| // Copyright 2013 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #if V8_TARGET_ARCH_X64 |
| |
| #include "src/api-arguments.h" |
| #include "src/bootstrapper.h" |
| #include "src/code-stubs.h" |
| #include "src/counters.h" |
| #include "src/double.h" |
| #include "src/frame-constants.h" |
| #include "src/frames.h" |
| #include "src/heap/heap-inl.h" |
| #include "src/ic/ic.h" |
| #include "src/ic/stub-cache.h" |
| #include "src/isolate.h" |
| #include "src/objects-inl.h" |
| #include "src/objects/regexp-match-info.h" |
| #include "src/regexp/jsregexp.h" |
| #include "src/regexp/regexp-macro-assembler.h" |
| #include "src/runtime/runtime.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| #define __ ACCESS_MASM(masm) |
| |
| void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) { |
| __ popq(rcx); |
| __ movq(MemOperand(rsp, rax, times_8, 0), rdi); |
| __ pushq(rdi); |
| __ pushq(rbx); |
| __ pushq(rcx); |
| __ addq(rax, Immediate(3)); |
| __ TailCallRuntime(Runtime::kNewArray); |
| } |
| |
| |
| void DoubleToIStub::Generate(MacroAssembler* masm) { |
| Register final_result_reg = this->destination(); |
| |
| Label check_negative, process_64_bits, done; |
| |
| // Account for return address and saved regs. |
| const int kArgumentOffset = 3 * kRegisterSize; |
| |
| MemOperand mantissa_operand(MemOperand(rsp, kArgumentOffset)); |
| MemOperand exponent_operand( |
| MemOperand(rsp, kArgumentOffset + kDoubleSize / 2)); |
| |
| Register scratch1 = no_reg; |
| Register scratch_candidates[3] = { rbx, rdx, rdi }; |
| for (int i = 0; i < 3; i++) { |
| scratch1 = scratch_candidates[i]; |
| if (final_result_reg != scratch1) break; |
| } |
| |
| // Since we must use rcx for shifts below, use some other register (rax) |
| // to calculate the result if ecx is the requested return register. |
| Register result_reg = final_result_reg == rcx ? rax : final_result_reg; |
| // Save ecx if it isn't the return register and therefore volatile, or if it |
| // is the return register, then save the temp register we use in its stead |
| // for the result. |
| Register save_reg = final_result_reg == rcx ? rax : rcx; |
| __ pushq(scratch1); |
| __ pushq(save_reg); |
| |
| __ movl(scratch1, mantissa_operand); |
| __ Movsd(kScratchDoubleReg, mantissa_operand); |
| __ movl(rcx, exponent_operand); |
| |
| __ andl(rcx, Immediate(HeapNumber::kExponentMask)); |
| __ shrl(rcx, Immediate(HeapNumber::kExponentShift)); |
| __ leal(result_reg, MemOperand(rcx, -HeapNumber::kExponentBias)); |
| __ cmpl(result_reg, Immediate(HeapNumber::kMantissaBits)); |
| __ j(below, &process_64_bits); |
| |
| // Result is entirely in lower 32-bits of mantissa |
| int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize; |
| __ subl(rcx, Immediate(delta)); |
| __ xorl(result_reg, result_reg); |
| __ cmpl(rcx, Immediate(31)); |
| __ j(above, &done); |
| __ shll_cl(scratch1); |
| __ jmp(&check_negative); |
| |
| __ bind(&process_64_bits); |
| __ Cvttsd2siq(result_reg, kScratchDoubleReg); |
| __ jmp(&done, Label::kNear); |
| |
| // If the double was negative, negate the integer result. |
| __ bind(&check_negative); |
| __ movl(result_reg, scratch1); |
| __ negl(result_reg); |
| __ cmpl(exponent_operand, Immediate(0)); |
| __ cmovl(greater, result_reg, scratch1); |
| |
| // Restore registers |
| __ bind(&done); |
| if (final_result_reg != result_reg) { |
| DCHECK(final_result_reg == rcx); |
| __ movl(final_result_reg, result_reg); |
| } |
| __ popq(save_reg); |
| __ popq(scratch1); |
| __ ret(0); |
| } |
| |
| void MathPowStub::Generate(MacroAssembler* masm) { |
| const Register exponent = MathPowTaggedDescriptor::exponent(); |
| DCHECK(exponent == rdx); |
| const Register scratch = rcx; |
| const XMMRegister double_result = xmm3; |
| const XMMRegister double_base = xmm2; |
| const XMMRegister double_exponent = xmm1; |
| const XMMRegister double_scratch = xmm4; |
| |
| Label call_runtime, done, exponent_not_smi, int_exponent; |
| |
| // Save 1 in double_result - we need this several times later on. |
| __ movp(scratch, Immediate(1)); |
| __ Cvtlsi2sd(double_result, scratch); |
| |
| if (exponent_type() == TAGGED) { |
| __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear); |
| __ SmiToInteger32(exponent, exponent); |
| __ jmp(&int_exponent); |
| |
| __ bind(&exponent_not_smi); |
| __ Movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset)); |
| } |
| |
| if (exponent_type() != INTEGER) { |
| Label fast_power, try_arithmetic_simplification; |
| // Detect integer exponents stored as double. |
| __ DoubleToI(exponent, double_exponent, double_scratch, |
| TREAT_MINUS_ZERO_AS_ZERO, &try_arithmetic_simplification, |
| &try_arithmetic_simplification, |
| &try_arithmetic_simplification); |
| __ jmp(&int_exponent); |
| |
| __ bind(&try_arithmetic_simplification); |
| __ Cvttsd2si(exponent, double_exponent); |
| // Skip to runtime if possibly NaN (indicated by the indefinite integer). |
| __ cmpl(exponent, Immediate(0x1)); |
| __ j(overflow, &call_runtime); |
| |
| // Using FPU instructions to calculate power. |
| Label fast_power_failed; |
| __ bind(&fast_power); |
| __ fnclex(); // Clear flags to catch exceptions later. |
| // Transfer (B)ase and (E)xponent onto the FPU register stack. |
| __ subp(rsp, Immediate(kDoubleSize)); |
| __ Movsd(Operand(rsp, 0), double_exponent); |
| __ fld_d(Operand(rsp, 0)); // E |
| __ Movsd(Operand(rsp, 0), double_base); |
| __ fld_d(Operand(rsp, 0)); // B, E |
| |
| // Exponent is in st(1) and base is in st(0) |
| // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B) |
| // FYL2X calculates st(1) * log2(st(0)) |
| __ fyl2x(); // X |
| __ fld(0); // X, X |
| __ frndint(); // rnd(X), X |
| __ fsub(1); // rnd(X), X-rnd(X) |
| __ fxch(1); // X - rnd(X), rnd(X) |
| // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1 |
| __ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X) |
| __ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X) |
| __ faddp(1); // 2^(X-rnd(X)), rnd(X) |
| // FSCALE calculates st(0) * 2^st(1) |
| __ fscale(); // 2^X, rnd(X) |
| __ fstp(1); |
| // Bail out to runtime in case of exceptions in the status word. |
| __ fnstsw_ax(); |
| __ testb(rax, Immediate(0x5F)); // Check for all but precision exception. |
| __ j(not_zero, &fast_power_failed, Label::kNear); |
| __ fstp_d(Operand(rsp, 0)); |
| __ Movsd(double_result, Operand(rsp, 0)); |
| __ addp(rsp, Immediate(kDoubleSize)); |
| __ jmp(&done); |
| |
| __ bind(&fast_power_failed); |
| __ fninit(); |
| __ addp(rsp, Immediate(kDoubleSize)); |
| __ jmp(&call_runtime); |
| } |
| |
| // Calculate power with integer exponent. |
| __ bind(&int_exponent); |
| const XMMRegister double_scratch2 = double_exponent; |
| // Back up exponent as we need to check if exponent is negative later. |
| __ movp(scratch, exponent); // Back up exponent. |
| __ Movsd(double_scratch, double_base); // Back up base. |
| __ Movsd(double_scratch2, double_result); // Load double_exponent with 1. |
| |
| // Get absolute value of exponent. |
| Label no_neg, while_true, while_false; |
| __ testl(scratch, scratch); |
| __ j(positive, &no_neg, Label::kNear); |
| __ negl(scratch); |
| __ bind(&no_neg); |
| |
| __ j(zero, &while_false, Label::kNear); |
| __ shrl(scratch, Immediate(1)); |
| // Above condition means CF==0 && ZF==0. This means that the |
| // bit that has been shifted out is 0 and the result is not 0. |
| __ j(above, &while_true, Label::kNear); |
| __ Movsd(double_result, double_scratch); |
| __ j(zero, &while_false, Label::kNear); |
| |
| __ bind(&while_true); |
| __ shrl(scratch, Immediate(1)); |
| __ Mulsd(double_scratch, double_scratch); |
| __ j(above, &while_true, Label::kNear); |
| __ Mulsd(double_result, double_scratch); |
| __ j(not_zero, &while_true); |
| |
| __ bind(&while_false); |
| // If the exponent is negative, return 1/result. |
| __ testl(exponent, exponent); |
| __ j(greater, &done); |
| __ Divsd(double_scratch2, double_result); |
| __ Movsd(double_result, double_scratch2); |
| // Test whether result is zero. Bail out to check for subnormal result. |
| // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. |
| __ Xorpd(double_scratch2, double_scratch2); |
| __ Ucomisd(double_scratch2, double_result); |
| // double_exponent aliased as double_scratch2 has already been overwritten |
| // and may not have contained the exponent value in the first place when the |
| // input was a smi. We reset it with exponent value before bailing out. |
| __ j(not_equal, &done); |
| __ Cvtlsi2sd(double_exponent, exponent); |
| |
| // Returning or bailing out. |
| __ bind(&call_runtime); |
| // Move base to the correct argument register. Exponent is already in xmm1. |
| __ Movsd(xmm0, double_base); |
| DCHECK(double_exponent == xmm1); |
| { |
| AllowExternalCallThatCantCauseGC scope(masm); |
| __ PrepareCallCFunction(2); |
| __ CallCFunction(ExternalReference::power_double_double_function(isolate()), |
| 2); |
| } |
| // Return value is in xmm0. |
| __ Movsd(double_result, xmm0); |
| |
| __ bind(&done); |
| __ ret(0); |
| } |
| |
| Movability CEntryStub::NeedsImmovableCode() { return kMovable; } |
| |
| void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) { |
| CEntryStub::GenerateAheadOfTime(isolate); |
| // It is important that the store buffer overflow stubs are generated first. |
| CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate); |
| StoreFastElementStub::GenerateAheadOfTime(isolate); |
| } |
| |
| |
| void CodeStub::GenerateFPStubs(Isolate* isolate) { |
| } |
| |
| |
| void CEntryStub::GenerateAheadOfTime(Isolate* isolate) { |
| CEntryStub stub(isolate, 1, kDontSaveFPRegs); |
| stub.GetCode(); |
| CEntryStub save_doubles(isolate, 1, kSaveFPRegs); |
| save_doubles.GetCode(); |
| } |
| |
| |
| void CEntryStub::Generate(MacroAssembler* masm) { |
| // rax: number of arguments including receiver |
| // rbx: pointer to C function (C callee-saved) |
| // rbp: frame pointer of calling JS frame (restored after C call) |
| // rsp: stack pointer (restored after C call) |
| // rsi: current context (restored) |
| // |
| // If argv_in_register(): |
| // r15: pointer to the first argument |
| |
| ProfileEntryHookStub::MaybeCallEntryHook(masm); |
| |
| #ifdef _WIN64 |
| // Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9. It requires the |
| // stack to be aligned to 16 bytes. It only allows a single-word to be |
| // returned in register rax. Larger return sizes must be written to an address |
| // passed as a hidden first argument. |
| const Register kCCallArg0 = rcx; |
| const Register kCCallArg1 = rdx; |
| const Register kCCallArg2 = r8; |
| const Register kCCallArg3 = r9; |
| const int kArgExtraStackSpace = 2; |
| const int kMaxRegisterResultSize = 1; |
| #else |
| // GCC / Clang passes arguments in rdi, rsi, rdx, rcx, r8, r9. Simple results |
| // are returned in rax, and a struct of two pointers are returned in rax+rdx. |
| // Larger return sizes must be written to an address passed as a hidden first |
| // argument. |
| const Register kCCallArg0 = rdi; |
| const Register kCCallArg1 = rsi; |
| const Register kCCallArg2 = rdx; |
| const Register kCCallArg3 = rcx; |
| const int kArgExtraStackSpace = 0; |
| const int kMaxRegisterResultSize = 2; |
| #endif // _WIN64 |
| |
| // Enter the exit frame that transitions from JavaScript to C++. |
| int arg_stack_space = |
| kArgExtraStackSpace + |
| (result_size() <= kMaxRegisterResultSize ? 0 : result_size()); |
| if (argv_in_register()) { |
| DCHECK(!save_doubles()); |
| DCHECK(!is_builtin_exit()); |
| __ EnterApiExitFrame(arg_stack_space); |
| // Move argc into r14 (argv is already in r15). |
| __ movp(r14, rax); |
| } else { |
| __ EnterExitFrame( |
| arg_stack_space, save_doubles(), |
| is_builtin_exit() ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT); |
| } |
| |
| // rbx: pointer to builtin function (C callee-saved). |
| // rbp: frame pointer of exit frame (restored after C call). |
| // rsp: stack pointer (restored after C call). |
| // r14: number of arguments including receiver (C callee-saved). |
| // r15: argv pointer (C callee-saved). |
| |
| // Check stack alignment. |
| if (FLAG_debug_code) { |
| __ CheckStackAlignment(); |
| } |
| |
| // Call C function. The arguments object will be created by stubs declared by |
| // DECLARE_RUNTIME_FUNCTION(). |
| if (result_size() <= kMaxRegisterResultSize) { |
| // Pass a pointer to the Arguments object as the first argument. |
| // Return result in single register (rax), or a register pair (rax, rdx). |
| __ movp(kCCallArg0, r14); // argc. |
| __ movp(kCCallArg1, r15); // argv. |
| __ Move(kCCallArg2, ExternalReference::isolate_address(isolate())); |
| } else { |
| DCHECK_LE(result_size(), 2); |
| // Pass a pointer to the result location as the first argument. |
| __ leap(kCCallArg0, StackSpaceOperand(kArgExtraStackSpace)); |
| // Pass a pointer to the Arguments object as the second argument. |
| __ movp(kCCallArg1, r14); // argc. |
| __ movp(kCCallArg2, r15); // argv. |
| __ Move(kCCallArg3, ExternalReference::isolate_address(isolate())); |
| } |
| __ call(rbx); |
| |
| if (result_size() > kMaxRegisterResultSize) { |
| // Read result values stored on stack. Result is stored |
| // above the the two Arguments object slots on Win64. |
| DCHECK_LE(result_size(), 2); |
| __ movq(kReturnRegister0, StackSpaceOperand(kArgExtraStackSpace + 0)); |
| __ movq(kReturnRegister1, StackSpaceOperand(kArgExtraStackSpace + 1)); |
| } |
| // Result is in rax or rdx:rax - do not destroy these registers! |
| |
| // Check result for exception sentinel. |
| Label exception_returned; |
| __ CompareRoot(rax, Heap::kExceptionRootIndex); |
| __ j(equal, &exception_returned); |
| |
| // Check that there is no pending exception, otherwise we |
| // should have returned the exception sentinel. |
| if (FLAG_debug_code) { |
| Label okay; |
| __ LoadRoot(r14, Heap::kTheHoleValueRootIndex); |
| ExternalReference pending_exception_address( |
| IsolateAddressId::kPendingExceptionAddress, isolate()); |
| Operand pending_exception_operand = |
| masm->ExternalOperand(pending_exception_address); |
| __ cmpp(r14, pending_exception_operand); |
| __ j(equal, &okay, Label::kNear); |
| __ int3(); |
| __ bind(&okay); |
| } |
| |
| // Exit the JavaScript to C++ exit frame. |
| __ LeaveExitFrame(save_doubles(), !argv_in_register()); |
| __ ret(0); |
| |
| // Handling of exception. |
| __ bind(&exception_returned); |
| |
| ExternalReference pending_handler_context_address( |
| IsolateAddressId::kPendingHandlerContextAddress, isolate()); |
| ExternalReference pending_handler_entrypoint_address( |
| IsolateAddressId::kPendingHandlerEntrypointAddress, isolate()); |
| ExternalReference pending_handler_fp_address( |
| IsolateAddressId::kPendingHandlerFPAddress, isolate()); |
| ExternalReference pending_handler_sp_address( |
| IsolateAddressId::kPendingHandlerSPAddress, isolate()); |
| |
| // Ask the runtime for help to determine the handler. This will set rax to |
| // contain the current pending exception, don't clobber it. |
| ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler, |
| isolate()); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ movp(arg_reg_1, Immediate(0)); // argc. |
| __ movp(arg_reg_2, Immediate(0)); // argv. |
| __ Move(arg_reg_3, ExternalReference::isolate_address(isolate())); |
| __ PrepareCallCFunction(3); |
| __ CallCFunction(find_handler, 3); |
| } |
| // Retrieve the handler context, SP and FP. |
| __ movp(rsi, masm->ExternalOperand(pending_handler_context_address)); |
| __ movp(rsp, masm->ExternalOperand(pending_handler_sp_address)); |
| __ movp(rbp, masm->ExternalOperand(pending_handler_fp_address)); |
| |
| // If the handler is a JS frame, restore the context to the frame. Note that |
| // the context will be set to (rsi == 0) for non-JS frames. |
| Label skip; |
| __ testp(rsi, rsi); |
| __ j(zero, &skip, Label::kNear); |
| __ movp(Operand(rbp, StandardFrameConstants::kContextOffset), rsi); |
| __ bind(&skip); |
| |
| // Compute the handler entry address and jump to it. |
| __ movp(rdi, masm->ExternalOperand(pending_handler_entrypoint_address)); |
| __ jmp(rdi); |
| } |
| |
| |
| void JSEntryStub::Generate(MacroAssembler* masm) { |
| Label invoke, handler_entry, exit; |
| Label not_outermost_js, not_outermost_js_2; |
| |
| ProfileEntryHookStub::MaybeCallEntryHook(masm); |
| |
| { // NOLINT. Scope block confuses linter. |
| MacroAssembler::NoRootArrayScope uninitialized_root_register(masm); |
| // Set up frame. |
| __ pushq(rbp); |
| __ movp(rbp, rsp); |
| |
| // Push the stack frame type. |
| __ Push(Immediate(StackFrame::TypeToMarker(type()))); // context slot |
| ExternalReference context_address(IsolateAddressId::kContextAddress, |
| isolate()); |
| __ Load(kScratchRegister, context_address); |
| __ Push(kScratchRegister); // context |
| // Save callee-saved registers (X64/X32/Win64 calling conventions). |
| __ pushq(r12); |
| __ pushq(r13); |
| __ pushq(r14); |
| __ pushq(r15); |
| #ifdef _WIN64 |
| __ pushq(rdi); // Only callee save in Win64 ABI, argument in AMD64 ABI. |
| __ pushq(rsi); // Only callee save in Win64 ABI, argument in AMD64 ABI. |
| #endif |
| __ pushq(rbx); |
| |
| #ifdef _WIN64 |
| // On Win64 XMM6-XMM15 are callee-save |
| __ subp(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize)); |
| __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0), xmm6); |
| __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1), xmm7); |
| __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2), xmm8); |
| __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3), xmm9); |
| __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4), xmm10); |
| __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5), xmm11); |
| __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6), xmm12); |
| __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7), xmm13); |
| __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8), xmm14); |
| __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9), xmm15); |
| #endif |
| |
| // Set up the roots and smi constant registers. |
| // Needs to be done before any further smi loads. |
| __ InitializeRootRegister(); |
| } |
| |
| // Save copies of the top frame descriptor on the stack. |
| ExternalReference c_entry_fp(IsolateAddressId::kCEntryFPAddress, isolate()); |
| { |
| Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp); |
| __ Push(c_entry_fp_operand); |
| } |
| |
| // If this is the outermost JS call, set js_entry_sp value. |
| ExternalReference js_entry_sp(IsolateAddressId::kJSEntrySPAddress, isolate()); |
| __ Load(rax, js_entry_sp); |
| __ testp(rax, rax); |
| __ j(not_zero, ¬_outermost_js); |
| __ Push(Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME)); |
| __ movp(rax, rbp); |
| __ Store(js_entry_sp, rax); |
| Label cont; |
| __ jmp(&cont); |
| __ bind(¬_outermost_js); |
| __ Push(Immediate(StackFrame::INNER_JSENTRY_FRAME)); |
| __ bind(&cont); |
| |
| // Jump to a faked try block that does the invoke, with a faked catch |
| // block that sets the pending exception. |
| __ jmp(&invoke); |
| __ bind(&handler_entry); |
| handler_offset_ = handler_entry.pos(); |
| // Caught exception: Store result (exception) in the pending exception |
| // field in the JSEnv and return a failure sentinel. |
| ExternalReference pending_exception( |
| IsolateAddressId::kPendingExceptionAddress, isolate()); |
| __ Store(pending_exception, rax); |
| __ LoadRoot(rax, Heap::kExceptionRootIndex); |
| __ jmp(&exit); |
| |
| // Invoke: Link this frame into the handler chain. |
| __ bind(&invoke); |
| __ PushStackHandler(); |
| |
| // Invoke the function by calling through JS entry trampoline builtin and |
| // pop the faked function when we return. We load the address from an |
| // external reference instead of inlining the call target address directly |
| // in the code, because the builtin stubs may not have been generated yet |
| // at the time this code is generated. |
| __ Call(EntryTrampoline(), RelocInfo::CODE_TARGET); |
| |
| // Unlink this frame from the handler chain. |
| __ PopStackHandler(); |
| |
| __ bind(&exit); |
| // Check if the current stack frame is marked as the outermost JS frame. |
| __ Pop(rbx); |
| __ cmpp(rbx, Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME)); |
| __ j(not_equal, ¬_outermost_js_2); |
| __ Move(kScratchRegister, js_entry_sp); |
| __ movp(Operand(kScratchRegister, 0), Immediate(0)); |
| __ bind(¬_outermost_js_2); |
| |
| // Restore the top frame descriptor from the stack. |
| { Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp); |
| __ Pop(c_entry_fp_operand); |
| } |
| |
| // Restore callee-saved registers (X64 conventions). |
| #ifdef _WIN64 |
| // On Win64 XMM6-XMM15 are callee-save |
| __ movdqu(xmm6, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0)); |
| __ movdqu(xmm7, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1)); |
| __ movdqu(xmm8, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2)); |
| __ movdqu(xmm9, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3)); |
| __ movdqu(xmm10, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4)); |
| __ movdqu(xmm11, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5)); |
| __ movdqu(xmm12, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6)); |
| __ movdqu(xmm13, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7)); |
| __ movdqu(xmm14, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8)); |
| __ movdqu(xmm15, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9)); |
| __ addp(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize)); |
| #endif |
| |
| __ popq(rbx); |
| #ifdef _WIN64 |
| // Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI. |
| __ popq(rsi); |
| __ popq(rdi); |
| #endif |
| __ popq(r15); |
| __ popq(r14); |
| __ popq(r13); |
| __ popq(r12); |
| __ addp(rsp, Immediate(2 * kPointerSize)); // remove markers |
| |
| // Restore frame pointer and return. |
| __ popq(rbp); |
| __ ret(0); |
| } |
| |
| void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { |
| if (masm->isolate()->function_entry_hook() != nullptr) { |
| ProfileEntryHookStub stub(masm->isolate()); |
| masm->CallStub(&stub); |
| } |
| } |
| |
| void ProfileEntryHookStub::MaybeCallEntryHookDelayed(TurboAssembler* tasm, |
| Zone* zone) { |
| if (tasm->isolate()->function_entry_hook() != nullptr) { |
| tasm->CallStubDelayed(new (zone) ProfileEntryHookStub(nullptr)); |
| } |
| } |
| |
| void ProfileEntryHookStub::Generate(MacroAssembler* masm) { |
| // This stub can be called from essentially anywhere, so it needs to save |
| // all volatile and callee-save registers. |
| const size_t kNumSavedRegisters = 2; |
| __ pushq(arg_reg_1); |
| __ pushq(arg_reg_2); |
| |
| // Calculate the original stack pointer and store it in the second arg. |
| __ leap(arg_reg_2, |
| Operand(rsp, kNumSavedRegisters * kRegisterSize + kPCOnStackSize)); |
| |
| // Calculate the function address to the first arg. |
| __ movp(arg_reg_1, Operand(rsp, kNumSavedRegisters * kRegisterSize)); |
| __ subp(arg_reg_1, Immediate(Assembler::kShortCallInstructionLength)); |
| |
| // Save the remainder of the volatile registers. |
| masm->PushCallerSaved(kSaveFPRegs, arg_reg_1, arg_reg_2); |
| |
| // Call the entry hook function. |
| __ Move(rax, FUNCTION_ADDR(isolate()->function_entry_hook()), |
| Assembler::RelocInfoNone()); |
| |
| AllowExternalCallThatCantCauseGC scope(masm); |
| |
| const int kArgumentCount = 2; |
| __ PrepareCallCFunction(kArgumentCount); |
| __ CallCFunction(rax, kArgumentCount); |
| |
| // Restore volatile regs. |
| masm->PopCallerSaved(kSaveFPRegs, arg_reg_1, arg_reg_2); |
| __ popq(arg_reg_2); |
| __ popq(arg_reg_1); |
| |
| __ Ret(); |
| } |
| |
| |
| template<class T> |
| static void CreateArrayDispatch(MacroAssembler* masm, |
| AllocationSiteOverrideMode mode) { |
| if (mode == DISABLE_ALLOCATION_SITES) { |
| T stub(masm->isolate(), GetInitialFastElementsKind(), mode); |
| __ TailCallStub(&stub); |
| } else if (mode == DONT_OVERRIDE) { |
| int last_index = |
| GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); |
| for (int i = 0; i <= last_index; ++i) { |
| Label next; |
| ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); |
| __ cmpl(rdx, Immediate(kind)); |
| __ j(not_equal, &next); |
| T stub(masm->isolate(), kind); |
| __ TailCallStub(&stub); |
| __ bind(&next); |
| } |
| |
| // If we reached this point there is a problem. |
| __ Abort(AbortReason::kUnexpectedElementsKindInArrayConstructor); |
| } else { |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| static void CreateArrayDispatchOneArgument(MacroAssembler* masm, |
| AllocationSiteOverrideMode mode) { |
| // rbx - allocation site (if mode != DISABLE_ALLOCATION_SITES) |
| // rdx - kind (if mode != DISABLE_ALLOCATION_SITES) |
| // rax - number of arguments |
| // rdi - constructor? |
| // rsp[0] - return address |
| // rsp[8] - last argument |
| |
| STATIC_ASSERT(PACKED_SMI_ELEMENTS == 0); |
| STATIC_ASSERT(HOLEY_SMI_ELEMENTS == 1); |
| STATIC_ASSERT(PACKED_ELEMENTS == 2); |
| STATIC_ASSERT(HOLEY_ELEMENTS == 3); |
| STATIC_ASSERT(PACKED_DOUBLE_ELEMENTS == 4); |
| STATIC_ASSERT(HOLEY_DOUBLE_ELEMENTS == 5); |
| |
| if (mode == DISABLE_ALLOCATION_SITES) { |
| ElementsKind initial = GetInitialFastElementsKind(); |
| ElementsKind holey_initial = GetHoleyElementsKind(initial); |
| |
| ArraySingleArgumentConstructorStub stub_holey(masm->isolate(), |
| holey_initial, |
| DISABLE_ALLOCATION_SITES); |
| __ TailCallStub(&stub_holey); |
| } else if (mode == DONT_OVERRIDE) { |
| // is the low bit set? If so, we are holey and that is good. |
| Label normal_sequence; |
| __ testb(rdx, Immediate(1)); |
| __ j(not_zero, &normal_sequence); |
| |
| // We are going to create a holey array, but our kind is non-holey. |
| // Fix kind and retry (only if we have an allocation site in the slot). |
| __ incl(rdx); |
| |
| if (FLAG_debug_code) { |
| Handle<Map> allocation_site_map = |
| masm->isolate()->factory()->allocation_site_map(); |
| __ Cmp(FieldOperand(rbx, 0), allocation_site_map); |
| __ Assert(equal, AbortReason::kExpectedAllocationSite); |
| } |
| |
| // Save the resulting elements kind in type info. We can't just store r3 |
| // in the AllocationSite::transition_info field because elements kind is |
| // restricted to a portion of the field...upper bits need to be left alone. |
| STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); |
| __ SmiAddConstant( |
| FieldOperand(rbx, AllocationSite::kTransitionInfoOrBoilerplateOffset), |
| Smi::FromInt(kFastElementsKindPackedToHoley)); |
| |
| __ bind(&normal_sequence); |
| int last_index = |
| GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); |
| for (int i = 0; i <= last_index; ++i) { |
| Label next; |
| ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); |
| __ cmpl(rdx, Immediate(kind)); |
| __ j(not_equal, &next); |
| ArraySingleArgumentConstructorStub stub(masm->isolate(), kind); |
| __ TailCallStub(&stub); |
| __ bind(&next); |
| } |
| |
| // If we reached this point there is a problem. |
| __ Abort(AbortReason::kUnexpectedElementsKindInArrayConstructor); |
| } else { |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| template<class T> |
| static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) { |
| int to_index = |
| GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); |
| for (int i = 0; i <= to_index; ++i) { |
| ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); |
| T stub(isolate, kind); |
| stub.GetCode(); |
| if (AllocationSite::ShouldTrack(kind)) { |
| T stub1(isolate, kind, DISABLE_ALLOCATION_SITES); |
| stub1.GetCode(); |
| } |
| } |
| } |
| |
| void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) { |
| ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>( |
| isolate); |
| ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>( |
| isolate); |
| ArrayNArgumentsConstructorStub stub(isolate); |
| stub.GetCode(); |
| |
| ElementsKind kinds[2] = {PACKED_ELEMENTS, HOLEY_ELEMENTS}; |
| for (int i = 0; i < 2; i++) { |
| // For internal arrays we only need a few things |
| InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]); |
| stubh1.GetCode(); |
| InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]); |
| stubh2.GetCode(); |
| } |
| } |
| |
| void ArrayConstructorStub::GenerateDispatchToArrayStub( |
| MacroAssembler* masm, AllocationSiteOverrideMode mode) { |
| Label not_zero_case, not_one_case; |
| __ testp(rax, rax); |
| __ j(not_zero, ¬_zero_case); |
| CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); |
| |
| __ bind(¬_zero_case); |
| __ cmpl(rax, Immediate(1)); |
| __ j(greater, ¬_one_case); |
| CreateArrayDispatchOneArgument(masm, mode); |
| |
| __ bind(¬_one_case); |
| ArrayNArgumentsConstructorStub stub(masm->isolate()); |
| __ TailCallStub(&stub); |
| } |
| |
| void ArrayConstructorStub::Generate(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : argc |
| // -- rbx : AllocationSite or undefined |
| // -- rdi : constructor |
| // -- rdx : new target |
| // -- rsp[0] : return address |
| // -- rsp[8] : last argument |
| // ----------------------------------- |
| if (FLAG_debug_code) { |
| // The array construct code is only set for the global and natives |
| // builtin Array functions which always have maps. |
| |
| // Initial map for the builtin Array function should be a map. |
| __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); |
| // Will both indicate a nullptr and a Smi. |
| STATIC_ASSERT(kSmiTag == 0); |
| Condition not_smi = NegateCondition(masm->CheckSmi(rcx)); |
| __ Check(not_smi, AbortReason::kUnexpectedInitialMapForArrayFunction); |
| __ CmpObjectType(rcx, MAP_TYPE, rcx); |
| __ Check(equal, AbortReason::kUnexpectedInitialMapForArrayFunction); |
| |
| // We should either have undefined in rbx or a valid AllocationSite |
| __ AssertUndefinedOrAllocationSite(rbx); |
| } |
| |
| // Enter the context of the Array function. |
| __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); |
| |
| Label subclassing; |
| __ cmpp(rdi, rdx); |
| __ j(not_equal, &subclassing); |
| |
| Label no_info; |
| // If the feedback vector is the undefined value call an array constructor |
| // that doesn't use AllocationSites. |
| __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex); |
| __ j(equal, &no_info); |
| |
| // Only look at the lower 16 bits of the transition info. |
| __ movp(rdx, FieldOperand( |
| rbx, AllocationSite::kTransitionInfoOrBoilerplateOffset)); |
| __ SmiToInteger32(rdx, rdx); |
| STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); |
| __ andp(rdx, Immediate(AllocationSite::ElementsKindBits::kMask)); |
| GenerateDispatchToArrayStub(masm, DONT_OVERRIDE); |
| |
| __ bind(&no_info); |
| GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES); |
| |
| // Subclassing |
| __ bind(&subclassing); |
| StackArgumentsAccessor args(rsp, rax); |
| __ movp(args.GetReceiverOperand(), rdi); |
| __ addp(rax, Immediate(3)); |
| __ PopReturnAddressTo(rcx); |
| __ Push(rdx); |
| __ Push(rbx); |
| __ PushReturnAddressFrom(rcx); |
| __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate())); |
| } |
| |
| |
| void InternalArrayConstructorStub::GenerateCase( |
| MacroAssembler* masm, ElementsKind kind) { |
| Label not_zero_case, not_one_case; |
| Label normal_sequence; |
| |
| __ testp(rax, rax); |
| __ j(not_zero, ¬_zero_case); |
| InternalArrayNoArgumentConstructorStub stub0(isolate(), kind); |
| __ TailCallStub(&stub0); |
| |
| __ bind(¬_zero_case); |
| __ cmpl(rax, Immediate(1)); |
| __ j(greater, ¬_one_case); |
| |
| if (IsFastPackedElementsKind(kind)) { |
| // We might need to create a holey array |
| // look at the first argument |
| StackArgumentsAccessor args(rsp, 1, ARGUMENTS_DONT_CONTAIN_RECEIVER); |
| __ movp(rcx, args.GetArgumentOperand(0)); |
| __ testp(rcx, rcx); |
| __ j(zero, &normal_sequence); |
| |
| InternalArraySingleArgumentConstructorStub |
| stub1_holey(isolate(), GetHoleyElementsKind(kind)); |
| __ TailCallStub(&stub1_holey); |
| } |
| |
| __ bind(&normal_sequence); |
| InternalArraySingleArgumentConstructorStub stub1(isolate(), kind); |
| __ TailCallStub(&stub1); |
| |
| __ bind(¬_one_case); |
| ArrayNArgumentsConstructorStub stubN(isolate()); |
| __ TailCallStub(&stubN); |
| } |
| |
| |
| void InternalArrayConstructorStub::Generate(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : argc |
| // -- rdi : constructor |
| // -- rsp[0] : return address |
| // -- rsp[8] : last argument |
| // ----------------------------------- |
| |
| if (FLAG_debug_code) { |
| // The array construct code is only set for the global and natives |
| // builtin Array functions which always have maps. |
| |
| // Initial map for the builtin Array function should be a map. |
| __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); |
| // Will both indicate a nullptr and a Smi. |
| STATIC_ASSERT(kSmiTag == 0); |
| Condition not_smi = NegateCondition(masm->CheckSmi(rcx)); |
| __ Check(not_smi, AbortReason::kUnexpectedInitialMapForArrayFunction); |
| __ CmpObjectType(rcx, MAP_TYPE, rcx); |
| __ Check(equal, AbortReason::kUnexpectedInitialMapForArrayFunction); |
| } |
| |
| // Figure out the right elements kind |
| __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); |
| |
| // Load the map's "bit field 2" into |result|. We only need the first byte, |
| // but the following masking takes care of that anyway. |
| __ movzxbp(rcx, FieldOperand(rcx, Map::kBitField2Offset)); |
| // Retrieve elements_kind from bit field 2. |
| __ DecodeField<Map::ElementsKindBits>(rcx); |
| |
| if (FLAG_debug_code) { |
| Label done; |
| __ cmpl(rcx, Immediate(PACKED_ELEMENTS)); |
| __ j(equal, &done); |
| __ cmpl(rcx, Immediate(HOLEY_ELEMENTS)); |
| __ Assert( |
| equal, |
| AbortReason::kInvalidElementsKindForInternalArrayOrInternalPackedArray); |
| __ bind(&done); |
| } |
| |
| Label fast_elements_case; |
| __ cmpl(rcx, Immediate(PACKED_ELEMENTS)); |
| __ j(equal, &fast_elements_case); |
| GenerateCase(masm, HOLEY_ELEMENTS); |
| |
| __ bind(&fast_elements_case); |
| GenerateCase(masm, PACKED_ELEMENTS); |
| } |
| |
| static int Offset(ExternalReference ref0, ExternalReference ref1) { |
| int64_t offset = (ref0.address() - ref1.address()); |
| // Check that fits into int. |
| DCHECK(static_cast<int>(offset) == offset); |
| return static_cast<int>(offset); |
| } |
| |
| // Prepares stack to put arguments (aligns and so on). WIN64 calling convention |
| // requires to put the pointer to the return value slot into rcx (rcx must be |
| // preserverd until CallApiFunctionAndReturn). Clobbers rax. Allocates |
| // arg_stack_space * kPointerSize inside the exit frame (not GCed) accessible |
| // via StackSpaceOperand. |
| static void PrepareCallApiFunction(MacroAssembler* masm, int arg_stack_space) { |
| __ EnterApiExitFrame(arg_stack_space); |
| } |
| |
| |
| // Calls an API function. Allocates HandleScope, extracts returned value |
| // from handle and propagates exceptions. Clobbers r14, r15, rbx and |
| // caller-save registers. Restores context. On return removes |
| // stack_space * kPointerSize (GCed). |
| static void CallApiFunctionAndReturn(MacroAssembler* masm, |
| Register function_address, |
| ExternalReference thunk_ref, |
| Register thunk_last_arg, int stack_space, |
| Operand* stack_space_operand, |
| Operand return_value_operand) { |
| Label prologue; |
| Label promote_scheduled_exception; |
| Label delete_allocated_handles; |
| Label leave_exit_frame; |
| Label write_back; |
| |
| Isolate* isolate = masm->isolate(); |
| Factory* factory = isolate->factory(); |
| ExternalReference next_address = |
| ExternalReference::handle_scope_next_address(isolate); |
| const int kNextOffset = 0; |
| const int kLimitOffset = Offset( |
| ExternalReference::handle_scope_limit_address(isolate), next_address); |
| const int kLevelOffset = Offset( |
| ExternalReference::handle_scope_level_address(isolate), next_address); |
| ExternalReference scheduled_exception_address = |
| ExternalReference::scheduled_exception_address(isolate); |
| |
| DCHECK(rdx == function_address || r8 == function_address); |
| // Allocate HandleScope in callee-save registers. |
| Register prev_next_address_reg = r14; |
| Register prev_limit_reg = rbx; |
| Register base_reg = r15; |
| __ Move(base_reg, next_address); |
| __ movp(prev_next_address_reg, Operand(base_reg, kNextOffset)); |
| __ movp(prev_limit_reg, Operand(base_reg, kLimitOffset)); |
| __ addl(Operand(base_reg, kLevelOffset), Immediate(1)); |
| |
| if (FLAG_log_timer_events) { |
| FrameScope frame(masm, StackFrame::MANUAL); |
| __ PushSafepointRegisters(); |
| __ PrepareCallCFunction(1); |
| __ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate)); |
| __ CallCFunction(ExternalReference::log_enter_external_function(isolate), |
| 1); |
| __ PopSafepointRegisters(); |
| } |
| |
| Label profiler_disabled; |
| Label end_profiler_check; |
| __ Move(rax, ExternalReference::is_profiling_address(isolate)); |
| __ cmpb(Operand(rax, 0), Immediate(0)); |
| __ j(zero, &profiler_disabled); |
| |
| // Third parameter is the address of the actual getter function. |
| __ Move(thunk_last_arg, function_address); |
| __ Move(rax, thunk_ref); |
| __ jmp(&end_profiler_check); |
| |
| __ bind(&profiler_disabled); |
| // Call the api function! |
| __ Move(rax, function_address); |
| |
| __ bind(&end_profiler_check); |
| |
| // Call the api function! |
| __ call(rax); |
| |
| if (FLAG_log_timer_events) { |
| FrameScope frame(masm, StackFrame::MANUAL); |
| __ PushSafepointRegisters(); |
| __ PrepareCallCFunction(1); |
| __ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate)); |
| __ CallCFunction(ExternalReference::log_leave_external_function(isolate), |
| 1); |
| __ PopSafepointRegisters(); |
| } |
| |
| // Load the value from ReturnValue |
| __ movp(rax, return_value_operand); |
| __ bind(&prologue); |
| |
| // No more valid handles (the result handle was the last one). Restore |
| // previous handle scope. |
| __ subl(Operand(base_reg, kLevelOffset), Immediate(1)); |
| __ movp(Operand(base_reg, kNextOffset), prev_next_address_reg); |
| __ cmpp(prev_limit_reg, Operand(base_reg, kLimitOffset)); |
| __ j(not_equal, &delete_allocated_handles); |
| |
| // Leave the API exit frame. |
| __ bind(&leave_exit_frame); |
| if (stack_space_operand != nullptr) { |
| __ movp(rbx, *stack_space_operand); |
| } |
| __ LeaveApiExitFrame(); |
| |
| // Check if the function scheduled an exception. |
| __ Move(rdi, scheduled_exception_address); |
| __ Cmp(Operand(rdi, 0), factory->the_hole_value()); |
| __ j(not_equal, &promote_scheduled_exception); |
| |
| #if DEBUG |
| // Check if the function returned a valid JavaScript value. |
| Label ok; |
| Register return_value = rax; |
| Register map = rcx; |
| |
| __ JumpIfSmi(return_value, &ok, Label::kNear); |
| __ movp(map, FieldOperand(return_value, HeapObject::kMapOffset)); |
| |
| __ CmpInstanceType(map, LAST_NAME_TYPE); |
| __ j(below_equal, &ok, Label::kNear); |
| |
| __ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE); |
| __ j(above_equal, &ok, Label::kNear); |
| |
| __ CompareRoot(map, Heap::kHeapNumberMapRootIndex); |
| __ j(equal, &ok, Label::kNear); |
| |
| __ CompareRoot(return_value, Heap::kUndefinedValueRootIndex); |
| __ j(equal, &ok, Label::kNear); |
| |
| __ CompareRoot(return_value, Heap::kTrueValueRootIndex); |
| __ j(equal, &ok, Label::kNear); |
| |
| __ CompareRoot(return_value, Heap::kFalseValueRootIndex); |
| __ j(equal, &ok, Label::kNear); |
| |
| __ CompareRoot(return_value, Heap::kNullValueRootIndex); |
| __ j(equal, &ok, Label::kNear); |
| |
| __ Abort(AbortReason::kAPICallReturnedInvalidObject); |
| |
| __ bind(&ok); |
| #endif |
| |
| if (stack_space_operand != nullptr) { |
| DCHECK_EQ(stack_space, 0); |
| __ PopReturnAddressTo(rcx); |
| __ addq(rsp, rbx); |
| __ jmp(rcx); |
| } else { |
| __ ret(stack_space * kPointerSize); |
| } |
| |
| // Re-throw by promoting a scheduled exception. |
| __ bind(&promote_scheduled_exception); |
| __ TailCallRuntime(Runtime::kPromoteScheduledException); |
| |
| // HandleScope limit has changed. Delete allocated extensions. |
| __ bind(&delete_allocated_handles); |
| __ movp(Operand(base_reg, kLimitOffset), prev_limit_reg); |
| __ movp(prev_limit_reg, rax); |
| __ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate)); |
| __ LoadAddress(rax, |
| ExternalReference::delete_handle_scope_extensions(isolate)); |
| __ call(rax); |
| __ movp(rax, prev_limit_reg); |
| __ jmp(&leave_exit_frame); |
| } |
| |
| void CallApiCallbackStub::Generate(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rbx : call_data |
| // -- rcx : holder |
| // -- rdx : api_function_address |
| // -- rsi : context |
| // -- rax : number of arguments if argc is a register |
| // -- rsp[0] : return address |
| // -- rsp[8] : last argument |
| // -- ... |
| // -- rsp[argc * 8] : first argument |
| // -- rsp[(argc + 1) * 8] : receiver |
| // ----------------------------------- |
| |
| Register call_data = rbx; |
| Register holder = rcx; |
| Register api_function_address = rdx; |
| Register return_address = r8; |
| |
| typedef FunctionCallbackArguments FCA; |
| |
| STATIC_ASSERT(FCA::kArgsLength == 6); |
| STATIC_ASSERT(FCA::kNewTargetIndex == 5); |
| STATIC_ASSERT(FCA::kDataIndex == 4); |
| STATIC_ASSERT(FCA::kReturnValueOffset == 3); |
| STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); |
| STATIC_ASSERT(FCA::kIsolateIndex == 1); |
| STATIC_ASSERT(FCA::kHolderIndex == 0); |
| |
| __ PopReturnAddressTo(return_address); |
| |
| // new target |
| __ PushRoot(Heap::kUndefinedValueRootIndex); |
| |
| // call data |
| __ Push(call_data); |
| |
| // return value |
| __ PushRoot(Heap::kUndefinedValueRootIndex); |
| // return value default |
| __ PushRoot(Heap::kUndefinedValueRootIndex); |
| // isolate |
| Register scratch = call_data; |
| __ Move(scratch, ExternalReference::isolate_address(masm->isolate())); |
| __ Push(scratch); |
| // holder |
| __ Push(holder); |
| |
| int argc = this->argc(); |
| |
| __ movp(scratch, rsp); |
| // Push return address back on stack. |
| __ PushReturnAddressFrom(return_address); |
| |
| // Allocate the v8::Arguments structure in the arguments' space since |
| // it's not controlled by GC. |
| const int kApiStackSpace = 3; |
| |
| PrepareCallApiFunction(masm, kApiStackSpace); |
| |
| // FunctionCallbackInfo::implicit_args_. |
| __ movp(StackSpaceOperand(0), scratch); |
| __ addp(scratch, Immediate((argc + FCA::kArgsLength - 1) * kPointerSize)); |
| // FunctionCallbackInfo::values_. |
| __ movp(StackSpaceOperand(1), scratch); |
| // FunctionCallbackInfo::length_. |
| __ Set(StackSpaceOperand(2), argc); |
| |
| #if defined(__MINGW64__) || defined(_WIN64) |
| Register arguments_arg = rcx; |
| Register callback_arg = rdx; |
| #else |
| Register arguments_arg = rdi; |
| Register callback_arg = rsi; |
| #endif |
| |
| // It's okay if api_function_address == callback_arg |
| // but not arguments_arg |
| DCHECK(api_function_address != arguments_arg); |
| |
| // v8::InvocationCallback's argument. |
| __ leap(arguments_arg, StackSpaceOperand(0)); |
| |
| ExternalReference thunk_ref = |
| ExternalReference::invoke_function_callback(masm->isolate()); |
| |
| // Accessor for FunctionCallbackInfo and first js arg. |
| StackArgumentsAccessor args_from_rbp(rbp, FCA::kArgsLength + 1, |
| ARGUMENTS_DONT_CONTAIN_RECEIVER); |
| Operand return_value_operand = args_from_rbp.GetArgumentOperand( |
| FCA::kArgsLength - FCA::kReturnValueOffset); |
| const int stack_space = argc + FCA::kArgsLength + 1; |
| Operand* stack_space_operand = nullptr; |
| CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, callback_arg, |
| stack_space, stack_space_operand, |
| return_value_operand); |
| } |
| |
| |
| void CallApiGetterStub::Generate(MacroAssembler* masm) { |
| #if defined(__MINGW64__) || defined(_WIN64) |
| Register getter_arg = r8; |
| Register accessor_info_arg = rdx; |
| Register name_arg = rcx; |
| #else |
| Register getter_arg = rdx; |
| Register accessor_info_arg = rsi; |
| Register name_arg = rdi; |
| #endif |
| Register api_function_address = r8; |
| Register receiver = ApiGetterDescriptor::ReceiverRegister(); |
| Register holder = ApiGetterDescriptor::HolderRegister(); |
| Register callback = ApiGetterDescriptor::CallbackRegister(); |
| Register scratch = rax; |
| DCHECK(!AreAliased(receiver, holder, callback, scratch)); |
| |
| // Build v8::PropertyCallbackInfo::args_ array on the stack and push property |
| // name below the exit frame to make GC aware of them. |
| STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0); |
| STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1); |
| STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2); |
| STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3); |
| STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4); |
| STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5); |
| STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6); |
| STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7); |
| |
| // Insert additional parameters into the stack frame above return address. |
| __ PopReturnAddressTo(scratch); |
| __ Push(receiver); |
| __ Push(FieldOperand(callback, AccessorInfo::kDataOffset)); |
| __ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex); |
| __ Push(kScratchRegister); // return value |
| __ Push(kScratchRegister); // return value default |
| __ PushAddress(ExternalReference::isolate_address(isolate())); |
| __ Push(holder); |
| __ Push(Smi::kZero); // should_throw_on_error -> false |
| __ Push(FieldOperand(callback, AccessorInfo::kNameOffset)); |
| __ PushReturnAddressFrom(scratch); |
| |
| // v8::PropertyCallbackInfo::args_ array and name handle. |
| const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; |
| |
| // Allocate v8::PropertyCallbackInfo in non-GCed stack space. |
| const int kArgStackSpace = 1; |
| |
| // Load address of v8::PropertyAccessorInfo::args_ array. |
| __ leap(scratch, Operand(rsp, 2 * kPointerSize)); |
| |
| PrepareCallApiFunction(masm, kArgStackSpace); |
| // Create v8::PropertyCallbackInfo object on the stack and initialize |
| // it's args_ field. |
| Operand info_object = StackSpaceOperand(0); |
| __ movp(info_object, scratch); |
| |
| __ leap(name_arg, Operand(scratch, -kPointerSize)); |
| // The context register (rsi) has been saved in PrepareCallApiFunction and |
| // could be used to pass arguments. |
| __ leap(accessor_info_arg, info_object); |
| |
| ExternalReference thunk_ref = |
| ExternalReference::invoke_accessor_getter_callback(isolate()); |
| |
| // It's okay if api_function_address == getter_arg |
| // but not accessor_info_arg or name_arg |
| DCHECK(api_function_address != accessor_info_arg); |
| DCHECK(api_function_address != name_arg); |
| __ movp(scratch, FieldOperand(callback, AccessorInfo::kJsGetterOffset)); |
| __ movp(api_function_address, |
| FieldOperand(scratch, Foreign::kForeignAddressOffset)); |
| |
| // +3 is to skip prolog, return address and name handle. |
| Operand return_value_operand( |
| rbp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize); |
| CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, getter_arg, |
| kStackUnwindSpace, nullptr, return_value_operand); |
| } |
| |
| #undef __ |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_TARGET_ARCH_X64 |