfCCUnequal(Register dst, Register src1, Register src2);
void Mul32WithOverflowIfCCUnequal(Register dst, Register src1,
const Operand& src2);
void Mul64(Register dst, const MemOperand& src1);
void Mul64(Register dst, Register src1);
void Mul64(Register dst, const Operand& src1);
void MulPWithCondition(Register dst, Register src1, Register src2);
// Divide
void DivP(Register dividend, Register divider);
void Div32(Register dst, Register src1, const MemOperand& src2);
void Div32(Register dst, Register src1, Register src2);
void DivU32(Register dst, Register src1, const MemOperand& src2);
void DivU32(Register dst, Register src1, Register src2);
void Div64(Register dst, Register src1, const MemOperand& src2);
void Div64(Register dst, Register src1, Register src2);
void DivU64(Register dst, Register src1, const MemOperand& src2);
void DivU64(Register dst, Register src1, Register src2);
// Mod
void Mod32(Register dst, Register src1, const MemOperand& src2);
void Mod32(Register dst, Register src1, Register src2);
void ModU32(Register dst, Register src1, const MemOperand& src2);
void ModU32(Register dst, Register src1, Register src2);
void Mod64(Register dst, Register src1, const MemOperand& src2);
void Mod64(Register dst, Register src1, Register src2);
void ModU64(Register dst, Register src1, const MemOperand& src2);
void ModU64(Register dst, Register src1, Register src2);
// Square root
void Sqrt(DoubleRegister result, DoubleRegister input);
void Sqrt(DoubleRegister result, const MemOperand& input);
// Compare
void Cmp32(Register src1, Register src2);
void CmpP(Register src1, Register src2);
void Cmp32(Register dst, const Operand& opnd);
void CmpP(Register dst, const Operand& opnd);
void Cmp32(Register dst, const MemOperand& opnd);
void CmpP(Register dst, const MemOperand& opnd);
// Compare Logical
void CmpLogical32(Register src1, Register src2);
void CmpLogicalP(Register src1, Register src2);
void CmpLogical32(Register src1, const Operand& opnd);
void CmpLogicalP(Register src1, const Operand& opnd);
void CmpLogical32(Register dst, const MemOperand& opnd);
void CmpLogicalP(Register dst, const MemOperand& opnd);
// Compare Logical Byte (CLI/CLIY)
void CmpLogicalByte(const MemOperand& mem, const Operand& imm);
// Load 32bit
void Load(Register dst, const MemOperand& opnd);
void Load(Register dst, const Operand& opnd);
void LoadW(Register dst, const MemOperand& opnd, Register scratch = no_reg);
void LoadW(Register dst, Register src);
void LoadlW(Register dst, const MemOperand& opnd, Register scratch = no_reg);
void LoadlW(Register dst, Register src);
void LoadLogicalHalfWordP(Register dst, const MemOperand& opnd);
void LoadLogicalHalfWordP(Register dst, Register src);
void LoadB(Register dst, const MemOperand& opnd);
void LoadB(Register dst, Register src);
void LoadlB(Register dst, const MemOperand& opnd);
void LoadlB(Register dst, Register src);
void LoadLogicalReversedWordP(Register dst, const MemOperand& opnd);
void LoadLogicalReversedHalfWordP(Register dst, const MemOperand& opnd);
// Load And Test
void LoadAndTest32(Register dst, Register src);
void LoadAndTestP_ExtendSrc(Register dst, Register src);
void LoadAndTestP(Register dst, Register src);
void LoadAndTest32(Register dst, const MemOperand& opnd);
void LoadAndTestP(Register dst, const MemOperand& opnd);
// Load Floating Point
void LoadDouble(DoubleRegister dst, const MemOperand& opnd);
void LoadFloat32(DoubleRegister dst, const MemOperand& opnd);
void LoadFloat32ConvertToDouble(DoubleRegister dst, const MemOperand& mem);
void AddFloat32(DoubleRegister dst, const MemOperand& opnd,
DoubleRegister scratch);
void AddFloat64(DoubleRegister dst, const MemOperand& opnd,
DoubleRegister scratch);
void SubFloat32(DoubleRegister dst, const MemOperand& opnd,
DoubleRegister scratch);
void SubFloat64(DoubleRegister dst, const MemOperand& opnd,
DoubleRegister scratch);
void MulFloat32(DoubleRegister dst, const MemOperand& opnd,
DoubleRegister scratch);
void MulFloat64(DoubleRegister dst, const MemOperand& opnd,
DoubleRegister scratch);
void DivFloat32(DoubleRegister dst, const MemOperand& opnd,
DoubleRegister scratch);
void DivFloat64(DoubleRegister dst, const MemOperand& opnd,
DoubleRegister scratch);
void LoadFloat32ToDouble(DoubleRegister dst, const MemOperand& opnd,
DoubleRegister scratch);
// Load On Condition
void LoadOnConditionP(Condition cond, Register dst, Register src);
void LoadPositiveP(Register result, Register input);
void LoadPositive32(Register result, Register input);
// Store Floating Point
void StoreDouble(DoubleRegister dst, const MemOperand& opnd);
void StoreFloat32(DoubleRegister dst, const MemOperand& opnd);
void StoreDoubleAsFloat32(DoubleRegister src, const MemOperand& mem,
DoubleRegister scratch);
void Branch(Condition c, const Operand& opnd);
void BranchOnCount(Register r1, Label* l);
// Shifts
void ShiftLeft(Register dst, Register src, Register val);
void ShiftLeft(Register dst, Register src, const Operand& val);
void ShiftRight(Register dst, Register src, Register val);
void ShiftRight(Register dst, Register src, const Operand& val);
void ShiftLeftArith(Register dst, Register src, Register shift);
void ShiftLeftArith(Register dst, Register src, const Operand& val);
void ShiftRightArith(Register dst, Register src, Register shift);
void ShiftRightArith(Register dst, Register src, const Operand& val);
void ClearRightImm(Register dst, Register src, const Operand& val);
// Bitwise operations
void And(Register dst, Register src);
void AndP(Register dst, Register src);
void And(Register dst, Register src1, Register src2);
void AndP(Register dst, Register src1, Register src2);
void And(Register dst, const MemOperand& opnd);
void AndP(Register dst, const MemOperand& opnd);
void And(Register dst, const Operand& opnd);
void AndP(Register dst, const Operand& opnd);
void And(Register dst, Register src, const Operand& opnd);
void AndP(Register dst, Register src, const Operand& opnd);
void Or(Register dst, Register src);
void OrP(Register dst, Register src);
void Or(Register dst, Register src1, Register src2);
void OrP(Register dst, Register src1, Register src2);
void Or(Register dst, const MemOperand& opnd);
void OrP(Register dst, const MemOperand& opnd);
void Or(Register dst, const Operand& opnd);
void OrP(Register dst, const Operand& opnd);
void Or(Register dst, Register src, const Operand& opnd);
void OrP(Register dst, Register src, const Operand& opnd);
void Xor(Register dst, Register src);
void XorP(Register dst, Register src);
void Xor(Register dst, Register src1, Register src2);
void XorP(Register dst, Register src1, Register src2);
void Xor(Register dst, const MemOperand& opnd);
void XorP(Register dst, const MemOperand& opnd);
void Xor(Register dst, const Operand& opnd);
void XorP(Register dst, const Operand& opnd);
void Xor(Register dst, Register src, const Operand& opnd);
void XorP(Register dst, Register src, const Operand& opnd);
void Popcnt32(Register dst, Register src);
void Not32(Register dst, Register src = no_reg);
void Not64(Register dst, Register src = no_reg);
void NotP(Register dst, Register src = no_reg);
#ifdef V8_TARGET_ARCH_S390X
void Popcnt64(Register dst, Register src);
#endif
void mov(Register dst, const Operand& src);
void CleanUInt32(Register x) {
#ifdef V8_TARGET_ARCH_S390X
llgfr(x, x);
#endif
}
void push(Register src) {
lay(sp, MemOperand(sp, -kPointerSize));
StoreP(src, MemOperand(sp));
}
void pop(Register dst) {
LoadP(dst, MemOperand(sp));
la(sp, MemOperand(sp, kPointerSize));
}
void pop() { la(sp, MemOperand(sp, kPointerSize)); }
void Push(Register src) { push(src); }
// Push a handle.
void Push(Handle<HeapObject> handle);
void Push(Smi* smi);
// Push two registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2) {
lay(sp, MemOperand(sp, -kPointerSize * 2));
StoreP(src1, MemOperand(sp, kPointerSize));
StoreP(src2, MemOperand(sp, 0));
}
// Push three registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2, Register src3) {
lay(sp, MemOperand(sp, -kPointerSize * 3));
StoreP(src1, MemOperand(sp, kPointerSize * 2));
StoreP(src2, MemOperand(sp, kPointerSize));
StoreP(src3, MemOperand(sp, 0));
}
// Push four registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2, Register src3, Register src4) {
lay(sp, MemOperand(sp, -kPointerSize * 4));
StoreP(src1, MemOperand(sp, kPointerSize * 3));
StoreP(src2, MemOperand(sp, kPointerSize * 2));
StoreP(src3, MemOperand(sp, kPointerSize));
StoreP(src4, MemOperand(sp, 0));
}
// Push five registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2, Register src3, Register src4,
Register src5) {
DCHECK(src1 != src2);
DCHECK(src1 != src3);
DCHECK(src2 != src3);
DCHECK(src1 != src4);
DCHECK(src2 != src4);
DCHECK(src3 != src4);
DCHECK(src1 != src5);
DCHECK(src2 != src5);
DCHECK(src3 != src5);
DCHECK(src4 != src5);
lay(sp, MemOperand(sp, -kPointerSize * 5));
StoreP(src1, MemOperand(sp, kPointerSize * 4));
StoreP(src2, MemOperand(sp, kPointerSize * 3));
StoreP(src3, MemOperand(sp, kPointerSize * 2));
StoreP(src4, MemOperand(sp, kPointerSize));
StoreP(src5, MemOperand(sp, 0));
}
void Pop(Register dst) { pop(dst); }
// Pop two registers. Pops rightmost register first (from lower address).
void Pop(Register src1, Register src2) {
LoadP(src2, MemOperand(sp, 0));
LoadP(src1, MemOperand(sp, kPointerSize));
la(sp, MemOperand(sp, 2 * kPointerSize));
}
// Pop three registers. Pops rightmost register first (from lower address).
void Pop(Register src1, Register src2, Register src3) {
LoadP(src3, MemOperand(sp, 0));
LoadP(src2, MemOperand(sp, kPointerSize));
LoadP(src1, MemOperand(sp, 2 * kPointerSize));
la(sp, MemOperand(sp, 3 * kPointerSize));
}
// Pop four registers. Pops rightmost register first (from lower address).
void Pop(Register src1, Register src2, Register src3, Register src4) {
LoadP(src4, MemOperand(sp, 0));
LoadP(src3, MemOperand(sp, kPointerSize));
LoadP(src2, MemOperand(sp, 2 * kPointerSize));
LoadP(src1, MemOperand(sp, 3 * kPointerSize));
la(sp, MemOperand(sp, 4 * kPointerSize));
}
// Pop five registers. Pops rightmost register first (from lower address).
void Pop(Register src1, Register src2, Register src3, Register src4,
Register src5) {
LoadP(src5, MemOperand(sp, 0));
LoadP(src4, MemOperand(sp, kPointerSize));
LoadP(src3, MemOperand(sp, 2 * kPointerSize));
LoadP(src2, MemOperand(sp, 3 * kPointerSize));
LoadP(src1, MemOperand(sp, 4 * kPointerSize));
la(sp, MemOperand(sp, 5 * kPointerSize));
}
// Push a fixed frame, consisting of lr, fp, constant pool.
void PushCommonFrame(Register marker_reg = no_reg);
// Push a standard frame, consisting of lr, fp, constant pool,
// context and JS function
void PushStandardFrame(Register function_reg);
void PopCommonFrame(Register marker_reg = no_reg);
// Restore caller's frame pointer and return address prior to being
// overwritten by tail call stack preparation.
void RestoreFrameStateForTailCall();
void InitializeRootRegister() {
ExternalReference roots_array_start =
ExternalReference::roots_array_start(isolate());
mov(kRootRegister, Operand(roots_array_start));
}
// Flush the I-cache from asm code. You should use CpuFeatures::FlushICache
// from C.
// Does not handle errors.
void FlushICache(Register address, size_t size, Register scratch);
// If the value is a NaN, canonicalize the value else, do nothing.
void CanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
void CanonicalizeNaN(const DoubleRegister value) {
CanonicalizeNaN(value, value);
}
// Converts the integer (untagged smi) in |src| to a double, storing
// the result to |dst|
void ConvertIntToDouble(DoubleRegister dst, Register src);
// Converts the unsigned integer (untagged smi) in |src| to
// a double, storing the result to |dst|
void ConvertUnsignedIntToDouble(DoubleRegister dst, Register src);
// Converts the integer (untagged smi) in |src| to
// a float, storing the result in |dst|
void ConvertIntToFloat(DoubleRegister dst, Register src);
// Converts the unsigned integer (untagged smi) in |src| to
// a float, storing the result in |dst|
void ConvertUnsignedIntToFloat(DoubleRegister dst, Register src);
void ConvertInt64ToFloat(DoubleRegister double_dst, Register src);
void ConvertInt64ToDouble(DoubleRegister double_dst, Register src);
void ConvertUnsignedInt64ToFloat(DoubleRegister double_dst, Register src);
void ConvertUnsignedInt64ToDouble(DoubleRegister double_dst, Register src);
void MovIntToFloat(DoubleRegister dst, Register src);
void MovFloatToInt(Register dst, DoubleRegister src);
void MovDoubleToInt64(Register dst, DoubleRegister src);
void MovInt64ToDouble(DoubleRegister dst, Register src);
// Converts the double_input to an integer. Note that, upon return,
// the contents of double_dst will also hold the fixed point representation.
void ConvertFloat32ToInt64(const Register dst,
const DoubleRegister double_input,
FPRoundingMode rounding_mode = kRoundToZero);
// Converts the double_input to an integer. Note that, upon return,
// the contents of double_dst will also hold the fixed point representation.
void ConvertDoubleToInt64(const Register dst,
const DoubleRegister double_input,
FPRoundingMode rounding_mode = kRoundToZero);
void ConvertDoubleToInt32(const Register dst,
const DoubleRegister double_input,
FPRoundingMode rounding_mode = kRoundToZero);
void ConvertFloat32ToInt32(const Register result,
const DoubleRegister double_input,
FPRoundingMode rounding_mode);
void ConvertFloat32ToUnsignedInt32(
const Register result, const DoubleRegister double_input,
FPRoundingMode rounding_mode = kRoundToZero);
// Converts the double_input to an unsigned integer. Note that, upon return,
// the contents of double_dst will also hold the fixed point representation.
void ConvertDoubleToUnsignedInt64(
const Register dst, const DoubleRegister double_input,
FPRoundingMode rounding_mode = kRoundToZero);
void ConvertDoubleToUnsignedInt32(
const Register dst, const DoubleRegister double_input,
FPRoundingMode rounding_mode = kRoundToZero);
void ConvertFloat32ToUnsignedInt64(
const Register result, const DoubleRegister double_input,
FPRoundingMode rounding_mode = kRoundToZero);
#if !V8_TARGET_ARCH_S390X
void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low,
Register src_high, Register scratch, Register shift);
void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low,
Register src_high, uint32_t shift);
void ShiftRightPair(Register dst_low, Register dst_high, Register src_low,
Register src_high, Register scratch, Register shift);
void ShiftRightPair(Register dst_low, Register dst_high, Register src_low,
Register src_high, uint32_t shift);
void ShiftRightArithPair(Register dst_low, Register dst_high,
Register src_low, Register src_high,
Register scratch, Register shift);
void ShiftRightArithPair(Register dst_low, Register dst_high,
Register src_low, Register src_high, uint32_t shift);
#endif
// Generates function and stub prologue code.
void StubPrologue(StackFrame::Type type, Register base = no_reg,
int prologue_offset = 0);
void Prologue(Register base, int prologue_offset = 0);
// Get the actual activation frame alignment for target environment.
static int ActivationFrameAlignment();
// ----------------------------------------------------------------
// new S390 macro-assembler interfaces that are slightly higher level
// than assembler-s390 and may generate variable length sequences
// load a literal signed int value <value> to GPR <dst>
void LoadIntLiteral(Register dst, int value);
// load an SMI value <value> to GPR <dst>
void LoadSmiLiteral(Register dst, Smi* smi);
// load a literal double value <value> to FPR <result>
void LoadDoubleLiteral(DoubleRegister result, double value, Register scratch);
void LoadDoubleLiteral(DoubleRegister result, uint64_t value,
Register scratch);
void LoadFloat32Literal(DoubleRegister result, float value, Register scratch);
void StoreW(Register src, const MemOperand& mem, Register scratch = no_reg);
void LoadHalfWordP(Register dst, const MemOperand& mem,
Register scratch = no_reg);
void StoreHalfWord(Register src, const MemOperand& mem,
Register scratch = r0);
void StoreByte(Register src, const MemOperand& mem, Register scratch = r0);
void AddSmiLiteral(Register dst, Register src, Smi* smi,
Register scratch = r0);
void SubSmiLiteral(Register dst, Register src, Smi* smi,
Register scratch = r0);
void CmpSmiLiteral(Register src1, Smi* smi, Register scratch);
void CmpLogicalSmiLiteral(Register src1, Smi* smi, Register scratch);
void AndSmiLiteral(Register dst, Register src, Smi* smi);
// Set new rounding mode RN to FPSCR
void SetRoundingMode(FPRoundingMode RN);
// reset rounding mode to default (kRoundToNearest)
void ResetRoundingMode();
// These exist to provide portability between 32 and 64bit
void LoadP(Register dst, const MemOperand& mem, Register scratch = no_reg);
void StoreP(Register src, const MemOperand& mem, Register scratch = no_reg);
void StoreP(const MemOperand& mem, const Operand& opnd,
Register scratch = no_reg);
void LoadMultipleP(Register dst1, Register dst2, const MemOperand& mem);
void StoreMultipleP(Register dst1, Register dst2, const MemOperand& mem);
void LoadMultipleW(Register dst1, Register dst2, const MemOperand& mem);
void StoreMultipleW(Register dst1, Register dst2, const MemOperand& mem);
void SwapP(Register src, Register dst, Register scratch);
void SwapP(Register src, MemOperand dst, Register scratch);
void SwapP(MemOperand src, MemOperand dst, Register scratch_0,
Register scratch_1);
void SwapFloat32(DoubleRegister src, DoubleRegister dst,
DoubleRegister scratch);
void SwapFloat32(DoubleRegister src, MemOperand dst, DoubleRegister scratch);
void SwapFloat32(MemOperand src, MemOperand dst, DoubleRegister scratch_0,
DoubleRegister scratch_1);
void SwapDouble(DoubleRegister src, DoubleRegister dst,
DoubleRegister scratch);
void SwapDouble(DoubleRegister src, MemOperand dst, DoubleRegister scratch);
void SwapDouble(MemOperand src, MemOperand dst, DoubleRegister scratch_0,
DoubleRegister scratch_1);
// Cleanse pointer address on 31bit by zero out top bit.
// This is a NOP on 64-bit.
void CleanseP(Register src) {
#if (V8_HOST_ARCH_S390 && !(V8_TARGET_ARCH_S390X))
nilh(src, Operand(0x7FFF));
#endif
}
void PrepareForTailCall(const ParameterCount& callee_args_count,
Register caller_args_count_reg, Register scratch0,
Register scratch1);
// ---------------------------------------------------------------------------
// Runtime calls
// Call a code stub.
void CallStubDelayed(CodeStub* stub);
// Call a runtime routine.
void CallRuntimeDelayed(Zone* zone, Runtime::FunctionId fid,
SaveFPRegsMode save_doubles = kDontSaveFPRegs);
// Before calling a C-function from generated code, align arguments on stack.
// After aligning the frame, non-register arguments must be stored in
// sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
// are word sized. If double arguments are used, this function assumes that
// all double arguments are stored before core registers; otherwise the
// correct alignment of the double values is not guaranteed.
// Some compilers/platforms require the stack to be aligned when calling
// C++ code.
// Needs a scratch register to do some arithmetic. This register will be
// trashed.
void PrepareCallCFunction(int num_reg_arguments, int num_double_registers,
Register scratch);
void PrepareCallCFunction(int num_reg_arguments, Register scratch);
// There are two ways of passing double arguments on ARM, depending on
// whether soft or hard floating point ABI is used. These functions
// abstract parameter passing for the three different ways we call
// C functions from generated code.
void MovToFloatParameter(DoubleRegister src);
void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
void MovToFloatResult(DoubleRegister src);
// Calls a C function and cleans up the space for arguments allocated
// by PrepareCallCFunction. The called function is not allowed to trigger a
// garbage collection, since that might move the code and invalidate the
// return address (unless this is somehow accounted for by the called
// function).
void CallCFunction(ExternalReference function, int num_arguments);
void CallCFunction(Register function, int num_arguments);
void CallCFunction(ExternalReference function, int num_reg_arguments,
int num_double_arguments);
void CallCFunction(Register function, int num_reg_arguments,
int num_double_arguments);
void MovFromFloatParameter(DoubleRegister dst);
void MovFromFloatResult(DoubleRegister dst);
// Emit code for a truncating division by a constant. The dividend register is
// unchanged and ip gets clobbered. Dividend and result must be different.
void TruncateDoubleToIDelayed(Zone* zone, Register result,
DoubleRegister double_input);
void TryInlineTruncateDoubleToI(Register result, DoubleRegister double_input,
Label* done);
// ---------------------------------------------------------------------------
// Debugging
// Calls Abort(msg) if the condition cond is not satisfied.
// Use --debug_code to enable.
void Assert(Condition cond, AbortReason reason, CRegister cr = cr7);
// Like Assert(), but always enabled.
void Check(Condition cond, AbortReason reason, CRegister cr = cr7);
// Print a message to stdout and abort execution.
void Abort(AbortReason reason);
void set_has_frame(bool value) { has_frame_ = value; }
bool has_frame() { return has_frame_; }
inline bool AllowThisStubCall(CodeStub* stub);
// ---------------------------------------------------------------------------
// Bit testing/extraction
//
// Bit numbering is such that the least significant bit is bit 0
// (for consistency between 32/64-bit).
// Extract consecutive bits (defined by rangeStart - rangeEnd) from src
// and place them into the least significant bits of dst.
inline void ExtractBitRange(Register dst, Register src, int rangeStart,
int rangeEnd) {
DCHECK(rangeStart >= rangeEnd && rangeStart < kBitsPerPointer);
// Try to use RISBG if possible.
if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
int shiftAmount = (64 - rangeEnd) % 64; // Convert to shift left.
int endBit = 63; // End is always LSB after shifting.
int startBit = 63 - rangeStart + rangeEnd;
risbg(dst, src, Operand(startBit), Operand(endBit), Operand(shiftAmount),
true);
} else {
if (rangeEnd > 0) // Don't need to shift if rangeEnd is zero.
ShiftRightP(dst, src, Operand(rangeEnd));
else if (dst != src) // If we didn't shift, we might need to copy
LoadRR(dst, src);
int width = rangeStart - rangeEnd + 1;
#if V8_TARGET_ARCH_S390X
uint64_t mask = (static_cast<uint64_t>(1) << width) - 1;
nihf(dst, Operand(mask >> 32));
nilf(dst, Operand(mask & 0xFFFFFFFF));
ltgr(dst, dst);
#else
uint32_t mask = (1 << width) - 1;
AndP(dst, Operand(mask));
#endif
}
}
inline void ExtractBit(Register dst, Register src, uint32_t bitNumber) {
ExtractBitRange(dst, src, bitNumber, bitNumber);
}
// Extract consecutive bits (defined by mask) from src and place them
// into the least significant bits of dst.
inline void ExtractBitMask(Register dst, Register src, uintptr_t mask,
RCBit rc = LeaveRC) {
int start = kBitsPerPointer - 1;
int end;
uintptr_t bit = (1L << start);
while (bit && (mask & bit) == 0) {
start--;
bit >>= 1;
}
end = start;
bit >>= 1;
while (bit && (mask & bit)) {
end--;
bit >>= 1;
}
// 1-bits in mask must be contiguous
DCHECK(bit == 0 || (mask & ((bit << 1) - 1)) == 0);
ExtractBitRange(dst, src, start, end);
}
// Test single bit in value.
inline void TestBit(Register value, int bitNumber, Register scratch = r0) {
ExtractBitRange(scratch, value, bitNumber, bitNumber);
}
// Test consecutive bit range in value. Range is defined by
// rangeStart - rangeEnd.
inline void TestBitRange(Register value, int rangeStart, int rangeEnd,
Register scratch = r0) {
ExtractBitRange(scratch, value, rangeStart, rangeEnd);
}
// Test consecutive bit range in value. Range is defined by mask.
inline void TestBitMask(Register value, uintptr_t mask,
Register scratch = r0) {
ExtractBitMask(scratch, value, mask, SetRC);
}
inline void TestIfSmi(Register value) { tmll(value, Operand(1)); }
inline void TestIfSmi(MemOperand value) {
if (is_uint12(value.offset())) {
tm(value, Operand(1));
} else if (is_int20(value.offset())) {
tmy(value, Operand(1));
} else {
LoadB(r0, value);
tmll(r0, Operand(1));
}
}
inline void TestIfInt32(Register value) {
// High bits must be identical to fit into an 32-bit integer
cgfr(value, value);
}
void SmiUntag(Register reg) { SmiUntag(reg, reg); }
void SmiUntag(Register dst, Register src) {
ShiftRightArithP(dst, src, Operand(kSmiShift));
}
// Activation support.
void EnterFrame(StackFrame::Type type,
bool load_constant_pool_pointer_reg = false);
// Returns the pc offset at which the frame ends.
int LeaveFrame(StackFrame::Type type, int stack_adjustment = 0);
void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
Label* condition_met);
private:
static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
void CallCFunctionHelper(Register function, int num_reg_arguments,
int num_double_arguments);
void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al,
CRegister cr = cr7);
int CalculateStackPassedWords(int num_reg_arguments,
int num_double_arguments);
bool has_frame_ = false;
Isolate* isolate_;
// This handle will be patched with the code object on installation.
Handle<HeapObject> code_object_;
};
// MacroAssembler implements a collection of frequently used macros.
class MacroAssembler : public TurboAssembler {
public:
MacroAssembler(Isolate* isolate, void* buffer, int size,
CodeObjectRequired create_code_object);
// Call a code stub.
void TailCallStub(CodeStub* stub, Condition cond = al);
void CallStub(CodeStub* stub, Condition cond = al);
void CallRuntime(const Runtime::Function* f, int num_arguments,
SaveFPRegsMode save_doubles = kDontSaveFPRegs);
void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
const Runtime::Function* function = Runtime::FunctionForId(fid);
CallRuntime(function, function->nargs, kSaveFPRegs);
}
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid,
SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
const Runtime::Function* function = Runtime::FunctionForId(fid);
CallRuntime(function, function->nargs, save_doubles);
}
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid, int num_arguments,
SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
}
// Convenience function: tail call a runtime routine (jump).
void TailCallRuntime(Runtime::FunctionId fid);
// ---------------------------------------------------------------------------
// Support functions.
// Compare object type for heap object. heap_object contains a non-Smi
// whose object type should be compared with the given type. This both
// sets the flags and leaves the object type in the type_reg register.
// It leaves the map in the map register (unless the type_reg and map register
// are the same register). It leaves the heap object in the heap_object
// register unless the heap_object register is the same register as one of the
// other registers.
// Type_reg can be no_reg. In that case ip is used.
void CompareObjectType(Register heap_object, Register map, Register type_reg,
InstanceType type);
// Compare instance type in a map. map contains a valid map object whose
// object type should be compared with the given type. This both
// sets the flags and leaves the object type in the type_reg register.
void CompareInstanceType(Register map, Register type_reg, InstanceType type);
// Compare the object in a register to a value from the root list.
// Uses the ip register as scratch.
void CompareRoot(Register obj, Heap::RootListIndex index);
void PushRoot(Heap::RootListIndex index) {
LoadRoot(r0, index);
Push(r0);
}
// Jump to a runtime routine.
void JumpToExternalReference(const ExternalReference& builtin,
bool builtin_exit_frame = false);
// Compare the object in a register to a value and jump if they are equal.
void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
CompareRoot(with, index);
beq(if_equal);
}
// Compare the object in a register to a value and jump if they are not equal.
void JumpIfNotRoot(Register with, Heap::RootListIndex index,
Label* if_not_equal) {
CompareRoot(with, index);
bne(if_not_equal);
}
// Try to convert a double to a signed 32-bit integer.
// CR_EQ in cr7 is set and result assigned if the conversion is exact.
void TryDoubleToInt32Exact(Register result, DoubleRegister double_input,
Register scratch, DoubleRegister double_scratch);
// ---------------------------------------------------------------------------
// StatsCounter support
void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
Register scratch2);
void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
Register scratch2);
// ---------------------------------------------------------------------------
// JavaScript invokes
// Set up call kind marking in ecx. The method takes ecx as an
// explicit first parameter to make the code more readable at the
// call sites.
// void SetCallKind(Register dst, CallKind kind);
// Removes current frame and its arguments from the stack preserving
// the arguments and a return address pushed to the stack for the next call.
// Both |callee_args_count| and |caller_args_count_reg| do not include
// receiver. |callee_args_count| is not modified, |caller_args_count_reg|
// is trashed.
// Invoke the JavaScript function code by either calling or jumping.
void InvokeFunctionCode(Register function, Register new_target,
const ParameterCount& expected,
const ParameterCount& actual, InvokeFlag flag);
// On function call, call into the debugger if necessary.
void CheckDebugHook(Register fun, Register new_target,
const ParameterCount& expected,
const ParameterCount& actual);
// Invoke the JavaScript function in the given register. Changes the
// current context to the context in the function before invoking.
void InvokeFunction(Register function, Register new_target,
const ParameterCount& actual, InvokeFlag flag);
void InvokeFunction(Register function, const ParameterCount& expected,
const ParameterCount& actual, InvokeFlag flag);
void InvokeFunction(Handle<JSFunction> function,
const ParameterCount& expected,
const ParameterCount& actual, InvokeFlag flag);
// Frame restart support
void MaybeDropFrames();
// Exception handling
// Push a new stack handler and link into stack handler chain.
void PushStackHandler();
// Unlink the stack handler on top of the stack from the stack handler chain.
// Must preserve the result register.
void PopStackHandler();
// Enter exit frame.
// stack_space - extra stack space, used for parameters before call to C.
// At least one slot (for the return address) should be provided.
void EnterExitFrame(bool save_doubles, int stack_space = 1,
StackFrame::Type frame_type = StackFrame::EXIT);
// Leave the current exit frame. Expects the return value in r0.
// Expect the number of values, pushed prior to the exit frame, to
// remove in a register (or no_reg, if there is nothing to remove).
void LeaveExitFrame(bool save_doubles, Register argument_count,
bool argument_count_is_length = false);
// Load the global proxy from the current context.
void LoadGlobalProxy(Register dst) {
LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
}
void LoadNativeContextSlot(int index, Register dst);
// ---------------------------------------------------------------------------
// Smi utilities
// Shift left by kSmiShift
void SmiTag(Register reg) { SmiTag(reg, reg); }
void SmiTag(Register dst, Register src) {
ShiftLeftP(dst, src, Operand(kSmiShift));
}
void SmiToPtrArrayOffset(Register dst, Register src) {
#if V8_TARGET_ARCH_S390X
STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kPointerSizeLog2);
ShiftRightArithP(dst, src, Operand(kSmiShift - kPointerSizeLog2));
#else
STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kPointerSizeLog2);
ShiftLeftP(dst, src, Operand(kPointerSizeLog2 - kSmiShift));
#endif
}
// Untag the source value into destination and jump if source is a smi.
// Souce and destination can be the same register.
void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
// Jump if either of the registers contain a non-smi.
inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
TestIfSmi(value);
bne(not_smi_label /*, cr0*/);
}
// Jump if either of the registers contain a smi.
void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
// Abort execution if argument is a smi, enabled via --debug-code.
void AssertNotSmi(Register object);
void AssertSmi(Register object);
#if V8_TARGET_ARCH_S390X
// Ensure it is permissible to read/write int value directly from
// upper half of the smi.
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
#endif
#if V8_TARGET_LITTLE_ENDIAN
#define SmiWordOffset(offset) (offset + kPointerSize / 2)
#else
#define SmiWordOffset(offset) offset
#endif
// Abort execution if argument is not a FixedArray, enabled via --debug-code.
void AssertFixedArray(Register object);
void AssertFunction(Register object);
// Abort execution if argument is not a JSBoundFunction,
// enabled via --debug-code.
void AssertBoundFunction(Register object);
// Abort execution if argument is not a JSGeneratorObject (or subclass),
// enabled via --debug-code.
void AssertGeneratorObject(Register object);
// Abort execution if argument is not undefined or an AllocationSite, enabled
// via --debug-code.
void AssertUndefinedOrAllocationSite(Register object, Register scratch);
template <typename Field>
void DecodeField(Register dst, Register src) {
ExtractBitRange(dst, src, Field::kShift + Field::kSize - 1, Field::kShift);
}
template <typename Field>
void DecodeField(Register reg) {
DecodeField<Field>(reg, reg);
}
// ---------------------------------------------------------------------------
// GC Support
void IncrementalMarkingRecordWriteHelper(Register object, Register value,
Register address);
// Record in the remembered set the fact that we have a pointer to new space
// at the address pointed to by the addr register. Only works if addr is not
// in new space.
void RememberedSetHelper(Register object, // Used for debug code.
Register addr, Register scratch,
SaveFPRegsMode save_fp);
void CallJSEntry(Register target);
static int CallSizeNotPredictableCodeSize(Address target,
RelocInfo::Mode rmode,
Condition cond = al);
void JumpToJSEntry(Register target);
// Notify the garbage collector that we wrote a pointer into an object.
// |object| is the object being stored into, |value| is the object being
// stored. value and scratch registers are clobbered by the operation.
// The offset is the offset from the start of the object, not the offset from
// the tagged HeapObject pointer. For use with FieldMemOperand(reg, off).
void RecordWriteField(
Register object, int offset, Register value, Register scratch,
LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK);
// For a given |object| notify the garbage collector that the slot |address|
// has been written. |value| is the object being stored. The value and
// address registers are clobbered by the operation.
void RecordWrite(
Register object, Register address, Register value,
LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK);
// Push and pop the registers that can hold pointers, as defined by the
// RegList constant kSafepointSavedRegisters.
void PushSafepointRegisters();
void PopSafepointRegisters();
void LoadRepresentation(Register dst, const MemOperand& mem, Representation r,
Register scratch = no_reg);
void StoreRepresentation(Register src, const MemOperand& mem,
Representation r, Register scratch = no_reg);
private:
static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
// Helper functions for generating invokes.
void InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual, Label* done,
bool* definitely_mismatches, InvokeFlag flag);
// Compute memory operands for safepoint stack slots.
static int SafepointRegisterStackIndex(int reg_code);
// Needs access to SafepointRegisterStackIndex for compiled frame
// traversal.
friend class StandardFrame;
};
// -----------------------------------------------------------------------------
// Static helper functions.
inline MemOperand ContextMemOperand(Register context, int index = 0) {
return MemOperand(context, Context::SlotOffset(index));
}
inline MemOperand NativeContextMemOperand() {
return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
}
#define ACCESS_MASM(masm) masm->
} // namespace internal
} // namespace v8
#endif // V8_S390_MACRO_ASSEMBLER_S390_H_