| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef V8_UTILS_H_ |
| #define V8_UTILS_H_ |
| |
| #include <limits.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <cmath> |
| #include <type_traits> |
| |
| #include "include/v8.h" |
| #include "src/allocation.h" |
| #include "src/base/bits.h" |
| #include "src/base/compiler-specific.h" |
| #include "src/base/logging.h" |
| #include "src/base/macros.h" |
| #include "src/base/platform/platform.h" |
| #include "src/globals.h" |
| #include "src/vector.h" |
| #include "src/zone/zone.h" |
| |
| #if defined(V8_OS_AIX) |
| #include <fenv.h> // NOLINT(build/c++11) |
| #endif |
| |
| namespace v8 { |
| namespace internal { |
| |
| // ---------------------------------------------------------------------------- |
| // General helper functions |
| |
| // Returns the value (0 .. 15) of a hexadecimal character c. |
| // If c is not a legal hexadecimal character, returns a value < 0. |
| inline int HexValue(uc32 c) { |
| c -= '0'; |
| if (static_cast<unsigned>(c) <= 9) return c; |
| c = (c | 0x20) - ('a' - '0'); // detect 0x11..0x16 and 0x31..0x36. |
| if (static_cast<unsigned>(c) <= 5) return c + 10; |
| return -1; |
| } |
| |
| inline char HexCharOfValue(int value) { |
| DCHECK(0 <= value && value <= 16); |
| if (value < 10) return value + '0'; |
| return value - 10 + 'A'; |
| } |
| |
| inline int BoolToInt(bool b) { return b ? 1 : 0; } |
| |
| // Same as strcmp, but can handle NULL arguments. |
| inline bool CStringEquals(const char* s1, const char* s2) { |
| return (s1 == s2) || (s1 != nullptr && s2 != nullptr && strcmp(s1, s2) == 0); |
| } |
| |
| // X must be a power of 2. Returns the number of trailing zeros. |
| template <typename T, |
| typename = typename std::enable_if<std::is_integral<T>::value>::type> |
| inline int WhichPowerOf2(T x) { |
| DCHECK(base::bits::IsPowerOfTwo(x)); |
| int bits = 0; |
| #ifdef DEBUG |
| const T original_x = x; |
| #endif |
| constexpr int max_bits = sizeof(T) * 8; |
| static_assert(max_bits <= 64, "integral types are not bigger than 64 bits"); |
| // Avoid shifting by more than the bit width of x to avoid compiler warnings. |
| #define CHECK_BIGGER(s) \ |
| if (max_bits > s && x >= T{1} << (max_bits > s ? s : 0)) { \ |
| bits += s; \ |
| x >>= max_bits > s ? s : 0; \ |
| } |
| CHECK_BIGGER(32) |
| CHECK_BIGGER(16) |
| CHECK_BIGGER(8) |
| CHECK_BIGGER(4) |
| #undef CHECK_BIGGER |
| switch (x) { |
| default: UNREACHABLE(); |
| case 8: bits++; // Fall through. |
| case 4: bits++; // Fall through. |
| case 2: bits++; // Fall through. |
| case 1: break; |
| } |
| DCHECK_EQ(T{1} << bits, original_x); |
| return bits; |
| } |
| |
| inline int MostSignificantBit(uint32_t x) { |
| static const int msb4[] = {0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4}; |
| int nibble = 0; |
| if (x & 0xffff0000) { |
| nibble += 16; |
| x >>= 16; |
| } |
| if (x & 0xff00) { |
| nibble += 8; |
| x >>= 8; |
| } |
| if (x & 0xf0) { |
| nibble += 4; |
| x >>= 4; |
| } |
| return nibble + msb4[x]; |
| } |
| |
| template <typename T> |
| static T ArithmeticShiftRight(T x, int shift) { |
| DCHECK_LE(0, shift); |
| if (x < 0) { |
| // Right shift of signed values is implementation defined. Simulate a |
| // true arithmetic right shift by adding leading sign bits. |
| using UnsignedT = typename std::make_unsigned<T>::type; |
| UnsignedT mask = ~(static_cast<UnsignedT>(~0) >> shift); |
| return (static_cast<UnsignedT>(x) >> shift) | mask; |
| } else { |
| return x >> shift; |
| } |
| } |
| |
| template <typename T> |
| int Compare(const T& a, const T& b) { |
| if (a == b) |
| return 0; |
| else if (a < b) |
| return -1; |
| else |
| return 1; |
| } |
| |
| // Compare function to compare the object pointer value of two |
| // handlified objects. The handles are passed as pointers to the |
| // handles. |
| template<typename T> class Handle; // Forward declaration. |
| template <typename T> |
| int HandleObjectPointerCompare(const Handle<T>* a, const Handle<T>* b) { |
| return Compare<T*>(*(*a), *(*b)); |
| } |
| |
| |
| template <typename T, typename U> |
| inline bool IsAligned(T value, U alignment) { |
| return (value & (alignment - 1)) == 0; |
| } |
| |
| |
| // Returns true if (addr + offset) is aligned. |
| inline bool IsAddressAligned(Address addr, |
| intptr_t alignment, |
| int offset = 0) { |
| intptr_t offs = OffsetFrom(addr + offset); |
| return IsAligned(offs, alignment); |
| } |
| |
| |
| // Returns the maximum of the two parameters. |
| template <typename T> |
| constexpr T Max(T a, T b) { |
| return a < b ? b : a; |
| } |
| |
| |
| // Returns the minimum of the two parameters. |
| template <typename T> |
| constexpr T Min(T a, T b) { |
| return a < b ? a : b; |
| } |
| |
| // Returns the maximum of the two parameters according to JavaScript semantics. |
| template <typename T> |
| T JSMax(T x, T y) { |
| if (std::isnan(x)) return x; |
| if (std::isnan(y)) return y; |
| if (std::signbit(x) < std::signbit(y)) return x; |
| return x > y ? x : y; |
| } |
| |
| // Returns the maximum of the two parameters according to JavaScript semantics. |
| template <typename T> |
| T JSMin(T x, T y) { |
| if (std::isnan(x)) return x; |
| if (std::isnan(y)) return y; |
| if (std::signbit(x) < std::signbit(y)) return y; |
| return x > y ? y : x; |
| } |
| |
| // Returns the absolute value of its argument. |
| template <typename T, |
| typename = typename std::enable_if<std::is_signed<T>::value>::type> |
| typename std::make_unsigned<T>::type Abs(T a) { |
| // This is a branch-free implementation of the absolute value function and is |
| // described in Warren's "Hacker's Delight", chapter 2. It avoids undefined |
| // behavior with the arithmetic negation operation on signed values as well. |
| typedef typename std::make_unsigned<T>::type unsignedT; |
| unsignedT x = static_cast<unsignedT>(a); |
| unsignedT y = static_cast<unsignedT>(a >> (sizeof(T) * 8 - 1)); |
| return (x ^ y) - y; |
| } |
| |
| // Returns the negative absolute value of its argument. |
| template <typename T, |
| typename = typename std::enable_if<std::is_signed<T>::value>::type> |
| T Nabs(T a) { |
| return a < 0 ? a : -a; |
| } |
| |
| // Floor(-0.0) == 0.0 |
| inline double Floor(double x) { |
| #if V8_CC_MSVC |
| if (x == 0) return x; // Fix for issue 3477. |
| #endif |
| return std::floor(x); |
| } |
| |
| inline double Modulo(double x, double y) { |
| #if defined(V8_OS_WIN) |
| // Workaround MS fmod bugs. ECMA-262 says: |
| // dividend is finite and divisor is an infinity => result equals dividend |
| // dividend is a zero and divisor is nonzero finite => result equals dividend |
| if (!(std::isfinite(x) && (!std::isfinite(y) && !std::isnan(y))) && |
| !(x == 0 && (y != 0 && std::isfinite(y)))) { |
| x = fmod(x, y); |
| } |
| return x; |
| #elif defined(V8_OS_AIX) |
| // AIX raises an underflow exception for (Number.MIN_VALUE % Number.MAX_VALUE) |
| feclearexcept(FE_ALL_EXCEPT); |
| double result = std::fmod(x, y); |
| int exception = fetestexcept(FE_UNDERFLOW); |
| return (exception ? x : result); |
| #else |
| return std::fmod(x, y); |
| #endif |
| } |
| |
| inline double Pow(double x, double y) { |
| if (y == 0.0) return 1.0; |
| if (std::isnan(y) || ((x == 1 || x == -1) && std::isinf(y))) { |
| return std::numeric_limits<double>::quiet_NaN(); |
| } |
| #if (defined(__MINGW64_VERSION_MAJOR) && \ |
| (!defined(__MINGW64_VERSION_RC) || __MINGW64_VERSION_RC < 1)) || \ |
| defined(V8_OS_AIX) |
| // MinGW64 and AIX have a custom implementation for pow. This handles certain |
| // special cases that are different. |
| if ((x == 0.0 || std::isinf(x)) && y != 0.0 && std::isfinite(y)) { |
| double f; |
| double result = ((x == 0.0) ^ (y > 0)) ? V8_INFINITY : 0; |
| /* retain sign if odd integer exponent */ |
| return ((std::modf(y, &f) == 0.0) && (static_cast<int64_t>(y) & 1)) |
| ? copysign(result, x) |
| : result; |
| } |
| |
| if (x == 2.0) { |
| int y_int = static_cast<int>(y); |
| if (y == y_int) { |
| return std::ldexp(1.0, y_int); |
| } |
| } |
| #endif |
| return std::pow(x, y); |
| } |
| |
| template <typename T> |
| T SaturateAdd(T a, T b) { |
| if (std::is_signed<T>::value) { |
| if (a > 0 && b > 0) { |
| if (a > std::numeric_limits<T>::max() - b) { |
| return std::numeric_limits<T>::max(); |
| } |
| } else if (a < 0 && b < 0) { |
| if (a < std::numeric_limits<T>::min() - b) { |
| return std::numeric_limits<T>::min(); |
| } |
| } |
| } else { |
| CHECK(std::is_unsigned<T>::value); |
| if (a > std::numeric_limits<T>::max() - b) { |
| return std::numeric_limits<T>::max(); |
| } |
| } |
| return a + b; |
| } |
| |
| template <typename T> |
| T SaturateSub(T a, T b) { |
| if (std::is_signed<T>::value) { |
| if (a >= 0 && b < 0) { |
| if (a > std::numeric_limits<T>::max() + b) { |
| return std::numeric_limits<T>::max(); |
| } |
| } else if (a < 0 && b > 0) { |
| if (a < std::numeric_limits<T>::min() + b) { |
| return std::numeric_limits<T>::min(); |
| } |
| } |
| } else { |
| CHECK(std::is_unsigned<T>::value); |
| if (a < b) { |
| return static_cast<T>(0); |
| } |
| } |
| return a - b; |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // BitField is a help template for encoding and decode bitfield with |
| // unsigned content. |
| |
| template<class T, int shift, int size, class U> |
| class BitFieldBase { |
| public: |
| typedef T FieldType; |
| |
| // A type U mask of bit field. To use all bits of a type U of x bits |
| // in a bitfield without compiler warnings we have to compute 2^x |
| // without using a shift count of x in the computation. |
| static const U kOne = static_cast<U>(1U); |
| static const U kMask = ((kOne << shift) << size) - (kOne << shift); |
| static const U kShift = shift; |
| static const U kSize = size; |
| static const U kNext = kShift + kSize; |
| static const U kNumValues = kOne << size; |
| |
| // Value for the field with all bits set. |
| static const T kMax = static_cast<T>(kNumValues - 1); |
| |
| // Tells whether the provided value fits into the bit field. |
| static constexpr bool is_valid(T value) { |
| return (static_cast<U>(value) & ~static_cast<U>(kMax)) == 0; |
| } |
| |
| // Returns a type U with the bit field value encoded. |
| static U encode(T value) { |
| DCHECK(is_valid(value)); |
| return static_cast<U>(value) << shift; |
| } |
| |
| // Returns a type U with the bit field value updated. |
| static U update(U previous, T value) { |
| return (previous & ~kMask) | encode(value); |
| } |
| |
| // Extracts the bit field from the value. |
| static T decode(U value) { |
| return static_cast<T>((value & kMask) >> shift); |
| } |
| |
| STATIC_ASSERT((kNext - 1) / 8 < sizeof(U)); |
| }; |
| |
| template <class T, int shift, int size> |
| class BitField8 : public BitFieldBase<T, shift, size, uint8_t> {}; |
| |
| |
| template <class T, int shift, int size> |
| class BitField16 : public BitFieldBase<T, shift, size, uint16_t> {}; |
| |
| |
| template<class T, int shift, int size> |
| class BitField : public BitFieldBase<T, shift, size, uint32_t> { }; |
| |
| |
| template<class T, int shift, int size> |
| class BitField64 : public BitFieldBase<T, shift, size, uint64_t> { }; |
| |
| // Helper macros for defining a contiguous sequence of bit fields. Example: |
| // (backslashes at the ends of respective lines of this multi-line macro |
| // definition are omitted here to please the compiler) |
| // |
| // #define MAP_BIT_FIELD1(V, _) |
| // V(IsAbcBit, bool, 1, _) |
| // V(IsBcdBit, bool, 1, _) |
| // V(CdeBits, int, 5, _) |
| // V(DefBits, MutableMode, 1, _) |
| // |
| // DEFINE_BIT_FIELDS(MAP_BIT_FIELD1) |
| // or |
| // DEFINE_BIT_FIELDS_64(MAP_BIT_FIELD1) |
| // |
| #define DEFINE_BIT_FIELD_RANGE_TYPE(Name, Type, Size, _) \ |
| k##Name##Start, k##Name##End = k##Name##Start + Size - 1, |
| |
| #define DEFINE_BIT_RANGES(LIST_MACRO) \ |
| struct LIST_MACRO##_Ranges { \ |
| enum { LIST_MACRO(DEFINE_BIT_FIELD_RANGE_TYPE, _) kBitsCount }; \ |
| }; |
| |
| #define DEFINE_BIT_FIELD_TYPE(Name, Type, Size, RangesName) \ |
| typedef BitField<Type, RangesName::k##Name##Start, Size> Name; |
| |
| #define DEFINE_BIT_FIELD_64_TYPE(Name, Type, Size, RangesName) \ |
| typedef BitField64<Type, RangesName::k##Name##Start, Size> Name; |
| |
| #define DEFINE_BIT_FIELDS(LIST_MACRO) \ |
| DEFINE_BIT_RANGES(LIST_MACRO) \ |
| LIST_MACRO(DEFINE_BIT_FIELD_TYPE, LIST_MACRO##_Ranges) |
| |
| #define DEFINE_BIT_FIELDS_64(LIST_MACRO) \ |
| DEFINE_BIT_RANGES(LIST_MACRO) \ |
| LIST_MACRO(DEFINE_BIT_FIELD_64_TYPE, LIST_MACRO##_Ranges) |
| |
| // ---------------------------------------------------------------------------- |
| // BitSetComputer is a help template for encoding and decoding information for |
| // a variable number of items in an array. |
| // |
| // To encode boolean data in a smi array you would use: |
| // typedef BitSetComputer<bool, 1, kSmiValueSize, uint32_t> BoolComputer; |
| // |
| template <class T, int kBitsPerItem, int kBitsPerWord, class U> |
| class BitSetComputer { |
| public: |
| static const int kItemsPerWord = kBitsPerWord / kBitsPerItem; |
| static const int kMask = (1 << kBitsPerItem) - 1; |
| |
| // The number of array elements required to embed T information for each item. |
| static int word_count(int items) { |
| if (items == 0) return 0; |
| return (items - 1) / kItemsPerWord + 1; |
| } |
| |
| // The array index to look at for item. |
| static int index(int base_index, int item) { |
| return base_index + item / kItemsPerWord; |
| } |
| |
| // Extract T data for a given item from data. |
| static T decode(U data, int item) { |
| return static_cast<T>((data >> shift(item)) & kMask); |
| } |
| |
| // Return the encoding for a store of value for item in previous. |
| static U encode(U previous, int item, T value) { |
| int shift_value = shift(item); |
| int set_bits = (static_cast<int>(value) << shift_value); |
| return (previous & ~(kMask << shift_value)) | set_bits; |
| } |
| |
| static int shift(int item) { return (item % kItemsPerWord) * kBitsPerItem; } |
| }; |
| |
| // Helper macros for defining a contiguous sequence of field offset constants. |
| // Example: (backslashes at the ends of respective lines of this multi-line |
| // macro definition are omitted here to please the compiler) |
| // |
| // #define MAP_FIELDS(V) |
| // V(kField1Offset, kPointerSize) |
| // V(kField2Offset, kIntSize) |
| // V(kField3Offset, kIntSize) |
| // V(kField4Offset, kPointerSize) |
| // V(kSize, 0) |
| // |
| // DEFINE_FIELD_OFFSET_CONSTANTS(HeapObject::kHeaderSize, MAP_FIELDS) |
| // |
| #define DEFINE_ONE_FIELD_OFFSET(Name, Size) Name, Name##End = Name + (Size)-1, |
| |
| #define DEFINE_FIELD_OFFSET_CONSTANTS(StartOffset, LIST_MACRO) \ |
| enum { \ |
| LIST_MACRO##_StartOffset = StartOffset - 1, \ |
| LIST_MACRO(DEFINE_ONE_FIELD_OFFSET) \ |
| }; |
| |
| // ---------------------------------------------------------------------------- |
| // Hash function. |
| |
| static const uint32_t kZeroHashSeed = 0; |
| |
| // Thomas Wang, Integer Hash Functions. |
| // http://www.concentric.net/~Ttwang/tech/inthash.htm |
| inline uint32_t ComputeIntegerHash(uint32_t key, uint32_t seed) { |
| uint32_t hash = key; |
| hash = hash ^ seed; |
| hash = ~hash + (hash << 15); // hash = (hash << 15) - hash - 1; |
| hash = hash ^ (hash >> 12); |
| hash = hash + (hash << 2); |
| hash = hash ^ (hash >> 4); |
| hash = hash * 2057; // hash = (hash + (hash << 3)) + (hash << 11); |
| hash = hash ^ (hash >> 16); |
| return hash & 0x3fffffff; |
| } |
| |
| inline uint32_t ComputeIntegerHash(uint32_t key) { |
| return ComputeIntegerHash(key, kZeroHashSeed); |
| } |
| |
| inline uint32_t ComputeLongHash(uint64_t key) { |
| uint64_t hash = key; |
| hash = ~hash + (hash << 18); // hash = (hash << 18) - hash - 1; |
| hash = hash ^ (hash >> 31); |
| hash = hash * 21; // hash = (hash + (hash << 2)) + (hash << 4); |
| hash = hash ^ (hash >> 11); |
| hash = hash + (hash << 6); |
| hash = hash ^ (hash >> 22); |
| return static_cast<uint32_t>(hash); |
| } |
| |
| |
| inline uint32_t ComputePointerHash(void* ptr) { |
| return ComputeIntegerHash( |
| static_cast<uint32_t>(reinterpret_cast<intptr_t>(ptr))); |
| } |
| |
| |
| // ---------------------------------------------------------------------------- |
| // Generated memcpy/memmove |
| |
| // Initializes the codegen support that depends on CPU features. |
| void init_memcopy_functions(Isolate* isolate); |
| |
| #if defined(V8_TARGET_ARCH_IA32) |
| // Limit below which the extra overhead of the MemCopy function is likely |
| // to outweigh the benefits of faster copying. |
| const int kMinComplexMemCopy = 64; |
| |
| // Copy memory area. No restrictions. |
| V8_EXPORT_PRIVATE void MemMove(void* dest, const void* src, size_t size); |
| typedef void (*MemMoveFunction)(void* dest, const void* src, size_t size); |
| |
| // Keep the distinction of "move" vs. "copy" for the benefit of other |
| // architectures. |
| V8_INLINE void MemCopy(void* dest, const void* src, size_t size) { |
| MemMove(dest, src, size); |
| } |
| #elif defined(V8_HOST_ARCH_ARM) |
| typedef void (*MemCopyUint8Function)(uint8_t* dest, const uint8_t* src, |
| size_t size); |
| V8_EXPORT_PRIVATE extern MemCopyUint8Function memcopy_uint8_function; |
| V8_INLINE void MemCopyUint8Wrapper(uint8_t* dest, const uint8_t* src, |
| size_t chars) { |
| memcpy(dest, src, chars); |
| } |
| // For values < 16, the assembler function is slower than the inlined C code. |
| const int kMinComplexMemCopy = 16; |
| V8_INLINE void MemCopy(void* dest, const void* src, size_t size) { |
| (*memcopy_uint8_function)(reinterpret_cast<uint8_t*>(dest), |
| reinterpret_cast<const uint8_t*>(src), size); |
| } |
| V8_EXPORT_PRIVATE V8_INLINE void MemMove(void* dest, const void* src, |
| size_t size) { |
| memmove(dest, src, size); |
| } |
| |
| typedef void (*MemCopyUint16Uint8Function)(uint16_t* dest, const uint8_t* src, |
| size_t size); |
| extern MemCopyUint16Uint8Function memcopy_uint16_uint8_function; |
| void MemCopyUint16Uint8Wrapper(uint16_t* dest, const uint8_t* src, |
| size_t chars); |
| // For values < 12, the assembler function is slower than the inlined C code. |
| const int kMinComplexConvertMemCopy = 12; |
| V8_INLINE void MemCopyUint16Uint8(uint16_t* dest, const uint8_t* src, |
| size_t size) { |
| (*memcopy_uint16_uint8_function)(dest, src, size); |
| } |
| #elif defined(V8_HOST_ARCH_MIPS) |
| typedef void (*MemCopyUint8Function)(uint8_t* dest, const uint8_t* src, |
| size_t size); |
| V8_EXPORT_PRIVATE extern MemCopyUint8Function memcopy_uint8_function; |
| V8_INLINE void MemCopyUint8Wrapper(uint8_t* dest, const uint8_t* src, |
| size_t chars) { |
| memcpy(dest, src, chars); |
| } |
| // For values < 16, the assembler function is slower than the inlined C code. |
| const int kMinComplexMemCopy = 16; |
| V8_INLINE void MemCopy(void* dest, const void* src, size_t size) { |
| (*memcopy_uint8_function)(reinterpret_cast<uint8_t*>(dest), |
| reinterpret_cast<const uint8_t*>(src), size); |
| } |
| V8_EXPORT_PRIVATE V8_INLINE void MemMove(void* dest, const void* src, |
| size_t size) { |
| memmove(dest, src, size); |
| } |
| #else |
| // Copy memory area to disjoint memory area. |
| V8_INLINE void MemCopy(void* dest, const void* src, size_t size) { |
| memcpy(dest, src, size); |
| } |
| V8_EXPORT_PRIVATE V8_INLINE void MemMove(void* dest, const void* src, |
| size_t size) { |
| memmove(dest, src, size); |
| } |
| const int kMinComplexMemCopy = 8; |
| #endif // V8_TARGET_ARCH_IA32 |
| |
| |
| // ---------------------------------------------------------------------------- |
| // Miscellaneous |
| |
| // Memory offset for lower and higher bits in a 64 bit integer. |
| #if defined(V8_TARGET_LITTLE_ENDIAN) |
| static const int kInt64LowerHalfMemoryOffset = 0; |
| static const int kInt64UpperHalfMemoryOffset = 4; |
| #elif defined(V8_TARGET_BIG_ENDIAN) |
| static const int kInt64LowerHalfMemoryOffset = 4; |
| static const int kInt64UpperHalfMemoryOffset = 0; |
| #endif // V8_TARGET_LITTLE_ENDIAN |
| |
| // A static resource holds a static instance that can be reserved in |
| // a local scope using an instance of Access. Attempts to re-reserve |
| // the instance will cause an error. |
| template <typename T> |
| class StaticResource { |
| public: |
| StaticResource() : is_reserved_(false) {} |
| |
| private: |
| template <typename S> friend class Access; |
| T instance_; |
| bool is_reserved_; |
| }; |
| |
| |
| // Locally scoped access to a static resource. |
| template <typename T> |
| class Access { |
| public: |
| explicit Access(StaticResource<T>* resource) |
| : resource_(resource) |
| , instance_(&resource->instance_) { |
| DCHECK(!resource->is_reserved_); |
| resource->is_reserved_ = true; |
| } |
| |
| ~Access() { |
| resource_->is_reserved_ = false; |
| resource_ = nullptr; |
| instance_ = nullptr; |
| } |
| |
| T* value() { return instance_; } |
| T* operator -> () { return instance_; } |
| |
| private: |
| StaticResource<T>* resource_; |
| T* instance_; |
| }; |
| |
| // A pointer that can only be set once and doesn't allow NULL values. |
| template<typename T> |
| class SetOncePointer { |
| public: |
| SetOncePointer() = default; |
| |
| bool is_set() const { return pointer_ != nullptr; } |
| |
| T* get() const { |
| DCHECK_NOT_NULL(pointer_); |
| return pointer_; |
| } |
| |
| void set(T* value) { |
| DCHECK(pointer_ == nullptr && value != nullptr); |
| pointer_ = value; |
| } |
| |
| T* operator=(T* value) { |
| set(value); |
| return value; |
| } |
| |
| bool operator==(std::nullptr_t) const { return pointer_ == nullptr; } |
| bool operator!=(std::nullptr_t) const { return pointer_ != nullptr; } |
| |
| private: |
| T* pointer_ = nullptr; |
| }; |
| |
| |
| template <typename T, int kSize> |
| class EmbeddedVector : public Vector<T> { |
| public: |
| EmbeddedVector() : Vector<T>(buffer_, kSize) { } |
| |
| explicit EmbeddedVector(T initial_value) : Vector<T>(buffer_, kSize) { |
| for (int i = 0; i < kSize; ++i) { |
| buffer_[i] = initial_value; |
| } |
| } |
| |
| // When copying, make underlying Vector to reference our buffer. |
| EmbeddedVector(const EmbeddedVector& rhs) |
| : Vector<T>(rhs) { |
| MemCopy(buffer_, rhs.buffer_, sizeof(T) * kSize); |
| this->set_start(buffer_); |
| } |
| |
| EmbeddedVector& operator=(const EmbeddedVector& rhs) { |
| if (this == &rhs) return *this; |
| Vector<T>::operator=(rhs); |
| MemCopy(buffer_, rhs.buffer_, sizeof(T) * kSize); |
| this->set_start(buffer_); |
| return *this; |
| } |
| |
| private: |
| T buffer_[kSize]; |
| }; |
| |
| // Compare 8bit/16bit chars to 8bit/16bit chars. |
| template <typename lchar, typename rchar> |
| inline int CompareCharsUnsigned(const lchar* lhs, const rchar* rhs, |
| size_t chars) { |
| const lchar* limit = lhs + chars; |
| if (sizeof(*lhs) == sizeof(char) && sizeof(*rhs) == sizeof(char)) { |
| // memcmp compares byte-by-byte, yielding wrong results for two-byte |
| // strings on little-endian systems. |
| return memcmp(lhs, rhs, chars); |
| } |
| while (lhs < limit) { |
| int r = static_cast<int>(*lhs) - static_cast<int>(*rhs); |
| if (r != 0) return r; |
| ++lhs; |
| ++rhs; |
| } |
| return 0; |
| } |
| |
| template <typename lchar, typename rchar> |
| inline int CompareChars(const lchar* lhs, const rchar* rhs, size_t chars) { |
| DCHECK_LE(sizeof(lchar), 2); |
| DCHECK_LE(sizeof(rchar), 2); |
| if (sizeof(lchar) == 1) { |
| if (sizeof(rchar) == 1) { |
| return CompareCharsUnsigned(reinterpret_cast<const uint8_t*>(lhs), |
| reinterpret_cast<const uint8_t*>(rhs), |
| chars); |
| } else { |
| return CompareCharsUnsigned(reinterpret_cast<const uint8_t*>(lhs), |
| reinterpret_cast<const uint16_t*>(rhs), |
| chars); |
| } |
| } else { |
| if (sizeof(rchar) == 1) { |
| return CompareCharsUnsigned(reinterpret_cast<const uint16_t*>(lhs), |
| reinterpret_cast<const uint8_t*>(rhs), |
| chars); |
| } else { |
| return CompareCharsUnsigned(reinterpret_cast<const uint16_t*>(lhs), |
| reinterpret_cast<const uint16_t*>(rhs), |
| chars); |
| } |
| } |
| } |
| |
| |
| // Calculate 10^exponent. |
| inline int TenToThe(int exponent) { |
| DCHECK_LE(exponent, 9); |
| DCHECK_GE(exponent, 1); |
| int answer = 10; |
| for (int i = 1; i < exponent; i++) answer *= 10; |
| return answer; |
| } |
| |
| |
| template<typename ElementType, int NumElements> |
| class EmbeddedContainer { |
| public: |
| EmbeddedContainer() : elems_() { } |
| |
| int length() const { return NumElements; } |
| const ElementType& operator[](int i) const { |
| DCHECK(i < length()); |
| return elems_[i]; |
| } |
| ElementType& operator[](int i) { |
| DCHECK(i < length()); |
| return elems_[i]; |
| } |
| |
| private: |
| ElementType elems_[NumElements]; |
| }; |
| |
| |
| template<typename ElementType> |
| class EmbeddedContainer<ElementType, 0> { |
| public: |
| int length() const { return 0; } |
| const ElementType& operator[](int i) const { |
| UNREACHABLE(); |
| static ElementType t = 0; |
| return t; |
| } |
| ElementType& operator[](int i) { |
| UNREACHABLE(); |
| static ElementType t = 0; |
| return t; |
| } |
| }; |
| |
| |
| // Helper class for building result strings in a character buffer. The |
| // purpose of the class is to use safe operations that checks the |
| // buffer bounds on all operations in debug mode. |
| // This simple base class does not allow formatted output. |
| class SimpleStringBuilder { |
| public: |
| // Create a string builder with a buffer of the given size. The |
| // buffer is allocated through NewArray<char> and must be |
| // deallocated by the caller of Finalize(). |
| explicit SimpleStringBuilder(int size); |
| |
| SimpleStringBuilder(char* buffer, int size) |
| : buffer_(buffer, size), position_(0) { } |
| |
| ~SimpleStringBuilder() { if (!is_finalized()) Finalize(); } |
| |
| int size() const { return buffer_.length(); } |
| |
| // Get the current position in the builder. |
| int position() const { |
| DCHECK(!is_finalized()); |
| return position_; |
| } |
| |
| // Reset the position. |
| void Reset() { position_ = 0; } |
| |
| // Add a single character to the builder. It is not allowed to add |
| // 0-characters; use the Finalize() method to terminate the string |
| // instead. |
| void AddCharacter(char c) { |
| DCHECK_NE(c, '\0'); |
| DCHECK(!is_finalized() && position_ < buffer_.length()); |
| buffer_[position_++] = c; |
| } |
| |
| // Add an entire string to the builder. Uses strlen() internally to |
| // compute the length of the input string. |
| void AddString(const char* s); |
| |
| // Add the first 'n' characters of the given 0-terminated string 's' to the |
| // builder. The input string must have enough characters. |
| void AddSubstring(const char* s, int n); |
| |
| // Add character padding to the builder. If count is non-positive, |
| // nothing is added to the builder. |
| void AddPadding(char c, int count); |
| |
| // Add the decimal representation of the value. |
| void AddDecimalInteger(int value); |
| |
| // Finalize the string by 0-terminating it and returning the buffer. |
| char* Finalize(); |
| |
| protected: |
| Vector<char> buffer_; |
| int position_; |
| |
| bool is_finalized() const { return position_ < 0; } |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(SimpleStringBuilder); |
| }; |
| |
| |
| // A poor man's version of STL's bitset: A bit set of enums E (without explicit |
| // values), fitting into an integral type T. |
| template <class E, class T = int> |
| class EnumSet { |
| public: |
| explicit EnumSet(T bits = 0) : bits_(bits) {} |
| bool IsEmpty() const { return bits_ == 0; } |
| bool Contains(E element) const { return (bits_ & Mask(element)) != 0; } |
| bool ContainsAnyOf(const EnumSet& set) const { |
| return (bits_ & set.bits_) != 0; |
| } |
| void Add(E element) { bits_ |= Mask(element); } |
| void Add(const EnumSet& set) { bits_ |= set.bits_; } |
| void Remove(E element) { bits_ &= ~Mask(element); } |
| void Remove(const EnumSet& set) { bits_ &= ~set.bits_; } |
| void RemoveAll() { bits_ = 0; } |
| void Intersect(const EnumSet& set) { bits_ &= set.bits_; } |
| T ToIntegral() const { return bits_; } |
| bool operator==(const EnumSet& set) { return bits_ == set.bits_; } |
| bool operator!=(const EnumSet& set) { return bits_ != set.bits_; } |
| EnumSet operator|(const EnumSet& set) const { |
| return EnumSet(bits_ | set.bits_); |
| } |
| |
| private: |
| static_assert(std::is_enum<E>::value, "EnumSet can only be used with enums"); |
| |
| T Mask(E element) const { |
| DCHECK_GT(sizeof(T) * CHAR_BIT, static_cast<int>(element)); |
| return T{1} << static_cast<typename std::underlying_type<E>::type>(element); |
| } |
| |
| T bits_; |
| }; |
| |
| // Bit field extraction. |
| inline uint32_t unsigned_bitextract_32(int msb, int lsb, uint32_t x) { |
| return (x >> lsb) & ((1 << (1 + msb - lsb)) - 1); |
| } |
| |
| inline uint64_t unsigned_bitextract_64(int msb, int lsb, uint64_t x) { |
| return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1); |
| } |
| |
| inline int32_t signed_bitextract_32(int msb, int lsb, int32_t x) { |
| return (x << (31 - msb)) >> (lsb + 31 - msb); |
| } |
| |
| inline int signed_bitextract_64(int msb, int lsb, int x) { |
| // TODO(jbramley): This is broken for big bitfields. |
| return (x << (63 - msb)) >> (lsb + 63 - msb); |
| } |
| |
| // Check number width. |
| inline bool is_intn(int64_t x, unsigned n) { |
| DCHECK((0 < n) && (n < 64)); |
| int64_t limit = static_cast<int64_t>(1) << (n - 1); |
| return (-limit <= x) && (x < limit); |
| } |
| |
| inline bool is_uintn(int64_t x, unsigned n) { |
| DCHECK((0 < n) && (n < (sizeof(x) * kBitsPerByte))); |
| return !(x >> n); |
| } |
| |
| template <class T> |
| inline T truncate_to_intn(T x, unsigned n) { |
| DCHECK((0 < n) && (n < (sizeof(x) * kBitsPerByte))); |
| return (x & ((static_cast<T>(1) << n) - 1)); |
| } |
| |
| #define INT_1_TO_63_LIST(V) \ |
| V(1) V(2) V(3) V(4) V(5) V(6) V(7) V(8) \ |
| V(9) V(10) V(11) V(12) V(13) V(14) V(15) V(16) \ |
| V(17) V(18) V(19) V(20) V(21) V(22) V(23) V(24) \ |
| V(25) V(26) V(27) V(28) V(29) V(30) V(31) V(32) \ |
| V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40) \ |
| V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48) \ |
| V(49) V(50) V(51) V(52) V(53) V(54) V(55) V(56) \ |
| V(57) V(58) V(59) V(60) V(61) V(62) V(63) |
| |
| #define DECLARE_IS_INT_N(N) \ |
| inline bool is_int##N(int64_t x) { return is_intn(x, N); } |
| #define DECLARE_IS_UINT_N(N) \ |
| template <class T> \ |
| inline bool is_uint##N(T x) { return is_uintn(x, N); } |
| #define DECLARE_TRUNCATE_TO_INT_N(N) \ |
| template <class T> \ |
| inline T truncate_to_int##N(T x) { return truncate_to_intn(x, N); } |
| INT_1_TO_63_LIST(DECLARE_IS_INT_N) |
| INT_1_TO_63_LIST(DECLARE_IS_UINT_N) |
| INT_1_TO_63_LIST(DECLARE_TRUNCATE_TO_INT_N) |
| #undef DECLARE_IS_INT_N |
| #undef DECLARE_IS_UINT_N |
| #undef DECLARE_TRUNCATE_TO_INT_N |
| |
| class FeedbackSlot { |
| public: |
| FeedbackSlot() : id_(kInvalidSlot) {} |
| explicit FeedbackSlot(int id) : id_(id) {} |
| |
| int ToInt() const { return id_; } |
| |
| static FeedbackSlot Invalid() { return FeedbackSlot(); } |
| bool IsInvalid() const { return id_ == kInvalidSlot; } |
| |
| bool operator==(FeedbackSlot that) const { return this->id_ == that.id_; } |
| bool operator!=(FeedbackSlot that) const { return !(*this == that); } |
| |
| friend size_t hash_value(FeedbackSlot slot) { return slot.ToInt(); } |
| friend std::ostream& operator<<(std::ostream& os, FeedbackSlot); |
| |
| private: |
| static const int kInvalidSlot = -1; |
| |
| int id_; |
| }; |
| |
| |
| class BailoutId { |
| public: |
| explicit BailoutId(int id) : id_(id) { } |
| int ToInt() const { return id_; } |
| |
| static BailoutId None() { return BailoutId(kNoneId); } |
| static BailoutId ScriptContext() { return BailoutId(kScriptContextId); } |
| static BailoutId FunctionContext() { return BailoutId(kFunctionContextId); } |
| static BailoutId FunctionEntry() { return BailoutId(kFunctionEntryId); } |
| static BailoutId Declarations() { return BailoutId(kDeclarationsId); } |
| static BailoutId FirstUsable() { return BailoutId(kFirstUsableId); } |
| static BailoutId StubEntry() { return BailoutId(kStubEntryId); } |
| |
| // Special bailout id support for deopting into the {JSConstructStub} stub. |
| // The following hard-coded deoptimization points are supported by the stub: |
| // - {ConstructStubCreate} maps to {construct_stub_create_deopt_pc_offset}. |
| // - {ConstructStubInvoke} maps to {construct_stub_invoke_deopt_pc_offset}. |
| static BailoutId ConstructStubCreate() { return BailoutId(1); } |
| static BailoutId ConstructStubInvoke() { return BailoutId(2); } |
| bool IsValidForConstructStub() const { |
| return id_ == ConstructStubCreate().ToInt() || |
| id_ == ConstructStubInvoke().ToInt(); |
| } |
| |
| bool IsNone() const { return id_ == kNoneId; } |
| bool operator==(const BailoutId& other) const { return id_ == other.id_; } |
| bool operator!=(const BailoutId& other) const { return id_ != other.id_; } |
| friend size_t hash_value(BailoutId); |
| V8_EXPORT_PRIVATE friend std::ostream& operator<<(std::ostream&, BailoutId); |
| |
| private: |
| friend class Builtins; |
| |
| static const int kNoneId = -1; |
| |
| // Using 0 could disguise errors. |
| static const int kScriptContextId = 1; |
| static const int kFunctionContextId = 2; |
| static const int kFunctionEntryId = 3; |
| |
| // This AST id identifies the point after the declarations have been visited. |
| // We need it to capture the environment effects of declarations that emit |
| // code (function declarations). |
| static const int kDeclarationsId = 4; |
| |
| // Every FunctionState starts with this id. |
| static const int kFirstUsableId = 5; |
| |
| // Every compiled stub starts with this id. |
| static const int kStubEntryId = 6; |
| |
| // Builtin continuations bailout ids start here. If you need to add a |
| // non-builtin BailoutId, add it before this id so that this Id has the |
| // highest number. |
| static const int kFirstBuiltinContinuationId = 7; |
| |
| int id_; |
| }; |
| |
| |
| // ---------------------------------------------------------------------------- |
| // I/O support. |
| |
| // Our version of printf(). |
| V8_EXPORT_PRIVATE void PRINTF_FORMAT(1, 2) PrintF(const char* format, ...); |
| void PRINTF_FORMAT(2, 3) PrintF(FILE* out, const char* format, ...); |
| |
| // Prepends the current process ID to the output. |
| void PRINTF_FORMAT(1, 2) PrintPID(const char* format, ...); |
| |
| // Prepends the current process ID and given isolate pointer to the output. |
| void PRINTF_FORMAT(2, 3) PrintIsolate(void* isolate, const char* format, ...); |
| |
| // Safe formatting print. Ensures that str is always null-terminated. |
| // Returns the number of chars written, or -1 if output was truncated. |
| int PRINTF_FORMAT(2, 3) SNPrintF(Vector<char> str, const char* format, ...); |
| V8_EXPORT_PRIVATE int PRINTF_FORMAT(2, 0) |
| VSNPrintF(Vector<char> str, const char* format, va_list args); |
| |
| void StrNCpy(Vector<char> dest, const char* src, size_t n); |
| |
| // Our version of fflush. |
| void Flush(FILE* out); |
| |
| inline void Flush() { |
| Flush(stdout); |
| } |
| |
| |
| // Read a line of characters after printing the prompt to stdout. The resulting |
| // char* needs to be disposed off with DeleteArray by the caller. |
| char* ReadLine(const char* prompt); |
| |
| |
| // Read and return the raw bytes in a file. the size of the buffer is returned |
| // in size. |
| // The returned buffer must be freed by the caller. |
| byte* ReadBytes(const char* filename, int* size, bool verbose = true); |
| |
| |
| // Append size chars from str to the file given by filename. |
| // The file is overwritten. Returns the number of chars written. |
| int AppendChars(const char* filename, |
| const char* str, |
| int size, |
| bool verbose = true); |
| |
| |
| // Write size chars from str to the file given by filename. |
| // The file is overwritten. Returns the number of chars written. |
| int WriteChars(const char* filename, |
| const char* str, |
| int size, |
| bool verbose = true); |
| |
| |
| // Write size bytes to the file given by filename. |
| // The file is overwritten. Returns the number of bytes written. |
| int WriteBytes(const char* filename, |
| const byte* bytes, |
| int size, |
| bool verbose = true); |
| |
| |
| // Write the C code |
| // const char* <varname> = "<str>"; |
| // const int <varname>_len = <len>; |
| // to the file given by filename. Only the first len chars are written. |
| int WriteAsCFile(const char* filename, const char* varname, |
| const char* str, int size, bool verbose = true); |
| |
| |
| // ---------------------------------------------------------------------------- |
| // Memory |
| |
| // Copies words from |src| to |dst|. The data spans must not overlap. |
| template <typename T> |
| inline void CopyWords(T* dst, const T* src, size_t num_words) { |
| STATIC_ASSERT(sizeof(T) == kPointerSize); |
| DCHECK(Min(dst, const_cast<T*>(src)) + num_words <= |
| Max(dst, const_cast<T*>(src))); |
| DCHECK_GT(num_words, 0); |
| |
| // Use block copying MemCopy if the segment we're copying is |
| // enough to justify the extra call/setup overhead. |
| static const size_t kBlockCopyLimit = 16; |
| |
| if (num_words < kBlockCopyLimit) { |
| do { |
| num_words--; |
| *dst++ = *src++; |
| } while (num_words > 0); |
| } else { |
| MemCopy(dst, src, num_words * kPointerSize); |
| } |
| } |
| |
| |
| // Copies words from |src| to |dst|. No restrictions. |
| template <typename T> |
| inline void MoveWords(T* dst, const T* src, size_t num_words) { |
| STATIC_ASSERT(sizeof(T) == kPointerSize); |
| DCHECK_GT(num_words, 0); |
| |
| // Use block copying MemCopy if the segment we're copying is |
| // enough to justify the extra call/setup overhead. |
| static const size_t kBlockCopyLimit = 16; |
| |
| if (num_words < kBlockCopyLimit && |
| ((dst < src) || (dst >= (src + num_words * kPointerSize)))) { |
| T* end = dst + num_words; |
| do { |
| num_words--; |
| *dst++ = *src++; |
| } while (num_words > 0); |
| } else { |
| MemMove(dst, src, num_words * kPointerSize); |
| } |
| } |
| |
| |
| // Copies data from |src| to |dst|. The data spans must not overlap. |
| template <typename T> |
| inline void CopyBytes(T* dst, const T* src, size_t num_bytes) { |
| STATIC_ASSERT(sizeof(T) == 1); |
| DCHECK(Min(dst, const_cast<T*>(src)) + num_bytes <= |
| Max(dst, const_cast<T*>(src))); |
| if (num_bytes == 0) return; |
| |
| // Use block copying MemCopy if the segment we're copying is |
| // enough to justify the extra call/setup overhead. |
| static const int kBlockCopyLimit = kMinComplexMemCopy; |
| |
| if (num_bytes < static_cast<size_t>(kBlockCopyLimit)) { |
| do { |
| num_bytes--; |
| *dst++ = *src++; |
| } while (num_bytes > 0); |
| } else { |
| MemCopy(dst, src, num_bytes); |
| } |
| } |
| |
| |
| template <typename T, typename U> |
| inline void MemsetPointer(T** dest, U* value, int counter) { |
| #ifdef DEBUG |
| T* a = nullptr; |
| U* b = nullptr; |
| a = b; // Fake assignment to check assignability. |
| USE(a); |
| #endif // DEBUG |
| #if V8_HOST_ARCH_IA32 |
| #define STOS "stosl" |
| #elif V8_HOST_ARCH_X64 |
| #if V8_HOST_ARCH_32_BIT |
| #define STOS "addr32 stosl" |
| #else |
| #define STOS "stosq" |
| #endif |
| #endif |
| |
| #if defined(MEMORY_SANITIZER) |
| // MemorySanitizer does not understand inline assembly. |
| #undef STOS |
| #endif |
| |
| #if defined(__GNUC__) && defined(STOS) |
| asm volatile( |
| "cld;" |
| "rep ; " STOS |
| : "+&c" (counter), "+&D" (dest) |
| : "a" (value) |
| : "memory", "cc"); |
| #else |
| for (int i = 0; i < counter; i++) { |
| dest[i] = value; |
| } |
| #endif |
| |
| #undef STOS |
| } |
| |
| |
| // Simple support to read a file into a 0-terminated C-string. |
| // The returned buffer must be freed by the caller. |
| // On return, *exits tells whether the file existed. |
| V8_EXPORT_PRIVATE Vector<const char> ReadFile(const char* filename, |
| bool* exists, |
| bool verbose = true); |
| Vector<const char> ReadFile(FILE* file, |
| bool* exists, |
| bool verbose = true); |
| |
| |
| template <typename sourcechar, typename sinkchar> |
| INLINE(static void CopyCharsUnsigned(sinkchar* dest, const sourcechar* src, |
| size_t chars)); |
| #if defined(V8_HOST_ARCH_ARM) |
| INLINE(void CopyCharsUnsigned(uint8_t* dest, const uint8_t* src, size_t chars)); |
| INLINE(void CopyCharsUnsigned(uint16_t* dest, const uint8_t* src, |
| size_t chars)); |
| INLINE(void CopyCharsUnsigned(uint16_t* dest, const uint16_t* src, |
| size_t chars)); |
| #elif defined(V8_HOST_ARCH_MIPS) |
| INLINE(void CopyCharsUnsigned(uint8_t* dest, const uint8_t* src, size_t chars)); |
| INLINE(void CopyCharsUnsigned(uint16_t* dest, const uint16_t* src, |
| size_t chars)); |
| #elif defined(V8_HOST_ARCH_PPC) || defined(V8_HOST_ARCH_S390) |
| INLINE(void CopyCharsUnsigned(uint8_t* dest, const uint8_t* src, size_t chars)); |
| INLINE(void CopyCharsUnsigned(uint16_t* dest, const uint16_t* src, |
| size_t chars)); |
| #endif |
| |
| // Copy from 8bit/16bit chars to 8bit/16bit chars. |
| template <typename sourcechar, typename sinkchar> |
| INLINE(void CopyChars(sinkchar* dest, const sourcechar* src, size_t chars)); |
| |
| template <typename sourcechar, typename sinkchar> |
| void CopyChars(sinkchar* dest, const sourcechar* src, size_t chars) { |
| DCHECK_LE(sizeof(sourcechar), 2); |
| DCHECK_LE(sizeof(sinkchar), 2); |
| if (sizeof(sinkchar) == 1) { |
| if (sizeof(sourcechar) == 1) { |
| CopyCharsUnsigned(reinterpret_cast<uint8_t*>(dest), |
| reinterpret_cast<const uint8_t*>(src), |
| chars); |
| } else { |
| CopyCharsUnsigned(reinterpret_cast<uint8_t*>(dest), |
| reinterpret_cast<const uint16_t*>(src), |
| chars); |
| } |
| } else { |
| if (sizeof(sourcechar) == 1) { |
| CopyCharsUnsigned(reinterpret_cast<uint16_t*>(dest), |
| reinterpret_cast<const uint8_t*>(src), |
| chars); |
| } else { |
| CopyCharsUnsigned(reinterpret_cast<uint16_t*>(dest), |
| reinterpret_cast<const uint16_t*>(src), |
| chars); |
| } |
| } |
| } |
| |
| template <typename sourcechar, typename sinkchar> |
| void CopyCharsUnsigned(sinkchar* dest, const sourcechar* src, size_t chars) { |
| sinkchar* limit = dest + chars; |
| if ((sizeof(*dest) == sizeof(*src)) && |
| (chars >= static_cast<int>(kMinComplexMemCopy / sizeof(*dest)))) { |
| MemCopy(dest, src, chars * sizeof(*dest)); |
| } else { |
| while (dest < limit) *dest++ = static_cast<sinkchar>(*src++); |
| } |
| } |
| |
| |
| #if defined(V8_HOST_ARCH_ARM) |
| void CopyCharsUnsigned(uint8_t* dest, const uint8_t* src, size_t chars) { |
| switch (static_cast<unsigned>(chars)) { |
| case 0: |
| break; |
| case 1: |
| *dest = *src; |
| break; |
| case 2: |
| memcpy(dest, src, 2); |
| break; |
| case 3: |
| memcpy(dest, src, 3); |
| break; |
| case 4: |
| memcpy(dest, src, 4); |
| break; |
| case 5: |
| memcpy(dest, src, 5); |
| break; |
| case 6: |
| memcpy(dest, src, 6); |
| break; |
| case 7: |
| memcpy(dest, src, 7); |
| break; |
| case 8: |
| memcpy(dest, src, 8); |
| break; |
| case 9: |
| memcpy(dest, src, 9); |
| break; |
| case 10: |
| memcpy(dest, src, 10); |
| break; |
| case 11: |
| memcpy(dest, src, 11); |
| break; |
| case 12: |
| memcpy(dest, src, 12); |
| break; |
| case 13: |
| memcpy(dest, src, 13); |
| break; |
| case 14: |
| memcpy(dest, src, 14); |
| break; |
| case 15: |
| memcpy(dest, src, 15); |
| break; |
| default: |
| MemCopy(dest, src, chars); |
| break; |
| } |
| } |
| |
| |
| void CopyCharsUnsigned(uint16_t* dest, const uint8_t* src, size_t chars) { |
| if (chars >= static_cast<size_t>(kMinComplexConvertMemCopy)) { |
| MemCopyUint16Uint8(dest, src, chars); |
| } else { |
| MemCopyUint16Uint8Wrapper(dest, src, chars); |
| } |
| } |
| |
| |
| void CopyCharsUnsigned(uint16_t* dest, const uint16_t* src, size_t chars) { |
| switch (static_cast<unsigned>(chars)) { |
| case 0: |
| break; |
| case 1: |
| *dest = *src; |
| break; |
| case 2: |
| memcpy(dest, src, 4); |
| break; |
| case 3: |
| memcpy(dest, src, 6); |
| break; |
| case 4: |
| memcpy(dest, src, 8); |
| break; |
| case 5: |
| memcpy(dest, src, 10); |
| break; |
| case 6: |
| memcpy(dest, src, 12); |
| break; |
| case 7: |
| memcpy(dest, src, 14); |
| break; |
| default: |
| MemCopy(dest, src, chars * sizeof(*dest)); |
| break; |
| } |
| } |
| |
| |
| #elif defined(V8_HOST_ARCH_MIPS) |
| void CopyCharsUnsigned(uint8_t* dest, const uint8_t* src, size_t chars) { |
| if (chars < kMinComplexMemCopy) { |
| memcpy(dest, src, chars); |
| } else { |
| MemCopy(dest, src, chars); |
| } |
| } |
| |
| void CopyCharsUnsigned(uint16_t* dest, const uint16_t* src, size_t chars) { |
| if (chars < kMinComplexMemCopy) { |
| memcpy(dest, src, chars * sizeof(*dest)); |
| } else { |
| MemCopy(dest, src, chars * sizeof(*dest)); |
| } |
| } |
| #elif defined(V8_HOST_ARCH_PPC) || defined(V8_HOST_ARCH_S390) |
| #define CASE(n) \ |
| case n: \ |
| memcpy(dest, src, n); \ |
| break |
| void CopyCharsUnsigned(uint8_t* dest, const uint8_t* src, size_t chars) { |
| switch (static_cast<unsigned>(chars)) { |
| case 0: |
| break; |
| case 1: |
| *dest = *src; |
| break; |
| CASE(2); |
| CASE(3); |
| CASE(4); |
| CASE(5); |
| CASE(6); |
| CASE(7); |
| CASE(8); |
| CASE(9); |
| CASE(10); |
| CASE(11); |
| CASE(12); |
| CASE(13); |
| CASE(14); |
| CASE(15); |
| CASE(16); |
| CASE(17); |
| CASE(18); |
| CASE(19); |
| CASE(20); |
| CASE(21); |
| CASE(22); |
| CASE(23); |
| CASE(24); |
| CASE(25); |
| CASE(26); |
| CASE(27); |
| CASE(28); |
| CASE(29); |
| CASE(30); |
| CASE(31); |
| CASE(32); |
| CASE(33); |
| CASE(34); |
| CASE(35); |
| CASE(36); |
| CASE(37); |
| CASE(38); |
| CASE(39); |
| CASE(40); |
| CASE(41); |
| CASE(42); |
| CASE(43); |
| CASE(44); |
| CASE(45); |
| CASE(46); |
| CASE(47); |
| CASE(48); |
| CASE(49); |
| CASE(50); |
| CASE(51); |
| CASE(52); |
| CASE(53); |
| CASE(54); |
| CASE(55); |
| CASE(56); |
| CASE(57); |
| CASE(58); |
| CASE(59); |
| CASE(60); |
| CASE(61); |
| CASE(62); |
| CASE(63); |
| CASE(64); |
| default: |
| memcpy(dest, src, chars); |
| break; |
| } |
| } |
| #undef CASE |
| |
| #define CASE(n) \ |
| case n: \ |
| memcpy(dest, src, n * 2); \ |
| break |
| void CopyCharsUnsigned(uint16_t* dest, const uint16_t* src, size_t chars) { |
| switch (static_cast<unsigned>(chars)) { |
| case 0: |
| break; |
| case 1: |
| *dest = *src; |
| break; |
| CASE(2); |
| CASE(3); |
| CASE(4); |
| CASE(5); |
| CASE(6); |
| CASE(7); |
| CASE(8); |
| CASE(9); |
| CASE(10); |
| CASE(11); |
| CASE(12); |
| CASE(13); |
| CASE(14); |
| CASE(15); |
| CASE(16); |
| CASE(17); |
| CASE(18); |
| CASE(19); |
| CASE(20); |
| CASE(21); |
| CASE(22); |
| CASE(23); |
| CASE(24); |
| CASE(25); |
| CASE(26); |
| CASE(27); |
| CASE(28); |
| CASE(29); |
| CASE(30); |
| CASE(31); |
| CASE(32); |
| default: |
| memcpy(dest, src, chars * 2); |
| break; |
| } |
| } |
| #undef CASE |
| #endif |
| |
| |
| class StringBuilder : public SimpleStringBuilder { |
| public: |
| explicit StringBuilder(int size) : SimpleStringBuilder(size) { } |
| StringBuilder(char* buffer, int size) : SimpleStringBuilder(buffer, size) { } |
| |
| // Add formatted contents to the builder just like printf(). |
| void PRINTF_FORMAT(2, 3) AddFormatted(const char* format, ...); |
| |
| // Add formatted contents like printf based on a va_list. |
| void PRINTF_FORMAT(2, 0) AddFormattedList(const char* format, va_list list); |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder); |
| }; |
| |
| |
| bool DoubleToBoolean(double d); |
| |
| template <typename Stream> |
| bool StringToArrayIndex(Stream* stream, uint32_t* index); |
| |
| // Returns current value of top of the stack. Works correctly with ASAN. |
| DISABLE_ASAN |
| inline uintptr_t GetCurrentStackPosition() { |
| // Takes the address of the limit variable in order to find out where |
| // the top of stack is right now. |
| uintptr_t limit = reinterpret_cast<uintptr_t>(&limit); |
| return limit; |
| } |
| |
| template <typename V> |
| static inline V ReadUnalignedValue(const void* p) { |
| #if !(V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM) |
| return *reinterpret_cast<const V*>(p); |
| #else // V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM |
| V r; |
| memmove(&r, p, sizeof(V)); |
| return r; |
| #endif // V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM |
| } |
| |
| template <typename V> |
| static inline void WriteUnalignedValue(void* p, V value) { |
| #if !(V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM) |
| *(reinterpret_cast<V*>(p)) = value; |
| #else // V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM |
| memmove(p, &value, sizeof(V)); |
| #endif // V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM |
| } |
| |
| static inline double ReadFloatValue(const void* p) { |
| return ReadUnalignedValue<float>(p); |
| } |
| |
| static inline double ReadDoubleValue(const void* p) { |
| return ReadUnalignedValue<double>(p); |
| } |
| |
| static inline void WriteDoubleValue(void* p, double value) { |
| WriteUnalignedValue(p, value); |
| } |
| |
| static inline uint16_t ReadUnalignedUInt16(const void* p) { |
| return ReadUnalignedValue<uint16_t>(p); |
| } |
| |
| static inline void WriteUnalignedUInt16(void* p, uint16_t value) { |
| WriteUnalignedValue(p, value); |
| } |
| |
| static inline uint32_t ReadUnalignedUInt32(const void* p) { |
| return ReadUnalignedValue<uint32_t>(p); |
| } |
| |
| static inline void WriteUnalignedUInt32(void* p, uint32_t value) { |
| WriteUnalignedValue(p, value); |
| } |
| |
| template <typename V> |
| static inline V ReadLittleEndianValue(const void* p) { |
| #if defined(V8_TARGET_LITTLE_ENDIAN) |
| return ReadUnalignedValue<V>(p); |
| #elif defined(V8_TARGET_BIG_ENDIAN) |
| V ret = 0; |
| const byte* src = reinterpret_cast<const byte*>(p); |
| byte* dst = reinterpret_cast<byte*>(&ret); |
| for (size_t i = 0; i < sizeof(V); i++) { |
| dst[i] = src[sizeof(V) - i - 1]; |
| } |
| return ret; |
| #endif // V8_TARGET_LITTLE_ENDIAN |
| } |
| |
| template <typename V> |
| static inline void WriteLittleEndianValue(void* p, V value) { |
| #if defined(V8_TARGET_LITTLE_ENDIAN) |
| WriteUnalignedValue<V>(p, value); |
| #elif defined(V8_TARGET_BIG_ENDIAN) |
| byte* src = reinterpret_cast<byte*>(&value); |
| byte* dst = reinterpret_cast<byte*>(p); |
| for (size_t i = 0; i < sizeof(V); i++) { |
| dst[i] = src[sizeof(V) - i - 1]; |
| } |
| #endif // V8_TARGET_LITTLE_ENDIAN |
| } |
| |
| // Represents a linked list that threads through the nodes in the linked list. |
| // Entries in the list are pointers to nodes. The nodes need to have a T** |
| // next() method that returns the location where the next value is stored. |
| template <typename T> |
| class ThreadedList final { |
| public: |
| ThreadedList() : head_(nullptr), tail_(&head_) {} |
| void Add(T* v) { |
| DCHECK_NULL(*tail_); |
| DCHECK_NULL(*v->next()); |
| *tail_ = v; |
| tail_ = v->next(); |
| } |
| |
| void Clear() { |
| head_ = nullptr; |
| tail_ = &head_; |
| } |
| |
| class Iterator final { |
| public: |
| Iterator& operator++() { |
| entry_ = (*entry_)->next(); |
| return *this; |
| } |
| bool operator!=(const Iterator& other) { return entry_ != other.entry_; } |
| T* operator*() { return *entry_; } |
| T* operator->() { return *entry_; } |
| Iterator& operator=(T* entry) { |
| T* next = *(*entry_)->next(); |
| *entry->next() = next; |
| *entry_ = entry; |
| return *this; |
| } |
| |
| private: |
| explicit Iterator(T** entry) : entry_(entry) {} |
| |
| T** entry_; |
| |
| friend class ThreadedList; |
| }; |
| |
| class ConstIterator final { |
| public: |
| ConstIterator& operator++() { |
| entry_ = (*entry_)->next(); |
| return *this; |
| } |
| bool operator!=(const ConstIterator& other) { |
| return entry_ != other.entry_; |
| } |
| const T* operator*() const { return *entry_; } |
| |
| private: |
| explicit ConstIterator(T* const* entry) : entry_(entry) {} |
| |
| T* const* entry_; |
| |
| friend class ThreadedList; |
| }; |
| |
| Iterator begin() { return Iterator(&head_); } |
| Iterator end() { return Iterator(tail_); } |
| |
| ConstIterator begin() const { return ConstIterator(&head_); } |
| ConstIterator end() const { return ConstIterator(tail_); } |
| |
| void Rewind(Iterator reset_point) { |
| tail_ = reset_point.entry_; |
| *tail_ = nullptr; |
| } |
| |
| void MoveTail(ThreadedList<T>* parent, Iterator location) { |
| if (parent->end() != location) { |
| DCHECK_NULL(*tail_); |
| *tail_ = *location; |
| tail_ = parent->tail_; |
| parent->Rewind(location); |
| } |
| } |
| |
| bool is_empty() const { return head_ == nullptr; } |
| |
| // Slow. For testing purposes. |
| int LengthForTest() { |
| int result = 0; |
| for (Iterator t = begin(); t != end(); ++t) ++result; |
| return result; |
| } |
| T* AtForTest(int i) { |
| Iterator t = begin(); |
| while (i-- > 0) ++t; |
| return *t; |
| } |
| |
| private: |
| T* head_; |
| T** tail_; |
| DISALLOW_COPY_AND_ASSIGN(ThreadedList); |
| }; |
| |
| // Can be used to create a threaded list of |T|. |
| template <typename T> |
| class ThreadedListZoneEntry final : public ZoneObject { |
| public: |
| explicit ThreadedListZoneEntry(T value) : value_(value), next_(nullptr) {} |
| |
| T value() { return value_; } |
| ThreadedListZoneEntry<T>** next() { return &next_; } |
| |
| private: |
| T value_; |
| ThreadedListZoneEntry<T>* next_; |
| DISALLOW_COPY_AND_ASSIGN(ThreadedListZoneEntry); |
| }; |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_UTILS_H_ |