| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #if V8_TARGET_ARCH_X64 |
| |
| #include "src/base/bits.h" |
| #include "src/base/division-by-constant.h" |
| #include "src/base/utils/random-number-generator.h" |
| #include "src/bootstrapper.h" |
| #include "src/callable.h" |
| #include "src/code-stubs.h" |
| #include "src/counters.h" |
| #include "src/debug/debug.h" |
| #include "src/external-reference-table.h" |
| #include "src/frames-inl.h" |
| #include "src/heap/heap-inl.h" |
| #include "src/objects-inl.h" |
| #include "src/register-configuration.h" |
| #include "src/x64/assembler-x64.h" |
| |
| #include "src/x64/macro-assembler-x64.h" // Cannot be the first include. |
| |
| namespace v8 { |
| namespace internal { |
| |
| Operand StackArgumentsAccessor::GetArgumentOperand(int index) { |
| DCHECK_GE(index, 0); |
| int receiver = (receiver_mode_ == ARGUMENTS_CONTAIN_RECEIVER) ? 1 : 0; |
| int displacement_to_last_argument = |
| base_reg_ == rsp ? kPCOnStackSize : kFPOnStackSize + kPCOnStackSize; |
| displacement_to_last_argument += extra_displacement_to_last_argument_; |
| if (argument_count_reg_ == no_reg) { |
| // argument[0] is at base_reg_ + displacement_to_last_argument + |
| // (argument_count_immediate_ + receiver - 1) * kPointerSize. |
| DCHECK_GT(argument_count_immediate_ + receiver, 0); |
| return Operand( |
| base_reg_, |
| displacement_to_last_argument + |
| (argument_count_immediate_ + receiver - 1 - index) * kPointerSize); |
| } else { |
| // argument[0] is at base_reg_ + displacement_to_last_argument + |
| // argument_count_reg_ * times_pointer_size + (receiver - 1) * kPointerSize. |
| return Operand( |
| base_reg_, argument_count_reg_, times_pointer_size, |
| displacement_to_last_argument + (receiver - 1 - index) * kPointerSize); |
| } |
| } |
| |
| StackArgumentsAccessor::StackArgumentsAccessor( |
| Register base_reg, const ParameterCount& parameter_count, |
| StackArgumentsAccessorReceiverMode receiver_mode, |
| int extra_displacement_to_last_argument) |
| : base_reg_(base_reg), |
| argument_count_reg_(parameter_count.is_reg() ? parameter_count.reg() |
| : no_reg), |
| argument_count_immediate_( |
| parameter_count.is_immediate() ? parameter_count.immediate() : 0), |
| receiver_mode_(receiver_mode), |
| extra_displacement_to_last_argument_( |
| extra_displacement_to_last_argument) {} |
| |
| MacroAssembler::MacroAssembler(Isolate* isolate, void* buffer, int size, |
| CodeObjectRequired create_code_object) |
| : TurboAssembler(isolate, buffer, size, create_code_object) {} |
| |
| TurboAssembler::TurboAssembler(Isolate* isolate, void* buffer, int buffer_size, |
| CodeObjectRequired create_code_object) |
| : Assembler(isolate, buffer, buffer_size), isolate_(isolate) { |
| if (create_code_object == CodeObjectRequired::kYes) { |
| code_object_ = |
| Handle<HeapObject>::New(isolate->heap()->undefined_value(), isolate); |
| } |
| } |
| |
| static const int64_t kInvalidRootRegisterDelta = -1; |
| |
| int64_t TurboAssembler::RootRegisterDelta(ExternalReference other) { |
| if (predictable_code_size() && |
| (other.address() < reinterpret_cast<Address>(isolate()) || |
| other.address() >= reinterpret_cast<Address>(isolate() + 1))) { |
| return kInvalidRootRegisterDelta; |
| } |
| Address roots_register_value = |
| kRootRegisterBias + |
| reinterpret_cast<Address>(isolate()->heap()->roots_array_start()); |
| |
| int64_t delta = kInvalidRootRegisterDelta; // Bogus initialization. |
| if (kPointerSize == kInt64Size) { |
| delta = other.address() - roots_register_value; |
| } else { |
| // For x32, zero extend the address to 64-bit and calculate the delta. |
| uint64_t o = static_cast<uint32_t>( |
| reinterpret_cast<intptr_t>(other.address())); |
| uint64_t r = static_cast<uint32_t>( |
| reinterpret_cast<intptr_t>(roots_register_value)); |
| delta = o - r; |
| } |
| return delta; |
| } |
| |
| |
| Operand MacroAssembler::ExternalOperand(ExternalReference target, |
| Register scratch) { |
| if (root_array_available_ && !serializer_enabled()) { |
| int64_t delta = RootRegisterDelta(target); |
| if (delta != kInvalidRootRegisterDelta && is_int32(delta)) { |
| return Operand(kRootRegister, static_cast<int32_t>(delta)); |
| } |
| } |
| Move(scratch, target); |
| return Operand(scratch, 0); |
| } |
| |
| |
| void MacroAssembler::Load(Register destination, ExternalReference source) { |
| if (root_array_available_ && !serializer_enabled()) { |
| int64_t delta = RootRegisterDelta(source); |
| if (delta != kInvalidRootRegisterDelta && is_int32(delta)) { |
| movp(destination, Operand(kRootRegister, static_cast<int32_t>(delta))); |
| return; |
| } |
| } |
| // Safe code. |
| if (destination == rax) { |
| load_rax(source); |
| } else { |
| Move(kScratchRegister, source); |
| movp(destination, Operand(kScratchRegister, 0)); |
| } |
| } |
| |
| |
| void MacroAssembler::Store(ExternalReference destination, Register source) { |
| if (root_array_available_ && !serializer_enabled()) { |
| int64_t delta = RootRegisterDelta(destination); |
| if (delta != kInvalidRootRegisterDelta && is_int32(delta)) { |
| movp(Operand(kRootRegister, static_cast<int32_t>(delta)), source); |
| return; |
| } |
| } |
| // Safe code. |
| if (source == rax) { |
| store_rax(destination); |
| } else { |
| Move(kScratchRegister, destination); |
| movp(Operand(kScratchRegister, 0), source); |
| } |
| } |
| |
| void TurboAssembler::LoadAddress(Register destination, |
| ExternalReference source) { |
| if (root_array_available_ && !serializer_enabled()) { |
| int64_t delta = RootRegisterDelta(source); |
| if (delta != kInvalidRootRegisterDelta && is_int32(delta)) { |
| leap(destination, Operand(kRootRegister, static_cast<int32_t>(delta))); |
| return; |
| } |
| } |
| // Safe code. |
| Move(destination, source); |
| } |
| |
| int TurboAssembler::LoadAddressSize(ExternalReference source) { |
| if (root_array_available_ && !serializer_enabled()) { |
| // This calculation depends on the internals of LoadAddress. |
| // It's correctness is ensured by the asserts in the Call |
| // instruction below. |
| int64_t delta = RootRegisterDelta(source); |
| if (delta != kInvalidRootRegisterDelta && is_int32(delta)) { |
| // Operand is leap(scratch, Operand(kRootRegister, delta)); |
| // Opcodes : REX.W 8D ModRM Disp8/Disp32 - 4 or 7. |
| int size = 4; |
| if (!is_int8(static_cast<int32_t>(delta))) { |
| size += 3; // Need full four-byte displacement in lea. |
| } |
| return size; |
| } |
| } |
| // Size of movp(destination, src); |
| return Assembler::kMoveAddressIntoScratchRegisterInstructionLength; |
| } |
| |
| |
| void MacroAssembler::PushAddress(ExternalReference source) { |
| int64_t address = reinterpret_cast<int64_t>(source.address()); |
| if (is_int32(address) && !serializer_enabled()) { |
| if (emit_debug_code()) { |
| Move(kScratchRegister, reinterpret_cast<Address>(kZapValue), |
| Assembler::RelocInfoNone()); |
| } |
| Push(Immediate(static_cast<int32_t>(address))); |
| return; |
| } |
| LoadAddress(kScratchRegister, source); |
| Push(kScratchRegister); |
| } |
| |
| void TurboAssembler::LoadRoot(Register destination, Heap::RootListIndex index) { |
| DCHECK(root_array_available_); |
| movp(destination, Operand(kRootRegister, |
| (index << kPointerSizeLog2) - kRootRegisterBias)); |
| } |
| |
| void MacroAssembler::PushRoot(Heap::RootListIndex index) { |
| DCHECK(root_array_available_); |
| Push(Operand(kRootRegister, (index << kPointerSizeLog2) - kRootRegisterBias)); |
| } |
| |
| void TurboAssembler::CompareRoot(Register with, Heap::RootListIndex index) { |
| DCHECK(root_array_available_); |
| cmpp(with, Operand(kRootRegister, |
| (index << kPointerSizeLog2) - kRootRegisterBias)); |
| } |
| |
| void TurboAssembler::CompareRoot(const Operand& with, |
| Heap::RootListIndex index) { |
| DCHECK(root_array_available_); |
| DCHECK(!with.AddressUsesRegister(kScratchRegister)); |
| LoadRoot(kScratchRegister, index); |
| cmpp(with, kScratchRegister); |
| } |
| |
| void MacroAssembler::RecordWriteField(Register object, int offset, |
| Register value, Register dst, |
| SaveFPRegsMode save_fp, |
| RememberedSetAction remembered_set_action, |
| SmiCheck smi_check) { |
| // First, check if a write barrier is even needed. The tests below |
| // catch stores of Smis. |
| Label done; |
| |
| // Skip barrier if writing a smi. |
| if (smi_check == INLINE_SMI_CHECK) { |
| JumpIfSmi(value, &done); |
| } |
| |
| // Although the object register is tagged, the offset is relative to the start |
| // of the object, so so offset must be a multiple of kPointerSize. |
| DCHECK(IsAligned(offset, kPointerSize)); |
| |
| leap(dst, FieldOperand(object, offset)); |
| if (emit_debug_code()) { |
| Label ok; |
| testb(dst, Immediate(kPointerSize - 1)); |
| j(zero, &ok, Label::kNear); |
| int3(); |
| bind(&ok); |
| } |
| |
| RecordWrite(object, dst, value, save_fp, remembered_set_action, |
| OMIT_SMI_CHECK); |
| |
| bind(&done); |
| |
| // Clobber clobbered input registers when running with the debug-code flag |
| // turned on to provoke errors. |
| if (emit_debug_code()) { |
| Move(value, reinterpret_cast<Address>(kZapValue), |
| Assembler::RelocInfoNone()); |
| Move(dst, reinterpret_cast<Address>(kZapValue), Assembler::RelocInfoNone()); |
| } |
| } |
| |
| void TurboAssembler::SaveRegisters(RegList registers) { |
| DCHECK_GT(NumRegs(registers), 0); |
| for (int i = 0; i < Register::kNumRegisters; ++i) { |
| if ((registers >> i) & 1u) { |
| pushq(Register::from_code(i)); |
| } |
| } |
| } |
| |
| void TurboAssembler::RestoreRegisters(RegList registers) { |
| DCHECK_GT(NumRegs(registers), 0); |
| for (int i = Register::kNumRegisters - 1; i >= 0; --i) { |
| if ((registers >> i) & 1u) { |
| popq(Register::from_code(i)); |
| } |
| } |
| } |
| |
| void TurboAssembler::CallRecordWriteStub( |
| Register object, Register address, |
| RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode) { |
| Callable const callable = |
| Builtins::CallableFor(isolate(), Builtins::kRecordWrite); |
| RegList registers = callable.descriptor().allocatable_registers(); |
| |
| SaveRegisters(registers); |
| |
| Register object_parameter(callable.descriptor().GetRegisterParameter( |
| RecordWriteDescriptor::kObject)); |
| Register slot_parameter( |
| callable.descriptor().GetRegisterParameter(RecordWriteDescriptor::kSlot)); |
| Register isolate_parameter(callable.descriptor().GetRegisterParameter( |
| RecordWriteDescriptor::kIsolate)); |
| Register remembered_set_parameter(callable.descriptor().GetRegisterParameter( |
| RecordWriteDescriptor::kRememberedSet)); |
| Register fp_mode_parameter(callable.descriptor().GetRegisterParameter( |
| RecordWriteDescriptor::kFPMode)); |
| |
| // Prepare argument registers for calling RecordWrite |
| // slot_parameter <= address |
| // object_parameter <= object |
| if (slot_parameter != object) { |
| // Normal case |
| Move(slot_parameter, address); |
| Move(object_parameter, object); |
| } else if (object_parameter != address) { |
| // Only slot_parameter and object are the same register |
| // object_parameter <= object |
| // slot_parameter <= address |
| Move(object_parameter, object); |
| Move(slot_parameter, address); |
| } else { |
| // slot_parameter \/ address |
| // object_parameter /\ object |
| xchgq(slot_parameter, object_parameter); |
| } |
| |
| LoadAddress(isolate_parameter, ExternalReference::isolate_address(isolate())); |
| |
| Smi* smi_rsa = Smi::FromEnum(remembered_set_action); |
| Smi* smi_fm = Smi::FromEnum(fp_mode); |
| Move(remembered_set_parameter, smi_rsa); |
| if (smi_rsa != smi_fm) { |
| Move(fp_mode_parameter, smi_fm); |
| } else { |
| movq(fp_mode_parameter, remembered_set_parameter); |
| } |
| Call(callable.code(), RelocInfo::CODE_TARGET); |
| |
| RestoreRegisters(registers); |
| } |
| |
| void MacroAssembler::RecordWrite(Register object, Register address, |
| Register value, SaveFPRegsMode fp_mode, |
| RememberedSetAction remembered_set_action, |
| SmiCheck smi_check) { |
| DCHECK(object != value); |
| DCHECK(object != address); |
| DCHECK(value != address); |
| AssertNotSmi(object); |
| |
| if (remembered_set_action == OMIT_REMEMBERED_SET && |
| !FLAG_incremental_marking) { |
| return; |
| } |
| |
| if (emit_debug_code()) { |
| Label ok; |
| cmpp(value, Operand(address, 0)); |
| j(equal, &ok, Label::kNear); |
| int3(); |
| bind(&ok); |
| } |
| |
| // First, check if a write barrier is even needed. The tests below |
| // catch stores of smis and stores into the young generation. |
| Label done; |
| |
| if (smi_check == INLINE_SMI_CHECK) { |
| // Skip barrier if writing a smi. |
| JumpIfSmi(value, &done); |
| } |
| |
| CheckPageFlag(value, |
| value, // Used as scratch. |
| MemoryChunk::kPointersToHereAreInterestingMask, zero, &done, |
| Label::kNear); |
| |
| CheckPageFlag(object, |
| value, // Used as scratch. |
| MemoryChunk::kPointersFromHereAreInterestingMask, |
| zero, |
| &done, |
| Label::kNear); |
| |
| CallRecordWriteStub(object, address, remembered_set_action, fp_mode); |
| |
| bind(&done); |
| |
| // Count number of write barriers in generated code. |
| isolate()->counters()->write_barriers_static()->Increment(); |
| IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1); |
| |
| // Clobber clobbered registers when running with the debug-code flag |
| // turned on to provoke errors. |
| if (emit_debug_code()) { |
| Move(address, reinterpret_cast<Address>(kZapValue), |
| Assembler::RelocInfoNone()); |
| Move(value, reinterpret_cast<Address>(kZapValue), |
| Assembler::RelocInfoNone()); |
| } |
| } |
| |
| void TurboAssembler::Assert(Condition cc, AbortReason reason) { |
| if (emit_debug_code()) Check(cc, reason); |
| } |
| |
| void TurboAssembler::AssertUnreachable(AbortReason reason) { |
| if (emit_debug_code()) Abort(reason); |
| } |
| |
| void TurboAssembler::Check(Condition cc, AbortReason reason) { |
| Label L; |
| j(cc, &L, Label::kNear); |
| Abort(reason); |
| // Control will not return here. |
| bind(&L); |
| } |
| |
| void TurboAssembler::CheckStackAlignment() { |
| int frame_alignment = base::OS::ActivationFrameAlignment(); |
| int frame_alignment_mask = frame_alignment - 1; |
| if (frame_alignment > kPointerSize) { |
| DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); |
| Label alignment_as_expected; |
| testp(rsp, Immediate(frame_alignment_mask)); |
| j(zero, &alignment_as_expected, Label::kNear); |
| // Abort if stack is not aligned. |
| int3(); |
| bind(&alignment_as_expected); |
| } |
| } |
| |
| void TurboAssembler::Abort(AbortReason reason) { |
| #ifdef DEBUG |
| const char* msg = GetAbortReason(reason); |
| if (msg != nullptr) { |
| RecordComment("Abort message: "); |
| RecordComment(msg); |
| } |
| |
| if (FLAG_trap_on_abort) { |
| int3(); |
| return; |
| } |
| #endif |
| |
| Move(rdx, Smi::FromInt(static_cast<int>(reason))); |
| |
| if (!has_frame()) { |
| // We don't actually want to generate a pile of code for this, so just |
| // claim there is a stack frame, without generating one. |
| FrameScope scope(this, StackFrame::NONE); |
| Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); |
| } else { |
| Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); |
| } |
| // Control will not return here. |
| int3(); |
| } |
| |
| void TurboAssembler::CallStubDelayed(CodeStub* stub) { |
| DCHECK(AllowThisStubCall(stub)); // Calls are not allowed in some stubs |
| call(stub); |
| } |
| |
| void MacroAssembler::CallStub(CodeStub* stub) { |
| DCHECK(AllowThisStubCall(stub)); // Calls are not allowed in some stubs |
| Call(stub->GetCode(), RelocInfo::CODE_TARGET); |
| } |
| |
| |
| void MacroAssembler::TailCallStub(CodeStub* stub) { |
| Jump(stub->GetCode(), RelocInfo::CODE_TARGET); |
| } |
| |
| bool TurboAssembler::AllowThisStubCall(CodeStub* stub) { |
| return has_frame() || !stub->SometimesSetsUpAFrame(); |
| } |
| |
| void TurboAssembler::CallRuntimeDelayed(Zone* zone, Runtime::FunctionId fid, |
| SaveFPRegsMode save_doubles) { |
| const Runtime::Function* f = Runtime::FunctionForId(fid); |
| // TODO(1236192): Most runtime routines don't need the number of |
| // arguments passed in because it is constant. At some point we |
| // should remove this need and make the runtime routine entry code |
| // smarter. |
| Set(rax, f->nargs); |
| LoadAddress(rbx, ExternalReference(f, isolate())); |
| CallStubDelayed(new (zone) CEntryStub(nullptr, f->result_size, save_doubles)); |
| } |
| |
| void MacroAssembler::CallRuntime(const Runtime::Function* f, |
| int num_arguments, |
| SaveFPRegsMode save_doubles) { |
| // If the expected number of arguments of the runtime function is |
| // constant, we check that the actual number of arguments match the |
| // expectation. |
| CHECK(f->nargs < 0 || f->nargs == num_arguments); |
| |
| // TODO(1236192): Most runtime routines don't need the number of |
| // arguments passed in because it is constant. At some point we |
| // should remove this need and make the runtime routine entry code |
| // smarter. |
| Set(rax, num_arguments); |
| LoadAddress(rbx, ExternalReference(f, isolate())); |
| CEntryStub ces(isolate(), f->result_size, save_doubles); |
| CallStub(&ces); |
| } |
| |
| void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) { |
| // ----------- S t a t e ------------- |
| // -- rsp[0] : return address |
| // -- rsp[8] : argument num_arguments - 1 |
| // ... |
| // -- rsp[8 * num_arguments] : argument 0 (receiver) |
| // |
| // For runtime functions with variable arguments: |
| // -- rax : number of arguments |
| // ----------------------------------- |
| |
| const Runtime::Function* function = Runtime::FunctionForId(fid); |
| DCHECK_EQ(1, function->result_size); |
| if (function->nargs >= 0) { |
| Set(rax, function->nargs); |
| } |
| JumpToExternalReference(ExternalReference(fid, isolate())); |
| } |
| |
| void MacroAssembler::JumpToExternalReference(const ExternalReference& ext, |
| bool builtin_exit_frame) { |
| // Set the entry point and jump to the C entry runtime stub. |
| LoadAddress(rbx, ext); |
| CEntryStub ces(isolate(), 1, kDontSaveFPRegs, kArgvOnStack, |
| builtin_exit_frame); |
| jmp(ces.GetCode(), RelocInfo::CODE_TARGET); |
| } |
| |
| static constexpr Register saved_regs[] = {rax, rcx, rdx, rbx, rbp, rsi, |
| rdi, r8, r9, r10, r11}; |
| |
| static constexpr int kNumberOfSavedRegs = sizeof(saved_regs) / sizeof(Register); |
| |
| int TurboAssembler::RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode, |
| Register exclusion1, |
| Register exclusion2, |
| Register exclusion3) const { |
| int bytes = 0; |
| for (int i = 0; i < kNumberOfSavedRegs; i++) { |
| Register reg = saved_regs[i]; |
| if (reg != exclusion1 && reg != exclusion2 && reg != exclusion3) { |
| bytes += kPointerSize; |
| } |
| } |
| |
| // R12 to r15 are callee save on all platforms. |
| if (fp_mode == kSaveFPRegs) { |
| bytes += kDoubleSize * XMMRegister::kNumRegisters; |
| } |
| |
| return bytes; |
| } |
| |
| int TurboAssembler::PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, |
| Register exclusion2, Register exclusion3) { |
| // We don't allow a GC during a store buffer overflow so there is no need to |
| // store the registers in any particular way, but we do have to store and |
| // restore them. |
| int bytes = 0; |
| for (int i = 0; i < kNumberOfSavedRegs; i++) { |
| Register reg = saved_regs[i]; |
| if (reg != exclusion1 && reg != exclusion2 && reg != exclusion3) { |
| pushq(reg); |
| bytes += kPointerSize; |
| } |
| } |
| |
| // R12 to r15 are callee save on all platforms. |
| if (fp_mode == kSaveFPRegs) { |
| int delta = kDoubleSize * XMMRegister::kNumRegisters; |
| subp(rsp, Immediate(delta)); |
| for (int i = 0; i < XMMRegister::kNumRegisters; i++) { |
| XMMRegister reg = XMMRegister::from_code(i); |
| Movsd(Operand(rsp, i * kDoubleSize), reg); |
| } |
| bytes += delta; |
| } |
| |
| return bytes; |
| } |
| |
| int TurboAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, |
| Register exclusion2, Register exclusion3) { |
| int bytes = 0; |
| if (fp_mode == kSaveFPRegs) { |
| for (int i = 0; i < XMMRegister::kNumRegisters; i++) { |
| XMMRegister reg = XMMRegister::from_code(i); |
| Movsd(reg, Operand(rsp, i * kDoubleSize)); |
| } |
| int delta = kDoubleSize * XMMRegister::kNumRegisters; |
| addp(rsp, Immediate(kDoubleSize * XMMRegister::kNumRegisters)); |
| bytes += delta; |
| } |
| |
| for (int i = kNumberOfSavedRegs - 1; i >= 0; i--) { |
| Register reg = saved_regs[i]; |
| if (reg != exclusion1 && reg != exclusion2 && reg != exclusion3) { |
| popq(reg); |
| bytes += kPointerSize; |
| } |
| } |
| |
| return bytes; |
| } |
| |
| void TurboAssembler::Cvtss2sd(XMMRegister dst, XMMRegister src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvtss2sd(dst, src, src); |
| } else { |
| cvtss2sd(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvtss2sd(XMMRegister dst, const Operand& src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvtss2sd(dst, dst, src); |
| } else { |
| cvtss2sd(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvtsd2ss(XMMRegister dst, XMMRegister src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvtsd2ss(dst, src, src); |
| } else { |
| cvtsd2ss(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvtsd2ss(XMMRegister dst, const Operand& src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvtsd2ss(dst, dst, src); |
| } else { |
| cvtsd2ss(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvtlsi2sd(XMMRegister dst, Register src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vxorpd(dst, dst, dst); |
| vcvtlsi2sd(dst, dst, src); |
| } else { |
| xorpd(dst, dst); |
| cvtlsi2sd(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvtlsi2sd(XMMRegister dst, const Operand& src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vxorpd(dst, dst, dst); |
| vcvtlsi2sd(dst, dst, src); |
| } else { |
| xorpd(dst, dst); |
| cvtlsi2sd(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvtlsi2ss(XMMRegister dst, Register src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vxorps(dst, dst, dst); |
| vcvtlsi2ss(dst, dst, src); |
| } else { |
| xorps(dst, dst); |
| cvtlsi2ss(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvtlsi2ss(XMMRegister dst, const Operand& src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vxorps(dst, dst, dst); |
| vcvtlsi2ss(dst, dst, src); |
| } else { |
| xorps(dst, dst); |
| cvtlsi2ss(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvtqsi2ss(XMMRegister dst, Register src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vxorps(dst, dst, dst); |
| vcvtqsi2ss(dst, dst, src); |
| } else { |
| xorps(dst, dst); |
| cvtqsi2ss(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvtqsi2ss(XMMRegister dst, const Operand& src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vxorps(dst, dst, dst); |
| vcvtqsi2ss(dst, dst, src); |
| } else { |
| xorps(dst, dst); |
| cvtqsi2ss(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvtqsi2sd(XMMRegister dst, Register src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vxorpd(dst, dst, dst); |
| vcvtqsi2sd(dst, dst, src); |
| } else { |
| xorpd(dst, dst); |
| cvtqsi2sd(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvtqsi2sd(XMMRegister dst, const Operand& src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vxorpd(dst, dst, dst); |
| vcvtqsi2sd(dst, dst, src); |
| } else { |
| xorpd(dst, dst); |
| cvtqsi2sd(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvtqui2ss(XMMRegister dst, Register src, Register tmp) { |
| Label msb_set_src; |
| Label jmp_return; |
| testq(src, src); |
| j(sign, &msb_set_src, Label::kNear); |
| Cvtqsi2ss(dst, src); |
| jmp(&jmp_return, Label::kNear); |
| bind(&msb_set_src); |
| movq(tmp, src); |
| shrq(src, Immediate(1)); |
| // Recover the least significant bit to avoid rounding errors. |
| andq(tmp, Immediate(1)); |
| orq(src, tmp); |
| Cvtqsi2ss(dst, src); |
| addss(dst, dst); |
| bind(&jmp_return); |
| } |
| |
| void TurboAssembler::Cvtqui2sd(XMMRegister dst, Register src, Register tmp) { |
| Label msb_set_src; |
| Label jmp_return; |
| testq(src, src); |
| j(sign, &msb_set_src, Label::kNear); |
| Cvtqsi2sd(dst, src); |
| jmp(&jmp_return, Label::kNear); |
| bind(&msb_set_src); |
| movq(tmp, src); |
| shrq(src, Immediate(1)); |
| andq(tmp, Immediate(1)); |
| orq(src, tmp); |
| Cvtqsi2sd(dst, src); |
| addsd(dst, dst); |
| bind(&jmp_return); |
| } |
| |
| void TurboAssembler::Cvttss2si(Register dst, XMMRegister src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvttss2si(dst, src); |
| } else { |
| cvttss2si(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvttss2si(Register dst, const Operand& src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvttss2si(dst, src); |
| } else { |
| cvttss2si(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvttsd2si(Register dst, XMMRegister src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvttsd2si(dst, src); |
| } else { |
| cvttsd2si(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvttsd2si(Register dst, const Operand& src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvttsd2si(dst, src); |
| } else { |
| cvttsd2si(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvttss2siq(Register dst, XMMRegister src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvttss2siq(dst, src); |
| } else { |
| cvttss2siq(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvttss2siq(Register dst, const Operand& src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvttss2siq(dst, src); |
| } else { |
| cvttss2siq(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvttsd2siq(Register dst, XMMRegister src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvttsd2siq(dst, src); |
| } else { |
| cvttsd2siq(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvttsd2siq(Register dst, const Operand& src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvttsd2siq(dst, src); |
| } else { |
| cvttsd2siq(dst, src); |
| } |
| } |
| |
| |
| void MacroAssembler::Load(Register dst, const Operand& src, Representation r) { |
| DCHECK(!r.IsDouble()); |
| if (r.IsInteger8()) { |
| movsxbq(dst, src); |
| } else if (r.IsUInteger8()) { |
| movzxbl(dst, src); |
| } else if (r.IsInteger16()) { |
| movsxwq(dst, src); |
| } else if (r.IsUInteger16()) { |
| movzxwl(dst, src); |
| } else if (r.IsInteger32()) { |
| movl(dst, src); |
| } else { |
| movp(dst, src); |
| } |
| } |
| |
| |
| void MacroAssembler::Store(const Operand& dst, Register src, Representation r) { |
| DCHECK(!r.IsDouble()); |
| if (r.IsInteger8() || r.IsUInteger8()) { |
| movb(dst, src); |
| } else if (r.IsInteger16() || r.IsUInteger16()) { |
| movw(dst, src); |
| } else if (r.IsInteger32()) { |
| movl(dst, src); |
| } else { |
| if (r.IsHeapObject()) { |
| AssertNotSmi(src); |
| } else if (r.IsSmi()) { |
| AssertSmi(src); |
| } |
| movp(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Set(Register dst, int64_t x) { |
| if (x == 0) { |
| xorl(dst, dst); |
| } else if (is_uint32(x)) { |
| movl(dst, Immediate(static_cast<uint32_t>(x))); |
| } else if (is_int32(x)) { |
| movq(dst, Immediate(static_cast<int32_t>(x))); |
| } else { |
| movq(dst, x); |
| } |
| } |
| |
| void TurboAssembler::Set(const Operand& dst, intptr_t x) { |
| if (kPointerSize == kInt64Size) { |
| if (is_int32(x)) { |
| movp(dst, Immediate(static_cast<int32_t>(x))); |
| } else { |
| Set(kScratchRegister, x); |
| movp(dst, kScratchRegister); |
| } |
| } else { |
| movp(dst, Immediate(static_cast<int32_t>(x))); |
| } |
| } |
| |
| |
| // ---------------------------------------------------------------------------- |
| // Smi tagging, untagging and tag detection. |
| |
| Register TurboAssembler::GetSmiConstant(Smi* source) { |
| STATIC_ASSERT(kSmiTag == 0); |
| int value = source->value(); |
| if (value == 0) { |
| xorl(kScratchRegister, kScratchRegister); |
| return kScratchRegister; |
| } |
| Move(kScratchRegister, source); |
| return kScratchRegister; |
| } |
| |
| void TurboAssembler::Move(Register dst, Smi* source) { |
| STATIC_ASSERT(kSmiTag == 0); |
| int value = source->value(); |
| if (value == 0) { |
| xorl(dst, dst); |
| } else { |
| Move(dst, source, Assembler::RelocInfoNone()); |
| } |
| } |
| |
| void MacroAssembler::Integer32ToSmi(Register dst, Register src) { |
| STATIC_ASSERT(kSmiTag == 0); |
| if (dst != src) { |
| movl(dst, src); |
| } |
| shlp(dst, Immediate(kSmiShift)); |
| } |
| |
| void TurboAssembler::SmiToInteger32(Register dst, Register src) { |
| STATIC_ASSERT(kSmiTag == 0); |
| if (dst != src) { |
| movp(dst, src); |
| } |
| |
| if (SmiValuesAre32Bits()) { |
| shrp(dst, Immediate(kSmiShift)); |
| } else { |
| DCHECK(SmiValuesAre31Bits()); |
| sarl(dst, Immediate(kSmiShift)); |
| } |
| } |
| |
| void TurboAssembler::SmiToInteger32(Register dst, const Operand& src) { |
| if (SmiValuesAre32Bits()) { |
| movl(dst, Operand(src, kSmiShift / kBitsPerByte)); |
| } else { |
| DCHECK(SmiValuesAre31Bits()); |
| movl(dst, src); |
| sarl(dst, Immediate(kSmiShift)); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiToInteger64(Register dst, Register src) { |
| STATIC_ASSERT(kSmiTag == 0); |
| if (dst != src) { |
| movp(dst, src); |
| } |
| sarp(dst, Immediate(kSmiShift)); |
| if (kPointerSize == kInt32Size) { |
| // Sign extend to 64-bit. |
| movsxlq(dst, dst); |
| } |
| } |
| |
| void MacroAssembler::SmiCompare(Register smi1, Register smi2) { |
| AssertSmi(smi1); |
| AssertSmi(smi2); |
| cmpp(smi1, smi2); |
| } |
| |
| |
| void MacroAssembler::SmiCompare(Register dst, Smi* src) { |
| AssertSmi(dst); |
| Cmp(dst, src); |
| } |
| |
| |
| void MacroAssembler::Cmp(Register dst, Smi* src) { |
| DCHECK_NE(dst, kScratchRegister); |
| if (src->value() == 0) { |
| testp(dst, dst); |
| } else { |
| Register constant_reg = GetSmiConstant(src); |
| cmpp(dst, constant_reg); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiCompare(Register dst, const Operand& src) { |
| AssertSmi(dst); |
| AssertSmi(src); |
| cmpp(dst, src); |
| } |
| |
| |
| void MacroAssembler::SmiCompare(const Operand& dst, Register src) { |
| AssertSmi(dst); |
| AssertSmi(src); |
| cmpp(dst, src); |
| } |
| |
| |
| void MacroAssembler::SmiCompare(const Operand& dst, Smi* src) { |
| AssertSmi(dst); |
| if (SmiValuesAre32Bits()) { |
| cmpl(Operand(dst, kSmiShift / kBitsPerByte), Immediate(src->value())); |
| } else { |
| DCHECK(SmiValuesAre31Bits()); |
| cmpl(dst, Immediate(src)); |
| } |
| } |
| |
| |
| void MacroAssembler::Cmp(const Operand& dst, Smi* src) { |
| // The Operand cannot use the smi register. |
| Register smi_reg = GetSmiConstant(src); |
| DCHECK(!dst.AddressUsesRegister(smi_reg)); |
| cmpp(dst, smi_reg); |
| } |
| |
| |
| Condition TurboAssembler::CheckSmi(Register src) { |
| STATIC_ASSERT(kSmiTag == 0); |
| testb(src, Immediate(kSmiTagMask)); |
| return zero; |
| } |
| |
| Condition TurboAssembler::CheckSmi(const Operand& src) { |
| STATIC_ASSERT(kSmiTag == 0); |
| testb(src, Immediate(kSmiTagMask)); |
| return zero; |
| } |
| |
| void TurboAssembler::JumpIfSmi(Register src, Label* on_smi, |
| Label::Distance near_jump) { |
| Condition smi = CheckSmi(src); |
| j(smi, on_smi, near_jump); |
| } |
| |
| |
| void MacroAssembler::JumpIfNotSmi(Register src, |
| Label* on_not_smi, |
| Label::Distance near_jump) { |
| Condition smi = CheckSmi(src); |
| j(NegateCondition(smi), on_not_smi, near_jump); |
| } |
| |
| void MacroAssembler::JumpIfNotSmi(Operand src, Label* on_not_smi, |
| Label::Distance near_jump) { |
| Condition smi = CheckSmi(src); |
| j(NegateCondition(smi), on_not_smi, near_jump); |
| } |
| |
| void MacroAssembler::SmiAddConstant(const Operand& dst, Smi* constant) { |
| if (constant->value() != 0) { |
| if (SmiValuesAre32Bits()) { |
| addl(Operand(dst, kSmiShift / kBitsPerByte), |
| Immediate(constant->value())); |
| } else { |
| DCHECK(SmiValuesAre31Bits()); |
| addp(dst, Immediate(constant)); |
| } |
| } |
| } |
| |
| SmiIndex MacroAssembler::SmiToIndex(Register dst, |
| Register src, |
| int shift) { |
| if (SmiValuesAre32Bits()) { |
| DCHECK(is_uint6(shift)); |
| // There is a possible optimization if shift is in the range 60-63, but that |
| // will (and must) never happen. |
| if (dst != src) { |
| movp(dst, src); |
| } |
| if (shift < kSmiShift) { |
| sarp(dst, Immediate(kSmiShift - shift)); |
| } else { |
| shlp(dst, Immediate(shift - kSmiShift)); |
| } |
| return SmiIndex(dst, times_1); |
| } else { |
| DCHECK(SmiValuesAre31Bits()); |
| DCHECK(shift >= times_1 && shift <= (static_cast<int>(times_8) + 1)); |
| if (dst != src) { |
| movp(dst, src); |
| } |
| // We have to sign extend the index register to 64-bit as the SMI might |
| // be negative. |
| movsxlq(dst, dst); |
| if (shift == times_1) { |
| sarq(dst, Immediate(kSmiShift)); |
| return SmiIndex(dst, times_1); |
| } |
| return SmiIndex(dst, static_cast<ScaleFactor>(shift - 1)); |
| } |
| } |
| |
| void TurboAssembler::Push(Smi* source) { |
| intptr_t smi = reinterpret_cast<intptr_t>(source); |
| if (is_int32(smi)) { |
| Push(Immediate(static_cast<int32_t>(smi))); |
| return; |
| } |
| int first_byte_set = base::bits::CountTrailingZeros64(smi) / 8; |
| int last_byte_set = (63 - base::bits::CountLeadingZeros64(smi)) / 8; |
| if (first_byte_set == last_byte_set && kPointerSize == kInt64Size) { |
| // This sequence has only 7 bytes, compared to the 12 bytes below. |
| Push(Immediate(0)); |
| movb(Operand(rsp, first_byte_set), |
| Immediate(static_cast<int8_t>(smi >> (8 * first_byte_set)))); |
| return; |
| } |
| Register constant = GetSmiConstant(source); |
| Push(constant); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| |
| void TurboAssembler::Move(Register dst, Register src) { |
| if (dst != src) { |
| movp(dst, src); |
| } |
| } |
| |
| void TurboAssembler::MoveNumber(Register dst, double value) { |
| int32_t smi; |
| if (DoubleToSmiInteger(value, &smi)) { |
| Move(dst, Smi::FromInt(smi)); |
| } else { |
| movp_heap_number(dst, value); |
| } |
| } |
| |
| void TurboAssembler::Move(XMMRegister dst, uint32_t src) { |
| if (src == 0) { |
| Xorpd(dst, dst); |
| } else { |
| unsigned pop = base::bits::CountPopulation(src); |
| DCHECK_NE(0u, pop); |
| if (pop == 32) { |
| Pcmpeqd(dst, dst); |
| } else { |
| movl(kScratchRegister, Immediate(src)); |
| Movq(dst, kScratchRegister); |
| } |
| } |
| } |
| |
| void TurboAssembler::Move(XMMRegister dst, uint64_t src) { |
| if (src == 0) { |
| Xorpd(dst, dst); |
| } else { |
| unsigned nlz = base::bits::CountLeadingZeros(src); |
| unsigned ntz = base::bits::CountTrailingZeros(src); |
| unsigned pop = base::bits::CountPopulation(src); |
| DCHECK_NE(0u, pop); |
| if (pop == 64) { |
| Pcmpeqd(dst, dst); |
| } else if (pop + ntz == 64) { |
| Pcmpeqd(dst, dst); |
| Psllq(dst, ntz); |
| } else if (pop + nlz == 64) { |
| Pcmpeqd(dst, dst); |
| Psrlq(dst, nlz); |
| } else { |
| uint32_t lower = static_cast<uint32_t>(src); |
| uint32_t upper = static_cast<uint32_t>(src >> 32); |
| if (upper == 0) { |
| Move(dst, lower); |
| } else { |
| movq(kScratchRegister, src); |
| Movq(dst, kScratchRegister); |
| } |
| } |
| } |
| } |
| |
| void TurboAssembler::Movaps(XMMRegister dst, XMMRegister src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vmovaps(dst, src); |
| } else { |
| movaps(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Movups(XMMRegister dst, XMMRegister src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vmovups(dst, src); |
| } else { |
| movups(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Movups(XMMRegister dst, const Operand& src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vmovups(dst, src); |
| } else { |
| movups(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Movups(const Operand& dst, XMMRegister src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vmovups(dst, src); |
| } else { |
| movups(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Movapd(XMMRegister dst, XMMRegister src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vmovapd(dst, src); |
| } else { |
| movapd(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Movsd(XMMRegister dst, XMMRegister src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vmovsd(dst, dst, src); |
| } else { |
| movsd(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Movsd(XMMRegister dst, const Operand& src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vmovsd(dst, src); |
| } else { |
| movsd(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Movsd(const Operand& dst, XMMRegister src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vmovsd(dst, src); |
| } else { |
| movsd(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Movss(XMMRegister dst, XMMRegister src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vmovss(dst, dst, src); |
| } else { |
| movss(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Movss(XMMRegister dst, const Operand& src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vmovss(dst, src); |
| } else { |
| movss(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Movss(const Operand& dst, XMMRegister src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vmovss(dst, src); |
| } else { |
| movss(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Movd(XMMRegister dst, Register src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vmovd(dst, src); |
| } else { |
| movd(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Movd(XMMRegister dst, const Operand& src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vmovd(dst, src); |
| } else { |
| movd(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Movd(Register dst, XMMRegister src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vmovd(dst, src); |
| } else { |
| movd(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Movq(XMMRegister dst, Register src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vmovq(dst, src); |
| } else { |
| movq(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Movq(Register dst, XMMRegister src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vmovq(dst, src); |
| } else { |
| movq(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Movmskps(Register dst, XMMRegister src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vmovmskps(dst, src); |
| } else { |
| movmskps(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Movmskpd(Register dst, XMMRegister src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vmovmskpd(dst, src); |
| } else { |
| movmskpd(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Xorps(XMMRegister dst, XMMRegister src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vxorps(dst, dst, src); |
| } else { |
| xorps(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Xorps(XMMRegister dst, const Operand& src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vxorps(dst, dst, src); |
| } else { |
| xorps(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Roundss(XMMRegister dst, XMMRegister src, |
| RoundingMode mode) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vroundss(dst, dst, src, mode); |
| } else { |
| roundss(dst, src, mode); |
| } |
| } |
| |
| void TurboAssembler::Roundsd(XMMRegister dst, XMMRegister src, |
| RoundingMode mode) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vroundsd(dst, dst, src, mode); |
| } else { |
| roundsd(dst, src, mode); |
| } |
| } |
| |
| void TurboAssembler::Sqrtsd(XMMRegister dst, XMMRegister src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vsqrtsd(dst, dst, src); |
| } else { |
| sqrtsd(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Sqrtsd(XMMRegister dst, const Operand& src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vsqrtsd(dst, dst, src); |
| } else { |
| sqrtsd(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Ucomiss(XMMRegister src1, XMMRegister src2) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vucomiss(src1, src2); |
| } else { |
| ucomiss(src1, src2); |
| } |
| } |
| |
| void TurboAssembler::Ucomiss(XMMRegister src1, const Operand& src2) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vucomiss(src1, src2); |
| } else { |
| ucomiss(src1, src2); |
| } |
| } |
| |
| void TurboAssembler::Ucomisd(XMMRegister src1, XMMRegister src2) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vucomisd(src1, src2); |
| } else { |
| ucomisd(src1, src2); |
| } |
| } |
| |
| void TurboAssembler::Ucomisd(XMMRegister src1, const Operand& src2) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vucomisd(src1, src2); |
| } else { |
| ucomisd(src1, src2); |
| } |
| } |
| |
| // ---------------------------------------------------------------------------- |
| |
| void MacroAssembler::Absps(XMMRegister dst) { |
| Andps(dst, |
| ExternalOperand(ExternalReference::address_of_float_abs_constant())); |
| } |
| |
| void MacroAssembler::Negps(XMMRegister dst) { |
| Xorps(dst, |
| ExternalOperand(ExternalReference::address_of_float_neg_constant())); |
| } |
| |
| void MacroAssembler::Abspd(XMMRegister dst) { |
| Andps(dst, |
| ExternalOperand(ExternalReference::address_of_double_abs_constant())); |
| } |
| |
| void MacroAssembler::Negpd(XMMRegister dst) { |
| Xorps(dst, |
| ExternalOperand(ExternalReference::address_of_double_neg_constant())); |
| } |
| |
| void MacroAssembler::Cmp(Register dst, Handle<Object> source) { |
| AllowDeferredHandleDereference smi_check; |
| if (source->IsSmi()) { |
| Cmp(dst, Smi::cast(*source)); |
| } else { |
| Move(kScratchRegister, Handle<HeapObject>::cast(source)); |
| cmpp(dst, kScratchRegister); |
| } |
| } |
| |
| |
| void MacroAssembler::Cmp(const Operand& dst, Handle<Object> source) { |
| AllowDeferredHandleDereference smi_check; |
| if (source->IsSmi()) { |
| Cmp(dst, Smi::cast(*source)); |
| } else { |
| Move(kScratchRegister, Handle<HeapObject>::cast(source)); |
| cmpp(dst, kScratchRegister); |
| } |
| } |
| |
| void TurboAssembler::Push(Handle<HeapObject> source) { |
| Move(kScratchRegister, source); |
| Push(kScratchRegister); |
| } |
| |
| void TurboAssembler::Move(Register result, Handle<HeapObject> object, |
| RelocInfo::Mode rmode) { |
| movp(result, reinterpret_cast<void*>(object.address()), rmode); |
| } |
| |
| void TurboAssembler::Move(const Operand& dst, Handle<HeapObject> object, |
| RelocInfo::Mode rmode) { |
| Move(kScratchRegister, object, rmode); |
| movp(dst, kScratchRegister); |
| } |
| |
| void MacroAssembler::Drop(int stack_elements) { |
| if (stack_elements > 0) { |
| addp(rsp, Immediate(stack_elements * kPointerSize)); |
| } |
| } |
| |
| |
| void MacroAssembler::DropUnderReturnAddress(int stack_elements, |
| Register scratch) { |
| DCHECK_GT(stack_elements, 0); |
| if (kPointerSize == kInt64Size && stack_elements == 1) { |
| popq(MemOperand(rsp, 0)); |
| return; |
| } |
| |
| PopReturnAddressTo(scratch); |
| Drop(stack_elements); |
| PushReturnAddressFrom(scratch); |
| } |
| |
| void TurboAssembler::Push(Register src) { |
| if (kPointerSize == kInt64Size) { |
| pushq(src); |
| } else { |
| // x32 uses 64-bit push for rbp in the prologue. |
| DCHECK(src.code() != rbp.code()); |
| leal(rsp, Operand(rsp, -4)); |
| movp(Operand(rsp, 0), src); |
| } |
| } |
| |
| void TurboAssembler::Push(const Operand& src) { |
| if (kPointerSize == kInt64Size) { |
| pushq(src); |
| } else { |
| movp(kScratchRegister, src); |
| leal(rsp, Operand(rsp, -4)); |
| movp(Operand(rsp, 0), kScratchRegister); |
| } |
| } |
| |
| |
| void MacroAssembler::PushQuad(const Operand& src) { |
| if (kPointerSize == kInt64Size) { |
| pushq(src); |
| } else { |
| movp(kScratchRegister, src); |
| pushq(kScratchRegister); |
| } |
| } |
| |
| void TurboAssembler::Push(Immediate value) { |
| if (kPointerSize == kInt64Size) { |
| pushq(value); |
| } else { |
| leal(rsp, Operand(rsp, -4)); |
| movp(Operand(rsp, 0), value); |
| } |
| } |
| |
| |
| void MacroAssembler::PushImm32(int32_t imm32) { |
| if (kPointerSize == kInt64Size) { |
| pushq_imm32(imm32); |
| } else { |
| leal(rsp, Operand(rsp, -4)); |
| movp(Operand(rsp, 0), Immediate(imm32)); |
| } |
| } |
| |
| |
| void MacroAssembler::Pop(Register dst) { |
| if (kPointerSize == kInt64Size) { |
| popq(dst); |
| } else { |
| // x32 uses 64-bit pop for rbp in the epilogue. |
| DCHECK(dst.code() != rbp.code()); |
| movp(dst, Operand(rsp, 0)); |
| leal(rsp, Operand(rsp, 4)); |
| } |
| } |
| |
| |
| void MacroAssembler::Pop(const Operand& dst) { |
| if (kPointerSize == kInt64Size) { |
| popq(dst); |
| } else { |
| Register scratch = dst.AddressUsesRegister(kScratchRegister) |
| ? kRootRegister : kScratchRegister; |
| movp(scratch, Operand(rsp, 0)); |
| movp(dst, scratch); |
| leal(rsp, Operand(rsp, 4)); |
| if (scratch == kRootRegister) { |
| // Restore kRootRegister. |
| InitializeRootRegister(); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::PopQuad(const Operand& dst) { |
| if (kPointerSize == kInt64Size) { |
| popq(dst); |
| } else { |
| popq(kScratchRegister); |
| movp(dst, kScratchRegister); |
| } |
| } |
| |
| |
| void MacroAssembler::Jump(ExternalReference ext) { |
| LoadAddress(kScratchRegister, ext); |
| jmp(kScratchRegister); |
| } |
| |
| |
| void MacroAssembler::Jump(const Operand& op) { |
| if (kPointerSize == kInt64Size) { |
| jmp(op); |
| } else { |
| movp(kScratchRegister, op); |
| jmp(kScratchRegister); |
| } |
| } |
| |
| |
| void MacroAssembler::Jump(Address destination, RelocInfo::Mode rmode) { |
| Move(kScratchRegister, destination, rmode); |
| jmp(kScratchRegister); |
| } |
| |
| |
| void MacroAssembler::Jump(Handle<Code> code_object, RelocInfo::Mode rmode) { |
| // TODO(X64): Inline this |
| jmp(code_object, rmode); |
| } |
| |
| int TurboAssembler::CallSize(ExternalReference ext) { |
| // Opcode for call kScratchRegister is: Rex.B FF D4 (three bytes). |
| return LoadAddressSize(ext) + |
| Assembler::kCallScratchRegisterInstructionLength; |
| } |
| |
| void TurboAssembler::Call(ExternalReference ext) { |
| #ifdef DEBUG |
| int end_position = pc_offset() + CallSize(ext); |
| #endif |
| LoadAddress(kScratchRegister, ext); |
| call(kScratchRegister); |
| DCHECK_EQ(end_position, pc_offset()); |
| } |
| |
| void TurboAssembler::Call(const Operand& op) { |
| if (kPointerSize == kInt64Size && !CpuFeatures::IsSupported(ATOM)) { |
| call(op); |
| } else { |
| movp(kScratchRegister, op); |
| call(kScratchRegister); |
| } |
| } |
| |
| void TurboAssembler::Call(Address destination, RelocInfo::Mode rmode) { |
| #ifdef DEBUG |
| int end_position = pc_offset() + CallSize(destination); |
| #endif |
| Move(kScratchRegister, destination, rmode); |
| call(kScratchRegister); |
| DCHECK_EQ(pc_offset(), end_position); |
| } |
| |
| void TurboAssembler::Call(Handle<Code> code_object, RelocInfo::Mode rmode) { |
| #ifdef DEBUG |
| int end_position = pc_offset() + CallSize(code_object); |
| #endif |
| DCHECK(RelocInfo::IsCodeTarget(rmode)); |
| call(code_object, rmode); |
| DCHECK_EQ(end_position, pc_offset()); |
| } |
| |
| void TurboAssembler::RetpolineCall(Register reg) { |
| Label setup_return, setup_target, inner_indirect_branch, capture_spec; |
| |
| jmp(&setup_return); // Jump past the entire retpoline below. |
| |
| bind(&inner_indirect_branch); |
| call(&setup_target); |
| |
| bind(&capture_spec); |
| pause(); |
| jmp(&capture_spec); |
| |
| bind(&setup_target); |
| movq(Operand(rsp, 0), reg); |
| ret(0); |
| |
| bind(&setup_return); |
| call(&inner_indirect_branch); // Callee will return after this instruction. |
| } |
| |
| void TurboAssembler::RetpolineCall(Address destination, RelocInfo::Mode rmode) { |
| #ifdef DEBUG |
| // TODO(titzer): CallSize() is wrong for RetpolineCalls |
| // int end_position = pc_offset() + CallSize(destination); |
| #endif |
| Move(kScratchRegister, destination, rmode); |
| RetpolineCall(kScratchRegister); |
| // TODO(titzer): CallSize() is wrong for RetpolineCalls |
| // DCHECK_EQ(pc_offset(), end_position); |
| } |
| |
| void TurboAssembler::RetpolineJump(Register reg) { |
| Label setup_target, capture_spec; |
| |
| call(&setup_target); |
| |
| bind(&capture_spec); |
| pause(); |
| jmp(&capture_spec); |
| |
| bind(&setup_target); |
| movq(Operand(rsp, 0), reg); |
| ret(0); |
| } |
| |
| void TurboAssembler::Pextrd(Register dst, XMMRegister src, int8_t imm8) { |
| if (imm8 == 0) { |
| Movd(dst, src); |
| return; |
| } |
| if (CpuFeatures::IsSupported(SSE4_1)) { |
| CpuFeatureScope sse_scope(this, SSE4_1); |
| pextrd(dst, src, imm8); |
| return; |
| } |
| DCHECK_EQ(1, imm8); |
| movq(dst, src); |
| shrq(dst, Immediate(32)); |
| } |
| |
| void TurboAssembler::Pinsrd(XMMRegister dst, Register src, int8_t imm8) { |
| if (CpuFeatures::IsSupported(SSE4_1)) { |
| CpuFeatureScope sse_scope(this, SSE4_1); |
| pinsrd(dst, src, imm8); |
| return; |
| } |
| Movd(kScratchDoubleReg, src); |
| if (imm8 == 1) { |
| punpckldq(dst, kScratchDoubleReg); |
| } else { |
| DCHECK_EQ(0, imm8); |
| Movss(dst, kScratchDoubleReg); |
| } |
| } |
| |
| void TurboAssembler::Pinsrd(XMMRegister dst, const Operand& src, int8_t imm8) { |
| DCHECK(imm8 == 0 || imm8 == 1); |
| if (CpuFeatures::IsSupported(SSE4_1)) { |
| CpuFeatureScope sse_scope(this, SSE4_1); |
| pinsrd(dst, src, imm8); |
| return; |
| } |
| Movd(kScratchDoubleReg, src); |
| if (imm8 == 1) { |
| punpckldq(dst, kScratchDoubleReg); |
| } else { |
| DCHECK_EQ(0, imm8); |
| Movss(dst, kScratchDoubleReg); |
| } |
| } |
| |
| void TurboAssembler::Lzcntl(Register dst, Register src) { |
| if (CpuFeatures::IsSupported(LZCNT)) { |
| CpuFeatureScope scope(this, LZCNT); |
| lzcntl(dst, src); |
| return; |
| } |
| Label not_zero_src; |
| bsrl(dst, src); |
| j(not_zero, ¬_zero_src, Label::kNear); |
| Set(dst, 63); // 63^31 == 32 |
| bind(¬_zero_src); |
| xorl(dst, Immediate(31)); // for x in [0..31], 31^x == 31 - x |
| } |
| |
| void TurboAssembler::Lzcntl(Register dst, const Operand& src) { |
| if (CpuFeatures::IsSupported(LZCNT)) { |
| CpuFeatureScope scope(this, LZCNT); |
| lzcntl(dst, src); |
| return; |
| } |
| Label not_zero_src; |
| bsrl(dst, src); |
| j(not_zero, ¬_zero_src, Label::kNear); |
| Set(dst, 63); // 63^31 == 32 |
| bind(¬_zero_src); |
| xorl(dst, Immediate(31)); // for x in [0..31], 31^x == 31 - x |
| } |
| |
| void TurboAssembler::Lzcntq(Register dst, Register src) { |
| if (CpuFeatures::IsSupported(LZCNT)) { |
| CpuFeatureScope scope(this, LZCNT); |
| lzcntq(dst, src); |
| return; |
| } |
| Label not_zero_src; |
| bsrq(dst, src); |
| j(not_zero, ¬_zero_src, Label::kNear); |
| Set(dst, 127); // 127^63 == 64 |
| bind(¬_zero_src); |
| xorl(dst, Immediate(63)); // for x in [0..63], 63^x == 63 - x |
| } |
| |
| void TurboAssembler::Lzcntq(Register dst, const Operand& src) { |
| if (CpuFeatures::IsSupported(LZCNT)) { |
| CpuFeatureScope scope(this, LZCNT); |
| lzcntq(dst, src); |
| return; |
| } |
| Label not_zero_src; |
| bsrq(dst, src); |
| j(not_zero, ¬_zero_src, Label::kNear); |
| Set(dst, 127); // 127^63 == 64 |
| bind(¬_zero_src); |
| xorl(dst, Immediate(63)); // for x in [0..63], 63^x == 63 - x |
| } |
| |
| void TurboAssembler::Tzcntq(Register dst, Register src) { |
| if (CpuFeatures::IsSupported(BMI1)) { |
| CpuFeatureScope scope(this, BMI1); |
| tzcntq(dst, src); |
| return; |
| } |
| Label not_zero_src; |
| bsfq(dst, src); |
| j(not_zero, ¬_zero_src, Label::kNear); |
| // Define the result of tzcnt(0) separately, because bsf(0) is undefined. |
| Set(dst, 64); |
| bind(¬_zero_src); |
| } |
| |
| void TurboAssembler::Tzcntq(Register dst, const Operand& src) { |
| if (CpuFeatures::IsSupported(BMI1)) { |
| CpuFeatureScope scope(this, BMI1); |
| tzcntq(dst, src); |
| return; |
| } |
| Label not_zero_src; |
| bsfq(dst, src); |
| j(not_zero, ¬_zero_src, Label::kNear); |
| // Define the result of tzcnt(0) separately, because bsf(0) is undefined. |
| Set(dst, 64); |
| bind(¬_zero_src); |
| } |
| |
| void TurboAssembler::Tzcntl(Register dst, Register src) { |
| if (CpuFeatures::IsSupported(BMI1)) { |
| CpuFeatureScope scope(this, BMI1); |
| tzcntl(dst, src); |
| return; |
| } |
| Label not_zero_src; |
| bsfl(dst, src); |
| j(not_zero, ¬_zero_src, Label::kNear); |
| Set(dst, 32); // The result of tzcnt is 32 if src = 0. |
| bind(¬_zero_src); |
| } |
| |
| void TurboAssembler::Tzcntl(Register dst, const Operand& src) { |
| if (CpuFeatures::IsSupported(BMI1)) { |
| CpuFeatureScope scope(this, BMI1); |
| tzcntl(dst, src); |
| return; |
| } |
| Label not_zero_src; |
| bsfl(dst, src); |
| j(not_zero, ¬_zero_src, Label::kNear); |
| Set(dst, 32); // The result of tzcnt is 32 if src = 0. |
| bind(¬_zero_src); |
| } |
| |
| void TurboAssembler::Popcntl(Register dst, Register src) { |
| if (CpuFeatures::IsSupported(POPCNT)) { |
| CpuFeatureScope scope(this, POPCNT); |
| popcntl(dst, src); |
| return; |
| } |
| UNREACHABLE(); |
| } |
| |
| void TurboAssembler::Popcntl(Register dst, const Operand& src) { |
| if (CpuFeatures::IsSupported(POPCNT)) { |
| CpuFeatureScope scope(this, POPCNT); |
| popcntl(dst, src); |
| return; |
| } |
| UNREACHABLE(); |
| } |
| |
| void TurboAssembler::Popcntq(Register dst, Register src) { |
| if (CpuFeatures::IsSupported(POPCNT)) { |
| CpuFeatureScope scope(this, POPCNT); |
| popcntq(dst, src); |
| return; |
| } |
| UNREACHABLE(); |
| } |
| |
| void TurboAssembler::Popcntq(Register dst, const Operand& src) { |
| if (CpuFeatures::IsSupported(POPCNT)) { |
| CpuFeatureScope scope(this, POPCNT); |
| popcntq(dst, src); |
| return; |
| } |
| UNREACHABLE(); |
| } |
| |
| |
| void MacroAssembler::Pushad() { |
| Push(rax); |
| Push(rcx); |
| Push(rdx); |
| Push(rbx); |
| // Not pushing rsp or rbp. |
| Push(rsi); |
| Push(rdi); |
| Push(r8); |
| Push(r9); |
| // r10 is kScratchRegister. |
| Push(r11); |
| Push(r12); |
| // r13 is kRootRegister. |
| Push(r14); |
| Push(r15); |
| STATIC_ASSERT(12 == kNumSafepointSavedRegisters); |
| // Use lea for symmetry with Popad. |
| int sp_delta = |
| (kNumSafepointRegisters - kNumSafepointSavedRegisters) * kPointerSize; |
| leap(rsp, Operand(rsp, -sp_delta)); |
| } |
| |
| |
| void MacroAssembler::Popad() { |
| // Popad must not change the flags, so use lea instead of addq. |
| int sp_delta = |
| (kNumSafepointRegisters - kNumSafepointSavedRegisters) * kPointerSize; |
| leap(rsp, Operand(rsp, sp_delta)); |
| Pop(r15); |
| Pop(r14); |
| Pop(r12); |
| Pop(r11); |
| Pop(r9); |
| Pop(r8); |
| Pop(rdi); |
| Pop(rsi); |
| Pop(rbx); |
| Pop(rdx); |
| Pop(rcx); |
| Pop(rax); |
| } |
| |
| |
| // Order general registers are pushed by Pushad: |
| // rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r14, r15. |
| const int |
| MacroAssembler::kSafepointPushRegisterIndices[Register::kNumRegisters] = { |
| 0, |
| 1, |
| 2, |
| 3, |
| -1, |
| -1, |
| 4, |
| 5, |
| 6, |
| 7, |
| -1, |
| 8, |
| 9, |
| -1, |
| 10, |
| 11 |
| }; |
| |
| void MacroAssembler::PushStackHandler() { |
| // Adjust this code if not the case. |
| STATIC_ASSERT(StackHandlerConstants::kSize == 2 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| |
| Push(Immediate(0)); // Padding. |
| |
| // Link the current handler as the next handler. |
| ExternalReference handler_address(IsolateAddressId::kHandlerAddress, |
| isolate()); |
| Push(ExternalOperand(handler_address)); |
| |
| // Set this new handler as the current one. |
| movp(ExternalOperand(handler_address), rsp); |
| } |
| |
| |
| void MacroAssembler::PopStackHandler() { |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| ExternalReference handler_address(IsolateAddressId::kHandlerAddress, |
| isolate()); |
| Pop(ExternalOperand(handler_address)); |
| addp(rsp, Immediate(StackHandlerConstants::kSize - kPointerSize)); |
| } |
| |
| void TurboAssembler::Ret() { ret(0); } |
| |
| void TurboAssembler::Ret(int bytes_dropped, Register scratch) { |
| if (is_uint16(bytes_dropped)) { |
| ret(bytes_dropped); |
| } else { |
| PopReturnAddressTo(scratch); |
| addp(rsp, Immediate(bytes_dropped)); |
| PushReturnAddressFrom(scratch); |
| ret(0); |
| } |
| } |
| |
| void MacroAssembler::CmpObjectType(Register heap_object, |
| InstanceType type, |
| Register map) { |
| movp(map, FieldOperand(heap_object, HeapObject::kMapOffset)); |
| CmpInstanceType(map, type); |
| } |
| |
| |
| void MacroAssembler::CmpInstanceType(Register map, InstanceType type) { |
| cmpw(FieldOperand(map, Map::kInstanceTypeOffset), Immediate(type)); |
| } |
| |
| void TurboAssembler::SlowTruncateToIDelayed(Zone* zone, Register result_reg) { |
| CallStubDelayed(new (zone) DoubleToIStub(nullptr, result_reg)); |
| } |
| |
| void MacroAssembler::DoubleToI(Register result_reg, XMMRegister input_reg, |
| XMMRegister scratch, |
| MinusZeroMode minus_zero_mode, |
| Label* lost_precision, Label* is_nan, |
| Label* minus_zero, Label::Distance dst) { |
| Cvttsd2si(result_reg, input_reg); |
| Cvtlsi2sd(kScratchDoubleReg, result_reg); |
| Ucomisd(kScratchDoubleReg, input_reg); |
| j(not_equal, lost_precision, dst); |
| j(parity_even, is_nan, dst); // NaN. |
| if (minus_zero_mode == FAIL_ON_MINUS_ZERO) { |
| Label done; |
| // The integer converted back is equal to the original. We |
| // only have to test if we got -0 as an input. |
| testl(result_reg, result_reg); |
| j(not_zero, &done, Label::kNear); |
| Movmskpd(result_reg, input_reg); |
| // Bit 0 contains the sign of the double in input_reg. |
| // If input was positive, we are ok and return 0, otherwise |
| // jump to minus_zero. |
| andl(result_reg, Immediate(1)); |
| j(not_zero, minus_zero, dst); |
| bind(&done); |
| } |
| } |
| |
| |
| void MacroAssembler::AssertNotSmi(Register object) { |
| if (emit_debug_code()) { |
| Condition is_smi = CheckSmi(object); |
| Check(NegateCondition(is_smi), AbortReason::kOperandIsASmi); |
| } |
| } |
| |
| |
| void MacroAssembler::AssertSmi(Register object) { |
| if (emit_debug_code()) { |
| Condition is_smi = CheckSmi(object); |
| Check(is_smi, AbortReason::kOperandIsNotASmi); |
| } |
| } |
| |
| |
| void MacroAssembler::AssertSmi(const Operand& object) { |
| if (emit_debug_code()) { |
| Condition is_smi = CheckSmi(object); |
| Check(is_smi, AbortReason::kOperandIsNotASmi); |
| } |
| } |
| |
| void MacroAssembler::AssertFixedArray(Register object) { |
| if (emit_debug_code()) { |
| testb(object, Immediate(kSmiTagMask)); |
| Check(not_equal, AbortReason::kOperandIsASmiAndNotAFixedArray); |
| Push(object); |
| CmpObjectType(object, FIXED_ARRAY_TYPE, object); |
| Pop(object); |
| Check(equal, AbortReason::kOperandIsNotAFixedArray); |
| } |
| } |
| |
| void TurboAssembler::AssertZeroExtended(Register int32_register) { |
| if (emit_debug_code()) { |
| DCHECK_NE(int32_register, kScratchRegister); |
| movq(kScratchRegister, int64_t{0x0000000100000000}); |
| cmpq(kScratchRegister, int32_register); |
| Check(above_equal, AbortReason::k32BitValueInRegisterIsNotZeroExtended); |
| } |
| } |
| |
| |
| void MacroAssembler::AssertFunction(Register object) { |
| if (emit_debug_code()) { |
| testb(object, Immediate(kSmiTagMask)); |
| Check(not_equal, AbortReason::kOperandIsASmiAndNotAFunction); |
| Push(object); |
| CmpObjectType(object, JS_FUNCTION_TYPE, object); |
| Pop(object); |
| Check(equal, AbortReason::kOperandIsNotAFunction); |
| } |
| } |
| |
| |
| void MacroAssembler::AssertBoundFunction(Register object) { |
| if (emit_debug_code()) { |
| testb(object, Immediate(kSmiTagMask)); |
| Check(not_equal, AbortReason::kOperandIsASmiAndNotABoundFunction); |
| Push(object); |
| CmpObjectType(object, JS_BOUND_FUNCTION_TYPE, object); |
| Pop(object); |
| Check(equal, AbortReason::kOperandIsNotABoundFunction); |
| } |
| } |
| |
| void MacroAssembler::AssertGeneratorObject(Register object) { |
| if (!emit_debug_code()) return; |
| testb(object, Immediate(kSmiTagMask)); |
| Check(not_equal, AbortReason::kOperandIsASmiAndNotAGeneratorObject); |
| |
| // Load map |
| Register map = object; |
| Push(object); |
| movp(map, FieldOperand(object, HeapObject::kMapOffset)); |
| |
| Label do_check; |
| // Check if JSGeneratorObject |
| CmpInstanceType(map, JS_GENERATOR_OBJECT_TYPE); |
| j(equal, &do_check); |
| |
| // Check if JSAsyncGeneratorObject |
| CmpInstanceType(map, JS_ASYNC_GENERATOR_OBJECT_TYPE); |
| |
| bind(&do_check); |
| // Restore generator object to register and perform assertion |
| Pop(object); |
| Check(equal, AbortReason::kOperandIsNotAGeneratorObject); |
| } |
| |
| void MacroAssembler::AssertUndefinedOrAllocationSite(Register object) { |
| if (emit_debug_code()) { |
| Label done_checking; |
| AssertNotSmi(object); |
| Cmp(object, isolate()->factory()->undefined_value()); |
| j(equal, &done_checking); |
| Cmp(FieldOperand(object, 0), isolate()->factory()->allocation_site_map()); |
| Assert(equal, AbortReason::kExpectedUndefinedOrCell); |
| bind(&done_checking); |
| } |
| } |
| |
| void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) { |
| DCHECK_GT(value, 0); |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| Operand counter_operand = ExternalOperand(ExternalReference(counter)); |
| if (value == 1) { |
| incl(counter_operand); |
| } else { |
| addl(counter_operand, Immediate(value)); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) { |
| DCHECK_GT(value, 0); |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| Operand counter_operand = ExternalOperand(ExternalReference(counter)); |
| if (value == 1) { |
| decl(counter_operand); |
| } else { |
| subl(counter_operand, Immediate(value)); |
| } |
| } |
| } |
| |
| void MacroAssembler::MaybeDropFrames() { |
| // Check whether we need to drop frames to restart a function on the stack. |
| ExternalReference restart_fp = |
| ExternalReference::debug_restart_fp_address(isolate()); |
| Load(rbx, restart_fp); |
| testp(rbx, rbx); |
| j(not_zero, BUILTIN_CODE(isolate(), FrameDropperTrampoline), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| void TurboAssembler::PrepareForTailCall(const ParameterCount& callee_args_count, |
| Register caller_args_count_reg, |
| Register scratch0, Register scratch1) { |
| #if DEBUG |
| if (callee_args_count.is_reg()) { |
| DCHECK(!AreAliased(callee_args_count.reg(), caller_args_count_reg, scratch0, |
| scratch1)); |
| } else { |
| DCHECK(!AreAliased(caller_args_count_reg, scratch0, scratch1)); |
| } |
| #endif |
| |
| // Calculate the destination address where we will put the return address |
| // after we drop current frame. |
| Register new_sp_reg = scratch0; |
| if (callee_args_count.is_reg()) { |
| subp(caller_args_count_reg, callee_args_count.reg()); |
| leap(new_sp_reg, Operand(rbp, caller_args_count_reg, times_pointer_size, |
| StandardFrameConstants::kCallerPCOffset)); |
| } else { |
| leap(new_sp_reg, Operand(rbp, caller_args_count_reg, times_pointer_size, |
| StandardFrameConstants::kCallerPCOffset - |
| callee_args_count.immediate() * kPointerSize)); |
| } |
| |
| if (FLAG_debug_code) { |
| cmpp(rsp, new_sp_reg); |
| Check(below, AbortReason::kStackAccessBelowStackPointer); |
| } |
| |
| // Copy return address from caller's frame to current frame's return address |
| // to avoid its trashing and let the following loop copy it to the right |
| // place. |
| Register tmp_reg = scratch1; |
| movp(tmp_reg, Operand(rbp, StandardFrameConstants::kCallerPCOffset)); |
| movp(Operand(rsp, 0), tmp_reg); |
| |
| // Restore caller's frame pointer now as it could be overwritten by |
| // the copying loop. |
| movp(rbp, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); |
| |
| // +2 here is to copy both receiver and return address. |
| Register count_reg = caller_args_count_reg; |
| if (callee_args_count.is_reg()) { |
| leap(count_reg, Operand(callee_args_count.reg(), 2)); |
| } else { |
| movp(count_reg, Immediate(callee_args_count.immediate() + 2)); |
| // TODO(ishell): Unroll copying loop for small immediate values. |
| } |
| |
| // Now copy callee arguments to the caller frame going backwards to avoid |
| // callee arguments corruption (source and destination areas could overlap). |
| Label loop, entry; |
| jmp(&entry, Label::kNear); |
| bind(&loop); |
| decp(count_reg); |
| movp(tmp_reg, Operand(rsp, count_reg, times_pointer_size, 0)); |
| movp(Operand(new_sp_reg, count_reg, times_pointer_size, 0), tmp_reg); |
| bind(&entry); |
| cmpp(count_reg, Immediate(0)); |
| j(not_equal, &loop, Label::kNear); |
| |
| // Leave current frame. |
| movp(rsp, new_sp_reg); |
| } |
| |
| void MacroAssembler::InvokeFunction(Register function, Register new_target, |
| const ParameterCount& actual, |
| InvokeFlag flag) { |
| movp(rbx, FieldOperand(function, JSFunction::kSharedFunctionInfoOffset)); |
| movsxlq(rbx, |
| FieldOperand(rbx, SharedFunctionInfo::kFormalParameterCountOffset)); |
| |
| ParameterCount expected(rbx); |
| InvokeFunction(function, new_target, expected, actual, flag); |
| } |
| |
| void MacroAssembler::InvokeFunction(Register function, Register new_target, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| InvokeFlag flag) { |
| DCHECK(function == rdi); |
| movp(rsi, FieldOperand(function, JSFunction::kContextOffset)); |
| InvokeFunctionCode(rdi, new_target, expected, actual, flag); |
| } |
| |
| void MacroAssembler::InvokeFunctionCode(Register function, Register new_target, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| InvokeFlag flag) { |
| // You can't call a function without a valid frame. |
| DCHECK(flag == JUMP_FUNCTION || has_frame()); |
| DCHECK(function == rdi); |
| DCHECK_IMPLIES(new_target.is_valid(), new_target == rdx); |
| |
| // On function call, call into the debugger if necessary. |
| CheckDebugHook(function, new_target, expected, actual); |
| |
| // Clear the new.target register if not given. |
| if (!new_target.is_valid()) { |
| LoadRoot(rdx, Heap::kUndefinedValueRootIndex); |
| } |
| |
| Label done; |
| bool definitely_mismatches = false; |
| InvokePrologue(expected, actual, &done, &definitely_mismatches, flag, |
| Label::kNear); |
| if (!definitely_mismatches) { |
| // We call indirectly through the code field in the function to |
| // allow recompilation to take effect without changing any of the |
| // call sites. |
| movp(rcx, FieldOperand(function, JSFunction::kCodeOffset)); |
| addp(rcx, Immediate(Code::kHeaderSize - kHeapObjectTag)); |
| if (flag == CALL_FUNCTION) { |
| call(rcx); |
| } else { |
| DCHECK(flag == JUMP_FUNCTION); |
| jmp(rcx); |
| } |
| bind(&done); |
| } |
| } |
| |
| void MacroAssembler::InvokePrologue(const ParameterCount& expected, |
| const ParameterCount& actual, Label* done, |
| bool* definitely_mismatches, |
| InvokeFlag flag, |
| Label::Distance near_jump) { |
| bool definitely_matches = false; |
| *definitely_mismatches = false; |
| Label invoke; |
| if (expected.is_immediate()) { |
| DCHECK(actual.is_immediate()); |
| Set(rax, actual.immediate()); |
| if (expected.immediate() == actual.immediate()) { |
| definitely_matches = true; |
| } else { |
| if (expected.immediate() == |
| SharedFunctionInfo::kDontAdaptArgumentsSentinel) { |
| // Don't worry about adapting arguments for built-ins that |
| // don't want that done. Skip adaption code by making it look |
| // like we have a match between expected and actual number of |
| // arguments. |
| definitely_matches = true; |
| } else { |
| *definitely_mismatches = true; |
| Set(rbx, expected.immediate()); |
| } |
| } |
| } else { |
| if (actual.is_immediate()) { |
| // Expected is in register, actual is immediate. This is the |
| // case when we invoke function values without going through the |
| // IC mechanism. |
| Set(rax, actual.immediate()); |
| cmpp(expected.reg(), Immediate(actual.immediate())); |
| j(equal, &invoke, Label::kNear); |
| DCHECK(expected.reg() == rbx); |
| } else if (expected.reg() != actual.reg()) { |
| // Both expected and actual are in (different) registers. This |
| // is the case when we invoke functions using call and apply. |
| cmpp(expected.reg(), actual.reg()); |
| j(equal, &invoke, Label::kNear); |
| DCHECK(actual.reg() == rax); |
| DCHECK(expected.reg() == rbx); |
| } else { |
| definitely_matches = true; |
| Move(rax, actual.reg()); |
| } |
| } |
| |
| if (!definitely_matches) { |
| Handle<Code> adaptor = BUILTIN_CODE(isolate(), ArgumentsAdaptorTrampoline); |
| if (flag == CALL_FUNCTION) { |
| Call(adaptor, RelocInfo::CODE_TARGET); |
| if (!*definitely_mismatches) { |
| jmp(done, near_jump); |
| } |
| } else { |
| Jump(adaptor, RelocInfo::CODE_TARGET); |
| } |
| bind(&invoke); |
| } |
| } |
| |
| void MacroAssembler::CheckDebugHook(Register fun, Register new_target, |
| const ParameterCount& expected, |
| const ParameterCount& actual) { |
| Label skip_hook; |
| ExternalReference debug_hook_active = |
| ExternalReference::debug_hook_on_function_call_address(isolate()); |
| Operand debug_hook_active_operand = ExternalOperand(debug_hook_active); |
| cmpb(debug_hook_active_operand, Immediate(0)); |
| j(equal, &skip_hook); |
| { |
| FrameScope frame(this, |
| has_frame() ? StackFrame::NONE : StackFrame::INTERNAL); |
| if (expected.is_reg()) { |
| Integer32ToSmi(expected.reg(), expected.reg()); |
| Push(expected.reg()); |
| } |
| if (actual.is_reg()) { |
| Integer32ToSmi(actual.reg(), actual.reg()); |
| Push(actual.reg()); |
| } |
| if (new_target.is_valid()) { |
| Push(new_target); |
| } |
| Push(fun); |
| Push(fun); |
| CallRuntime(Runtime::kDebugOnFunctionCall); |
| Pop(fun); |
| if (new_target.is_valid()) { |
| Pop(new_target); |
| } |
| if (actual.is_reg()) { |
| Pop(actual.reg()); |
| SmiToInteger64(actual.reg(), actual.reg()); |
| } |
| if (expected.is_reg()) { |
| Pop(expected.reg()); |
| SmiToInteger64(expected.reg(), expected.reg()); |
| } |
| } |
| bind(&skip_hook); |
| } |
| |
| void TurboAssembler::StubPrologue(StackFrame::Type type) { |
| pushq(rbp); // Caller's frame pointer. |
| movp(rbp, rsp); |
| Push(Immediate(StackFrame::TypeToMarker(type))); |
| } |
| |
| void TurboAssembler::Prologue() { |
| pushq(rbp); // Caller's frame pointer. |
| movp(rbp, rsp); |
| Push(rsi); // Callee's context. |
| Push(rdi); // Callee's JS function. |
| } |
| |
| void TurboAssembler::EnterFrame(StackFrame::Type type) { |
| pushq(rbp); |
| movp(rbp, rsp); |
| Push(Immediate(StackFrame::TypeToMarker(type))); |
| if (type == StackFrame::INTERNAL) { |
| Move(kScratchRegister, CodeObject(), RelocInfo::EMBEDDED_OBJECT); |
| Push(kScratchRegister); |
| } |
| if (emit_debug_code()) { |
| Move(kScratchRegister, |
| isolate()->factory()->undefined_value(), |
| RelocInfo::EMBEDDED_OBJECT); |
| cmpp(Operand(rsp, 0), kScratchRegister); |
| Check(not_equal, AbortReason::kCodeObjectNotProperlyPatched); |
| } |
| } |
| |
| void TurboAssembler::LeaveFrame(StackFrame::Type type) { |
| if (emit_debug_code()) { |
| cmpp(Operand(rbp, CommonFrameConstants::kContextOrFrameTypeOffset), |
| Immediate(StackFrame::TypeToMarker(type))); |
| Check(equal, AbortReason::kStackFrameTypesMustMatch); |
| } |
| movp(rsp, rbp); |
| popq(rbp); |
| } |
| |
| void MacroAssembler::EnterBuiltinFrame(Register context, Register target, |
| Register argc) { |
| Push(rbp); |
| Move(rbp, rsp); |
| Push(context); |
| Push(target); |
| Push(argc); |
| } |
| |
| void MacroAssembler::LeaveBuiltinFrame(Register context, Register target, |
| Register argc) { |
| Pop(argc); |
| Pop(target); |
| Pop(context); |
| leave(); |
| } |
| |
| void MacroAssembler::EnterExitFramePrologue(bool save_rax, |
| StackFrame::Type frame_type) { |
| DCHECK(frame_type == StackFrame::EXIT || |
| frame_type == StackFrame::BUILTIN_EXIT); |
| |
| // Set up the frame structure on the stack. |
| // All constants are relative to the frame pointer of the exit frame. |
| DCHECK_EQ(kFPOnStackSize + kPCOnStackSize, |
| ExitFrameConstants::kCallerSPDisplacement); |
| DCHECK_EQ(kFPOnStackSize, ExitFrameConstants::kCallerPCOffset); |
| DCHECK_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset); |
| pushq(rbp); |
| movp(rbp, rsp); |
| |
| // Reserve room for entry stack pointer and push the code object. |
| Push(Immediate(StackFrame::TypeToMarker(frame_type))); |
| DCHECK_EQ(-2 * kPointerSize, ExitFrameConstants::kSPOffset); |
| Push(Immediate(0)); // Saved entry sp, patched before call. |
| Move(kScratchRegister, CodeObject(), RelocInfo::EMBEDDED_OBJECT); |
| Push(kScratchRegister); // Accessed from ExitFrame::code_slot. |
| |
| // Save the frame pointer and the context in top. |
| if (save_rax) { |
| movp(r14, rax); // Backup rax in callee-save register. |
| } |
| |
| Store(ExternalReference(IsolateAddressId::kCEntryFPAddress, isolate()), rbp); |
| Store(ExternalReference(IsolateAddressId::kContextAddress, isolate()), rsi); |
| Store(ExternalReference(IsolateAddressId::kCFunctionAddress, isolate()), rbx); |
| } |
| |
| |
| void MacroAssembler::EnterExitFrameEpilogue(int arg_stack_space, |
| bool save_doubles) { |
| #ifdef _WIN64 |
| const int kShadowSpace = 4; |
| arg_stack_space += kShadowSpace; |
| #endif |
| // Optionally save all XMM registers. |
| if (save_doubles) { |
| int space = XMMRegister::kNumRegisters * kDoubleSize + |
| arg_stack_space * kRegisterSize; |
| subp(rsp, Immediate(space)); |
| int offset = -ExitFrameConstants::kFixedFrameSizeFromFp; |
| const RegisterConfiguration* config = RegisterConfiguration::Default(); |
| for (int i = 0; i < config->num_allocatable_double_registers(); ++i) { |
| DoubleRegister reg = |
| DoubleRegister::from_code(config->GetAllocatableDoubleCode(i)); |
| Movsd(Operand(rbp, offset - ((i + 1) * kDoubleSize)), reg); |
| } |
| } else if (arg_stack_space > 0) { |
| subp(rsp, Immediate(arg_stack_space * kRegisterSize)); |
| } |
| |
| // Get the required frame alignment for the OS. |
| const int kFrameAlignment = base::OS::ActivationFrameAlignment(); |
| if (kFrameAlignment > 0) { |
| DCHECK(base::bits::IsPowerOfTwo(kFrameAlignment)); |
| DCHECK(is_int8(kFrameAlignment)); |
| andp(rsp, Immediate(-kFrameAlignment)); |
| } |
| |
| // Patch the saved entry sp. |
| movp(Operand(rbp, ExitFrameConstants::kSPOffset), rsp); |
| } |
| |
| void MacroAssembler::EnterExitFrame(int arg_stack_space, bool save_doubles, |
| StackFrame::Type frame_type) { |
| EnterExitFramePrologue(true, frame_type); |
| |
| // Set up argv in callee-saved register r15. It is reused in LeaveExitFrame, |
| // so it must be retained across the C-call. |
| int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize; |
| leap(r15, Operand(rbp, r14, times_pointer_size, offset)); |
| |
| EnterExitFrameEpilogue(arg_stack_space, save_doubles); |
| } |
| |
| |
| void MacroAssembler::EnterApiExitFrame(int arg_stack_space) { |
| EnterExitFramePrologue(false, StackFrame::EXIT); |
| EnterExitFrameEpilogue(arg_stack_space, false); |
| } |
| |
| |
| void MacroAssembler::LeaveExitFrame(bool save_doubles, bool pop_arguments) { |
| // Registers: |
| // r15 : argv |
| if (save_doubles) { |
| int offset = -ExitFrameConstants::kFixedFrameSizeFromFp; |
| const RegisterConfiguration* config = RegisterConfiguration::Default(); |
| for (int i = 0; i < config->num_allocatable_double_registers(); ++i) { |
| DoubleRegister reg = |
| DoubleRegister::from_code(config->GetAllocatableDoubleCode(i)); |
| Movsd(reg, Operand(rbp, offset - ((i + 1) * kDoubleSize))); |
| } |
| } |
| |
| if (pop_arguments) { |
| // Get the return address from the stack and restore the frame pointer. |
| movp(rcx, Operand(rbp, kFPOnStackSize)); |
| movp(rbp, Operand(rbp, 0 * kPointerSize)); |
| |
| // Drop everything up to and including the arguments and the receiver |
| // from the caller stack. |
| leap(rsp, Operand(r15, 1 * kPointerSize)); |
| |
| PushReturnAddressFrom(rcx); |
| } else { |
| // Otherwise just leave the exit frame. |
| leave(); |
| } |
| |
| LeaveExitFrameEpilogue(); |
| } |
| |
| void MacroAssembler::LeaveApiExitFrame() { |
| movp(rsp, rbp); |
| popq(rbp); |
| |
| LeaveExitFrameEpilogue(); |
| } |
| |
| void MacroAssembler::LeaveExitFrameEpilogue() { |
| // Restore current context from top and clear it in debug mode. |
| ExternalReference context_address(IsolateAddressId::kContextAddress, |
| isolate()); |
| Operand context_operand = ExternalOperand(context_address); |
| movp(rsi, context_operand); |
| #ifdef DEBUG |
| movp(context_operand, Immediate(Context::kInvalidContext)); |
| #endif |
| |
| // Clear the top frame. |
| ExternalReference c_entry_fp_address(IsolateAddressId::kCEntryFPAddress, |
| isolate()); |
| Operand c_entry_fp_operand = ExternalOperand(c_entry_fp_address); |
| movp(c_entry_fp_operand, Immediate(0)); |
| } |
| |
| |
| #ifdef _WIN64 |
| static const int kRegisterPassedArguments = 4; |
| #else |
| static const int kRegisterPassedArguments = 6; |
| #endif |
| |
| |
| void MacroAssembler::LoadNativeContextSlot(int index, Register dst) { |
| movp(dst, NativeContextOperand()); |
| movp(dst, ContextOperand(dst, index)); |
| } |
| |
| |
| int TurboAssembler::ArgumentStackSlotsForCFunctionCall(int num_arguments) { |
| // On Windows 64 stack slots are reserved by the caller for all arguments |
| // including the ones passed in registers, and space is always allocated for |
| // the four register arguments even if the function takes fewer than four |
| // arguments. |
| // On AMD64 ABI (Linux/Mac) the first six arguments are passed in registers |
| // and the caller does not reserve stack slots for them. |
| DCHECK_GE(num_arguments, 0); |
| #ifdef _WIN64 |
| const int kMinimumStackSlots = kRegisterPassedArguments; |
| if (num_arguments < kMinimumStackSlots) return kMinimumStackSlots; |
| return num_arguments; |
| #else |
| if (num_arguments < kRegisterPassedArguments) return 0; |
| return num_arguments - kRegisterPassedArguments; |
| #endif |
| } |
| |
| void TurboAssembler::PrepareCallCFunction(int num_arguments) { |
| int frame_alignment = base::OS::ActivationFrameAlignment(); |
| DCHECK_NE(frame_alignment, 0); |
| DCHECK_GE(num_arguments, 0); |
| |
| // Make stack end at alignment and allocate space for arguments and old rsp. |
| movp(kScratchRegister, rsp); |
| DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); |
| int argument_slots_on_stack = |
| ArgumentStackSlotsForCFunctionCall(num_arguments); |
| subp(rsp, Immediate((argument_slots_on_stack + 1) * kRegisterSize)); |
| andp(rsp, Immediate(-frame_alignment)); |
| movp(Operand(rsp, argument_slots_on_stack * kRegisterSize), kScratchRegister); |
| } |
| |
| void TurboAssembler::CallCFunction(ExternalReference function, |
| int num_arguments) { |
| LoadAddress(rax, function); |
| CallCFunction(rax, num_arguments); |
| } |
| |
| void TurboAssembler::CallCFunction(Register function, int num_arguments) { |
| DCHECK_LE(num_arguments, kMaxCParameters); |
| DCHECK(has_frame()); |
| // Check stack alignment. |
| if (emit_debug_code()) { |
| CheckStackAlignment(); |
| } |
| |
| call(function); |
| DCHECK_NE(base::OS::ActivationFrameAlignment(), 0); |
| DCHECK_GE(num_arguments, 0); |
| int argument_slots_on_stack = |
| ArgumentStackSlotsForCFunctionCall(num_arguments); |
| movp(rsp, Operand(rsp, argument_slots_on_stack * kRegisterSize)); |
| } |
| |
| |
| #ifdef DEBUG |
| bool AreAliased(Register reg1, |
| Register reg2, |
| Register reg3, |
| Register reg4, |
| Register reg5, |
| Register reg6, |
| Register reg7, |
| Register reg8) { |
| int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() + |
| reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid() + |
| reg7.is_valid() + reg8.is_valid(); |
| |
| RegList regs = 0; |
| if (reg1.is_valid()) regs |= reg1.bit(); |
| if (reg2.is_valid()) regs |= reg2.bit(); |
| if (reg3.is_valid()) regs |= reg3.bit(); |
| if (reg4.is_valid()) regs |= reg4.bit(); |
| if (reg5.is_valid()) regs |= reg5.bit(); |
| if (reg6.is_valid()) regs |= reg6.bit(); |
| if (reg7.is_valid()) regs |= reg7.bit(); |
| if (reg8.is_valid()) regs |= reg8.bit(); |
| int n_of_non_aliasing_regs = NumRegs(regs); |
| |
| return n_of_valid_regs != n_of_non_aliasing_regs; |
| } |
| #endif |
| |
| void TurboAssembler::CheckPageFlag(Register object, Register scratch, int mask, |
| Condition cc, Label* condition_met, |
| Label::Distance condition_met_distance) { |
| DCHECK(cc == zero || cc == not_zero); |
| if (scratch == object) { |
| andp(scratch, Immediate(~Page::kPageAlignmentMask)); |
| } else { |
| movp(scratch, Immediate(~Page::kPageAlignmentMask)); |
| andp(scratch, object); |
| } |
| if (mask < (1 << kBitsPerByte)) { |
| testb(Operand(scratch, MemoryChunk::kFlagsOffset), |
| Immediate(static_cast<uint8_t>(mask))); |
| } else { |
| testl(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(mask)); |
| } |
| j(cc, condition_met, condition_met_distance); |
| } |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_TARGET_ARCH_X64 |