| // Copyright 2016 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include <atomic> |
| #include <type_traits> |
| |
| #include "src/wasm/wasm-interpreter.h" |
| |
| #include "src/assembler-inl.h" |
| #include "src/boxed-float.h" |
| #include "src/compiler/wasm-compiler.h" |
| #include "src/conversions.h" |
| #include "src/identity-map.h" |
| #include "src/objects-inl.h" |
| #include "src/trap-handler/trap-handler.h" |
| #include "src/utils.h" |
| #include "src/wasm/decoder.h" |
| #include "src/wasm/function-body-decoder-impl.h" |
| #include "src/wasm/function-body-decoder.h" |
| #include "src/wasm/memory-tracing.h" |
| #include "src/wasm/wasm-engine.h" |
| #include "src/wasm/wasm-external-refs.h" |
| #include "src/wasm/wasm-limits.h" |
| #include "src/wasm/wasm-module.h" |
| #include "src/wasm/wasm-objects-inl.h" |
| |
| #include "src/zone/accounting-allocator.h" |
| #include "src/zone/zone-containers.h" |
| |
| namespace v8 { |
| namespace internal { |
| namespace wasm { |
| |
| #define TRACE(...) \ |
| do { \ |
| if (FLAG_trace_wasm_interpreter) PrintF(__VA_ARGS__); \ |
| } while (false) |
| |
| #define FOREACH_INTERNAL_OPCODE(V) V(Breakpoint, 0xFF) |
| |
| #define WASM_CTYPES(V) \ |
| V(I32, int32_t) V(I64, int64_t) V(F32, float) V(F64, double) |
| |
| #define FOREACH_SIMPLE_BINOP(V) \ |
| V(I32Add, uint32_t, +) \ |
| V(I32Sub, uint32_t, -) \ |
| V(I32Mul, uint32_t, *) \ |
| V(I32And, uint32_t, &) \ |
| V(I32Ior, uint32_t, |) \ |
| V(I32Xor, uint32_t, ^) \ |
| V(I32Eq, uint32_t, ==) \ |
| V(I32Ne, uint32_t, !=) \ |
| V(I32LtU, uint32_t, <) \ |
| V(I32LeU, uint32_t, <=) \ |
| V(I32GtU, uint32_t, >) \ |
| V(I32GeU, uint32_t, >=) \ |
| V(I32LtS, int32_t, <) \ |
| V(I32LeS, int32_t, <=) \ |
| V(I32GtS, int32_t, >) \ |
| V(I32GeS, int32_t, >=) \ |
| V(I64Add, uint64_t, +) \ |
| V(I64Sub, uint64_t, -) \ |
| V(I64Mul, uint64_t, *) \ |
| V(I64And, uint64_t, &) \ |
| V(I64Ior, uint64_t, |) \ |
| V(I64Xor, uint64_t, ^) \ |
| V(I64Eq, uint64_t, ==) \ |
| V(I64Ne, uint64_t, !=) \ |
| V(I64LtU, uint64_t, <) \ |
| V(I64LeU, uint64_t, <=) \ |
| V(I64GtU, uint64_t, >) \ |
| V(I64GeU, uint64_t, >=) \ |
| V(I64LtS, int64_t, <) \ |
| V(I64LeS, int64_t, <=) \ |
| V(I64GtS, int64_t, >) \ |
| V(I64GeS, int64_t, >=) \ |
| V(F32Add, float, +) \ |
| V(F32Sub, float, -) \ |
| V(F32Eq, float, ==) \ |
| V(F32Ne, float, !=) \ |
| V(F32Lt, float, <) \ |
| V(F32Le, float, <=) \ |
| V(F32Gt, float, >) \ |
| V(F32Ge, float, >=) \ |
| V(F64Add, double, +) \ |
| V(F64Sub, double, -) \ |
| V(F64Eq, double, ==) \ |
| V(F64Ne, double, !=) \ |
| V(F64Lt, double, <) \ |
| V(F64Le, double, <=) \ |
| V(F64Gt, double, >) \ |
| V(F64Ge, double, >=) \ |
| V(F32Mul, float, *) \ |
| V(F64Mul, double, *) \ |
| V(F32Div, float, /) \ |
| V(F64Div, double, /) |
| |
| #define FOREACH_OTHER_BINOP(V) \ |
| V(I32DivS, int32_t) \ |
| V(I32DivU, uint32_t) \ |
| V(I32RemS, int32_t) \ |
| V(I32RemU, uint32_t) \ |
| V(I32Shl, uint32_t) \ |
| V(I32ShrU, uint32_t) \ |
| V(I32ShrS, int32_t) \ |
| V(I64DivS, int64_t) \ |
| V(I64DivU, uint64_t) \ |
| V(I64RemS, int64_t) \ |
| V(I64RemU, uint64_t) \ |
| V(I64Shl, uint64_t) \ |
| V(I64ShrU, uint64_t) \ |
| V(I64ShrS, int64_t) \ |
| V(I32Ror, int32_t) \ |
| V(I32Rol, int32_t) \ |
| V(I64Ror, int64_t) \ |
| V(I64Rol, int64_t) \ |
| V(F32Min, float) \ |
| V(F32Max, float) \ |
| V(F64Min, double) \ |
| V(F64Max, double) \ |
| V(I32AsmjsDivS, int32_t) \ |
| V(I32AsmjsDivU, uint32_t) \ |
| V(I32AsmjsRemS, int32_t) \ |
| V(I32AsmjsRemU, uint32_t) \ |
| V(F32CopySign, Float32) \ |
| V(F64CopySign, Float64) |
| |
| #define FOREACH_I32CONV_FLOATOP(V) \ |
| V(I32SConvertF32, int32_t, float) \ |
| V(I32SConvertF64, int32_t, double) \ |
| V(I32UConvertF32, uint32_t, float) \ |
| V(I32UConvertF64, uint32_t, double) |
| |
| #define FOREACH_OTHER_UNOP(V) \ |
| V(I32Clz, uint32_t) \ |
| V(I32Ctz, uint32_t) \ |
| V(I32Popcnt, uint32_t) \ |
| V(I32Eqz, uint32_t) \ |
| V(I64Clz, uint64_t) \ |
| V(I64Ctz, uint64_t) \ |
| V(I64Popcnt, uint64_t) \ |
| V(I64Eqz, uint64_t) \ |
| V(F32Abs, Float32) \ |
| V(F32Neg, Float32) \ |
| V(F32Ceil, float) \ |
| V(F32Floor, float) \ |
| V(F32Trunc, float) \ |
| V(F32NearestInt, float) \ |
| V(F64Abs, Float64) \ |
| V(F64Neg, Float64) \ |
| V(F64Ceil, double) \ |
| V(F64Floor, double) \ |
| V(F64Trunc, double) \ |
| V(F64NearestInt, double) \ |
| V(I32ConvertI64, int64_t) \ |
| V(I64SConvertF32, float) \ |
| V(I64SConvertF64, double) \ |
| V(I64UConvertF32, float) \ |
| V(I64UConvertF64, double) \ |
| V(I64SConvertI32, int32_t) \ |
| V(I64UConvertI32, uint32_t) \ |
| V(F32SConvertI32, int32_t) \ |
| V(F32UConvertI32, uint32_t) \ |
| V(F32SConvertI64, int64_t) \ |
| V(F32UConvertI64, uint64_t) \ |
| V(F32ConvertF64, double) \ |
| V(F32ReinterpretI32, int32_t) \ |
| V(F64SConvertI32, int32_t) \ |
| V(F64UConvertI32, uint32_t) \ |
| V(F64SConvertI64, int64_t) \ |
| V(F64UConvertI64, uint64_t) \ |
| V(F64ConvertF32, float) \ |
| V(F64ReinterpretI64, int64_t) \ |
| V(I32AsmjsSConvertF32, float) \ |
| V(I32AsmjsUConvertF32, float) \ |
| V(I32AsmjsSConvertF64, double) \ |
| V(I32AsmjsUConvertF64, double) \ |
| V(F32Sqrt, float) \ |
| V(F64Sqrt, double) |
| |
| namespace { |
| |
| constexpr uint32_t kFloat32SignBitMask = uint32_t{1} << 31; |
| constexpr uint64_t kFloat64SignBitMask = uint64_t{1} << 63; |
| |
| inline int32_t ExecuteI32DivS(int32_t a, int32_t b, TrapReason* trap) { |
| if (b == 0) { |
| *trap = kTrapDivByZero; |
| return 0; |
| } |
| if (b == -1 && a == std::numeric_limits<int32_t>::min()) { |
| *trap = kTrapDivUnrepresentable; |
| return 0; |
| } |
| return a / b; |
| } |
| |
| inline uint32_t ExecuteI32DivU(uint32_t a, uint32_t b, TrapReason* trap) { |
| if (b == 0) { |
| *trap = kTrapDivByZero; |
| return 0; |
| } |
| return a / b; |
| } |
| |
| inline int32_t ExecuteI32RemS(int32_t a, int32_t b, TrapReason* trap) { |
| if (b == 0) { |
| *trap = kTrapRemByZero; |
| return 0; |
| } |
| if (b == -1) return 0; |
| return a % b; |
| } |
| |
| inline uint32_t ExecuteI32RemU(uint32_t a, uint32_t b, TrapReason* trap) { |
| if (b == 0) { |
| *trap = kTrapRemByZero; |
| return 0; |
| } |
| return a % b; |
| } |
| |
| inline uint32_t ExecuteI32Shl(uint32_t a, uint32_t b, TrapReason* trap) { |
| return a << (b & 0x1F); |
| } |
| |
| inline uint32_t ExecuteI32ShrU(uint32_t a, uint32_t b, TrapReason* trap) { |
| return a >> (b & 0x1F); |
| } |
| |
| inline int32_t ExecuteI32ShrS(int32_t a, int32_t b, TrapReason* trap) { |
| return a >> (b & 0x1F); |
| } |
| |
| inline int64_t ExecuteI64DivS(int64_t a, int64_t b, TrapReason* trap) { |
| if (b == 0) { |
| *trap = kTrapDivByZero; |
| return 0; |
| } |
| if (b == -1 && a == std::numeric_limits<int64_t>::min()) { |
| *trap = kTrapDivUnrepresentable; |
| return 0; |
| } |
| return a / b; |
| } |
| |
| inline uint64_t ExecuteI64DivU(uint64_t a, uint64_t b, TrapReason* trap) { |
| if (b == 0) { |
| *trap = kTrapDivByZero; |
| return 0; |
| } |
| return a / b; |
| } |
| |
| inline int64_t ExecuteI64RemS(int64_t a, int64_t b, TrapReason* trap) { |
| if (b == 0) { |
| *trap = kTrapRemByZero; |
| return 0; |
| } |
| if (b == -1) return 0; |
| return a % b; |
| } |
| |
| inline uint64_t ExecuteI64RemU(uint64_t a, uint64_t b, TrapReason* trap) { |
| if (b == 0) { |
| *trap = kTrapRemByZero; |
| return 0; |
| } |
| return a % b; |
| } |
| |
| inline uint64_t ExecuteI64Shl(uint64_t a, uint64_t b, TrapReason* trap) { |
| return a << (b & 0x3F); |
| } |
| |
| inline uint64_t ExecuteI64ShrU(uint64_t a, uint64_t b, TrapReason* trap) { |
| return a >> (b & 0x3F); |
| } |
| |
| inline int64_t ExecuteI64ShrS(int64_t a, int64_t b, TrapReason* trap) { |
| return a >> (b & 0x3F); |
| } |
| |
| inline uint32_t ExecuteI32Ror(uint32_t a, uint32_t b, TrapReason* trap) { |
| uint32_t shift = (b & 0x1F); |
| return (a >> shift) | (a << (32 - shift)); |
| } |
| |
| inline uint32_t ExecuteI32Rol(uint32_t a, uint32_t b, TrapReason* trap) { |
| uint32_t shift = (b & 0x1F); |
| return (a << shift) | (a >> (32 - shift)); |
| } |
| |
| inline uint64_t ExecuteI64Ror(uint64_t a, uint64_t b, TrapReason* trap) { |
| uint32_t shift = (b & 0x3F); |
| return (a >> shift) | (a << (64 - shift)); |
| } |
| |
| inline uint64_t ExecuteI64Rol(uint64_t a, uint64_t b, TrapReason* trap) { |
| uint32_t shift = (b & 0x3F); |
| return (a << shift) | (a >> (64 - shift)); |
| } |
| |
| inline float ExecuteF32Min(float a, float b, TrapReason* trap) { |
| return JSMin(a, b); |
| } |
| |
| inline float ExecuteF32Max(float a, float b, TrapReason* trap) { |
| return JSMax(a, b); |
| } |
| |
| inline Float32 ExecuteF32CopySign(Float32 a, Float32 b, TrapReason* trap) { |
| return Float32::FromBits((a.get_bits() & ~kFloat32SignBitMask) | |
| (b.get_bits() & kFloat32SignBitMask)); |
| } |
| |
| inline double ExecuteF64Min(double a, double b, TrapReason* trap) { |
| return JSMin(a, b); |
| } |
| |
| inline double ExecuteF64Max(double a, double b, TrapReason* trap) { |
| return JSMax(a, b); |
| } |
| |
| inline Float64 ExecuteF64CopySign(Float64 a, Float64 b, TrapReason* trap) { |
| return Float64::FromBits((a.get_bits() & ~kFloat64SignBitMask) | |
| (b.get_bits() & kFloat64SignBitMask)); |
| } |
| |
| inline int32_t ExecuteI32AsmjsDivS(int32_t a, int32_t b, TrapReason* trap) { |
| if (b == 0) return 0; |
| if (b == -1 && a == std::numeric_limits<int32_t>::min()) { |
| return std::numeric_limits<int32_t>::min(); |
| } |
| return a / b; |
| } |
| |
| inline uint32_t ExecuteI32AsmjsDivU(uint32_t a, uint32_t b, TrapReason* trap) { |
| if (b == 0) return 0; |
| return a / b; |
| } |
| |
| inline int32_t ExecuteI32AsmjsRemS(int32_t a, int32_t b, TrapReason* trap) { |
| if (b == 0) return 0; |
| if (b == -1) return 0; |
| return a % b; |
| } |
| |
| inline uint32_t ExecuteI32AsmjsRemU(uint32_t a, uint32_t b, TrapReason* trap) { |
| if (b == 0) return 0; |
| return a % b; |
| } |
| |
| inline int32_t ExecuteI32AsmjsSConvertF32(float a, TrapReason* trap) { |
| return DoubleToInt32(a); |
| } |
| |
| inline uint32_t ExecuteI32AsmjsUConvertF32(float a, TrapReason* trap) { |
| return DoubleToUint32(a); |
| } |
| |
| inline int32_t ExecuteI32AsmjsSConvertF64(double a, TrapReason* trap) { |
| return DoubleToInt32(a); |
| } |
| |
| inline uint32_t ExecuteI32AsmjsUConvertF64(double a, TrapReason* trap) { |
| return DoubleToUint32(a); |
| } |
| |
| int32_t ExecuteI32Clz(uint32_t val, TrapReason* trap) { |
| return base::bits::CountLeadingZeros(val); |
| } |
| |
| uint32_t ExecuteI32Ctz(uint32_t val, TrapReason* trap) { |
| return base::bits::CountTrailingZeros(val); |
| } |
| |
| uint32_t ExecuteI32Popcnt(uint32_t val, TrapReason* trap) { |
| return word32_popcnt_wrapper(&val); |
| } |
| |
| inline uint32_t ExecuteI32Eqz(uint32_t val, TrapReason* trap) { |
| return val == 0 ? 1 : 0; |
| } |
| |
| int64_t ExecuteI64Clz(uint64_t val, TrapReason* trap) { |
| return base::bits::CountLeadingZeros(val); |
| } |
| |
| inline uint64_t ExecuteI64Ctz(uint64_t val, TrapReason* trap) { |
| return base::bits::CountTrailingZeros(val); |
| } |
| |
| inline int64_t ExecuteI64Popcnt(uint64_t val, TrapReason* trap) { |
| return word64_popcnt_wrapper(&val); |
| } |
| |
| inline int32_t ExecuteI64Eqz(uint64_t val, TrapReason* trap) { |
| return val == 0 ? 1 : 0; |
| } |
| |
| inline Float32 ExecuteF32Abs(Float32 a, TrapReason* trap) { |
| return Float32::FromBits(a.get_bits() & ~kFloat32SignBitMask); |
| } |
| |
| inline Float32 ExecuteF32Neg(Float32 a, TrapReason* trap) { |
| return Float32::FromBits(a.get_bits() ^ kFloat32SignBitMask); |
| } |
| |
| inline float ExecuteF32Ceil(float a, TrapReason* trap) { return ceilf(a); } |
| |
| inline float ExecuteF32Floor(float a, TrapReason* trap) { return floorf(a); } |
| |
| inline float ExecuteF32Trunc(float a, TrapReason* trap) { return truncf(a); } |
| |
| inline float ExecuteF32NearestInt(float a, TrapReason* trap) { |
| return nearbyintf(a); |
| } |
| |
| inline float ExecuteF32Sqrt(float a, TrapReason* trap) { |
| float result = sqrtf(a); |
| return result; |
| } |
| |
| inline Float64 ExecuteF64Abs(Float64 a, TrapReason* trap) { |
| return Float64::FromBits(a.get_bits() & ~kFloat64SignBitMask); |
| } |
| |
| inline Float64 ExecuteF64Neg(Float64 a, TrapReason* trap) { |
| return Float64::FromBits(a.get_bits() ^ kFloat64SignBitMask); |
| } |
| |
| inline double ExecuteF64Ceil(double a, TrapReason* trap) { return ceil(a); } |
| |
| inline double ExecuteF64Floor(double a, TrapReason* trap) { return floor(a); } |
| |
| inline double ExecuteF64Trunc(double a, TrapReason* trap) { return trunc(a); } |
| |
| inline double ExecuteF64NearestInt(double a, TrapReason* trap) { |
| return nearbyint(a); |
| } |
| |
| inline double ExecuteF64Sqrt(double a, TrapReason* trap) { return sqrt(a); } |
| |
| template <typename int_type, typename float_type> |
| int_type ExecuteConvert(float_type a, TrapReason* trap) { |
| if (is_inbounds<int_type>(a)) { |
| return static_cast<int_type>(a); |
| } |
| *trap = kTrapFloatUnrepresentable; |
| return 0; |
| } |
| |
| template <typename int_type, typename float_type> |
| int_type ExecuteConvertSaturate(float_type a) { |
| TrapReason base_trap = kTrapCount; |
| int32_t val = ExecuteConvert<int_type>(a, &base_trap); |
| if (base_trap == kTrapCount) { |
| return val; |
| } |
| return std::isnan(a) ? 0 |
| : (a < static_cast<float_type>(0.0) |
| ? std::numeric_limits<int_type>::min() |
| : std::numeric_limits<int_type>::max()); |
| } |
| |
| inline uint32_t ExecuteI32ConvertI64(int64_t a, TrapReason* trap) { |
| return static_cast<uint32_t>(a & 0xFFFFFFFF); |
| } |
| |
| int64_t ExecuteI64SConvertF32(float a, TrapReason* trap) { |
| int64_t output; |
| if (!float32_to_int64_wrapper(&a, &output)) { |
| *trap = kTrapFloatUnrepresentable; |
| } |
| return output; |
| } |
| |
| int64_t ExecuteI64SConvertF64(double a, TrapReason* trap) { |
| int64_t output; |
| if (!float64_to_int64_wrapper(&a, &output)) { |
| *trap = kTrapFloatUnrepresentable; |
| } |
| return output; |
| } |
| |
| uint64_t ExecuteI64UConvertF32(float a, TrapReason* trap) { |
| uint64_t output; |
| if (!float32_to_uint64_wrapper(&a, &output)) { |
| *trap = kTrapFloatUnrepresentable; |
| } |
| return output; |
| } |
| |
| uint64_t ExecuteI64UConvertF64(double a, TrapReason* trap) { |
| uint64_t output; |
| if (!float64_to_uint64_wrapper(&a, &output)) { |
| *trap = kTrapFloatUnrepresentable; |
| } |
| return output; |
| } |
| |
| inline int64_t ExecuteI64SConvertI32(int32_t a, TrapReason* trap) { |
| return static_cast<int64_t>(a); |
| } |
| |
| inline int64_t ExecuteI64UConvertI32(uint32_t a, TrapReason* trap) { |
| return static_cast<uint64_t>(a); |
| } |
| |
| inline float ExecuteF32SConvertI32(int32_t a, TrapReason* trap) { |
| return static_cast<float>(a); |
| } |
| |
| inline float ExecuteF32UConvertI32(uint32_t a, TrapReason* trap) { |
| return static_cast<float>(a); |
| } |
| |
| inline float ExecuteF32SConvertI64(int64_t a, TrapReason* trap) { |
| float output; |
| int64_to_float32_wrapper(&a, &output); |
| return output; |
| } |
| |
| inline float ExecuteF32UConvertI64(uint64_t a, TrapReason* trap) { |
| float output; |
| uint64_to_float32_wrapper(&a, &output); |
| return output; |
| } |
| |
| inline float ExecuteF32ConvertF64(double a, TrapReason* trap) { |
| return static_cast<float>(a); |
| } |
| |
| inline Float32 ExecuteF32ReinterpretI32(int32_t a, TrapReason* trap) { |
| return Float32::FromBits(a); |
| } |
| |
| inline double ExecuteF64SConvertI32(int32_t a, TrapReason* trap) { |
| return static_cast<double>(a); |
| } |
| |
| inline double ExecuteF64UConvertI32(uint32_t a, TrapReason* trap) { |
| return static_cast<double>(a); |
| } |
| |
| inline double ExecuteF64SConvertI64(int64_t a, TrapReason* trap) { |
| double output; |
| int64_to_float64_wrapper(&a, &output); |
| return output; |
| } |
| |
| inline double ExecuteF64UConvertI64(uint64_t a, TrapReason* trap) { |
| double output; |
| uint64_to_float64_wrapper(&a, &output); |
| return output; |
| } |
| |
| inline double ExecuteF64ConvertF32(float a, TrapReason* trap) { |
| return static_cast<double>(a); |
| } |
| |
| inline Float64 ExecuteF64ReinterpretI64(int64_t a, TrapReason* trap) { |
| return Float64::FromBits(a); |
| } |
| |
| inline int32_t ExecuteI32ReinterpretF32(WasmValue a) { |
| return a.to_f32_boxed().get_bits(); |
| } |
| |
| inline int64_t ExecuteI64ReinterpretF64(WasmValue a) { |
| return a.to_f64_boxed().get_bits(); |
| } |
| |
| enum InternalOpcode { |
| #define DECL_INTERNAL_ENUM(name, value) kInternal##name = value, |
| FOREACH_INTERNAL_OPCODE(DECL_INTERNAL_ENUM) |
| #undef DECL_INTERNAL_ENUM |
| }; |
| |
| const char* OpcodeName(uint32_t val) { |
| switch (val) { |
| #define DECL_INTERNAL_CASE(name, value) \ |
| case kInternal##name: \ |
| return "Internal" #name; |
| FOREACH_INTERNAL_OPCODE(DECL_INTERNAL_CASE) |
| #undef DECL_INTERNAL_CASE |
| } |
| return WasmOpcodes::OpcodeName(static_cast<WasmOpcode>(val)); |
| } |
| |
| // Unwrap a wasm to js wrapper, return the callable heap object. |
| // If the wrapper would throw a TypeError, return a null handle. |
| Handle<HeapObject> UnwrapWasmToJSWrapper(Isolate* isolate, |
| WasmCodeWrapper wrapper) { |
| Handle<FixedArray> js_imports_table; |
| int index = 0; |
| if (wrapper.IsCodeObject()) { |
| Handle<Code> js_wrapper = wrapper.GetCode(); |
| DCHECK(Code::WASM_TO_JS_FUNCTION == js_wrapper->kind()); |
| Handle<FixedArray> deopt_data(js_wrapper->deoptimization_data(), isolate); |
| DCHECK_EQ(2, deopt_data->length()); |
| intptr_t js_imports_table_loc = static_cast<intptr_t>( |
| HeapNumber::cast(deopt_data->get(0))->value_as_bits()); |
| js_imports_table = Handle<FixedArray>( |
| reinterpret_cast<FixedArray**>(js_imports_table_loc)); |
| CHECK(deopt_data->get(1)->ToInt32(&index)); |
| DCHECK_GT(js_imports_table->length(), index); |
| } else { |
| const wasm::WasmCode* wasm_code = wrapper.GetWasmCode(); |
| DCHECK_EQ(wasm::WasmCode::kWasmToJsWrapper, wasm_code->kind()); |
| js_imports_table = Handle<FixedArray>(wasm_code->owner() |
| ->compiled_module() |
| ->owning_instance() |
| ->js_imports_table()); |
| index = 1 + 3 * static_cast<int>(wasm_code->index()); |
| } |
| Handle<Object> obj(js_imports_table->get(index), isolate); |
| if (obj->IsCallable()) { |
| return Handle<HeapObject>::cast(obj); |
| } else { |
| // If we did not find a callable object, this is an illegal JS import and |
| // obj must be undefined. |
| DCHECK(obj->IsUndefined(isolate)); |
| return Handle<HeapObject>::null(); |
| } |
| } |
| |
| class SideTable; |
| |
| // Code and metadata needed to execute a function. |
| struct InterpreterCode { |
| const WasmFunction* function; // wasm function |
| BodyLocalDecls locals; // local declarations |
| const byte* orig_start; // start of original code |
| const byte* orig_end; // end of original code |
| byte* start; // start of (maybe altered) code |
| byte* end; // end of (maybe altered) code |
| SideTable* side_table; // precomputed side table for control flow. |
| |
| const byte* at(pc_t pc) { return start + pc; } |
| }; |
| |
| // A helper class to compute the control transfers for each bytecode offset. |
| // Control transfers allow Br, BrIf, BrTable, If, Else, and End bytecodes to |
| // be directly executed without the need to dynamically track blocks. |
| class SideTable : public ZoneObject { |
| public: |
| ControlTransferMap map_; |
| uint32_t max_stack_height_; |
| |
| SideTable(Zone* zone, const WasmModule* module, InterpreterCode* code) |
| : map_(zone), max_stack_height_(0) { |
| // Create a zone for all temporary objects. |
| Zone control_transfer_zone(zone->allocator(), ZONE_NAME); |
| |
| // Represents a control flow label. |
| class CLabel : public ZoneObject { |
| explicit CLabel(Zone* zone, uint32_t target_stack_height, uint32_t arity) |
| : target(nullptr), |
| target_stack_height(target_stack_height), |
| arity(arity), |
| refs(zone) {} |
| |
| public: |
| struct Ref { |
| const byte* from_pc; |
| const uint32_t stack_height; |
| }; |
| const byte* target; |
| uint32_t target_stack_height; |
| // Arity when branching to this label. |
| const uint32_t arity; |
| ZoneVector<Ref> refs; |
| |
| static CLabel* New(Zone* zone, uint32_t stack_height, uint32_t arity) { |
| return new (zone) CLabel(zone, stack_height, arity); |
| } |
| |
| // Bind this label to the given PC. |
| void Bind(const byte* pc) { |
| DCHECK_NULL(target); |
| target = pc; |
| } |
| |
| // Reference this label from the given location. |
| void Ref(const byte* from_pc, uint32_t stack_height) { |
| // Target being bound before a reference means this is a loop. |
| DCHECK_IMPLIES(target, *target == kExprLoop); |
| refs.push_back({from_pc, stack_height}); |
| } |
| |
| void Finish(ControlTransferMap* map, const byte* start) { |
| DCHECK_NOT_NULL(target); |
| for (auto ref : refs) { |
| size_t offset = static_cast<size_t>(ref.from_pc - start); |
| auto pcdiff = static_cast<pcdiff_t>(target - ref.from_pc); |
| DCHECK_GE(ref.stack_height, target_stack_height); |
| spdiff_t spdiff = |
| static_cast<spdiff_t>(ref.stack_height - target_stack_height); |
| TRACE("control transfer @%zu: Δpc %d, stack %u->%u = -%u\n", offset, |
| pcdiff, ref.stack_height, target_stack_height, spdiff); |
| ControlTransferEntry& entry = (*map)[offset]; |
| entry.pc_diff = pcdiff; |
| entry.sp_diff = spdiff; |
| entry.target_arity = arity; |
| } |
| } |
| }; |
| |
| // An entry in the control stack. |
| struct Control { |
| const byte* pc; |
| CLabel* end_label; |
| CLabel* else_label; |
| // Arity (number of values on the stack) when exiting this control |
| // structure via |end|. |
| uint32_t exit_arity; |
| // Track whether this block was already left, i.e. all further |
| // instructions are unreachable. |
| bool unreachable = false; |
| |
| Control(const byte* pc, CLabel* end_label, CLabel* else_label, |
| uint32_t exit_arity) |
| : pc(pc), |
| end_label(end_label), |
| else_label(else_label), |
| exit_arity(exit_arity) {} |
| Control(const byte* pc, CLabel* end_label, uint32_t exit_arity) |
| : Control(pc, end_label, nullptr, exit_arity) {} |
| |
| void Finish(ControlTransferMap* map, const byte* start) { |
| end_label->Finish(map, start); |
| if (else_label) else_label->Finish(map, start); |
| } |
| }; |
| |
| // Compute the ControlTransfer map. |
| // This algorithm maintains a stack of control constructs similar to the |
| // AST decoder. The {control_stack} allows matching {br,br_if,br_table} |
| // bytecodes with their target, as well as determining whether the current |
| // bytecodes are within the true or false block of an else. |
| ZoneVector<Control> control_stack(&control_transfer_zone); |
| uint32_t stack_height = 0; |
| uint32_t func_arity = |
| static_cast<uint32_t>(code->function->sig->return_count()); |
| CLabel* func_label = |
| CLabel::New(&control_transfer_zone, stack_height, func_arity); |
| control_stack.emplace_back(code->orig_start, func_label, func_arity); |
| auto control_parent = [&]() -> Control& { |
| DCHECK_LE(2, control_stack.size()); |
| return control_stack[control_stack.size() - 2]; |
| }; |
| auto copy_unreachable = [&] { |
| control_stack.back().unreachable = control_parent().unreachable; |
| }; |
| for (BytecodeIterator i(code->orig_start, code->orig_end, &code->locals); |
| i.has_next(); i.next()) { |
| WasmOpcode opcode = i.current(); |
| if (WasmOpcodes::IsPrefixOpcode(opcode)) opcode = i.prefixed_opcode(); |
| bool unreachable = control_stack.back().unreachable; |
| if (unreachable) { |
| TRACE("@%u: %s (is unreachable)\n", i.pc_offset(), |
| WasmOpcodes::OpcodeName(opcode)); |
| } else { |
| auto stack_effect = |
| StackEffect(module, code->function->sig, i.pc(), i.end()); |
| TRACE("@%u: %s (sp %d - %d + %d)\n", i.pc_offset(), |
| WasmOpcodes::OpcodeName(opcode), stack_height, stack_effect.first, |
| stack_effect.second); |
| DCHECK_GE(stack_height, stack_effect.first); |
| DCHECK_GE(kMaxUInt32, static_cast<uint64_t>(stack_height) - |
| stack_effect.first + stack_effect.second); |
| stack_height = stack_height - stack_effect.first + stack_effect.second; |
| if (stack_height > max_stack_height_) max_stack_height_ = stack_height; |
| } |
| switch (opcode) { |
| case kExprBlock: |
| case kExprLoop: { |
| bool is_loop = opcode == kExprLoop; |
| BlockTypeOperand<Decoder::kNoValidate> operand(&i, i.pc()); |
| if (operand.type == kWasmVar) { |
| operand.sig = module->signatures[operand.sig_index]; |
| } |
| TRACE("control @%u: %s, arity %d->%d\n", i.pc_offset(), |
| is_loop ? "Loop" : "Block", |
| operand.in_arity(), operand.out_arity()); |
| CLabel* label = CLabel::New(&control_transfer_zone, stack_height, |
| is_loop ? operand.in_arity() |
| : operand.out_arity()); |
| control_stack.emplace_back(i.pc(), label, operand.out_arity()); |
| copy_unreachable(); |
| if (is_loop) label->Bind(i.pc()); |
| break; |
| } |
| case kExprIf: { |
| BlockTypeOperand<Decoder::kNoValidate> operand(&i, i.pc()); |
| if (operand.type == kWasmVar) { |
| operand.sig = module->signatures[operand.sig_index]; |
| } |
| TRACE("control @%u: If, arity %d->%d\n", i.pc_offset(), |
| operand.in_arity(), operand.out_arity()); |
| CLabel* end_label = |
| CLabel::New(&control_transfer_zone, stack_height, |
| operand.out_arity()); |
| CLabel* else_label = |
| CLabel::New(&control_transfer_zone, stack_height, 0); |
| control_stack.emplace_back(i.pc(), end_label, else_label, |
| operand.out_arity()); |
| copy_unreachable(); |
| if (!unreachable) else_label->Ref(i.pc(), stack_height); |
| break; |
| } |
| case kExprElse: { |
| Control* c = &control_stack.back(); |
| copy_unreachable(); |
| TRACE("control @%u: Else\n", i.pc_offset()); |
| if (!control_parent().unreachable) { |
| c->end_label->Ref(i.pc(), stack_height); |
| } |
| DCHECK_NOT_NULL(c->else_label); |
| c->else_label->Bind(i.pc() + 1); |
| c->else_label->Finish(&map_, code->orig_start); |
| c->else_label = nullptr; |
| DCHECK_GE(stack_height, c->end_label->target_stack_height); |
| stack_height = c->end_label->target_stack_height; |
| break; |
| } |
| case kExprEnd: { |
| Control* c = &control_stack.back(); |
| TRACE("control @%u: End\n", i.pc_offset()); |
| // Only loops have bound labels. |
| DCHECK_IMPLIES(c->end_label->target, *c->pc == kExprLoop); |
| if (!c->end_label->target) { |
| if (c->else_label) c->else_label->Bind(i.pc()); |
| c->end_label->Bind(i.pc() + 1); |
| } |
| c->Finish(&map_, code->orig_start); |
| DCHECK_GE(stack_height, c->end_label->target_stack_height); |
| stack_height = c->end_label->target_stack_height + c->exit_arity; |
| control_stack.pop_back(); |
| break; |
| } |
| case kExprBr: { |
| BreakDepthOperand<Decoder::kNoValidate> operand(&i, i.pc()); |
| TRACE("control @%u: Br[depth=%u]\n", i.pc_offset(), operand.depth); |
| Control* c = &control_stack[control_stack.size() - operand.depth - 1]; |
| if (!unreachable) c->end_label->Ref(i.pc(), stack_height); |
| break; |
| } |
| case kExprBrIf: { |
| BreakDepthOperand<Decoder::kNoValidate> operand(&i, i.pc()); |
| TRACE("control @%u: BrIf[depth=%u]\n", i.pc_offset(), operand.depth); |
| Control* c = &control_stack[control_stack.size() - operand.depth - 1]; |
| if (!unreachable) c->end_label->Ref(i.pc(), stack_height); |
| break; |
| } |
| case kExprBrTable: { |
| BranchTableOperand<Decoder::kNoValidate> operand(&i, i.pc()); |
| BranchTableIterator<Decoder::kNoValidate> iterator(&i, operand); |
| TRACE("control @%u: BrTable[count=%u]\n", i.pc_offset(), |
| operand.table_count); |
| if (!unreachable) { |
| while (iterator.has_next()) { |
| uint32_t j = iterator.cur_index(); |
| uint32_t target = iterator.next(); |
| Control* c = &control_stack[control_stack.size() - target - 1]; |
| c->end_label->Ref(i.pc() + j, stack_height); |
| } |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| if (WasmOpcodes::IsUnconditionalJump(opcode)) { |
| control_stack.back().unreachable = true; |
| } |
| } |
| DCHECK_EQ(0, control_stack.size()); |
| DCHECK_EQ(func_arity, stack_height); |
| } |
| |
| ControlTransferEntry& Lookup(pc_t from) { |
| auto result = map_.find(from); |
| DCHECK(result != map_.end()); |
| return result->second; |
| } |
| }; |
| |
| struct ExternalCallResult { |
| enum Type { |
| // The function should be executed inside this interpreter. |
| INTERNAL, |
| // For indirect calls: Table or function does not exist. |
| INVALID_FUNC, |
| // For indirect calls: Signature does not match expected signature. |
| SIGNATURE_MISMATCH, |
| // The function was executed and returned normally. |
| EXTERNAL_RETURNED, |
| // The function was executed, threw an exception, and the stack was unwound. |
| EXTERNAL_UNWOUND |
| }; |
| Type type; |
| // If type is INTERNAL, this field holds the function to call internally. |
| InterpreterCode* interpreter_code; |
| |
| ExternalCallResult(Type type) : type(type) { // NOLINT |
| DCHECK_NE(INTERNAL, type); |
| } |
| ExternalCallResult(Type type, InterpreterCode* code) |
| : type(type), interpreter_code(code) { |
| DCHECK_EQ(INTERNAL, type); |
| } |
| }; |
| |
| // The main storage for interpreter code. It maps {WasmFunction} to the |
| // metadata needed to execute each function. |
| class CodeMap { |
| Zone* zone_; |
| const WasmModule* module_; |
| ZoneVector<InterpreterCode> interpreter_code_; |
| // This handle is set and reset by the SetInstanceObject() / |
| // ClearInstanceObject() method, which is used by the HeapObjectsScope. |
| Handle<WasmInstanceObject> instance_; |
| |
| public: |
| CodeMap(Isolate* isolate, const WasmModule* module, |
| const uint8_t* module_start, Zone* zone) |
| : zone_(zone), module_(module), interpreter_code_(zone) { |
| if (module == nullptr) return; |
| interpreter_code_.reserve(module->functions.size()); |
| for (const WasmFunction& function : module->functions) { |
| if (function.imported) { |
| DCHECK(!function.code.is_set()); |
| AddFunction(&function, nullptr, nullptr); |
| } else { |
| AddFunction(&function, module_start + function.code.offset(), |
| module_start + function.code.end_offset()); |
| } |
| } |
| } |
| |
| void SetInstanceObject(Handle<WasmInstanceObject> instance) { |
| DCHECK(instance_.is_null()); |
| instance_ = instance; |
| } |
| |
| void ClearInstanceObject() { instance_ = Handle<WasmInstanceObject>::null(); } |
| |
| const WasmModule* module() const { return module_; } |
| bool has_instance() const { return !instance_.is_null(); } |
| WasmInstanceObject* instance() const { |
| DCHECK(has_instance()); |
| return *instance_; |
| } |
| MaybeHandle<WasmInstanceObject> maybe_instance() const { |
| return has_instance() ? handle(instance()) |
| : MaybeHandle<WasmInstanceObject>(); |
| } |
| |
| const wasm::WasmCode* GetImportedFunction(uint32_t function_index) { |
| DCHECK(has_instance()); |
| DCHECK_GT(module_->num_imported_functions, function_index); |
| const wasm::NativeModule* native_module = |
| instance()->compiled_module()->GetNativeModule(); |
| return native_module->GetCode(function_index); |
| } |
| |
| Code* GetImportedFunctionGC(uint32_t function_index) { |
| DCHECK(has_instance()); |
| DCHECK_GT(module_->num_imported_functions, function_index); |
| FixedArray* code_table = instance()->compiled_module()->code_table(); |
| return Code::cast(code_table->get(static_cast<int>(function_index))); |
| } |
| |
| InterpreterCode* GetCode(const WasmFunction* function) { |
| InterpreterCode* code = GetCode(function->func_index); |
| DCHECK_EQ(function, code->function); |
| return code; |
| } |
| |
| InterpreterCode* GetCode(uint32_t function_index) { |
| DCHECK_LT(function_index, interpreter_code_.size()); |
| return Preprocess(&interpreter_code_[function_index]); |
| } |
| |
| InterpreterCode* GetIndirectCode(uint32_t table_index, uint32_t entry_index) { |
| if (table_index >= module_->function_tables.size()) return nullptr; |
| const WasmIndirectFunctionTable* table = |
| &module_->function_tables[table_index]; |
| if (entry_index >= table->values.size()) return nullptr; |
| uint32_t index = table->values[entry_index]; |
| if (index >= interpreter_code_.size()) return nullptr; |
| return GetCode(index); |
| } |
| |
| InterpreterCode* Preprocess(InterpreterCode* code) { |
| DCHECK_EQ(code->function->imported, code->start == nullptr); |
| if (!code->side_table && code->start) { |
| // Compute the control targets map and the local declarations. |
| code->side_table = new (zone_) SideTable(zone_, module_, code); |
| } |
| return code; |
| } |
| |
| void AddFunction(const WasmFunction* function, const byte* code_start, |
| const byte* code_end) { |
| InterpreterCode code = { |
| function, BodyLocalDecls(zone_), code_start, |
| code_end, const_cast<byte*>(code_start), const_cast<byte*>(code_end), |
| nullptr}; |
| |
| DCHECK_EQ(interpreter_code_.size(), function->func_index); |
| interpreter_code_.push_back(code); |
| } |
| |
| void SetFunctionCode(const WasmFunction* function, const byte* start, |
| const byte* end) { |
| DCHECK_LT(function->func_index, interpreter_code_.size()); |
| InterpreterCode* code = &interpreter_code_[function->func_index]; |
| DCHECK_EQ(function, code->function); |
| code->orig_start = start; |
| code->orig_end = end; |
| code->start = const_cast<byte*>(start); |
| code->end = const_cast<byte*>(end); |
| code->side_table = nullptr; |
| Preprocess(code); |
| } |
| }; |
| |
| Handle<Object> WasmValueToNumber(Factory* factory, WasmValue val, |
| wasm::ValueType type) { |
| switch (type) { |
| case kWasmI32: |
| return factory->NewNumberFromInt(val.to<int32_t>()); |
| case kWasmI64: |
| // wasm->js and js->wasm is illegal for i64 type. |
| UNREACHABLE(); |
| case kWasmF32: |
| return factory->NewNumber(val.to<float>()); |
| case kWasmF64: |
| return factory->NewNumber(val.to<double>()); |
| default: |
| // TODO(wasm): Implement simd. |
| UNIMPLEMENTED(); |
| return Handle<Object>::null(); |
| } |
| } |
| |
| // Convert JS value to WebAssembly, spec here: |
| // https://github.com/WebAssembly/design/blob/master/JS.md#towebassemblyvalue |
| // Return WasmValue() (i.e. of type kWasmStmt) on failure. In that case, an |
| // exception will be pending on the isolate. |
| WasmValue ToWebAssemblyValue(Isolate* isolate, Handle<Object> value, |
| wasm::ValueType type) { |
| switch (type) { |
| case kWasmI32: { |
| MaybeHandle<Object> maybe_i32 = Object::ToInt32(isolate, value); |
| if (maybe_i32.is_null()) return {}; |
| int32_t value; |
| CHECK(maybe_i32.ToHandleChecked()->ToInt32(&value)); |
| return WasmValue(value); |
| } |
| case kWasmI64: |
| // If the signature contains i64, a type error was thrown before. |
| UNREACHABLE(); |
| case kWasmF32: { |
| MaybeHandle<Object> maybe_number = Object::ToNumber(value); |
| if (maybe_number.is_null()) return {}; |
| return WasmValue( |
| static_cast<float>(maybe_number.ToHandleChecked()->Number())); |
| } |
| case kWasmF64: { |
| MaybeHandle<Object> maybe_number = Object::ToNumber(value); |
| if (maybe_number.is_null()) return {}; |
| return WasmValue(maybe_number.ToHandleChecked()->Number()); |
| } |
| default: |
| // TODO(wasm): Handle simd. |
| UNIMPLEMENTED(); |
| return WasmValue(); |
| } |
| } |
| |
| // Like a static_cast from src to dst, but specialized for boxed floats. |
| template <typename dst, typename src> |
| struct converter { |
| dst operator()(src val) const { return static_cast<dst>(val); } |
| }; |
| template <> |
| struct converter<Float64, uint64_t> { |
| Float64 operator()(uint64_t val) const { return Float64::FromBits(val); } |
| }; |
| template <> |
| struct converter<Float32, uint32_t> { |
| Float32 operator()(uint32_t val) const { return Float32::FromBits(val); } |
| }; |
| template <> |
| struct converter<uint64_t, Float64> { |
| uint64_t operator()(Float64 val) const { return val.get_bits(); } |
| }; |
| template <> |
| struct converter<uint32_t, Float32> { |
| uint32_t operator()(Float32 val) const { return val.get_bits(); } |
| }; |
| |
| template <typename T> |
| V8_INLINE bool has_nondeterminism(T val) { |
| static_assert(!std::is_floating_point<T>::value, "missing specialization"); |
| return false; |
| } |
| template <> |
| V8_INLINE bool has_nondeterminism<float>(float val) { |
| return std::isnan(val); |
| } |
| template <> |
| V8_INLINE bool has_nondeterminism<double>(double val) { |
| return std::isnan(val); |
| } |
| |
| // Responsible for executing code directly. |
| class ThreadImpl { |
| struct Activation { |
| uint32_t fp; |
| sp_t sp; |
| Activation(uint32_t fp, sp_t sp) : fp(fp), sp(sp) {} |
| }; |
| |
| public: |
| ThreadImpl(Zone* zone, CodeMap* codemap, WasmContext* wasm_context) |
| : codemap_(codemap), |
| wasm_context_(wasm_context), |
| zone_(zone), |
| frames_(zone), |
| activations_(zone) {} |
| |
| //========================================================================== |
| // Implementation of public interface for WasmInterpreter::Thread. |
| //========================================================================== |
| |
| WasmInterpreter::State state() { return state_; } |
| |
| void InitFrame(const WasmFunction* function, WasmValue* args) { |
| DCHECK_EQ(current_activation().fp, frames_.size()); |
| InterpreterCode* code = codemap()->GetCode(function); |
| size_t num_params = function->sig->parameter_count(); |
| EnsureStackSpace(num_params); |
| Push(args, num_params); |
| PushFrame(code); |
| } |
| |
| WasmInterpreter::State Run(int num_steps = -1) { |
| DCHECK(state_ == WasmInterpreter::STOPPED || |
| state_ == WasmInterpreter::PAUSED); |
| DCHECK(num_steps == -1 || num_steps > 0); |
| if (num_steps == -1) { |
| TRACE(" => Run()\n"); |
| } else if (num_steps == 1) { |
| TRACE(" => Step()\n"); |
| } else { |
| TRACE(" => Run(%d)\n", num_steps); |
| } |
| state_ = WasmInterpreter::RUNNING; |
| Execute(frames_.back().code, frames_.back().pc, num_steps); |
| // If state_ is STOPPED, the current activation must be fully unwound. |
| DCHECK_IMPLIES(state_ == WasmInterpreter::STOPPED, |
| current_activation().fp == frames_.size()); |
| return state_; |
| } |
| |
| void Pause() { UNIMPLEMENTED(); } |
| |
| void Reset() { |
| TRACE("----- RESET -----\n"); |
| sp_ = stack_start_; |
| frames_.clear(); |
| state_ = WasmInterpreter::STOPPED; |
| trap_reason_ = kTrapCount; |
| possible_nondeterminism_ = false; |
| } |
| |
| int GetFrameCount() { |
| DCHECK_GE(kMaxInt, frames_.size()); |
| return static_cast<int>(frames_.size()); |
| } |
| |
| WasmValue GetReturnValue(uint32_t index) { |
| if (state_ == WasmInterpreter::TRAPPED) return WasmValue(0xDEADBEEF); |
| DCHECK_EQ(WasmInterpreter::FINISHED, state_); |
| Activation act = current_activation(); |
| // Current activation must be finished. |
| DCHECK_EQ(act.fp, frames_.size()); |
| return GetStackValue(act.sp + index); |
| } |
| |
| WasmValue GetStackValue(sp_t index) { |
| DCHECK_GT(StackHeight(), index); |
| return stack_start_[index]; |
| } |
| |
| void SetStackValue(sp_t index, WasmValue value) { |
| DCHECK_GT(StackHeight(), index); |
| stack_start_[index] = value; |
| } |
| |
| TrapReason GetTrapReason() { return trap_reason_; } |
| |
| pc_t GetBreakpointPc() { return break_pc_; } |
| |
| bool PossibleNondeterminism() { return possible_nondeterminism_; } |
| |
| uint64_t NumInterpretedCalls() { return num_interpreted_calls_; } |
| |
| void AddBreakFlags(uint8_t flags) { break_flags_ |= flags; } |
| |
| void ClearBreakFlags() { break_flags_ = WasmInterpreter::BreakFlag::None; } |
| |
| uint32_t NumActivations() { |
| return static_cast<uint32_t>(activations_.size()); |
| } |
| |
| uint32_t StartActivation() { |
| TRACE("----- START ACTIVATION %zu -----\n", activations_.size()); |
| // If you use activations, use them consistently: |
| DCHECK_IMPLIES(activations_.empty(), frames_.empty()); |
| DCHECK_IMPLIES(activations_.empty(), StackHeight() == 0); |
| uint32_t activation_id = static_cast<uint32_t>(activations_.size()); |
| activations_.emplace_back(static_cast<uint32_t>(frames_.size()), |
| StackHeight()); |
| state_ = WasmInterpreter::STOPPED; |
| return activation_id; |
| } |
| |
| void FinishActivation(uint32_t id) { |
| TRACE("----- FINISH ACTIVATION %zu -----\n", activations_.size() - 1); |
| DCHECK_LT(0, activations_.size()); |
| DCHECK_EQ(activations_.size() - 1, id); |
| // Stack height must match the start of this activation (otherwise unwind |
| // first). |
| DCHECK_EQ(activations_.back().fp, frames_.size()); |
| DCHECK_LE(activations_.back().sp, StackHeight()); |
| sp_ = stack_start_ + activations_.back().sp; |
| activations_.pop_back(); |
| } |
| |
| uint32_t ActivationFrameBase(uint32_t id) { |
| DCHECK_GT(activations_.size(), id); |
| return activations_[id].fp; |
| } |
| |
| // Handle a thrown exception. Returns whether the exception was handled inside |
| // the current activation. Unwinds the interpreted stack accordingly. |
| WasmInterpreter::Thread::ExceptionHandlingResult HandleException( |
| Isolate* isolate) { |
| DCHECK(isolate->has_pending_exception()); |
| // TODO(wasm): Add wasm exception handling (would return HANDLED). |
| USE(isolate->pending_exception()); |
| TRACE("----- UNWIND -----\n"); |
| DCHECK_LT(0, activations_.size()); |
| Activation& act = activations_.back(); |
| DCHECK_LE(act.fp, frames_.size()); |
| frames_.resize(act.fp); |
| DCHECK_LE(act.sp, StackHeight()); |
| sp_ = stack_start_ + act.sp; |
| state_ = WasmInterpreter::STOPPED; |
| return WasmInterpreter::Thread::UNWOUND; |
| } |
| |
| private: |
| // Entries on the stack of functions being evaluated. |
| struct Frame { |
| InterpreterCode* code; |
| pc_t pc; |
| sp_t sp; |
| |
| // Limit of parameters. |
| sp_t plimit() { return sp + code->function->sig->parameter_count(); } |
| // Limit of locals. |
| sp_t llimit() { return plimit() + code->locals.type_list.size(); } |
| }; |
| |
| struct Block { |
| pc_t pc; |
| sp_t sp; |
| size_t fp; |
| unsigned arity; |
| }; |
| |
| friend class InterpretedFrameImpl; |
| |
| CodeMap* codemap_; |
| WasmContext* wasm_context_; |
| Zone* zone_; |
| WasmValue* stack_start_ = nullptr; // Start of allocated stack space. |
| WasmValue* stack_limit_ = nullptr; // End of allocated stack space. |
| WasmValue* sp_ = nullptr; // Current stack pointer. |
| ZoneVector<Frame> frames_; |
| WasmInterpreter::State state_ = WasmInterpreter::STOPPED; |
| pc_t break_pc_ = kInvalidPc; |
| TrapReason trap_reason_ = kTrapCount; |
| bool possible_nondeterminism_ = false; |
| uint8_t break_flags_ = 0; // a combination of WasmInterpreter::BreakFlag |
| uint64_t num_interpreted_calls_ = 0; |
| // Store the stack height of each activation (for unwind and frame |
| // inspection). |
| ZoneVector<Activation> activations_; |
| |
| CodeMap* codemap() const { return codemap_; } |
| const WasmModule* module() const { return codemap_->module(); } |
| |
| void DoTrap(TrapReason trap, pc_t pc) { |
| state_ = WasmInterpreter::TRAPPED; |
| trap_reason_ = trap; |
| CommitPc(pc); |
| } |
| |
| // Push a frame with arguments already on the stack. |
| void PushFrame(InterpreterCode* code) { |
| DCHECK_NOT_NULL(code); |
| DCHECK_NOT_NULL(code->side_table); |
| EnsureStackSpace(code->side_table->max_stack_height_ + |
| code->locals.type_list.size()); |
| |
| ++num_interpreted_calls_; |
| size_t arity = code->function->sig->parameter_count(); |
| // The parameters will overlap the arguments already on the stack. |
| DCHECK_GE(StackHeight(), arity); |
| frames_.push_back({code, 0, StackHeight() - arity}); |
| frames_.back().pc = InitLocals(code); |
| TRACE(" => PushFrame #%zu (#%u @%zu)\n", frames_.size() - 1, |
| code->function->func_index, frames_.back().pc); |
| } |
| |
| pc_t InitLocals(InterpreterCode* code) { |
| for (auto p : code->locals.type_list) { |
| WasmValue val; |
| switch (p) { |
| #define CASE_TYPE(wasm, ctype) \ |
| case kWasm##wasm: \ |
| val = WasmValue(static_cast<ctype>(0)); \ |
| break; |
| WASM_CTYPES(CASE_TYPE) |
| #undef CASE_TYPE |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| Push(val); |
| } |
| return code->locals.encoded_size; |
| } |
| |
| void CommitPc(pc_t pc) { |
| DCHECK(!frames_.empty()); |
| frames_.back().pc = pc; |
| } |
| |
| bool SkipBreakpoint(InterpreterCode* code, pc_t pc) { |
| if (pc == break_pc_) { |
| // Skip the previously hit breakpoint when resuming. |
| break_pc_ = kInvalidPc; |
| return true; |
| } |
| return false; |
| } |
| |
| int LookupTargetDelta(InterpreterCode* code, pc_t pc) { |
| return static_cast<int>(code->side_table->Lookup(pc).pc_diff); |
| } |
| |
| int DoBreak(InterpreterCode* code, pc_t pc, size_t depth) { |
| ControlTransferEntry& control_transfer_entry = code->side_table->Lookup(pc); |
| DoStackTransfer(sp_ - control_transfer_entry.sp_diff, |
| control_transfer_entry.target_arity); |
| return control_transfer_entry.pc_diff; |
| } |
| |
| pc_t ReturnPc(Decoder* decoder, InterpreterCode* code, pc_t pc) { |
| switch (code->orig_start[pc]) { |
| case kExprCallFunction: { |
| CallFunctionOperand<Decoder::kNoValidate> operand(decoder, |
| code->at(pc)); |
| return pc + 1 + operand.length; |
| } |
| case kExprCallIndirect: { |
| CallIndirectOperand<Decoder::kNoValidate> operand(decoder, |
| code->at(pc)); |
| return pc + 1 + operand.length; |
| } |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| bool DoReturn(Decoder* decoder, InterpreterCode** code, pc_t* pc, pc_t* limit, |
| size_t arity) { |
| DCHECK_GT(frames_.size(), 0); |
| WasmValue* sp_dest = stack_start_ + frames_.back().sp; |
| frames_.pop_back(); |
| if (frames_.size() == current_activation().fp) { |
| // A return from the last frame terminates the execution. |
| state_ = WasmInterpreter::FINISHED; |
| DoStackTransfer(sp_dest, arity); |
| TRACE(" => finish\n"); |
| return false; |
| } else { |
| // Return to caller frame. |
| Frame* top = &frames_.back(); |
| *code = top->code; |
| decoder->Reset((*code)->start, (*code)->end); |
| *pc = ReturnPc(decoder, *code, top->pc); |
| *limit = top->code->end - top->code->start; |
| TRACE(" => Return to #%zu (#%u @%zu)\n", frames_.size() - 1, |
| (*code)->function->func_index, *pc); |
| DoStackTransfer(sp_dest, arity); |
| return true; |
| } |
| } |
| |
| // Returns true if the call was successful, false if the stack check failed |
| // and the current activation was fully unwound. |
| bool DoCall(Decoder* decoder, InterpreterCode* target, pc_t* pc, |
| pc_t* limit) WARN_UNUSED_RESULT { |
| frames_.back().pc = *pc; |
| PushFrame(target); |
| if (!DoStackCheck()) return false; |
| *pc = frames_.back().pc; |
| *limit = target->end - target->start; |
| decoder->Reset(target->start, target->end); |
| return true; |
| } |
| |
| // Copies {arity} values on the top of the stack down the stack to {dest}, |
| // dropping the values in-between. |
| void DoStackTransfer(WasmValue* dest, size_t arity) { |
| // before: |---------------| pop_count | arity | |
| // ^ 0 ^ dest ^ sp_ |
| // |
| // after: |---------------| arity | |
| // ^ 0 ^ sp_ |
| DCHECK_LE(dest, sp_); |
| DCHECK_LE(dest + arity, sp_); |
| if (arity) memmove(dest, sp_ - arity, arity * sizeof(*sp_)); |
| sp_ = dest + arity; |
| } |
| |
| template <typename mtype> |
| inline byte* BoundsCheckMem(uint32_t offset, uint32_t index) { |
| uint32_t mem_size = wasm_context_->mem_size; |
| if (sizeof(mtype) > mem_size) return nullptr; |
| if (offset > (mem_size - sizeof(mtype))) return nullptr; |
| if (index > (mem_size - sizeof(mtype) - offset)) return nullptr; |
| // Compute the effective address of the access, making sure to condition |
| // the index even in the in-bounds case. |
| return wasm_context_->mem_start + offset + |
| (index & wasm_context_->mem_mask); |
| } |
| |
| template <typename ctype, typename mtype> |
| bool ExecuteLoad(Decoder* decoder, InterpreterCode* code, pc_t pc, int& len, |
| MachineRepresentation rep) { |
| MemoryAccessOperand<Decoder::kNoValidate> operand(decoder, code->at(pc), |
| sizeof(ctype)); |
| uint32_t index = Pop().to<uint32_t>(); |
| byte* addr = BoundsCheckMem<mtype>(operand.offset, index); |
| if (!addr) { |
| DoTrap(kTrapMemOutOfBounds, pc); |
| return false; |
| } |
| WasmValue result( |
| converter<ctype, mtype>{}(ReadLittleEndianValue<mtype>(addr))); |
| |
| Push(result); |
| len = 1 + operand.length; |
| |
| if (FLAG_wasm_trace_memory) { |
| wasm::MemoryTracingInfo info(operand.offset + index, false, rep); |
| TraceMemoryOperation(ExecutionEngine::kInterpreter, &info, |
| code->function->func_index, static_cast<int>(pc), |
| wasm_context_->mem_start); |
| } |
| |
| return true; |
| } |
| |
| template <typename ctype, typename mtype> |
| bool ExecuteStore(Decoder* decoder, InterpreterCode* code, pc_t pc, int& len, |
| MachineRepresentation rep) { |
| MemoryAccessOperand<Decoder::kNoValidate> operand(decoder, code->at(pc), |
| sizeof(ctype)); |
| ctype val = Pop().to<ctype>(); |
| |
| uint32_t index = Pop().to<uint32_t>(); |
| byte* addr = BoundsCheckMem<mtype>(operand.offset, index); |
| if (!addr) { |
| DoTrap(kTrapMemOutOfBounds, pc); |
| return false; |
| } |
| WriteLittleEndianValue<mtype>(addr, converter<mtype, ctype>{}(val)); |
| len = 1 + operand.length; |
| |
| if (FLAG_wasm_trace_memory) { |
| wasm::MemoryTracingInfo info(operand.offset + index, true, rep); |
| TraceMemoryOperation(ExecutionEngine::kInterpreter, &info, |
| code->function->func_index, static_cast<int>(pc), |
| wasm_context_->mem_start); |
| } |
| |
| return true; |
| } |
| |
| template <typename type> |
| bool ExtractAtomicOpParams(Decoder* decoder, InterpreterCode* code, |
| Address& address, pc_t pc, int& len, |
| type* val = nullptr) { |
| MemoryAccessOperand<Decoder::kNoValidate> operand(decoder, code->at(pc + 1), |
| sizeof(type)); |
| if (val) *val = Pop().to<uint32_t>(); |
| uint32_t index = Pop().to<uint32_t>(); |
| address = BoundsCheckMem<type>(operand.offset, index); |
| if (!address) { |
| DoTrap(kTrapMemOutOfBounds, pc); |
| return false; |
| } |
| len = 2 + operand.length; |
| return true; |
| } |
| |
| bool ExecuteNumericOp(WasmOpcode opcode, Decoder* decoder, |
| InterpreterCode* code, pc_t pc, int& len) { |
| switch (opcode) { |
| case kExprI32SConvertSatF32: |
| Push(WasmValue(ExecuteConvertSaturate<int32_t>(Pop().to<float>()))); |
| return true; |
| case kExprI32UConvertSatF32: |
| Push(WasmValue(ExecuteConvertSaturate<uint32_t>(Pop().to<float>()))); |
| return true; |
| case kExprI32SConvertSatF64: |
| Push(WasmValue(ExecuteConvertSaturate<int32_t>(Pop().to<double>()))); |
| return true; |
| case kExprI32UConvertSatF64: |
| Push(WasmValue(ExecuteConvertSaturate<uint32_t>(Pop().to<double>()))); |
| return true; |
| default: |
| V8_Fatal(__FILE__, __LINE__, "Unknown or unimplemented opcode #%d:%s", |
| code->start[pc], OpcodeName(code->start[pc])); |
| UNREACHABLE(); |
| } |
| return false; |
| } |
| |
| bool ExecuteAtomicOp(WasmOpcode opcode, Decoder* decoder, |
| InterpreterCode* code, pc_t pc, int& len) { |
| WasmValue result; |
| switch (opcode) { |
| #define ATOMIC_BINOP_CASE(name, type, operation) \ |
| case kExpr##name: { \ |
| type val; \ |
| Address addr; \ |
| if (!ExtractAtomicOpParams<type>(decoder, code, addr, pc, len, &val)) { \ |
| return false; \ |
| } \ |
| static_assert(sizeof(std::atomic<type>) == sizeof(type), \ |
| "Size mismatch for types std::atomic<" #type \ |
| ">, and " #type); \ |
| result = WasmValue( \ |
| std::operation(reinterpret_cast<std::atomic<type>*>(addr), val)); \ |
| Push(result); \ |
| break; \ |
| } |
| ATOMIC_BINOP_CASE(I32AtomicAdd, uint32_t, atomic_fetch_add); |
| ATOMIC_BINOP_CASE(I32AtomicAdd8U, uint8_t, atomic_fetch_add); |
| ATOMIC_BINOP_CASE(I32AtomicAdd16U, uint16_t, atomic_fetch_add); |
| ATOMIC_BINOP_CASE(I32AtomicSub, uint32_t, atomic_fetch_sub); |
| ATOMIC_BINOP_CASE(I32AtomicSub8U, uint8_t, atomic_fetch_sub); |
| ATOMIC_BINOP_CASE(I32AtomicSub16U, uint16_t, atomic_fetch_sub); |
| ATOMIC_BINOP_CASE(I32AtomicAnd, uint32_t, atomic_fetch_and); |
| ATOMIC_BINOP_CASE(I32AtomicAnd8U, uint8_t, atomic_fetch_and); |
| ATOMIC_BINOP_CASE(I32AtomicAnd16U, uint16_t, atomic_fetch_and); |
| ATOMIC_BINOP_CASE(I32AtomicOr, uint32_t, atomic_fetch_or); |
| ATOMIC_BINOP_CASE(I32AtomicOr8U, uint8_t, atomic_fetch_or); |
| ATOMIC_BINOP_CASE(I32AtomicOr16U, uint16_t, atomic_fetch_or); |
| ATOMIC_BINOP_CASE(I32AtomicXor, uint32_t, atomic_fetch_xor); |
| ATOMIC_BINOP_CASE(I32AtomicXor8U, uint8_t, atomic_fetch_xor); |
| ATOMIC_BINOP_CASE(I32AtomicXor16U, uint16_t, atomic_fetch_xor); |
| ATOMIC_BINOP_CASE(I32AtomicExchange, uint32_t, atomic_exchange); |
| ATOMIC_BINOP_CASE(I32AtomicExchange8U, uint8_t, atomic_exchange); |
| ATOMIC_BINOP_CASE(I32AtomicExchange16U, uint16_t, atomic_exchange); |
| #undef ATOMIC_BINOP_CASE |
| #define ATOMIC_LOAD_CASE(name, type, operation) \ |
| case kExpr##name: { \ |
| Address addr; \ |
| if (!ExtractAtomicOpParams<type>(decoder, code, addr, pc, len)) { \ |
| return false; \ |
| } \ |
| static_assert(sizeof(std::atomic<type>) == sizeof(type), \ |
| "Size mismatch for types std::atomic<" #type \ |
| ">, and " #type); \ |
| result = \ |
| WasmValue(std::operation(reinterpret_cast<std::atomic<type>*>(addr))); \ |
| Push(result); \ |
| break; \ |
| } |
| ATOMIC_LOAD_CASE(I32AtomicLoad, uint32_t, atomic_load); |
| ATOMIC_LOAD_CASE(I32AtomicLoad8U, uint8_t, atomic_load); |
| ATOMIC_LOAD_CASE(I32AtomicLoad16U, uint16_t, atomic_load); |
| #undef ATOMIC_LOAD_CASE |
| #define ATOMIC_STORE_CASE(name, type, operation) \ |
| case kExpr##name: { \ |
| type val; \ |
| Address addr; \ |
| if (!ExtractAtomicOpParams<type>(decoder, code, addr, pc, len, &val)) { \ |
| return false; \ |
| } \ |
| static_assert(sizeof(std::atomic<type>) == sizeof(type), \ |
| "Size mismatch for types std::atomic<" #type \ |
| ">, and " #type); \ |
| std::operation(reinterpret_cast<std::atomic<type>*>(addr), val); \ |
| break; \ |
| } |
| ATOMIC_STORE_CASE(I32AtomicStore, uint32_t, atomic_store); |
| ATOMIC_STORE_CASE(I32AtomicStore8U, uint8_t, atomic_store); |
| ATOMIC_STORE_CASE(I32AtomicStore16U, uint16_t, atomic_store); |
| #undef ATOMIC_STORE_CASE |
| default: |
| return false; |
| } |
| return true; |
| } |
| |
| // Check if our control stack (frames_) exceeds the limit. Trigger stack |
| // overflow if it does, and unwinding the current frame. |
| // Returns true if execution can continue, false if the current activation was |
| // fully unwound. |
| // Do call this function immediately *after* pushing a new frame. The pc of |
| // the top frame will be reset to 0 if the stack check fails. |
| bool DoStackCheck() WARN_UNUSED_RESULT { |
| // The goal of this stack check is not to prevent actual stack overflows, |
| // but to simulate stack overflows during the execution of compiled code. |
| // That is why this function uses FLAG_stack_size, even though the value |
| // stack actually lies in zone memory. |
| const size_t stack_size_limit = FLAG_stack_size * KB; |
| // Sum up the value stack size and the control stack size. |
| const size_t current_stack_size = |
| (sp_ - stack_start_) + frames_.size() * sizeof(Frame); |
| if (V8_LIKELY(current_stack_size <= stack_size_limit)) { |
| return true; |
| } |
| if (!codemap()->has_instance()) { |
| // In test mode: Just abort. |
| FATAL("wasm interpreter: stack overflow"); |
| } |
| // The pc of the top frame is initialized to the first instruction. We reset |
| // it to 0 here such that we report the same position as in compiled code. |
| frames_.back().pc = 0; |
| Isolate* isolate = codemap()->instance()->GetIsolate(); |
| HandleScope handle_scope(isolate); |
| isolate->StackOverflow(); |
| return HandleException(isolate) == WasmInterpreter::Thread::HANDLED; |
| } |
| |
| void Execute(InterpreterCode* code, pc_t pc, int max) { |
| DCHECK_NOT_NULL(code->side_table); |
| DCHECK(!frames_.empty()); |
| // There must be enough space on the stack to hold the arguments, locals, |
| // and the value stack. |
| DCHECK_LE(code->function->sig->parameter_count() + |
| code->locals.type_list.size() + |
| code->side_table->max_stack_height_, |
| stack_limit_ - stack_start_ - frames_.back().sp); |
| |
| Decoder decoder(code->start, code->end); |
| pc_t limit = code->end - code->start; |
| bool hit_break = false; |
| |
| while (true) { |
| #define PAUSE_IF_BREAK_FLAG(flag) \ |
| if (V8_UNLIKELY(break_flags_ & WasmInterpreter::BreakFlag::flag)) { \ |
| hit_break = true; \ |
| max = 0; \ |
| } |
| |
| DCHECK_GT(limit, pc); |
| DCHECK_NOT_NULL(code->start); |
| |
| // Do first check for a breakpoint, in order to set hit_break correctly. |
| const char* skip = " "; |
| int len = 1; |
| byte orig = code->start[pc]; |
| WasmOpcode opcode = static_cast<WasmOpcode>(orig); |
| if (WasmOpcodes::IsPrefixOpcode(opcode)) { |
| opcode = static_cast<WasmOpcode>(opcode << 8 | code->start[pc + 1]); |
| } |
| if (V8_UNLIKELY(orig == kInternalBreakpoint)) { |
| orig = code->orig_start[pc]; |
| if (WasmOpcodes::IsPrefixOpcode(static_cast<WasmOpcode>(orig))) { |
| opcode = |
| static_cast<WasmOpcode>(orig << 8 | code->orig_start[pc + 1]); |
| } |
| if (SkipBreakpoint(code, pc)) { |
| // skip breakpoint by switching on original code. |
| skip = "[skip] "; |
| } else { |
| TRACE("@%-3zu: [break] %-24s:", pc, WasmOpcodes::OpcodeName(opcode)); |
| TraceValueStack(); |
| TRACE("\n"); |
| hit_break = true; |
| break; |
| } |
| } |
| |
| // If max is 0, break. If max is positive (a limit is set), decrement it. |
| if (max == 0) break; |
| if (max > 0) --max; |
| |
| USE(skip); |
| TRACE("@%-3zu: %s%-24s:", pc, skip, WasmOpcodes::OpcodeName(opcode)); |
| TraceValueStack(); |
| TRACE("\n"); |
| |
| #ifdef DEBUG |
| // Compute the stack effect of this opcode, and verify later that the |
| // stack was modified accordingly. |
| std::pair<uint32_t, uint32_t> stack_effect = wasm::StackEffect( |
| codemap_->module(), frames_.back().code->function->sig, |
| code->orig_start + pc, code->orig_end); |
| sp_t expected_new_stack_height = |
| StackHeight() - stack_effect.first + stack_effect.second; |
| #endif |
| |
| switch (orig) { |
| case kExprNop: |
| break; |
| case kExprBlock: { |
| BlockTypeOperand<Decoder::kNoValidate> operand(&decoder, |
| code->at(pc)); |
| len = 1 + operand.length; |
| break; |
| } |
| case kExprLoop: { |
| BlockTypeOperand<Decoder::kNoValidate> operand(&decoder, |
| code->at(pc)); |
| len = 1 + operand.length; |
| break; |
| } |
| case kExprIf: { |
| BlockTypeOperand<Decoder::kNoValidate> operand(&decoder, |
| code->at(pc)); |
| WasmValue cond = Pop(); |
| bool is_true = cond.to<uint32_t>() != 0; |
| if (is_true) { |
| // fall through to the true block. |
| len = 1 + operand.length; |
| TRACE(" true => fallthrough\n"); |
| } else { |
| len = LookupTargetDelta(code, pc); |
| TRACE(" false => @%zu\n", pc + len); |
| } |
| break; |
| } |
| case kExprElse: { |
| len = LookupTargetDelta(code, pc); |
| TRACE(" end => @%zu\n", pc + len); |
| break; |
| } |
| case kExprSelect: { |
| WasmValue cond = Pop(); |
| WasmValue fval = Pop(); |
| WasmValue tval = Pop(); |
| Push(cond.to<int32_t>() != 0 ? tval : fval); |
| break; |
| } |
| case kExprBr: { |
| BreakDepthOperand<Decoder::kNoValidate> operand(&decoder, |
| code->at(pc)); |
| len = DoBreak(code, pc, operand.depth); |
| TRACE(" br => @%zu\n", pc + len); |
| break; |
| } |
| case kExprBrIf: { |
| BreakDepthOperand<Decoder::kNoValidate> operand(&decoder, |
| code->at(pc)); |
| WasmValue cond = Pop(); |
| bool is_true = cond.to<uint32_t>() != 0; |
| if (is_true) { |
| len = DoBreak(code, pc, operand.depth); |
| TRACE(" br_if => @%zu\n", pc + len); |
| } else { |
| TRACE(" false => fallthrough\n"); |
| len = 1 + operand.length; |
| } |
| break; |
| } |
| case kExprBrTable: { |
| BranchTableOperand<Decoder::kNoValidate> operand(&decoder, |
| code->at(pc)); |
| BranchTableIterator<Decoder::kNoValidate> iterator(&decoder, operand); |
| uint32_t key = Pop().to<uint32_t>(); |
| uint32_t depth = 0; |
| if (key >= operand.table_count) key = operand.table_count; |
| for (uint32_t i = 0; i <= key; i++) { |
| DCHECK(iterator.has_next()); |
| depth = iterator.next(); |
| } |
| len = key + DoBreak(code, pc + key, static_cast<size_t>(depth)); |
| TRACE(" br[%u] => @%zu\n", key, pc + key + len); |
| break; |
| } |
| case kExprReturn: { |
| size_t arity = code->function->sig->return_count(); |
| if (!DoReturn(&decoder, &code, &pc, &limit, arity)) return; |
| PAUSE_IF_BREAK_FLAG(AfterReturn); |
| continue; |
| } |
| case kExprUnreachable: { |
| return DoTrap(kTrapUnreachable, pc); |
| } |
| case kExprEnd: { |
| break; |
| } |
| case kExprI32Const: { |
| ImmI32Operand<Decoder::kNoValidate> operand(&decoder, code->at(pc)); |
| Push(WasmValue(operand.value)); |
| len = 1 + operand.length; |
| break; |
| } |
| case kExprI64Const: { |
| ImmI64Operand<Decoder::kNoValidate> operand(&decoder, code->at(pc)); |
| Push(WasmValue(operand.value)); |
| len = 1 + operand.length; |
| break; |
| } |
| case kExprF32Const: { |
| ImmF32Operand<Decoder::kNoValidate> operand(&decoder, code->at(pc)); |
| Push(WasmValue(operand.value)); |
| len = 1 + operand.length; |
| break; |
| } |
| case kExprF64Const: { |
| ImmF64Operand<Decoder::kNoValidate> operand(&decoder, code->at(pc)); |
| Push(WasmValue(operand.value)); |
| len = 1 + operand.length; |
| break; |
| } |
| case kExprGetLocal: { |
| LocalIndexOperand<Decoder::kNoValidate> operand(&decoder, |
| code->at(pc)); |
| Push(GetStackValue(frames_.back().sp + operand.index)); |
| len = 1 + operand.length; |
| break; |
| } |
| case kExprSetLocal: { |
| LocalIndexOperand<Decoder::kNoValidate> operand(&decoder, |
| code->at(pc)); |
| WasmValue val = Pop(); |
| SetStackValue(frames_.back().sp + operand.index, val); |
| len = 1 + operand.length; |
| break; |
| } |
| case kExprTeeLocal: { |
| LocalIndexOperand<Decoder::kNoValidate> operand(&decoder, |
| code->at(pc)); |
| WasmValue val = Pop(); |
| SetStackValue(frames_.back().sp + operand.index, val); |
| Push(val); |
| len = 1 + operand.length; |
| break; |
| } |
| case kExprDrop: { |
| Pop(); |
| break; |
| } |
| case kExprCallFunction: { |
| CallFunctionOperand<Decoder::kNoValidate> operand(&decoder, |
| code->at(pc)); |
| InterpreterCode* target = codemap()->GetCode(operand.index); |
| if (target->function->imported) { |
| CommitPc(pc); |
| ExternalCallResult result = |
| CallImportedFunction(target->function->func_index); |
| switch (result.type) { |
| case ExternalCallResult::INTERNAL: |
| // The import is a function of this instance. Call it directly. |
| target = result.interpreter_code; |
| DCHECK(!target->function->imported); |
| break; |
| case ExternalCallResult::INVALID_FUNC: |
| case ExternalCallResult::SIGNATURE_MISMATCH: |
| // Direct calls are checked statically. |
| UNREACHABLE(); |
| case ExternalCallResult::EXTERNAL_RETURNED: |
| PAUSE_IF_BREAK_FLAG(AfterCall); |
| len = 1 + operand.length; |
| break; |
| case ExternalCallResult::EXTERNAL_UNWOUND: |
| return; |
| } |
| if (result.type != ExternalCallResult::INTERNAL) break; |
| } |
| // Execute an internal call. |
| if (!DoCall(&decoder, target, &pc, &limit)) return; |
| code = target; |
| PAUSE_IF_BREAK_FLAG(AfterCall); |
| continue; // don't bump pc |
| } break; |
| case kExprCallIndirect: { |
| CallIndirectOperand<Decoder::kNoValidate> operand(&decoder, |
| code->at(pc)); |
| uint32_t entry_index = Pop().to<uint32_t>(); |
| // Assume only one table for now. |
| DCHECK_LE(module()->function_tables.size(), 1u); |
| ExternalCallResult result = |
| CallIndirectFunction(0, entry_index, operand.index); |
| switch (result.type) { |
| case ExternalCallResult::INTERNAL: |
| // The import is a function of this instance. Call it directly. |
| if (!DoCall(&decoder, result.interpreter_code, &pc, &limit)) |
| return; |
| code = result.interpreter_code; |
| PAUSE_IF_BREAK_FLAG(AfterCall); |
| continue; // don't bump pc |
| case ExternalCallResult::INVALID_FUNC: |
| return DoTrap(kTrapFuncInvalid, pc); |
| case ExternalCallResult::SIGNATURE_MISMATCH: |
| return DoTrap(kTrapFuncSigMismatch, pc); |
| case ExternalCallResult::EXTERNAL_RETURNED: |
| PAUSE_IF_BREAK_FLAG(AfterCall); |
| len = 1 + operand.length; |
| break; |
| case ExternalCallResult::EXTERNAL_UNWOUND: |
| return; |
| } |
| } break; |
| case kExprGetGlobal: { |
| GlobalIndexOperand<Decoder::kNoValidate> operand(&decoder, |
| code->at(pc)); |
| const WasmGlobal* global = &module()->globals[operand.index]; |
| byte* ptr = wasm_context_->globals_start + global->offset; |
| WasmValue val; |
| switch (global->type) { |
| #define CASE_TYPE(wasm, ctype) \ |
| case kWasm##wasm: \ |
| val = WasmValue(*reinterpret_cast<ctype*>(ptr)); \ |
| break; |
| WASM_CTYPES(CASE_TYPE) |
| #undef CASE_TYPE |
| default: |
| UNREACHABLE(); |
| } |
| Push(val); |
| len = 1 + operand.length; |
| break; |
| } |
| case kExprSetGlobal: { |
| GlobalIndexOperand<Decoder::kNoValidate> operand(&decoder, |
| code->at(pc)); |
| const WasmGlobal* global = &module()->globals[operand.index]; |
| byte* ptr = wasm_context_->globals_start + global->offset; |
| WasmValue val = Pop(); |
| switch (global->type) { |
| #define CASE_TYPE(wasm, ctype) \ |
| case kWasm##wasm: \ |
| *reinterpret_cast<ctype*>(ptr) = val.to<ctype>(); \ |
| break; |
| WASM_CTYPES(CASE_TYPE) |
| #undef CASE_TYPE |
| default: |
| UNREACHABLE(); |
| } |
| len = 1 + operand.length; |
| break; |
| } |
| |
| #define LOAD_CASE(name, ctype, mtype, rep) \ |
| case kExpr##name: { \ |
| if (!ExecuteLoad<ctype, mtype>(&decoder, code, pc, len, \ |
| MachineRepresentation::rep)) \ |
| return; \ |
| break; \ |
| } |
| |
| LOAD_CASE(I32LoadMem8S, int32_t, int8_t, kWord8); |
| LOAD_CASE(I32LoadMem8U, int32_t, uint8_t, kWord8); |
| LOAD_CASE(I32LoadMem16S, int32_t, int16_t, kWord16); |
| LOAD_CASE(I32LoadMem16U, int32_t, uint16_t, kWord16); |
| LOAD_CASE(I64LoadMem8S, int64_t, int8_t, kWord8); |
| LOAD_CASE(I64LoadMem8U, int64_t, uint8_t, kWord16); |
| LOAD_CASE(I64LoadMem16S, int64_t, int16_t, kWord16); |
| LOAD_CASE(I64LoadMem16U, int64_t, uint16_t, kWord16); |
| LOAD_CASE(I64LoadMem32S, int64_t, int32_t, kWord32); |
| LOAD_CASE(I64LoadMem32U, int64_t, uint32_t, kWord32); |
| LOAD_CASE(I32LoadMem, int32_t, int32_t, kWord32); |
| LOAD_CASE(I64LoadMem, int64_t, int64_t, kWord64); |
| LOAD_CASE(F32LoadMem, Float32, uint32_t, kFloat32); |
| LOAD_CASE(F64LoadMem, Float64, uint64_t, kFloat64); |
| #undef LOAD_CASE |
| |
| #define STORE_CASE(name, ctype, mtype, rep) \ |
| case kExpr##name: { \ |
| if (!ExecuteStore<ctype, mtype>(&decoder, code, pc, len, \ |
| MachineRepresentation::rep)) \ |
| return; \ |
| break; \ |
| } |
| |
| STORE_CASE(I32StoreMem8, int32_t, int8_t, kWord8); |
| STORE_CASE(I32StoreMem16, int32_t, int16_t, kWord16); |
| STORE_CASE(I64StoreMem8, int64_t, int8_t, kWord8); |
| STORE_CASE(I64StoreMem16, int64_t, int16_t, kWord16); |
| STORE_CASE(I64StoreMem32, int64_t, int32_t, kWord32); |
| STORE_CASE(I32StoreMem, int32_t, int32_t, kWord32); |
| STORE_CASE(I64StoreMem, int64_t, int64_t, kWord64); |
| STORE_CASE(F32StoreMem, Float32, uint32_t, kFloat32); |
| STORE_CASE(F64StoreMem, Float64, uint64_t, kFloat64); |
| #undef STORE_CASE |
| |
| #define ASMJS_LOAD_CASE(name, ctype, mtype, defval) \ |
| case kExpr##name: { \ |
| uint32_t index = Pop().to<uint32_t>(); \ |
| ctype result; \ |
| byte* addr = BoundsCheckMem<mtype>(0, index); \ |
| if (!addr) { \ |
| result = defval; \ |
| } else { \ |
| /* TODO(titzer): alignment for asmjs load mem? */ \ |
| result = static_cast<ctype>(*reinterpret_cast<mtype*>(addr)); \ |
| } \ |
| Push(WasmValue(result)); \ |
| break; \ |
| } |
| ASMJS_LOAD_CASE(I32AsmjsLoadMem8S, int32_t, int8_t, 0); |
| ASMJS_LOAD_CASE(I32AsmjsLoadMem8U, int32_t, uint8_t, 0); |
| ASMJS_LOAD_CASE(I32AsmjsLoadMem16S, int32_t, int16_t, 0); |
| ASMJS_LOAD_CASE(I32AsmjsLoadMem16U, int32_t, uint16_t, 0); |
| ASMJS_LOAD_CASE(I32AsmjsLoadMem, int32_t, int32_t, 0); |
| ASMJS_LOAD_CASE(F32AsmjsLoadMem, float, float, |
| std::numeric_limits<float>::quiet_NaN()); |
| ASMJS_LOAD_CASE(F64AsmjsLoadMem, double, double, |
| std::numeric_limits<double>::quiet_NaN()); |
| #undef ASMJS_LOAD_CASE |
| |
| #define ASMJS_STORE_CASE(name, ctype, mtype) \ |
| case kExpr##name: { \ |
| WasmValue val = Pop(); \ |
| uint32_t index = Pop().to<uint32_t>(); \ |
| byte* addr = BoundsCheckMem<mtype>(0, index); \ |
| if (addr) { \ |
| *(reinterpret_cast<mtype*>(addr)) = static_cast<mtype>(val.to<ctype>()); \ |
| } \ |
| Push(val); \ |
| break; \ |
| } |
| |
| ASMJS_STORE_CASE(I32AsmjsStoreMem8, int32_t, int8_t); |
| ASMJS_STORE_CASE(I32AsmjsStoreMem16, int32_t, int16_t); |
| ASMJS_STORE_CASE(I32AsmjsStoreMem, int32_t, int32_t); |
| ASMJS_STORE_CASE(F32AsmjsStoreMem, float, float); |
| ASMJS_STORE_CASE(F64AsmjsStoreMem, double, double); |
| #undef ASMJS_STORE_CASE |
| case kExprGrowMemory: { |
| MemoryIndexOperand<Decoder::kNoValidate> operand(&decoder, |
| code->at(pc)); |
| uint32_t delta_pages = Pop().to<uint32_t>(); |
| Handle<WasmInstanceObject> instance = |
| codemap()->maybe_instance().ToHandleChecked(); |
| DCHECK_EQ(wasm_context_, instance->wasm_context()->get()); |
| Isolate* isolate = instance->GetIsolate(); |
| int32_t result = |
| WasmInstanceObject::GrowMemory(isolate, instance, delta_pages); |
| Push(WasmValue(result)); |
| len = 1 + operand.length; |
| break; |
| } |
| case kExprMemorySize: { |
| MemoryIndexOperand<Decoder::kNoValidate> operand(&decoder, |
| code->at(pc)); |
| Push(WasmValue( |
| static_cast<uint32_t>(wasm_context_->mem_size / kWasmPageSize))); |
| len = 1 + operand.length; |
| break; |
| } |
| // We need to treat kExprI32ReinterpretF32 and kExprI64ReinterpretF64 |
| // specially to guarantee that the quiet bit of a NaN is preserved on |
| // ia32 by the reinterpret casts. |
| case kExprI32ReinterpretF32: { |
| WasmValue val = Pop(); |
| Push(WasmValue(ExecuteI32ReinterpretF32(val))); |
| break; |
| } |
| case kExprI64ReinterpretF64: { |
| WasmValue val = Pop(); |
| Push(WasmValue(ExecuteI64ReinterpretF64(val))); |
| break; |
| } |
| case kNumericPrefix: { |
| ++len; |
| if (!ExecuteNumericOp(opcode, &decoder, code, pc, len)) return; |
| break; |
| } |
| case kAtomicPrefix: { |
| if (!ExecuteAtomicOp(opcode, &decoder, code, pc, len)) return; |
| break; |
| } |
| |
| #define EXECUTE_SIMPLE_BINOP(name, ctype, op) \ |
| case kExpr##name: { \ |
| WasmValue rval = Pop(); \ |
| WasmValue lval = Pop(); \ |
| auto result = lval.to<ctype>() op rval.to<ctype>(); \ |
| possible_nondeterminism_ |= has_nondeterminism(result); \ |
| Push(WasmValue(result)); \ |
| break; \ |
| } |
| FOREACH_SIMPLE_BINOP(EXECUTE_SIMPLE_BINOP) |
| #undef EXECUTE_SIMPLE_BINOP |
| |
| #define EXECUTE_OTHER_BINOP(name, ctype) \ |
| case kExpr##name: { \ |
| TrapReason trap = kTrapCount; \ |
| ctype rval = Pop().to<ctype>(); \ |
| ctype lval = Pop().to<ctype>(); \ |
| auto result = Execute##name(lval, rval, &trap); \ |
| possible_nondeterminism_ |= has_nondeterminism(result); \ |
| if (trap != kTrapCount) return DoTrap(trap, pc); \ |
| Push(WasmValue(result)); \ |
| break; \ |
| } |
| FOREACH_OTHER_BINOP(EXECUTE_OTHER_BINOP) |
| #undef EXECUTE_OTHER_BINOP |
| |
| #define EXECUTE_UNOP(name, ctype, exec_fn) \ |
| case kExpr##name: { \ |
| TrapReason trap = kTrapCount; \ |
| ctype val = Pop().to<ctype>(); \ |
| auto result = exec_fn(val, &trap); \ |
| possible_nondeterminism_ |= has_nondeterminism(result); \ |
| if (trap != kTrapCount) return DoTrap(trap, pc); \ |
| Push(WasmValue(result)); \ |
| break; \ |
| } |
| |
| #define EXECUTE_OTHER_UNOP(name, ctype) EXECUTE_UNOP(name, ctype, Execute##name) |
| FOREACH_OTHER_UNOP(EXECUTE_OTHER_UNOP) |
| #undef EXECUTE_OTHER_UNOP |
| |
| #define EXECUTE_I32CONV_FLOATOP(name, out_type, in_type) \ |
| EXECUTE_UNOP(name, in_type, ExecuteConvert<out_type>) |
| FOREACH_I32CONV_FLOATOP(EXECUTE_I32CONV_FLOATOP) |
| #undef EXECUTE_I32CONV_FLOATOP |
| #undef EXECUTE_UNOP |
| |
| default: |
| V8_Fatal(__FILE__, __LINE__, "Unknown or unimplemented opcode #%d:%s", |
| code->start[pc], OpcodeName(code->start[pc])); |
| UNREACHABLE(); |
| } |
| |
| #ifdef DEBUG |
| if (!WasmOpcodes::IsControlOpcode(opcode)) { |
| DCHECK_EQ(expected_new_stack_height, StackHeight()); |
| } |
| #endif |
| |
| pc += len; |
| if (pc == limit) { |
| // Fell off end of code; do an implicit return. |
| TRACE("@%-3zu: ImplicitReturn\n", pc); |
| if (!DoReturn(&decoder, &code, &pc, &limit, |
| code->function->sig->return_count())) |
| return; |
| PAUSE_IF_BREAK_FLAG(AfterReturn); |
| } |
| #undef PAUSE_IF_BREAK_FLAG |
| } |
| |
| state_ = WasmInterpreter::PAUSED; |
| break_pc_ = hit_break ? pc : kInvalidPc; |
| CommitPc(pc); |
| } |
| |
| WasmValue Pop() { |
| DCHECK_GT(frames_.size(), 0); |
| DCHECK_GT(StackHeight(), frames_.back().llimit()); // can't pop into locals |
| return *--sp_; |
| } |
| |
| void PopN(int n) { |
| DCHECK_GE(StackHeight(), n); |
| DCHECK_GT(frames_.size(), 0); |
| // Check that we don't pop into locals. |
| DCHECK_GE(StackHeight() - n, frames_.back().llimit()); |
| sp_ -= n; |
| } |
| |
| WasmValue PopArity(size_t arity) { |
| if (arity == 0) return WasmValue(); |
| CHECK_EQ(1, arity); |
| return Pop(); |
| } |
| |
| void Push(WasmValue val) { |
| DCHECK_NE(kWasmStmt, val.type()); |
| DCHECK_LE(1, stack_limit_ - sp_); |
| *sp_++ = val; |
| } |
| |
| void Push(WasmValue* vals, size_t arity) { |
| DCHECK_LE(arity, stack_limit_ - sp_); |
| for (WasmValue *val = vals, *end = vals + arity; val != end; ++val) { |
| DCHECK_NE(kWasmStmt, val->type()); |
| } |
| memcpy(sp_, vals, arity * sizeof(*sp_)); |
| sp_ += arity; |
| } |
| |
| void EnsureStackSpace(size_t size) { |
| if (V8_LIKELY(static_cast<size_t>(stack_limit_ - sp_) >= size)) return; |
| size_t old_size = stack_limit_ - stack_start_; |
| size_t requested_size = |
| base::bits::RoundUpToPowerOfTwo64((sp_ - stack_start_) + size); |
| size_t new_size = Max(size_t{8}, Max(2 * old_size, requested_size)); |
| WasmValue* new_stack = zone_->NewArray<WasmValue>(new_size); |
| memcpy(new_stack, stack_start_, old_size * sizeof(*sp_)); |
| sp_ = new_stack + (sp_ - stack_start_); |
| stack_start_ = new_stack; |
| stack_limit_ = new_stack + new_size; |
| } |
| |
| sp_t StackHeight() { return sp_ - stack_start_; } |
| |
| void TraceValueStack() { |
| #ifdef DEBUG |
| if (!FLAG_trace_wasm_interpreter) return; |
| Frame* top = frames_.size() > 0 ? &frames_.back() : nullptr; |
| sp_t sp = top ? top->sp : 0; |
| sp_t plimit = top ? top->plimit() : 0; |
| sp_t llimit = top ? top->llimit() : 0; |
| for (size_t i = sp; i < StackHeight(); ++i) { |
| if (i < plimit) |
| PrintF(" p%zu:", i); |
| else if (i < llimit) |
| PrintF(" l%zu:", i); |
| else |
| PrintF(" s%zu:", i); |
| WasmValue val = GetStackValue(i); |
| switch (val.type()) { |
| case kWasmI32: |
| PrintF("i32:%d", val.to<int32_t>()); |
| break; |
| case kWasmI64: |
| PrintF("i64:%" PRId64 "", val.to<int64_t>()); |
| break; |
| case kWasmF32: |
| PrintF("f32:%f", val.to<float>()); |
| break; |
| case kWasmF64: |
| PrintF("f64:%lf", val.to<double>()); |
| break; |
| case kWasmStmt: |
| PrintF("void"); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| #endif // DEBUG |
| } |
| |
| ExternalCallResult TryHandleException(Isolate* isolate) { |
| if (HandleException(isolate) == WasmInterpreter::Thread::UNWOUND) { |
| return {ExternalCallResult::EXTERNAL_UNWOUND}; |
| } |
| return {ExternalCallResult::EXTERNAL_RETURNED}; |
| } |
| |
| ExternalCallResult CallExternalJSFunction(Isolate* isolate, |
| WasmCodeWrapper code, |
| FunctionSig* signature) { |
| Handle<HeapObject> target = UnwrapWasmToJSWrapper(isolate, code); |
| |
| if (target.is_null()) { |
| isolate->Throw(*isolate->factory()->NewTypeError( |
| MessageTemplate::kWasmTrapTypeError)); |
| return TryHandleException(isolate); |
| } |
| |
| #if DEBUG |
| std::ostringstream oss; |
| target->HeapObjectShortPrint(oss); |
| TRACE(" => Calling imported function %s\n", oss.str().c_str()); |
| #endif |
| |
| int num_args = static_cast<int>(signature->parameter_count()); |
| |
| // Get all arguments as JS values. |
| std::vector<Handle<Object>> args; |
| args.reserve(num_args); |
| WasmValue* wasm_args = sp_ - num_args; |
| for (int i = 0; i < num_args; ++i) { |
| args.push_back(WasmValueToNumber(isolate->factory(), wasm_args[i], |
| signature->GetParam(i))); |
| } |
| |
| // The receiver is the global proxy if in sloppy mode (default), undefined |
| // if in strict mode. |
| Handle<Object> receiver = isolate->global_proxy(); |
| if (target->IsJSFunction() && |
| is_strict(JSFunction::cast(*target)->shared()->language_mode())) { |
| receiver = isolate->factory()->undefined_value(); |
| } |
| |
| MaybeHandle<Object> maybe_retval = |
| Execution::Call(isolate, target, receiver, num_args, args.data()); |
| if (maybe_retval.is_null()) return TryHandleException(isolate); |
| |
| Handle<Object> retval = maybe_retval.ToHandleChecked(); |
| // Pop arguments off the stack. |
| sp_ -= num_args; |
| // Push return values. |
| if (signature->return_count() > 0) { |
| // TODO(wasm): Handle multiple returns. |
| DCHECK_EQ(1, signature->return_count()); |
| WasmValue value = |
| ToWebAssemblyValue(isolate, retval, signature->GetReturn()); |
| if (value.type() == kWasmStmt) return TryHandleException(isolate); |
| Push(value); |
| } |
| return {ExternalCallResult::EXTERNAL_RETURNED}; |
| } |
| |
| ExternalCallResult CallExternalWasmFunction(Isolate* isolate, |
| WasmCodeWrapper code, |
| FunctionSig* sig) { |
| Handle<WasmDebugInfo> debug_info(codemap()->instance()->debug_info(), |
| isolate); |
| Handle<JSFunction> wasm_entry = |
| WasmDebugInfo::GetCWasmEntry(debug_info, sig); |
| |
| TRACE(" => Calling external wasm function\n"); |
| |
| // Copy the arguments to one buffer. |
| // TODO(clemensh): Introduce a helper for all argument buffer |
| // con-/destruction. |
| int num_args = static_cast<int>(sig->parameter_count()); |
| std::vector<uint8_t> arg_buffer(num_args * 8); |
| size_t offset = 0; |
| WasmValue* wasm_args = sp_ - num_args; |
| for (int i = 0; i < num_args; ++i) { |
| uint32_t param_size = 1 << ElementSizeLog2Of(sig->GetParam(i)); |
| if (arg_buffer.size() < offset + param_size) { |
| arg_buffer.resize(std::max(2 * arg_buffer.size(), offset + param_size)); |
| } |
| switch (sig->GetParam(i)) { |
| case kWasmI32: |
| WriteUnalignedValue(arg_buffer.data() + offset, |
| wasm_args[i].to<uint32_t>()); |
| break; |
| case kWasmI64: |
| WriteUnalignedValue(arg_buffer.data() + offset, |
| wasm_args[i].to<uint64_t>()); |
| break; |
| case kWasmF32: |
| WriteUnalignedValue(arg_buffer.data() + offset, |
| wasm_args[i].to<float>()); |
| break; |
| case kWasmF64: |
| WriteUnalignedValue(arg_buffer.data() + offset, |
| wasm_args[i].to<double>()); |
| break; |
| default: |
| UNIMPLEMENTED(); |
| } |
| offset += param_size; |
| } |
| |
| // Ensure that there is enough space in the arg_buffer to hold the return |
| // value(s). |
| uint32_t return_size = 0; |
| for (ValueType t : sig->returns()) { |
| return_size += 1 << ElementSizeLog2Of(t); |
| } |
| if (arg_buffer.size() < return_size) { |
| arg_buffer.resize(return_size); |
| } |
| |
| // Wrap the arg_buffer data pointer in a handle. As this is an aligned |
| // pointer, to the GC it will look like a Smi. |
| Handle<Object> arg_buffer_obj(reinterpret_cast<Object*>(arg_buffer.data()), |
| isolate); |
| DCHECK(!arg_buffer_obj->IsHeapObject()); |
| |
| Handle<Object> args[compiler::CWasmEntryParameters::kNumParameters]; |
| args[compiler::CWasmEntryParameters::kCodeObject] = |
| code.IsCodeObject() |
| ? Handle<Object>::cast(code.GetCode()) |
| : Handle<Object>::cast(isolate->factory()->NewForeign( |
| code.GetWasmCode()->instructions().start(), TENURED)); |
| args[compiler::CWasmEntryParameters::kArgumentsBuffer] = arg_buffer_obj; |
| |
| Handle<Object> receiver = isolate->factory()->undefined_value(); |
| trap_handler::SetThreadInWasm(); |
| MaybeHandle<Object> maybe_retval = |
| Execution::Call(isolate, wasm_entry, receiver, arraysize(args), args); |
| TRACE(" => External wasm function returned%s\n", |
| maybe_retval.is_null() ? " with exception" : ""); |
| |
| if (maybe_retval.is_null()) { |
| DCHECK(!trap_handler::IsThreadInWasm()); |
| return TryHandleException(isolate); |
| } |
| |
| trap_handler::ClearThreadInWasm(); |
| |
| // Pop arguments off the stack. |
| sp_ -= num_args; |
| // Push return values. |
| if (sig->return_count() > 0) { |
| // TODO(wasm): Handle multiple returns. |
| DCHECK_EQ(1, sig->return_count()); |
| switch (sig->GetReturn()) { |
| case kWasmI32: |
| Push(WasmValue(ReadUnalignedValue<uint32_t>(arg_buffer.data()))); |
| break; |
| case kWasmI64: |
| Push(WasmValue(ReadUnalignedValue<uint64_t>(arg_buffer.data()))); |
| break; |
| case kWasmF32: |
| Push(WasmValue(ReadUnalignedValue<float>(arg_buffer.data()))); |
| break; |
| case kWasmF64: |
| Push(WasmValue(ReadUnalignedValue<double>(arg_buffer.data()))); |
| break; |
| default: |
| UNIMPLEMENTED(); |
| } |
| } |
| return {ExternalCallResult::EXTERNAL_RETURNED}; |
| } |
| |
| ExternalCallResult CallCodeObject(Isolate* isolate, Handle<Code> code, |
| FunctionSig* signature) { |
| DCHECK(AllowHandleAllocation::IsAllowed()); |
| DCHECK(AllowHeapAllocation::IsAllowed()); |
| |
| if (code->kind() == Code::WASM_FUNCTION || |
| code->kind() == Code::WASM_TO_WASM_FUNCTION) { |
| auto func_info = GetWasmFunctionInfo(isolate, code); |
| if (*func_info.instance.ToHandleChecked() != codemap()->instance()) { |
| return CallExternalWasmFunction(isolate, WasmCodeWrapper(code), |
| signature); |
| } |
| DCHECK_LE(0, func_info.func_index); |
| return {ExternalCallResult::INTERNAL, |
| codemap()->GetCode(func_info.func_index)}; |
| } |
| |
| return CallExternalJSFunction(isolate, WasmCodeWrapper(code), signature); |
| } |
| |
| ExternalCallResult CallWasmCode(Isolate* isolate, const wasm::WasmCode* code, |
| FunctionSig* signature) { |
| DCHECK(AllowHandleAllocation::IsAllowed()); |
| DCHECK(AllowHeapAllocation::IsAllowed()); |
| |
| if (code->kind() == wasm::WasmCode::kFunction) { |
| DCHECK_EQ(code->owner()->compiled_module()->owning_instance(), |
| codemap()->instance()); |
| return {ExternalCallResult::INTERNAL, codemap()->GetCode(code->index())}; |
| } |
| if (code->kind() == wasm::WasmCode::kWasmToJsWrapper) { |
| return CallExternalJSFunction(isolate, WasmCodeWrapper(code), signature); |
| } else if (code->kind() == wasm::WasmCode::kWasmToWasmWrapper) { |
| return CallExternalWasmFunction(isolate, WasmCodeWrapper(code), |
| signature); |
| } |
| return {ExternalCallResult::INVALID_FUNC}; |
| } |
| |
| ExternalCallResult CallImportedFunction(uint32_t function_index) { |
| // Use a new HandleScope to avoid leaking / accumulating handles in the |
| // outer scope. |
| Isolate* isolate = codemap()->instance()->GetIsolate(); |
| HandleScope handle_scope(isolate); |
| |
| if (FLAG_wasm_jit_to_native) { |
| const wasm::WasmCode* target = |
| codemap()->GetImportedFunction(function_index); |
| return CallWasmCode(isolate, target, |
| codemap()->module()->functions[function_index].sig); |
| } else { |
| Handle<Code> target(codemap()->GetImportedFunctionGC(function_index), |
| isolate); |
| return CallCodeObject(isolate, target, |
| codemap()->module()->functions[function_index].sig); |
| } |
| } |
| |
| ExternalCallResult CallIndirectFunction(uint32_t table_index, |
| uint32_t entry_index, |
| uint32_t sig_index) { |
| bool no_func_tables = !codemap()->has_instance(); |
| if (FLAG_wasm_jit_to_native) { |
| no_func_tables = no_func_tables || codemap() |
| ->instance() |
| ->compiled_module() |
| ->GetNativeModule() |
| ->function_tables() |
| .empty(); |
| } else { |
| no_func_tables = |
| no_func_tables || |
| !codemap()->instance()->compiled_module()->has_function_tables(); |
| } |
| if (no_func_tables) { |
| // No instance. Rely on the information stored in the WasmModule. |
| // TODO(wasm): This is only needed for testing. Refactor testing to use |
| // the same paths as production. |
| InterpreterCode* code = |
| codemap()->GetIndirectCode(table_index, entry_index); |
| if (!code) return {ExternalCallResult::INVALID_FUNC}; |
| if (code->function->sig_index != sig_index) { |
| // If not an exact match, we have to do a canonical check. |
| int function_canonical_id = |
| module()->signature_ids[code->function->sig_index]; |
| int expected_canonical_id = module()->signature_ids[sig_index]; |
| DCHECK_EQ(function_canonical_id, |
| module()->signature_map.Find(code->function->sig)); |
| if (function_canonical_id != expected_canonical_id) { |
| return {ExternalCallResult::SIGNATURE_MISMATCH}; |
| } |
| } |
| return {ExternalCallResult::INTERNAL, code}; |
| } |
| |
| WasmCompiledModule* compiled_module = |
| codemap()->instance()->compiled_module(); |
| Isolate* isolate = compiled_module->GetIsolate(); |
| |
| const wasm::WasmCode* target = nullptr; |
| Code* target_gc = nullptr; |
| { |
| DisallowHeapAllocation no_gc; |
| // Get function to be called directly from the live instance to see latest |
| // changes to the tables. |
| |
| // Canonicalize signature index. |
| uint32_t canonical_sig_index = module()->signature_ids[sig_index]; |
| DCHECK_EQ(canonical_sig_index, |
| module()->signature_map.Find(module()->signatures[sig_index])); |
| |
| if (!FLAG_wasm_jit_to_native) { |
| // Check signature. |
| FixedArray* fun_tables = compiled_module->function_tables(); |
| if (table_index >= static_cast<uint32_t>(fun_tables->length())) { |
| return {ExternalCallResult::INVALID_FUNC}; |
| } |
| // Reconstitute the global handle to the function table, from the |
| // address stored in the respective table of tables. |
| int table_index_as_int = static_cast<int>(table_index); |
| FixedArray* fun_table = *reinterpret_cast<FixedArray**>( |
| WasmCompiledModule::GetTableValue(fun_tables, table_index_as_int)); |
| // Function tables store <smi, code> pairs. |
| int num_funcs_in_table = |
| fun_table->length() / compiler::kFunctionTableEntrySize; |
| if (entry_index >= static_cast<uint32_t>(num_funcs_in_table)) { |
| return {ExternalCallResult::INVALID_FUNC}; |
| } |
| int found_sig = Smi::ToInt(fun_table->get( |
| compiler::FunctionTableSigOffset(static_cast<int>(entry_index)))); |
| if (static_cast<uint32_t>(found_sig) != canonical_sig_index) { |
| return {ExternalCallResult::SIGNATURE_MISMATCH}; |
| } |
| |
| // Get code object. |
| target_gc = Code::cast(fun_table->get( |
| compiler::FunctionTableCodeOffset(static_cast<int>(entry_index)))); |
| } else { |
| // Check signature. |
| std::vector<GlobalHandleAddress>& fun_tables = |
| compiled_module->GetNativeModule()->function_tables(); |
| if (table_index >= fun_tables.size()) { |
| return {ExternalCallResult::INVALID_FUNC}; |
| } |
| // Reconstitute the global handle to the function table, from the |
| // address stored in the respective table of tables. |
| FixedArray* fun_table = |
| *reinterpret_cast<FixedArray**>(fun_tables[table_index]); |
| // Function tables store <smi, code> pairs. |
| int num_funcs_in_table = |
| fun_table->length() / compiler::kFunctionTableEntrySize; |
| if (entry_index >= static_cast<uint32_t>(num_funcs_in_table)) { |
| return {ExternalCallResult::INVALID_FUNC}; |
| } |
| int found_sig = Smi::ToInt(fun_table->get( |
| compiler::FunctionTableSigOffset(static_cast<int>(entry_index)))); |
| if (static_cast<uint32_t>(found_sig) != canonical_sig_index) { |
| return {ExternalCallResult::SIGNATURE_MISMATCH}; |
| } |
| |
| // Get code object. |
| Address first_instr = |
| Foreign::cast(fun_table->get(compiler::FunctionTableCodeOffset( |
| static_cast<int>(entry_index)))) |
| ->foreign_address(); |
| target = |
| isolate->wasm_engine()->code_manager()->GetCodeFromStartAddress( |
| first_instr); |
| } |
| } |
| |
| // Call the code object. Use a new HandleScope to avoid leaking / |
| // accumulating handles in the outer scope. |
| HandleScope handle_scope(isolate); |
| FunctionSig* signature = module()->signatures[sig_index]; |
| if (FLAG_wasm_jit_to_native) { |
| return CallWasmCode(isolate, target, signature); |
| } else { |
| return CallCodeObject(isolate, handle(target_gc, isolate), signature); |
| } |
| } |
| |
| inline Activation current_activation() { |
| return activations_.empty() ? Activation(0, 0) : activations_.back(); |
| } |
| }; |
| |
| class |