blob: 9f8232c9022f702a03c91b5a31c1401307ebf301 [file] [log] [blame]
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_WASM_OPCODES_H_
#define V8_WASM_OPCODES_H_
#include "src/globals.h"
#include "src/machine-type.h"
#include "src/runtime/runtime.h"
#include "src/signature.h"
#include "src/wasm/wasm-constants.h"
namespace v8 {
namespace internal {
namespace wasm {
// We reuse the internal machine type to represent WebAssembly types.
// A typedef improves readability without adding a whole new type system.
using ValueType = MachineRepresentation;
constexpr ValueType kWasmStmt = MachineRepresentation::kNone;
constexpr ValueType kWasmI32 = MachineRepresentation::kWord32;
constexpr ValueType kWasmI64 = MachineRepresentation::kWord64;
constexpr ValueType kWasmF32 = MachineRepresentation::kFloat32;
constexpr ValueType kWasmF64 = MachineRepresentation::kFloat64;
constexpr ValueType kWasmS128 = MachineRepresentation::kSimd128;
constexpr ValueType kWasmVar = MachineRepresentation::kTagged;
using FunctionSig = Signature<ValueType>;
std::ostream& operator<<(std::ostream& os, const FunctionSig& function);
bool IsJSCompatibleSignature(const FunctionSig* sig);
using WasmName = Vector<const char>;
// Control expressions and blocks.
#define FOREACH_CONTROL_OPCODE(V) \
V(Unreachable, 0x00, _) \
V(Nop, 0x01, _) \
V(Block, 0x02, _) \
V(Loop, 0x03, _) \
V(If, 0x004, _) \
V(Else, 0x05, _) \
V(Try, 0x06, _ /* eh_prototype */) \
V(Catch, 0x07, _ /* eh_prototype */) \
V(Throw, 0x08, _ /* eh_prototype */) \
V(Rethrow, 0x09, _ /* eh_prototype */) \
V(CatchAll, 0x0a, _ /* eh prototype */) \
V(End, 0x0b, _) \
V(Br, 0x0c, _) \
V(BrIf, 0x0d, _) \
V(BrTable, 0x0e, _) \
V(Return, 0x0f, _)
// Constants, locals, globals, and calls.
#define FOREACH_MISC_OPCODE(V) \
V(CallFunction, 0x10, _) \
V(CallIndirect, 0x11, _) \
V(Drop, 0x1a, _) \
V(Select, 0x1b, _) \
V(GetLocal, 0x20, _) \
V(SetLocal, 0x21, _) \
V(TeeLocal, 0x22, _) \
V(GetGlobal, 0x23, _) \
V(SetGlobal, 0x24, _) \
V(I32Const, 0x41, _) \
V(I64Const, 0x42, _) \
V(F32Const, 0x43, _) \
V(F64Const, 0x44, _)
// Load memory expressions.
#define FOREACH_LOAD_MEM_OPCODE(V) \
V(I32LoadMem, 0x28, i_i) \
V(I64LoadMem, 0x29, l_i) \
V(F32LoadMem, 0x2a, f_i) \
V(F64LoadMem, 0x2b, d_i) \
V(I32LoadMem8S, 0x2c, i_i) \
V(I32LoadMem8U, 0x2d, i_i) \
V(I32LoadMem16S, 0x2e, i_i) \
V(I32LoadMem16U, 0x2f, i_i) \
V(I64LoadMem8S, 0x30, l_i) \
V(I64LoadMem8U, 0x31, l_i) \
V(I64LoadMem16S, 0x32, l_i) \
V(I64LoadMem16U, 0x33, l_i) \
V(I64LoadMem32S, 0x34, l_i) \
V(I64LoadMem32U, 0x35, l_i)
// Store memory expressions.
#define FOREACH_STORE_MEM_OPCODE(V) \
V(I32StoreMem, 0x36, v_ii) \
V(I64StoreMem, 0x37, v_il) \
V(F32StoreMem, 0x38, v_if) \
V(F64StoreMem, 0x39, v_id) \
V(I32StoreMem8, 0x3a, v_ii) \
V(I32StoreMem16, 0x3b, v_ii) \
V(I64StoreMem8, 0x3c, v_il) \
V(I64StoreMem16, 0x3d, v_il) \
V(I64StoreMem32, 0x3e, v_il)
// Miscellaneous memory expressions
#define FOREACH_MISC_MEM_OPCODE(V) \
V(MemorySize, 0x3f, i_v) \
V(GrowMemory, 0x40, i_i)
// Expressions with signatures.
#define FOREACH_SIMPLE_OPCODE(V) \
V(I32Eqz, 0x45, i_i) \
V(I32Eq, 0x46, i_ii) \
V(I32Ne, 0x47, i_ii) \
V(I32LtS, 0x48, i_ii) \
V(I32LtU, 0x49, i_ii) \
V(I32GtS, 0x4a, i_ii) \
V(I32GtU, 0x4b, i_ii) \
V(I32LeS, 0x4c, i_ii) \
V(I32LeU, 0x4d, i_ii) \
V(I32GeS, 0x4e, i_ii) \
V(I32GeU, 0x4f, i_ii) \
V(I64Eqz, 0x50, i_l) \
V(I64Eq, 0x51, i_ll) \
V(I64Ne, 0x52, i_ll) \
V(I64LtS, 0x53, i_ll) \
V(I64LtU, 0x54, i_ll) \
V(I64GtS, 0x55, i_ll) \
V(I64GtU, 0x56, i_ll) \
V(I64LeS, 0x57, i_ll) \
V(I64LeU, 0x58, i_ll) \
V(I64GeS, 0x59, i_ll) \
V(I64GeU, 0x5a, i_ll) \
V(F32Eq, 0x5b, i_ff) \
V(F32Ne, 0x5c, i_ff) \
V(F32Lt, 0x5d, i_ff) \
V(F32Gt, 0x5e, i_ff) \
V(F32Le, 0x5f, i_ff) \
V(F32Ge, 0x60, i_ff) \
V(F64Eq, 0x61, i_dd) \
V(F64Ne, 0x62, i_dd) \
V(F64Lt, 0x63, i_dd) \
V(F64Gt, 0x64, i_dd) \
V(F64Le, 0x65, i_dd) \
V(F64Ge, 0x66, i_dd) \
V(I32Clz, 0x67, i_i) \
V(I32Ctz, 0x68, i_i) \
V(I32Popcnt, 0x69, i_i) \
V(I32Add, 0x6a, i_ii) \
V(I32Sub, 0x6b, i_ii) \
V(I32Mul, 0x6c, i_ii) \
V(I32DivS, 0x6d, i_ii) \
V(I32DivU, 0x6e, i_ii) \
V(I32RemS, 0x6f, i_ii) \
V(I32RemU, 0x70, i_ii) \
V(I32And, 0x71, i_ii) \
V(I32Ior, 0x72, i_ii) \
V(I32Xor, 0x73, i_ii) \
V(I32Shl, 0x74, i_ii) \
V(I32ShrS, 0x75, i_ii) \
V(I32ShrU, 0x76, i_ii) \
V(I32Rol, 0x77, i_ii) \
V(I32Ror, 0x78, i_ii) \
V(I64Clz, 0x79, l_l) \
V(I64Ctz, 0x7a, l_l) \
V(I64Popcnt, 0x7b, l_l) \
V(I64Add, 0x7c, l_ll) \
V(I64Sub, 0x7d, l_ll) \
V(I64Mul, 0x7e, l_ll) \
V(I64DivS, 0x7f, l_ll) \
V(I64DivU, 0x80, l_ll) \
V(I64RemS, 0x81, l_ll) \
V(I64RemU, 0x82, l_ll) \
V(I64And, 0x83, l_ll) \
V(I64Ior, 0x84, l_ll) \
V(I64Xor, 0x85, l_ll) \
V(I64Shl, 0x86, l_ll) \
V(I64ShrS, 0x87, l_ll) \
V(I64ShrU, 0x88, l_ll) \
V(I64Rol, 0x89, l_ll) \
V(I64Ror, 0x8a, l_ll) \
V(F32Abs, 0x8b, f_f) \
V(F32Neg, 0x8c, f_f) \
V(F32Ceil, 0x8d, f_f) \
V(F32Floor, 0x8e, f_f) \
V(F32Trunc, 0x8f, f_f) \
V(F32NearestInt, 0x90, f_f) \
V(F32Sqrt, 0x91, f_f) \
V(F32Add, 0x92, f_ff) \
V(F32Sub, 0x93, f_ff) \
V(F32Mul, 0x94, f_ff) \
V(F32Div, 0x95, f_ff) \
V(F32Min, 0x96, f_ff) \
V(F32Max, 0x97, f_ff) \
V(F32CopySign, 0x98, f_ff) \
V(F64Abs, 0x99, d_d) \
V(F64Neg, 0x9a, d_d) \
V(F64Ceil, 0x9b, d_d) \
V(F64Floor, 0x9c, d_d) \
V(F64Trunc, 0x9d, d_d) \
V(F64NearestInt, 0x9e, d_d) \
V(F64Sqrt, 0x9f, d_d) \
V(F64Add, 0xa0, d_dd) \
V(F64Sub, 0xa1, d_dd) \
V(F64Mul, 0xa2, d_dd) \
V(F64Div, 0xa3, d_dd) \
V(F64Min, 0xa4, d_dd) \
V(F64Max, 0xa5, d_dd) \
V(F64CopySign, 0xa6, d_dd) \
V(I32ConvertI64, 0xa7, i_l) \
V(I32SConvertF32, 0xa8, i_f) \
V(I32UConvertF32, 0xa9, i_f) \
V(I32SConvertF64, 0xaa, i_d) \
V(I32UConvertF64, 0xab, i_d) \
V(I64SConvertI32, 0xac, l_i) \
V(I64UConvertI32, 0xad, l_i) \
V(I64SConvertF32, 0xae, l_f) \
V(I64UConvertF32, 0xaf, l_f) \
V(I64SConvertF64, 0xb0, l_d) \
V(I64UConvertF64, 0xb1, l_d) \
V(F32SConvertI32, 0xb2, f_i) \
V(F32UConvertI32, 0xb3, f_i) \
V(F32SConvertI64, 0xb4, f_l) \
V(F32UConvertI64, 0xb5, f_l) \
V(F32ConvertF64, 0xb6, f_d) \
V(F64SConvertI32, 0xb7, d_i) \
V(F64UConvertI32, 0xb8, d_i) \
V(F64SConvertI64, 0xb9, d_l) \
V(F64UConvertI64, 0xba, d_l) \
V(F64ConvertF32, 0xbb, d_f) \
V(I32ReinterpretF32, 0xbc, i_f) \
V(I64ReinterpretF64, 0xbd, l_d) \
V(F32ReinterpretI32, 0xbe, f_i) \
V(F64ReinterpretI64, 0xbf, d_l)
// For compatibility with Asm.js.
#define FOREACH_ASMJS_COMPAT_OPCODE(V) \
V(F64Acos, 0xc2, d_d) \
V(F64Asin, 0xc3, d_d) \
V(F64Atan, 0xc4, d_d) \
V(F64Cos, 0xc5, d_d) \
V(F64Sin, 0xc6, d_d) \
V(F64Tan, 0xc7, d_d) \
V(F64Exp, 0xc8, d_d) \
V(F64Log, 0xc9, d_d) \
V(F64Atan2, 0xca, d_dd) \
V(F64Pow, 0xcb, d_dd) \
V(F64Mod, 0xcc, d_dd) \
V(I32AsmjsDivS, 0xd0, i_ii) \
V(I32AsmjsDivU, 0xd1, i_ii) \
V(I32AsmjsRemS, 0xd2, i_ii) \
V(I32AsmjsRemU, 0xd3, i_ii) \
V(I32AsmjsLoadMem8S, 0xd4, i_i) \
V(I32AsmjsLoadMem8U, 0xd5, i_i) \
V(I32AsmjsLoadMem16S, 0xd6, i_i) \
V(I32AsmjsLoadMem16U, 0xd7, i_i) \
V(I32AsmjsLoadMem, 0xd8, i_i) \
V(F32AsmjsLoadMem, 0xd9, f_i) \
V(F64AsmjsLoadMem, 0xda, d_i) \
V(I32AsmjsStoreMem8, 0xdb, i_ii) \
V(I32AsmjsStoreMem16, 0xdc, i_ii) \
V(I32AsmjsStoreMem, 0xdd, i_ii) \
V(F32AsmjsStoreMem, 0xde, f_if) \
V(F64AsmjsStoreMem, 0xdf, d_id) \
V(I32AsmjsSConvertF32, 0xe0, i_f) \
V(I32AsmjsUConvertF32, 0xe1, i_f) \
V(I32AsmjsSConvertF64, 0xe2, i_d) \
V(I32AsmjsUConvertF64, 0xe3, i_d)
#define FOREACH_SIMD_0_OPERAND_OPCODE(V) \
V(F32x4Splat, 0xfd00, s_f) \
V(F32x4Abs, 0xfd03, s_s) \
V(F32x4Neg, 0xfd04, s_s) \
V(F32x4RecipApprox, 0xfd06, s_s) \
V(F32x4RecipSqrtApprox, 0xfd07, s_s) \
V(F32x4Add, 0xfd08, s_ss) \
V(F32x4AddHoriz, 0xfdb9, s_ss) \
V(F32x4Sub, 0xfd09, s_ss) \
V(F32x4Mul, 0xfd0a, s_ss) \
V(F32x4Min, 0xfd0c, s_ss) \
V(F32x4Max, 0xfd0d, s_ss) \
V(F32x4Eq, 0xfd10, s_ss) \
V(F32x4Ne, 0xfd11, s_ss) \
V(F32x4Lt, 0xfd12, s_ss) \
V(F32x4Le, 0xfd13, s_ss) \
V(F32x4Gt, 0xfd14, s_ss) \
V(F32x4Ge, 0xfd15, s_ss) \
V(F32x4SConvertI32x4, 0xfd19, s_s) \
V(F32x4UConvertI32x4, 0xfd1a, s_s) \
V(I32x4Splat, 0xfd1b, s_i) \
V(I32x4Neg, 0xfd1e, s_s) \
V(I32x4Add, 0xfd1f, s_ss) \
V(I32x4AddHoriz, 0xfdba, s_ss) \
V(I32x4Sub, 0xfd20, s_ss) \
V(I32x4Mul, 0xfd21, s_ss) \
V(I32x4MinS, 0xfd22, s_ss) \
V(I32x4MaxS, 0xfd23, s_ss) \
V(I32x4Eq, 0xfd26, s_ss) \
V(I32x4Ne, 0xfd27, s_ss) \
V(I32x4LtS, 0xfd28, s_ss) \
V(I32x4LeS, 0xfd29, s_ss) \
V(I32x4GtS, 0xfd2a, s_ss) \
V(I32x4GeS, 0xfd2b, s_ss) \
V(I32x4SConvertF32x4, 0xfd2f, s_s) \
V(I32x4UConvertF32x4, 0xfd37, s_s) \
V(I32x4SConvertI16x8Low, 0xfd94, s_s) \
V(I32x4SConvertI16x8High, 0xfd95, s_s) \
V(I32x4UConvertI16x8Low, 0xfd96, s_s) \
V(I32x4UConvertI16x8High, 0xfd97, s_s) \
V(I32x4MinU, 0xfd30, s_ss) \
V(I32x4MaxU, 0xfd31, s_ss) \
V(I32x4LtU, 0xfd33, s_ss) \
V(I32x4LeU, 0xfd34, s_ss) \
V(I32x4GtU, 0xfd35, s_ss) \
V(I32x4GeU, 0xfd36, s_ss) \
V(I16x8Splat, 0xfd38, s_i) \
V(I16x8Neg, 0xfd3b, s_s) \
V(I16x8Add, 0xfd3c, s_ss) \
V(I16x8AddSaturateS, 0xfd3d, s_ss) \
V(I16x8AddHoriz, 0xfdbb, s_ss) \
V(I16x8Sub, 0xfd3e, s_ss) \
V(I16x8SubSaturateS, 0xfd3f, s_ss) \
V(I16x8Mul, 0xfd40, s_ss) \
V(I16x8MinS, 0xfd41, s_ss) \
V(I16x8MaxS, 0xfd42, s_ss) \
V(I16x8Eq, 0xfd45, s_ss) \
V(I16x8Ne, 0xfd46, s_ss) \
V(I16x8LtS, 0xfd47, s_ss) \
V(I16x8LeS, 0xfd48, s_ss) \
V(I16x8GtS, 0xfd49, s_ss) \
V(I16x8GeS, 0xfd4a, s_ss) \
V(I16x8AddSaturateU, 0xfd4e, s_ss) \
V(I16x8SubSaturateU, 0xfd4f, s_ss) \
V(I16x8MinU, 0xfd50, s_ss) \
V(I16x8MaxU, 0xfd51, s_ss) \
V(I16x8LtU, 0xfd53, s_ss) \
V(I16x8LeU, 0xfd54, s_ss) \
V(I16x8GtU, 0xfd55, s_ss) \
V(I16x8GeU, 0xfd56, s_ss) \
V(I16x8SConvertI32x4, 0xfd98, s_ss) \
V(I16x8UConvertI32x4, 0xfd99, s_ss) \
V(I16x8SConvertI8x16Low, 0xfd9a, s_s) \
V(I16x8SConvertI8x16High, 0xfd9b, s_s) \
V(I16x8UConvertI8x16Low, 0xfd9c, s_s) \
V(I16x8UConvertI8x16High, 0xfd9d, s_s) \
V(I8x16Splat, 0xfd57, s_i) \
V(I8x16Neg, 0xfd5a, s_s) \
V(I8x16Add, 0xfd5b, s_ss) \
V(I8x16AddSaturateS, 0xfd5c, s_ss) \
V(I8x16Sub, 0xfd5d, s_ss) \
V(I8x16SubSaturateS, 0xfd5e, s_ss) \
V(I8x16Mul, 0xfd5f, s_ss) \
V(I8x16MinS, 0xfd60, s_ss) \
V(I8x16MaxS, 0xfd61, s_ss) \
V(I8x16Eq, 0xfd64, s_ss) \
V(I8x16Ne, 0xfd65, s_ss) \
V(I8x16LtS, 0xfd66, s_ss) \
V(I8x16LeS, 0xfd67, s_ss) \
V(I8x16GtS, 0xfd68, s_ss) \
V(I8x16GeS, 0xfd69, s_ss) \
V(I8x16AddSaturateU, 0xfd6d, s_ss) \
V(I8x16SubSaturateU, 0xfd6e, s_ss) \
V(I8x16MinU, 0xfd6f, s_ss) \
V(I8x16MaxU, 0xfd70, s_ss) \
V(I8x16LtU, 0xfd72, s_ss) \
V(I8x16LeU, 0xfd73, s_ss) \
V(I8x16GtU, 0xfd74, s_ss) \
V(I8x16GeU, 0xfd75, s_ss) \
V(I8x16SConvertI16x8, 0xfd9e, s_ss) \
V(I8x16UConvertI16x8, 0xfd9f, s_ss) \
V(S128And, 0xfd76, s_ss) \
V(S128Or, 0xfd77, s_ss) \
V(S128Xor, 0xfd78, s_ss) \
V(S128Not, 0xfd79, s_s) \
V(S128Select, 0xfd2c, s_sss) \
V(S1x4AnyTrue, 0xfd84, i_s) \
V(S1x4AllTrue, 0xfd85, i_s) \
V(S1x8AnyTrue, 0xfd8a, i_s) \
V(S1x8AllTrue, 0xfd8b, i_s) \
V(S1x16AnyTrue, 0xfd90, i_s) \
V(S1x16AllTrue, 0xfd91, i_s)
#define FOREACH_SIMD_1_OPERAND_OPCODE(V) \
V(F32x4ExtractLane, 0xfd01, _) \
V(F32x4ReplaceLane, 0xfd02, _) \
V(I32x4ExtractLane, 0xfd1c, _) \
V(I32x4ReplaceLane, 0xfd1d, _) \
V(I32x4Shl, 0xfd24, _) \
V(I32x4ShrS, 0xfd25, _) \
V(I32x4ShrU, 0xfd32, _) \
V(I16x8ExtractLane, 0xfd39, _) \
V(I16x8ReplaceLane, 0xfd3a, _) \
V(I16x8Shl, 0xfd43, _) \
V(I16x8ShrS, 0xfd44, _) \
V(I16x8ShrU, 0xfd52, _) \
V(I8x16ExtractLane, 0xfd58, _) \
V(I8x16ReplaceLane, 0xfd59, _) \
V(I8x16Shl, 0xfd62, _) \
V(I8x16ShrS, 0xfd63, _) \
V(I8x16ShrU, 0xfd71, _)
#define FOREACH_SIMD_MASK_OPERAND_OPCODE(V) V(S8x16Shuffle, 0xfd6b, s_ss)
#define FOREACH_SIMD_MEM_OPCODE(V) \
V(S128LoadMem, 0xfd80, s_i) \
V(S128StoreMem, 0xfd81, v_is)
#define FOREACH_NUMERIC_OPCODE(V) \
V(I32SConvertSatF32, 0xfc00, i_f) \
V(I32UConvertSatF32, 0xfc01, i_f) \
V(I32SConvertSatF64, 0xfc02, i_d) \
V(I32UConvertSatF64, 0xfc03, i_d)
// TODO(kschimpf): Add remaining i64 numeric opcodes.
#define FOREACH_ATOMIC_OPCODE(V) \
V(I32AtomicLoad, 0xfe10, i_i) \
V(I32AtomicLoad8U, 0xfe12, i_i) \
V(I32AtomicLoad16U, 0xfe13, i_i) \
V(I32AtomicStore, 0xfe17, v_ii) \
V(I32AtomicStore8U, 0xfe19, v_ii) \
V(I32AtomicStore16U, 0xfe1a, v_ii) \
V(I32AtomicAdd, 0xfe1e, i_ii) \
V(I32AtomicAdd8U, 0xfe20, i_ii) \
V(I32AtomicAdd16U, 0xfe21, i_ii) \
V(I32AtomicSub, 0xfe25, i_ii) \
V(I32AtomicSub8U, 0xfe27, i_ii) \
V(I32AtomicSub16U, 0xfe28, i_ii) \
V(I32AtomicAnd, 0xfe2c, i_ii) \
V(I32AtomicAnd8U, 0xfe2e, i_ii) \
V(I32AtomicAnd16U, 0xfe2f, i_ii) \
V(I32AtomicOr, 0xfe33, i_ii) \
V(I32AtomicOr8U, 0xfe35, i_ii) \
V(I32AtomicOr16U, 0xfe36, i_ii) \
V(I32AtomicXor, 0xfe3a, i_ii) \
V(I32AtomicXor8U, 0xfe3c, i_ii) \
V(I32AtomicXor16U, 0xfe3d, i_ii) \
V(I32AtomicExchange, 0xfe41, i_ii) \
V(I32AtomicExchange8U, 0xfe43, i_ii) \
V(I32AtomicExchange16U, 0xfe44, i_ii) \
V(I32AtomicCompareExchange, 0xfe48, i_iii) \
V(I32AtomicCompareExchange8U, 0xfe4a, i_iii) \
V(I32AtomicCompareExchange16U, 0xfe4b, i_iii)
// All opcodes.
#define FOREACH_OPCODE(V) \
FOREACH_CONTROL_OPCODE(V) \
FOREACH_MISC_OPCODE(V) \
FOREACH_SIMPLE_OPCODE(V) \
FOREACH_STORE_MEM_OPCODE(V) \
FOREACH_LOAD_MEM_OPCODE(V) \
FOREACH_MISC_MEM_OPCODE(V) \
FOREACH_ASMJS_COMPAT_OPCODE(V) \
FOREACH_SIMD_0_OPERAND_OPCODE(V) \
FOREACH_SIMD_1_OPERAND_OPCODE(V) \
FOREACH_SIMD_MASK_OPERAND_OPCODE(V) \
FOREACH_SIMD_MEM_OPCODE(V) \
FOREACH_ATOMIC_OPCODE(V) \
FOREACH_NUMERIC_OPCODE(V)
// All signatures.
#define FOREACH_SIGNATURE(V) \
FOREACH_SIMD_SIGNATURE(V) \
V(i_ii, kWasmI32, kWasmI32, kWasmI32) \
V(i_i, kWasmI32, kWasmI32) \
V(i_v, kWasmI32) \
V(i_ff, kWasmI32, kWasmF32, kWasmF32) \
V(i_f, kWasmI32, kWasmF32) \
V(i_dd, kWasmI32, kWasmF64, kWasmF64) \
V(i_d, kWasmI32, kWasmF64) \
V(i_l, kWasmI32, kWasmI64) \
V(l_ll, kWasmI64, kWasmI64, kWasmI64) \
V(i_ll, kWasmI32, kWasmI64, kWasmI64) \
V(l_l, kWasmI64, kWasmI64) \
V(l_i, kWasmI64, kWasmI32) \
V(l_f, kWasmI64, kWasmF32) \
V(l_d, kWasmI64, kWasmF64) \
V(f_ff, kWasmF32, kWasmF32, kWasmF32) \
V(f_f, kWasmF32, kWasmF32) \
V(f_d, kWasmF32, kWasmF64) \
V(f_i, kWasmF32, kWasmI32) \
V(f_l, kWasmF32, kWasmI64) \
V(d_dd, kWasmF64, kWasmF64, kWasmF64) \
V(d_d, kWasmF64, kWasmF64) \
V(d_f, kWasmF64, kWasmF32) \
V(d_i, kWasmF64, kWasmI32) \
V(d_l, kWasmF64, kWasmI64) \
V(v_ii, kWasmStmt, kWasmI32, kWasmI32) \
V(v_id, kWasmStmt, kWasmI32, kWasmF64) \
V(d_id, kWasmF64, kWasmI32, kWasmF64) \
V(v_if, kWasmStmt, kWasmI32, kWasmF32) \
V(f_if, kWasmF32, kWasmI32, kWasmF32) \
V(v_il, kWasmI64, kWasmI32, kWasmI64) \
V(i_iii, kWasmI32, kWasmI32, kWasmI32, kWasmI32)
#define FOREACH_SIMD_SIGNATURE(V) \
V(s_s, kWasmS128, kWasmS128) \
V(s_f, kWasmS128, kWasmF32) \
V(s_ss, kWasmS128, kWasmS128, kWasmS128) \
V(s_i, kWasmS128, kWasmI32) \
V(s_si, kWasmS128, kWasmS128, kWasmI32) \
V(i_s, kWasmI32, kWasmS128) \
V(s_sss, kWasmS128, kWasmS128, kWasmS128, kWasmS128)
#define FOREACH_PREFIX(V) \
V(Numeric, 0xfc) \
V(Simd, 0xfd) \
V(Atomic, 0xfe)
enum WasmOpcode {
// Declare expression opcodes.
#define DECLARE_NAMED_ENUM(name, opcode, sig) kExpr##name = opcode,
FOREACH_OPCODE(DECLARE_NAMED_ENUM)
#undef DECLARE_NAMED_ENUM
#define DECLARE_PREFIX(name, opcode) k##name##Prefix = opcode,
FOREACH_PREFIX(DECLARE_PREFIX)
#undef DECLARE_PREFIX
};
// The reason for a trap.
#define FOREACH_WASM_TRAPREASON(V) \
V(TrapUnreachable) \
V(TrapMemOutOfBounds) \
V(TrapDivByZero) \
V(TrapDivUnrepresentable) \
V(TrapRemByZero) \
V(TrapFloatUnrepresentable) \
V(TrapFuncInvalid) \
V(TrapFuncSigMismatch)
enum TrapReason {
#define DECLARE_ENUM(name) k##name,
FOREACH_WASM_TRAPREASON(DECLARE_ENUM)
kTrapCount
#undef DECLARE_ENUM
};
// TODO(clemensh): Compute memtype and size from ValueType once we have c++14
// constexpr support.
#define FOREACH_LOAD_TYPE(V) \
V(I32, , Int32, 2) \
V(I32, 8S, Int8, 0) \
V(I32, 8U, Uint8, 0) \
V(I32, 16S, Int16, 1) \
V(I32, 16U, Uint16, 1) \
V(I64, , Int64, 3) \
V(I64, 8S, Int8, 0) \
V(I64, 8U, Uint8, 0) \
V(I64, 16S, Int16, 1) \
V(I64, 16U, Uint16, 1) \
V(I64, 32S, Int32, 2) \
V(I64, 32U, Uint32, 2) \
V(F32, , Float32, 2) \
V(F64, , Float64, 3) \
V(S128, , Simd128, 4)
class LoadType {
public:
enum LoadTypeValue : uint8_t {
#define DEF_ENUM(type, suffix, ...) k##type##Load##suffix,
FOREACH_LOAD_TYPE(DEF_ENUM)
#undef DEF_ENUM
};
// Allow implicit convertion of the enum value to this wrapper.
constexpr LoadType(LoadTypeValue val) // NOLINT(runtime/explicit)
: val_(val) {}
constexpr LoadTypeValue value() const { return val_; }
constexpr unsigned size_log_2() const { return kLoadSizeLog2[val_]; }
constexpr unsigned size() const { return 1 << size_log_2(); }
constexpr ValueType value_type() const { return kValueType[val_]; }
constexpr MachineType mem_type() const { return kMemType[val_]; }
private:
const LoadTypeValue val_;
static constexpr uint8_t kLoadSizeLog2[] = {
#define LOAD_SIZE(_, __, ___, size) size,
FOREACH_LOAD_TYPE(LOAD_SIZE)
#undef LOAD_SIZE
};
static constexpr ValueType kValueType[] = {
#define VALUE_TYPE(type, ...) kWasm##type,
FOREACH_LOAD_TYPE(VALUE_TYPE)
#undef VALUE_TYPE
};
static constexpr MachineType kMemType[] = {
#define MEMTYPE(_, __, memtype, ___) MachineType::memtype(),
FOREACH_LOAD_TYPE(MEMTYPE)
#undef MEMTYPE
};
};
#define FOREACH_STORE_TYPE(V) \
V(I32, , Word32, 2) \
V(I32, 8, Word8, 0) \
V(I32, 16, Word16, 1) \
V(I64, , Word64, 3) \
V(I64, 8, Word8, 0) \
V(I64, 16, Word16, 1) \
V(I64, 32, Word32, 2) \
V(F32, , Float32, 2) \
V(F64, , Float64, 3) \
V(S128, , Simd128, 4)
class StoreType {
public:
enum StoreTypeValue : uint8_t {
#define DEF_ENUM(type, suffix, ...) k##type##Store##suffix,
FOREACH_STORE_TYPE(DEF_ENUM)
#undef DEF_ENUM
};
// Allow implicit convertion of the enum value to this wrapper.
constexpr StoreType(StoreTypeValue val) // NOLINT(runtime/explicit)
: val_(val) {}
constexpr StoreTypeValue value() const { return val_; }
constexpr unsigned size_log_2() const { return kStoreSizeLog2[val_]; }
constexpr unsigned size() const { return 1 << size_log_2(); }
constexpr ValueType value_type() const { return kValueType[val_]; }
constexpr ValueType mem_rep() const { return kMemRep[val_]; }
private:
const StoreTypeValue val_;
static constexpr uint8_t kStoreSizeLog2[] = {
#define STORE_SIZE(_, __, ___, size) size,
FOREACH_STORE_TYPE(STORE_SIZE)
#undef STORE_SIZE
};
static constexpr ValueType kValueType[] = {
#define VALUE_TYPE(type, ...) kWasm##type,
FOREACH_STORE_TYPE(VALUE_TYPE)
#undef VALUE_TYPE
};
static constexpr MachineRepresentation kMemRep[] = {
#define MEMREP(_, __, memrep, ___) MachineRepresentation::k##memrep,
FOREACH_STORE_TYPE(MEMREP)
#undef MEMREP
};
};
// A collection of opcode-related static methods.
class V8_EXPORT_PRIVATE WasmOpcodes {
public:
static const char* OpcodeName(WasmOpcode opcode);
static FunctionSig* Signature(WasmOpcode opcode);
static FunctionSig* AsmjsSignature(WasmOpcode opcode);
static bool IsPrefixOpcode(WasmOpcode opcode);
static bool IsControlOpcode(WasmOpcode opcode);
// Check whether the given opcode always jumps, i.e. all instructions after
// this one in the current block are dead. Returns false for |end|.
static bool IsUnconditionalJump(WasmOpcode opcode);
static int TrapReasonToMessageId(TrapReason reason);
static const char* TrapReasonMessage(TrapReason reason);
static byte MemSize(MachineType type) {
return MemSize(type.representation());
}
static byte MemSize(ValueType type) { return 1 << ElementSizeLog2Of(type); }
static ValueTypeCode ValueTypeCodeFor(ValueType type) {
switch (type) {
case kWasmI32:
return kLocalI32;
case kWasmI64:
return kLocalI64;
case kWasmF32:
return kLocalF32;
case kWasmF64:
return kLocalF64;
case kWasmS128:
return kLocalS128;
case kWasmStmt:
return kLocalVoid;
default:
UNREACHABLE();
}
}
static MachineType MachineTypeFor(ValueType type) {
switch (type) {
case kWasmI32:
return MachineType::Int32();
case kWasmI64:
return MachineType::Int64();
case kWasmF32:
return MachineType::Float32();
case kWasmF64:
return MachineType::Float64();
case kWasmS128:
return MachineType::Simd128();
case kWasmStmt:
return MachineType::None();
default:
UNREACHABLE();
}
}
static ValueType ValueTypeFor(MachineType type) {
switch (type.representation()) {
case MachineRepresentation::kWord8:
case MachineRepresentation::kWord16:
case MachineRepresentation::kWord32:
return kWasmI32;
case MachineRepresentation::kWord64:
return kWasmI64;
case MachineRepresentation::kFloat32:
return kWasmF32;
case MachineRepresentation::kFloat64:
return kWasmF64;
case MachineRepresentation::kSimd128:
return kWasmS128;
default:
UNREACHABLE();
}
}
static char ShortNameOf(ValueType type) {
switch (type) {
case kWasmI32:
return 'i';
case kWasmI64:
return 'l';
case kWasmF32:
return 'f';
case kWasmF64:
return 'd';
case kWasmS128:
return 's';
case kWasmStmt:
return 'v';
case kWasmVar:
return '*';
default:
return '?';
}
}
static const char* TypeName(ValueType type) {
switch (type) {
case kWasmI32:
return "i32";
case kWasmI64:
return "i64";
case kWasmF32:
return "f32";
case kWasmF64:
return "f64";
case kWasmS128:
return "s128";
case kWasmStmt:
return "<stmt>";
case kWasmVar:
return "<var>";
default:
return "<unknown>";
}
}
};
// Representation of an initializer expression.
struct WasmInitExpr {
enum WasmInitKind {
kNone,
kGlobalIndex,
kI32Const,
kI64Const,
kF32Const,
kF64Const
} kind;
union {
int32_t i32_const;
int64_t i64_const;
float f32_const;
double f64_const;
uint32_t global_index;
} val;
WasmInitExpr() : kind(kNone) {}
explicit WasmInitExpr(int32_t v) : kind(kI32Const) { val.i32_const = v; }
explicit WasmInitExpr(int64_t v) : kind(kI64Const) { val.i64_const = v; }
explicit WasmInitExpr(float v) : kind(kF32Const) { val.f32_const = v; }
explicit WasmInitExpr(double v) : kind(kF64Const) { val.f64_const = v; }
WasmInitExpr(WasmInitKind kind, uint32_t global_index) : kind(kGlobalIndex) {
val.global_index = global_index;
}
};
} // namespace wasm
} // namespace internal
} // namespace v8
#endif // V8_WASM_OPCODES_H_