blob: 27061c1e2b51167636807985f777e4a1c26e499e [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_X64
#include "src/api-arguments.h"
#include "src/bootstrapper.h"
#include "src/code-stubs.h"
#include "src/counters.h"
#include "src/double.h"
#include "src/frame-constants.h"
#include "src/frames.h"
#include "src/heap/heap-inl.h"
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
#include "src/isolate.h"
#include "src/objects-inl.h"
#include "src/objects/regexp-match-info.h"
#include "src/regexp/jsregexp.h"
#include "src/regexp/regexp-macro-assembler.h"
#include "src/runtime/runtime.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) {
__ popq(rcx);
__ movq(MemOperand(rsp, rax, times_8, 0), rdi);
__ pushq(rdi);
__ pushq(rbx);
__ pushq(rcx);
__ addq(rax, Immediate(3));
__ TailCallRuntime(Runtime::kNewArray);
}
void DoubleToIStub::Generate(MacroAssembler* masm) {
Register final_result_reg = this->destination();
Label check_negative, process_64_bits, done;
// Account for return address and saved regs.
const int kArgumentOffset = 3 * kRegisterSize;
MemOperand mantissa_operand(MemOperand(rsp, kArgumentOffset));
MemOperand exponent_operand(
MemOperand(rsp, kArgumentOffset + kDoubleSize / 2));
Register scratch1 = no_reg;
Register scratch_candidates[3] = { rbx, rdx, rdi };
for (int i = 0; i < 3; i++) {
scratch1 = scratch_candidates[i];
if (final_result_reg != scratch1) break;
}
// Since we must use rcx for shifts below, use some other register (rax)
// to calculate the result if ecx is the requested return register.
Register result_reg = final_result_reg == rcx ? rax : final_result_reg;
// Save ecx if it isn't the return register and therefore volatile, or if it
// is the return register, then save the temp register we use in its stead
// for the result.
Register save_reg = final_result_reg == rcx ? rax : rcx;
__ pushq(scratch1);
__ pushq(save_reg);
__ movl(scratch1, mantissa_operand);
__ Movsd(kScratchDoubleReg, mantissa_operand);
__ movl(rcx, exponent_operand);
__ andl(rcx, Immediate(HeapNumber::kExponentMask));
__ shrl(rcx, Immediate(HeapNumber::kExponentShift));
__ leal(result_reg, MemOperand(rcx, -HeapNumber::kExponentBias));
__ cmpl(result_reg, Immediate(HeapNumber::kMantissaBits));
__ j(below, &process_64_bits);
// Result is entirely in lower 32-bits of mantissa
int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
__ subl(rcx, Immediate(delta));
__ xorl(result_reg, result_reg);
__ cmpl(rcx, Immediate(31));
__ j(above, &done);
__ shll_cl(scratch1);
__ jmp(&check_negative);
__ bind(&process_64_bits);
__ Cvttsd2siq(result_reg, kScratchDoubleReg);
__ jmp(&done, Label::kNear);
// If the double was negative, negate the integer result.
__ bind(&check_negative);
__ movl(result_reg, scratch1);
__ negl(result_reg);
__ cmpl(exponent_operand, Immediate(0));
__ cmovl(greater, result_reg, scratch1);
// Restore registers
__ bind(&done);
if (final_result_reg != result_reg) {
DCHECK(final_result_reg == rcx);
__ movl(final_result_reg, result_reg);
}
__ popq(save_reg);
__ popq(scratch1);
__ ret(0);
}
void MathPowStub::Generate(MacroAssembler* masm) {
const Register exponent = MathPowTaggedDescriptor::exponent();
DCHECK(exponent == rdx);
const Register scratch = rcx;
const XMMRegister double_result = xmm3;
const XMMRegister double_base = xmm2;
const XMMRegister double_exponent = xmm1;
const XMMRegister double_scratch = xmm4;
Label call_runtime, done, exponent_not_smi, int_exponent;
// Save 1 in double_result - we need this several times later on.
__ movp(scratch, Immediate(1));
__ Cvtlsi2sd(double_result, scratch);
if (exponent_type() == TAGGED) {
__ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
__ SmiToInteger32(exponent, exponent);
__ jmp(&int_exponent);
__ bind(&exponent_not_smi);
__ Movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset));
}
if (exponent_type() != INTEGER) {
Label fast_power, try_arithmetic_simplification;
// Detect integer exponents stored as double.
__ DoubleToI(exponent, double_exponent, double_scratch,
TREAT_MINUS_ZERO_AS_ZERO, &try_arithmetic_simplification,
&try_arithmetic_simplification,
&try_arithmetic_simplification);
__ jmp(&int_exponent);
__ bind(&try_arithmetic_simplification);
__ Cvttsd2si(exponent, double_exponent);
// Skip to runtime if possibly NaN (indicated by the indefinite integer).
__ cmpl(exponent, Immediate(0x1));
__ j(overflow, &call_runtime);
// Using FPU instructions to calculate power.
Label fast_power_failed;
__ bind(&fast_power);
__ fnclex(); // Clear flags to catch exceptions later.
// Transfer (B)ase and (E)xponent onto the FPU register stack.
__ subp(rsp, Immediate(kDoubleSize));
__ Movsd(Operand(rsp, 0), double_exponent);
__ fld_d(Operand(rsp, 0)); // E
__ Movsd(Operand(rsp, 0), double_base);
__ fld_d(Operand(rsp, 0)); // B, E
// Exponent is in st(1) and base is in st(0)
// B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B)
// FYL2X calculates st(1) * log2(st(0))
__ fyl2x(); // X
__ fld(0); // X, X
__ frndint(); // rnd(X), X
__ fsub(1); // rnd(X), X-rnd(X)
__ fxch(1); // X - rnd(X), rnd(X)
// F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1
__ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X)
__ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X)
__ faddp(1); // 2^(X-rnd(X)), rnd(X)
// FSCALE calculates st(0) * 2^st(1)
__ fscale(); // 2^X, rnd(X)
__ fstp(1);
// Bail out to runtime in case of exceptions in the status word.
__ fnstsw_ax();
__ testb(rax, Immediate(0x5F)); // Check for all but precision exception.
__ j(not_zero, &fast_power_failed, Label::kNear);
__ fstp_d(Operand(rsp, 0));
__ Movsd(double_result, Operand(rsp, 0));
__ addp(rsp, Immediate(kDoubleSize));
__ jmp(&done);
__ bind(&fast_power_failed);
__ fninit();
__ addp(rsp, Immediate(kDoubleSize));
__ jmp(&call_runtime);
}
// Calculate power with integer exponent.
__ bind(&int_exponent);
const XMMRegister double_scratch2 = double_exponent;
// Back up exponent as we need to check if exponent is negative later.
__ movp(scratch, exponent); // Back up exponent.
__ Movsd(double_scratch, double_base); // Back up base.
__ Movsd(double_scratch2, double_result); // Load double_exponent with 1.
// Get absolute value of exponent.
Label no_neg, while_true, while_false;
__ testl(scratch, scratch);
__ j(positive, &no_neg, Label::kNear);
__ negl(scratch);
__ bind(&no_neg);
__ j(zero, &while_false, Label::kNear);
__ shrl(scratch, Immediate(1));
// Above condition means CF==0 && ZF==0. This means that the
// bit that has been shifted out is 0 and the result is not 0.
__ j(above, &while_true, Label::kNear);
__ Movsd(double_result, double_scratch);
__ j(zero, &while_false, Label::kNear);
__ bind(&while_true);
__ shrl(scratch, Immediate(1));
__ Mulsd(double_scratch, double_scratch);
__ j(above, &while_true, Label::kNear);
__ Mulsd(double_result, double_scratch);
__ j(not_zero, &while_true);
__ bind(&while_false);
// If the exponent is negative, return 1/result.
__ testl(exponent, exponent);
__ j(greater, &done);
__ Divsd(double_scratch2, double_result);
__ Movsd(double_result, double_scratch2);
// Test whether result is zero. Bail out to check for subnormal result.
// Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
__ Xorpd(double_scratch2, double_scratch2);
__ Ucomisd(double_scratch2, double_result);
// double_exponent aliased as double_scratch2 has already been overwritten
// and may not have contained the exponent value in the first place when the
// input was a smi. We reset it with exponent value before bailing out.
__ j(not_equal, &done);
__ Cvtlsi2sd(double_exponent, exponent);
// Returning or bailing out.
__ bind(&call_runtime);
// Move base to the correct argument register. Exponent is already in xmm1.
__ Movsd(xmm0, double_base);
DCHECK(double_exponent == xmm1);
{
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(2);
__ CallCFunction(ExternalReference::power_double_double_function(isolate()),
2);
}
// Return value is in xmm0.
__ Movsd(double_result, xmm0);
__ bind(&done);
__ ret(0);
}
Movability CEntryStub::NeedsImmovableCode() { return kMovable; }
void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
CEntryStub::GenerateAheadOfTime(isolate);
// It is important that the store buffer overflow stubs are generated first.
CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate);
StoreFastElementStub::GenerateAheadOfTime(isolate);
}
void CodeStub::GenerateFPStubs(Isolate* isolate) {
}
void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
CEntryStub stub(isolate, 1, kDontSaveFPRegs);
stub.GetCode();
CEntryStub save_doubles(isolate, 1, kSaveFPRegs);
save_doubles.GetCode();
}
void CEntryStub::Generate(MacroAssembler* masm) {
// rax: number of arguments including receiver
// rbx: pointer to C function (C callee-saved)
// rbp: frame pointer of calling JS frame (restored after C call)
// rsp: stack pointer (restored after C call)
// rsi: current context (restored)
//
// If argv_in_register():
// r15: pointer to the first argument
ProfileEntryHookStub::MaybeCallEntryHook(masm);
#ifdef _WIN64
// Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9. It requires the
// stack to be aligned to 16 bytes. It only allows a single-word to be
// returned in register rax. Larger return sizes must be written to an address
// passed as a hidden first argument.
const Register kCCallArg0 = rcx;
const Register kCCallArg1 = rdx;
const Register kCCallArg2 = r8;
const Register kCCallArg3 = r9;
const int kArgExtraStackSpace = 2;
const int kMaxRegisterResultSize = 1;
#else
// GCC / Clang passes arguments in rdi, rsi, rdx, rcx, r8, r9. Simple results
// are returned in rax, and a struct of two pointers are returned in rax+rdx.
// Larger return sizes must be written to an address passed as a hidden first
// argument.
const Register kCCallArg0 = rdi;
const Register kCCallArg1 = rsi;
const Register kCCallArg2 = rdx;
const Register kCCallArg3 = rcx;
const int kArgExtraStackSpace = 0;
const int kMaxRegisterResultSize = 2;
#endif // _WIN64
// Enter the exit frame that transitions from JavaScript to C++.
int arg_stack_space =
kArgExtraStackSpace +
(result_size() <= kMaxRegisterResultSize ? 0 : result_size());
if (argv_in_register()) {
DCHECK(!save_doubles());
DCHECK(!is_builtin_exit());
__ EnterApiExitFrame(arg_stack_space);
// Move argc into r14 (argv is already in r15).
__ movp(r14, rax);
} else {
__ EnterExitFrame(
arg_stack_space, save_doubles(),
is_builtin_exit() ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);
}
// rbx: pointer to builtin function (C callee-saved).
// rbp: frame pointer of exit frame (restored after C call).
// rsp: stack pointer (restored after C call).
// r14: number of arguments including receiver (C callee-saved).
// r15: argv pointer (C callee-saved).
// Check stack alignment.
if (FLAG_debug_code) {
__ CheckStackAlignment();
}
// Call C function. The arguments object will be created by stubs declared by
// DECLARE_RUNTIME_FUNCTION().
if (result_size() <= kMaxRegisterResultSize) {
// Pass a pointer to the Arguments object as the first argument.
// Return result in single register (rax), or a register pair (rax, rdx).
__ movp(kCCallArg0, r14); // argc.
__ movp(kCCallArg1, r15); // argv.
__ Move(kCCallArg2, ExternalReference::isolate_address(isolate()));
} else {
DCHECK_LE(result_size(), 2);
// Pass a pointer to the result location as the first argument.
__ leap(kCCallArg0, StackSpaceOperand(kArgExtraStackSpace));
// Pass a pointer to the Arguments object as the second argument.
__ movp(kCCallArg1, r14); // argc.
__ movp(kCCallArg2, r15); // argv.
__ Move(kCCallArg3, ExternalReference::isolate_address(isolate()));
}
__ call(rbx);
if (result_size() > kMaxRegisterResultSize) {
// Read result values stored on stack. Result is stored
// above the the two Arguments object slots on Win64.
DCHECK_LE(result_size(), 2);
__ movq(kReturnRegister0, StackSpaceOperand(kArgExtraStackSpace + 0));
__ movq(kReturnRegister1, StackSpaceOperand(kArgExtraStackSpace + 1));
}
// Result is in rax or rdx:rax - do not destroy these registers!
// Check result for exception sentinel.
Label exception_returned;
__ CompareRoot(rax, Heap::kExceptionRootIndex);
__ j(equal, &exception_returned);
// Check that there is no pending exception, otherwise we
// should have returned the exception sentinel.
if (FLAG_debug_code) {
Label okay;
__ LoadRoot(r14, Heap::kTheHoleValueRootIndex);
ExternalReference pending_exception_address(
IsolateAddressId::kPendingExceptionAddress, isolate());
Operand pending_exception_operand =
masm->ExternalOperand(pending_exception_address);
__ cmpp(r14, pending_exception_operand);
__ j(equal, &okay, Label::kNear);
__ int3();
__ bind(&okay);
}
// Exit the JavaScript to C++ exit frame.
__ LeaveExitFrame(save_doubles(), !argv_in_register());
__ ret(0);
// Handling of exception.
__ bind(&exception_returned);
ExternalReference pending_handler_context_address(
IsolateAddressId::kPendingHandlerContextAddress, isolate());
ExternalReference pending_handler_entrypoint_address(
IsolateAddressId::kPendingHandlerEntrypointAddress, isolate());
ExternalReference pending_handler_fp_address(
IsolateAddressId::kPendingHandlerFPAddress, isolate());
ExternalReference pending_handler_sp_address(
IsolateAddressId::kPendingHandlerSPAddress, isolate());
// Ask the runtime for help to determine the handler. This will set rax to
// contain the current pending exception, don't clobber it.
ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
isolate());
{
FrameScope scope(masm, StackFrame::MANUAL);
__ movp(arg_reg_1, Immediate(0)); // argc.
__ movp(arg_reg_2, Immediate(0)); // argv.
__ Move(arg_reg_3, ExternalReference::isolate_address(isolate()));
__ PrepareCallCFunction(3);
__ CallCFunction(find_handler, 3);
}
// Retrieve the handler context, SP and FP.
__ movp(rsi, masm->ExternalOperand(pending_handler_context_address));
__ movp(rsp, masm->ExternalOperand(pending_handler_sp_address));
__ movp(rbp, masm->ExternalOperand(pending_handler_fp_address));
// If the handler is a JS frame, restore the context to the frame. Note that
// the context will be set to (rsi == 0) for non-JS frames.
Label skip;
__ testp(rsi, rsi);
__ j(zero, &skip, Label::kNear);
__ movp(Operand(rbp, StandardFrameConstants::kContextOffset), rsi);
__ bind(&skip);
// Compute the handler entry address and jump to it.
__ movp(rdi, masm->ExternalOperand(pending_handler_entrypoint_address));
__ jmp(rdi);
}
void JSEntryStub::Generate(MacroAssembler* masm) {
Label invoke, handler_entry, exit;
Label not_outermost_js, not_outermost_js_2;
ProfileEntryHookStub::MaybeCallEntryHook(masm);
{ // NOLINT. Scope block confuses linter.
MacroAssembler::NoRootArrayScope uninitialized_root_register(masm);
// Set up frame.
__ pushq(rbp);
__ movp(rbp, rsp);
// Push the stack frame type.
__ Push(Immediate(StackFrame::TypeToMarker(type()))); // context slot
ExternalReference context_address(IsolateAddressId::kContextAddress,
isolate());
__ Load(kScratchRegister, context_address);
__ Push(kScratchRegister); // context
// Save callee-saved registers (X64/X32/Win64 calling conventions).
__ pushq(r12);
__ pushq(r13);
__ pushq(r14);
__ pushq(r15);
#ifdef _WIN64
__ pushq(rdi); // Only callee save in Win64 ABI, argument in AMD64 ABI.
__ pushq(rsi); // Only callee save in Win64 ABI, argument in AMD64 ABI.
#endif
__ pushq(rbx);
#ifdef _WIN64
// On Win64 XMM6-XMM15 are callee-save
__ subp(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize));
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0), xmm6);
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1), xmm7);
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2), xmm8);
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3), xmm9);
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4), xmm10);
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5), xmm11);
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6), xmm12);
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7), xmm13);
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8), xmm14);
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9), xmm15);
#endif
// Set up the roots and smi constant registers.
// Needs to be done before any further smi loads.
__ InitializeRootRegister();
}
// Save copies of the top frame descriptor on the stack.
ExternalReference c_entry_fp(IsolateAddressId::kCEntryFPAddress, isolate());
{
Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp);
__ Push(c_entry_fp_operand);
}
// If this is the outermost JS call, set js_entry_sp value.
ExternalReference js_entry_sp(IsolateAddressId::kJSEntrySPAddress, isolate());
__ Load(rax, js_entry_sp);
__ testp(rax, rax);
__ j(not_zero, &not_outermost_js);
__ Push(Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME));
__ movp(rax, rbp);
__ Store(js_entry_sp, rax);
Label cont;
__ jmp(&cont);
__ bind(&not_outermost_js);
__ Push(Immediate(StackFrame::INNER_JSENTRY_FRAME));
__ bind(&cont);
// Jump to a faked try block that does the invoke, with a faked catch
// block that sets the pending exception.
__ jmp(&invoke);
__ bind(&handler_entry);
handler_offset_ = handler_entry.pos();
// Caught exception: Store result (exception) in the pending exception
// field in the JSEnv and return a failure sentinel.
ExternalReference pending_exception(
IsolateAddressId::kPendingExceptionAddress, isolate());
__ Store(pending_exception, rax);
__ LoadRoot(rax, Heap::kExceptionRootIndex);
__ jmp(&exit);
// Invoke: Link this frame into the handler chain.
__ bind(&invoke);
__ PushStackHandler();
// Invoke the function by calling through JS entry trampoline builtin and
// pop the faked function when we return. We load the address from an
// external reference instead of inlining the call target address directly
// in the code, because the builtin stubs may not have been generated yet
// at the time this code is generated.
__ Call(EntryTrampoline(), RelocInfo::CODE_TARGET);
// Unlink this frame from the handler chain.
__ PopStackHandler();
__ bind(&exit);
// Check if the current stack frame is marked as the outermost JS frame.
__ Pop(rbx);
__ cmpp(rbx, Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME));
__ j(not_equal, &not_outermost_js_2);
__ Move(kScratchRegister, js_entry_sp);
__ movp(Operand(kScratchRegister, 0), Immediate(0));
__ bind(&not_outermost_js_2);
// Restore the top frame descriptor from the stack.
{ Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp);
__ Pop(c_entry_fp_operand);
}
// Restore callee-saved registers (X64 conventions).
#ifdef _WIN64
// On Win64 XMM6-XMM15 are callee-save
__ movdqu(xmm6, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0));
__ movdqu(xmm7, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1));
__ movdqu(xmm8, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2));
__ movdqu(xmm9, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3));
__ movdqu(xmm10, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4));
__ movdqu(xmm11, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5));
__ movdqu(xmm12, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6));
__ movdqu(xmm13, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7));
__ movdqu(xmm14, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8));
__ movdqu(xmm15, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9));
__ addp(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize));
#endif
__ popq(rbx);
#ifdef _WIN64
// Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI.
__ popq(rsi);
__ popq(rdi);
#endif
__ popq(r15);
__ popq(r14);
__ popq(r13);
__ popq(r12);
__ addp(rsp, Immediate(2 * kPointerSize)); // remove markers
// Restore frame pointer and return.
__ popq(rbp);
__ ret(0);
}
void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
if (masm->isolate()->function_entry_hook() != nullptr) {
ProfileEntryHookStub stub(masm->isolate());
masm->CallStub(&stub);
}
}
void ProfileEntryHookStub::MaybeCallEntryHookDelayed(TurboAssembler* tasm,
Zone* zone) {
if (tasm->isolate()->function_entry_hook() != nullptr) {
tasm->CallStubDelayed(new (zone) ProfileEntryHookStub(nullptr));
}
}
void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
// This stub can be called from essentially anywhere, so it needs to save
// all volatile and callee-save registers.
const size_t kNumSavedRegisters = 2;
__ pushq(arg_reg_1);
__ pushq(arg_reg_2);
// Calculate the original stack pointer and store it in the second arg.
__ leap(arg_reg_2,
Operand(rsp, kNumSavedRegisters * kRegisterSize + kPCOnStackSize));
// Calculate the function address to the first arg.
__ movp(arg_reg_1, Operand(rsp, kNumSavedRegisters * kRegisterSize));
__ subp(arg_reg_1, Immediate(Assembler::kShortCallInstructionLength));
// Save the remainder of the volatile registers.
masm->PushCallerSaved(kSaveFPRegs, arg_reg_1, arg_reg_2);
// Call the entry hook function.
__ Move(rax, FUNCTION_ADDR(isolate()->function_entry_hook()),
Assembler::RelocInfoNone());
AllowExternalCallThatCantCauseGC scope(masm);
const int kArgumentCount = 2;
__ PrepareCallCFunction(kArgumentCount);
__ CallCFunction(rax, kArgumentCount);
// Restore volatile regs.
masm->PopCallerSaved(kSaveFPRegs, arg_reg_1, arg_reg_2);
__ popq(arg_reg_2);
__ popq(arg_reg_1);
__ Ret();
}
template<class T>
static void CreateArrayDispatch(MacroAssembler* masm,
AllocationSiteOverrideMode mode) {
if (mode == DISABLE_ALLOCATION_SITES) {
T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
__ TailCallStub(&stub);
} else if (mode == DONT_OVERRIDE) {
int last_index =
GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= last_index; ++i) {
Label next;
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
__ cmpl(rdx, Immediate(kind));
__ j(not_equal, &next);
T stub(masm->isolate(), kind);
__ TailCallStub(&stub);
__ bind(&next);
}
// If we reached this point there is a problem.
__ Abort(AbortReason::kUnexpectedElementsKindInArrayConstructor);
} else {
UNREACHABLE();
}
}
static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
AllocationSiteOverrideMode mode) {
// rbx - allocation site (if mode != DISABLE_ALLOCATION_SITES)
// rdx - kind (if mode != DISABLE_ALLOCATION_SITES)
// rax - number of arguments
// rdi - constructor?
// rsp[0] - return address
// rsp[8] - last argument
STATIC_ASSERT(PACKED_SMI_ELEMENTS == 0);
STATIC_ASSERT(HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(PACKED_ELEMENTS == 2);
STATIC_ASSERT(HOLEY_ELEMENTS == 3);
STATIC_ASSERT(PACKED_DOUBLE_ELEMENTS == 4);
STATIC_ASSERT(HOLEY_DOUBLE_ELEMENTS == 5);
if (mode == DISABLE_ALLOCATION_SITES) {
ElementsKind initial = GetInitialFastElementsKind();
ElementsKind holey_initial = GetHoleyElementsKind(initial);
ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
holey_initial,
DISABLE_ALLOCATION_SITES);
__ TailCallStub(&stub_holey);
} else if (mode == DONT_OVERRIDE) {
// is the low bit set? If so, we are holey and that is good.
Label normal_sequence;
__ testb(rdx, Immediate(1));
__ j(not_zero, &normal_sequence);
// We are going to create a holey array, but our kind is non-holey.
// Fix kind and retry (only if we have an allocation site in the slot).
__ incl(rdx);
if (FLAG_debug_code) {
Handle<Map> allocation_site_map =
masm->isolate()->factory()->allocation_site_map();
__ Cmp(FieldOperand(rbx, 0), allocation_site_map);
__ Assert(equal, AbortReason::kExpectedAllocationSite);
}
// Save the resulting elements kind in type info. We can't just store r3
// in the AllocationSite::transition_info field because elements kind is
// restricted to a portion of the field...upper bits need to be left alone.
STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
__ SmiAddConstant(
FieldOperand(rbx, AllocationSite::kTransitionInfoOrBoilerplateOffset),
Smi::FromInt(kFastElementsKindPackedToHoley));
__ bind(&normal_sequence);
int last_index =
GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= last_index; ++i) {
Label next;
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
__ cmpl(rdx, Immediate(kind));
__ j(not_equal, &next);
ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
__ TailCallStub(&stub);
__ bind(&next);
}
// If we reached this point there is a problem.
__ Abort(AbortReason::kUnexpectedElementsKindInArrayConstructor);
} else {
UNREACHABLE();
}
}
template<class T>
static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
int to_index =
GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= to_index; ++i) {
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
T stub(isolate, kind);
stub.GetCode();
if (AllocationSite::ShouldTrack(kind)) {
T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
stub1.GetCode();
}
}
}
void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) {
ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
isolate);
ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
isolate);
ArrayNArgumentsConstructorStub stub(isolate);
stub.GetCode();
ElementsKind kinds[2] = {PACKED_ELEMENTS, HOLEY_ELEMENTS};
for (int i = 0; i < 2; i++) {
// For internal arrays we only need a few things
InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
stubh1.GetCode();
InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
stubh2.GetCode();
}
}
void ArrayConstructorStub::GenerateDispatchToArrayStub(
MacroAssembler* masm, AllocationSiteOverrideMode mode) {
Label not_zero_case, not_one_case;
__ testp(rax, rax);
__ j(not_zero, &not_zero_case);
CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
__ bind(&not_zero_case);
__ cmpl(rax, Immediate(1));
__ j(greater, &not_one_case);
CreateArrayDispatchOneArgument(masm, mode);
__ bind(&not_one_case);
ArrayNArgumentsConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
void ArrayConstructorStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rbx : AllocationSite or undefined
// -- rdi : constructor
// -- rdx : new target
// -- rsp[0] : return address
// -- rsp[8] : last argument
// -----------------------------------
if (FLAG_debug_code) {
// The array construct code is only set for the global and natives
// builtin Array functions which always have maps.
// Initial map for the builtin Array function should be a map.
__ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a nullptr and a Smi.
STATIC_ASSERT(kSmiTag == 0);
Condition not_smi = NegateCondition(masm->CheckSmi(rcx));
__ Check(not_smi, AbortReason::kUnexpectedInitialMapForArrayFunction);
__ CmpObjectType(rcx, MAP_TYPE, rcx);
__ Check(equal, AbortReason::kUnexpectedInitialMapForArrayFunction);
// We should either have undefined in rbx or a valid AllocationSite
__ AssertUndefinedOrAllocationSite(rbx);
}
// Enter the context of the Array function.
__ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
Label subclassing;
__ cmpp(rdi, rdx);
__ j(not_equal, &subclassing);
Label no_info;
// If the feedback vector is the undefined value call an array constructor
// that doesn't use AllocationSites.
__ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
__ j(equal, &no_info);
// Only look at the lower 16 bits of the transition info.
__ movp(rdx, FieldOperand(
rbx, AllocationSite::kTransitionInfoOrBoilerplateOffset));
__ SmiToInteger32(rdx, rdx);
STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
__ andp(rdx, Immediate(AllocationSite::ElementsKindBits::kMask));
GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
__ bind(&no_info);
GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
// Subclassing
__ bind(&subclassing);
StackArgumentsAccessor args(rsp, rax);
__ movp(args.GetReceiverOperand(), rdi);
__ addp(rax, Immediate(3));
__ PopReturnAddressTo(rcx);
__ Push(rdx);
__ Push(rbx);
__ PushReturnAddressFrom(rcx);
__ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
}
void InternalArrayConstructorStub::GenerateCase(
MacroAssembler* masm, ElementsKind kind) {
Label not_zero_case, not_one_case;
Label normal_sequence;
__ testp(rax, rax);
__ j(not_zero, &not_zero_case);
InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
__ TailCallStub(&stub0);
__ bind(&not_zero_case);
__ cmpl(rax, Immediate(1));
__ j(greater, &not_one_case);
if (IsFastPackedElementsKind(kind)) {
// We might need to create a holey array
// look at the first argument
StackArgumentsAccessor args(rsp, 1, ARGUMENTS_DONT_CONTAIN_RECEIVER);
__ movp(rcx, args.GetArgumentOperand(0));
__ testp(rcx, rcx);
__ j(zero, &normal_sequence);
InternalArraySingleArgumentConstructorStub
stub1_holey(isolate(), GetHoleyElementsKind(kind));
__ TailCallStub(&stub1_holey);
}
__ bind(&normal_sequence);
InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
__ TailCallStub(&stub1);
__ bind(&not_one_case);
ArrayNArgumentsConstructorStub stubN(isolate());
__ TailCallStub(&stubN);
}
void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rdi : constructor
// -- rsp[0] : return address
// -- rsp[8] : last argument
// -----------------------------------
if (FLAG_debug_code) {
// The array construct code is only set for the global and natives
// builtin Array functions which always have maps.
// Initial map for the builtin Array function should be a map.
__ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a nullptr and a Smi.
STATIC_ASSERT(kSmiTag == 0);
Condition not_smi = NegateCondition(masm->CheckSmi(rcx));
__ Check(not_smi, AbortReason::kUnexpectedInitialMapForArrayFunction);
__ CmpObjectType(rcx, MAP_TYPE, rcx);
__ Check(equal, AbortReason::kUnexpectedInitialMapForArrayFunction);
}
// Figure out the right elements kind
__ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
// Load the map's "bit field 2" into |result|. We only need the first byte,
// but the following masking takes care of that anyway.
__ movzxbp(rcx, FieldOperand(rcx, Map::kBitField2Offset));
// Retrieve elements_kind from bit field 2.
__ DecodeField<Map::ElementsKindBits>(rcx);
if (FLAG_debug_code) {
Label done;
__ cmpl(rcx, Immediate(PACKED_ELEMENTS));
__ j(equal, &done);
__ cmpl(rcx, Immediate(HOLEY_ELEMENTS));
__ Assert(
equal,
AbortReason::kInvalidElementsKindForInternalArrayOrInternalPackedArray);
__ bind(&done);
}
Label fast_elements_case;
__ cmpl(rcx, Immediate(PACKED_ELEMENTS));
__ j(equal, &fast_elements_case);
GenerateCase(masm, HOLEY_ELEMENTS);
__ bind(&fast_elements_case);
GenerateCase(masm, PACKED_ELEMENTS);
}
static int Offset(ExternalReference ref0, ExternalReference ref1) {
int64_t offset = (ref0.address() - ref1.address());
// Check that fits into int.
DCHECK(static_cast<int>(offset) == offset);
return static_cast<int>(offset);
}
// Prepares stack to put arguments (aligns and so on). WIN64 calling convention
// requires to put the pointer to the return value slot into rcx (rcx must be
// preserverd until CallApiFunctionAndReturn). Clobbers rax. Allocates
// arg_stack_space * kPointerSize inside the exit frame (not GCed) accessible
// via StackSpaceOperand.
static void PrepareCallApiFunction(MacroAssembler* masm, int arg_stack_space) {
__ EnterApiExitFrame(arg_stack_space);
}
// Calls an API function. Allocates HandleScope, extracts returned value
// from handle and propagates exceptions. Clobbers r14, r15, rbx and
// caller-save registers. Restores context. On return removes
// stack_space * kPointerSize (GCed).
static void CallApiFunctionAndReturn(MacroAssembler* masm,
Register function_address,
ExternalReference thunk_ref,
Register thunk_last_arg, int stack_space,
Operand* stack_space_operand,
Operand return_value_operand) {
Label prologue;
Label promote_scheduled_exception;
Label delete_allocated_handles;
Label leave_exit_frame;
Label write_back;
Isolate* isolate = masm->isolate();
Factory* factory = isolate->factory();
ExternalReference next_address =
ExternalReference::handle_scope_next_address(isolate);
const int kNextOffset = 0;
const int kLimitOffset = Offset(
ExternalReference::handle_scope_limit_address(isolate), next_address);
const int kLevelOffset = Offset(
ExternalReference::handle_scope_level_address(isolate), next_address);
ExternalReference scheduled_exception_address =
ExternalReference::scheduled_exception_address(isolate);
DCHECK(rdx == function_address || r8 == function_address);
// Allocate HandleScope in callee-save registers.
Register prev_next_address_reg = r14;
Register prev_limit_reg = rbx;
Register base_reg = r15;
__ Move(base_reg, next_address);
__ movp(prev_next_address_reg, Operand(base_reg, kNextOffset));
__ movp(prev_limit_reg, Operand(base_reg, kLimitOffset));
__ addl(Operand(base_reg, kLevelOffset), Immediate(1));
if (FLAG_log_timer_events) {
FrameScope frame(masm, StackFrame::MANUAL);
__ PushSafepointRegisters();
__ PrepareCallCFunction(1);
__ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate));
__ CallCFunction(ExternalReference::log_enter_external_function(isolate),
1);
__ PopSafepointRegisters();
}
Label profiler_disabled;
Label end_profiler_check;
__ Move(rax, ExternalReference::is_profiling_address(isolate));
__ cmpb(Operand(rax, 0), Immediate(0));
__ j(zero, &profiler_disabled);
// Third parameter is the address of the actual getter function.
__ Move(thunk_last_arg, function_address);
__ Move(rax, thunk_ref);
__ jmp(&end_profiler_check);
__ bind(&profiler_disabled);
// Call the api function!
__ Move(rax, function_address);
__ bind(&end_profiler_check);
// Call the api function!
__ call(rax);
if (FLAG_log_timer_events) {
FrameScope frame(masm, StackFrame::MANUAL);
__ PushSafepointRegisters();
__ PrepareCallCFunction(1);
__ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate));
__ CallCFunction(ExternalReference::log_leave_external_function(isolate),
1);
__ PopSafepointRegisters();
}
// Load the value from ReturnValue
__ movp(rax, return_value_operand);
__ bind(&prologue);
// No more valid handles (the result handle was the last one). Restore
// previous handle scope.
__ subl(Operand(base_reg, kLevelOffset), Immediate(1));
__ movp(Operand(base_reg, kNextOffset), prev_next_address_reg);
__ cmpp(prev_limit_reg, Operand(base_reg, kLimitOffset));
__ j(not_equal, &delete_allocated_handles);
// Leave the API exit frame.
__ bind(&leave_exit_frame);
if (stack_space_operand != nullptr) {
__ movp(rbx, *stack_space_operand);
}
__ LeaveApiExitFrame();
// Check if the function scheduled an exception.
__ Move(rdi, scheduled_exception_address);
__ Cmp(Operand(rdi, 0), factory->the_hole_value());
__ j(not_equal, &promote_scheduled_exception);
#if DEBUG
// Check if the function returned a valid JavaScript value.
Label ok;
Register return_value = rax;
Register map = rcx;
__ JumpIfSmi(return_value, &ok, Label::kNear);
__ movp(map, FieldOperand(return_value, HeapObject::kMapOffset));
__ CmpInstanceType(map, LAST_NAME_TYPE);
__ j(below_equal, &ok, Label::kNear);
__ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE);
__ j(above_equal, &ok, Label::kNear);
__ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
__ j(equal, &ok, Label::kNear);
__ CompareRoot(return_value, Heap::kUndefinedValueRootIndex);
__ j(equal, &ok, Label::kNear);
__ CompareRoot(return_value, Heap::kTrueValueRootIndex);
__ j(equal, &ok, Label::kNear);
__ CompareRoot(return_value, Heap::kFalseValueRootIndex);
__ j(equal, &ok, Label::kNear);
__ CompareRoot(return_value, Heap::kNullValueRootIndex);
__ j(equal, &ok, Label::kNear);
__ Abort(AbortReason::kAPICallReturnedInvalidObject);
__ bind(&ok);
#endif
if (stack_space_operand != nullptr) {
DCHECK_EQ(stack_space, 0);
__ PopReturnAddressTo(rcx);
__ addq(rsp, rbx);
__ jmp(rcx);
} else {
__ ret(stack_space * kPointerSize);
}
// Re-throw by promoting a scheduled exception.
__ bind(&promote_scheduled_exception);
__ TailCallRuntime(Runtime::kPromoteScheduledException);
// HandleScope limit has changed. Delete allocated extensions.
__ bind(&delete_allocated_handles);
__ movp(Operand(base_reg, kLimitOffset), prev_limit_reg);
__ movp(prev_limit_reg, rax);
__ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate));
__ LoadAddress(rax,
ExternalReference::delete_handle_scope_extensions(isolate));
__ call(rax);
__ movp(rax, prev_limit_reg);
__ jmp(&leave_exit_frame);
}
void CallApiCallbackStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rbx : call_data
// -- rcx : holder
// -- rdx : api_function_address
// -- rsi : context
// -- rax : number of arguments if argc is a register
// -- rsp[0] : return address
// -- rsp[8] : last argument
// -- ...
// -- rsp[argc * 8] : first argument
// -- rsp[(argc + 1) * 8] : receiver
// -----------------------------------
Register call_data = rbx;
Register holder = rcx;
Register api_function_address = rdx;
Register return_address = r8;
typedef FunctionCallbackArguments FCA;
STATIC_ASSERT(FCA::kArgsLength == 6);
STATIC_ASSERT(FCA::kNewTargetIndex == 5);
STATIC_ASSERT(FCA::kDataIndex == 4);
STATIC_ASSERT(FCA::kReturnValueOffset == 3);
STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
STATIC_ASSERT(FCA::kIsolateIndex == 1);
STATIC_ASSERT(FCA::kHolderIndex == 0);
__ PopReturnAddressTo(return_address);
// new target
__ PushRoot(Heap::kUndefinedValueRootIndex);
// call data
__ Push(call_data);
// return value
__ PushRoot(Heap::kUndefinedValueRootIndex);
// return value default
__ PushRoot(Heap::kUndefinedValueRootIndex);
// isolate
Register scratch = call_data;
__ Move(scratch, ExternalReference::isolate_address(masm->isolate()));
__ Push(scratch);
// holder
__ Push(holder);
int argc = this->argc();
__ movp(scratch, rsp);
// Push return address back on stack.
__ PushReturnAddressFrom(return_address);
// Allocate the v8::Arguments structure in the arguments' space since
// it's not controlled by GC.
const int kApiStackSpace = 3;
PrepareCallApiFunction(masm, kApiStackSpace);
// FunctionCallbackInfo::implicit_args_.
__ movp(StackSpaceOperand(0), scratch);
__ addp(scratch, Immediate((argc + FCA::kArgsLength - 1) * kPointerSize));
// FunctionCallbackInfo::values_.
__ movp(StackSpaceOperand(1), scratch);
// FunctionCallbackInfo::length_.
__ Set(StackSpaceOperand(2), argc);
#if defined(__MINGW64__) || defined(_WIN64)
Register arguments_arg = rcx;
Register callback_arg = rdx;
#else
Register arguments_arg = rdi;
Register callback_arg = rsi;
#endif
// It's okay if api_function_address == callback_arg
// but not arguments_arg
DCHECK(api_function_address != arguments_arg);
// v8::InvocationCallback's argument.
__ leap(arguments_arg, StackSpaceOperand(0));
ExternalReference thunk_ref =
ExternalReference::invoke_function_callback(masm->isolate());
// Accessor for FunctionCallbackInfo and first js arg.
StackArgumentsAccessor args_from_rbp(rbp, FCA::kArgsLength + 1,
ARGUMENTS_DONT_CONTAIN_RECEIVER);
Operand return_value_operand = args_from_rbp.GetArgumentOperand(
FCA::kArgsLength - FCA::kReturnValueOffset);
const int stack_space = argc + FCA::kArgsLength + 1;
Operand* stack_space_operand = nullptr;
CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, callback_arg,
stack_space, stack_space_operand,
return_value_operand);
}
void CallApiGetterStub::Generate(MacroAssembler* masm) {
#if defined(__MINGW64__) || defined(_WIN64)
Register getter_arg = r8;
Register accessor_info_arg = rdx;
Register name_arg = rcx;
#else
Register getter_arg = rdx;
Register accessor_info_arg = rsi;
Register name_arg = rdi;
#endif
Register api_function_address = r8;
Register receiver = ApiGetterDescriptor::ReceiverRegister();
Register holder = ApiGetterDescriptor::HolderRegister();
Register callback = ApiGetterDescriptor::CallbackRegister();
Register scratch = rax;
DCHECK(!AreAliased(receiver, holder, callback, scratch));
// Build v8::PropertyCallbackInfo::args_ array on the stack and push property
// name below the exit frame to make GC aware of them.
STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
// Insert additional parameters into the stack frame above return address.
__ PopReturnAddressTo(scratch);
__ Push(receiver);
__ Push(FieldOperand(callback, AccessorInfo::kDataOffset));
__ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex);
__ Push(kScratchRegister); // return value
__ Push(kScratchRegister); // return value default
__ PushAddress(ExternalReference::isolate_address(isolate()));
__ Push(holder);
__ Push(Smi::kZero); // should_throw_on_error -> false
__ Push(FieldOperand(callback, AccessorInfo::kNameOffset));
__ PushReturnAddressFrom(scratch);
// v8::PropertyCallbackInfo::args_ array and name handle.
const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
// Allocate v8::PropertyCallbackInfo in non-GCed stack space.
const int kArgStackSpace = 1;
// Load address of v8::PropertyAccessorInfo::args_ array.
__ leap(scratch, Operand(rsp, 2 * kPointerSize));
PrepareCallApiFunction(masm, kArgStackSpace);
// Create v8::PropertyCallbackInfo object on the stack and initialize
// it's args_ field.
Operand info_object = StackSpaceOperand(0);
__ movp(info_object, scratch);
__ leap(name_arg, Operand(scratch, -kPointerSize));
// The context register (rsi) has been saved in PrepareCallApiFunction and
// could be used to pass arguments.
__ leap(accessor_info_arg, info_object);
ExternalReference thunk_ref =
ExternalReference::invoke_accessor_getter_callback(isolate());
// It's okay if api_function_address == getter_arg
// but not accessor_info_arg or name_arg
DCHECK(api_function_address != accessor_info_arg);
DCHECK(api_function_address != name_arg);
__ movp(scratch, FieldOperand(callback, AccessorInfo::kJsGetterOffset));
__ movp(api_function_address,
FieldOperand(scratch, Foreign::kForeignAddressOffset));
// +3 is to skip prolog, return address and name handle.
Operand return_value_operand(
rbp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, getter_arg,
kStackUnwindSpace, nullptr, return_value_operand);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_X64