blob: 4ceab2cf9c751ae4aebec40473b11b1abce53679 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_X64_MACRO_ASSEMBLER_X64_H_
#define V8_X64_MACRO_ASSEMBLER_X64_H_
#include "src/bailout-reason.h"
#include "src/base/flags.h"
#include "src/globals.h"
#include "src/x64/assembler-x64.h"
namespace v8 {
namespace internal {
// Give alias names to registers for calling conventions.
constexpr Register kReturnRegister0 = rax;
constexpr Register kReturnRegister1 = rdx;
constexpr Register kReturnRegister2 = r8;
constexpr Register kJSFunctionRegister = rdi;
constexpr Register kContextRegister = rsi;
constexpr Register kAllocateSizeRegister = rdx;
constexpr Register kInterpreterAccumulatorRegister = rax;
constexpr Register kInterpreterBytecodeOffsetRegister = r12;
constexpr Register kInterpreterBytecodeArrayRegister = r14;
constexpr Register kInterpreterDispatchTableRegister = r15;
constexpr Register kJavaScriptCallArgCountRegister = rax;
constexpr Register kJavaScriptCallNewTargetRegister = rdx;
constexpr Register kRuntimeCallFunctionRegister = rbx;
constexpr Register kRuntimeCallArgCountRegister = rax;
// Default scratch register used by MacroAssembler (and other code that needs
// a spare register). The register isn't callee save, and not used by the
// function calling convention.
constexpr Register kScratchRegister = r10;
constexpr XMMRegister kScratchDoubleReg = xmm15;
constexpr Register kRootRegister = r13; // callee save
// Actual value of root register is offset from the root array's start
// to take advantage of negitive 8-bit displacement values.
constexpr int kRootRegisterBias = 128;
// Convenience for platform-independent signatures.
typedef Operand MemOperand;
enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
#ifdef DEBUG
bool AreAliased(Register reg1,
Register reg2,
Register reg3 = no_reg,
Register reg4 = no_reg,
Register reg5 = no_reg,
Register reg6 = no_reg,
Register reg7 = no_reg,
Register reg8 = no_reg);
#endif
// Forward declaration.
class JumpTarget;
struct SmiIndex {
SmiIndex(Register index_register, ScaleFactor scale)
: reg(index_register),
scale(scale) {}
Register reg;
ScaleFactor scale;
};
enum StackArgumentsAccessorReceiverMode {
ARGUMENTS_CONTAIN_RECEIVER,
ARGUMENTS_DONT_CONTAIN_RECEIVER
};
class StackArgumentsAccessor BASE_EMBEDDED {
public:
StackArgumentsAccessor(Register base_reg, int argument_count_immediate,
StackArgumentsAccessorReceiverMode receiver_mode =
ARGUMENTS_CONTAIN_RECEIVER,
int extra_displacement_to_last_argument = 0)
: base_reg_(base_reg),
argument_count_reg_(no_reg),
argument_count_immediate_(argument_count_immediate),
receiver_mode_(receiver_mode),
extra_displacement_to_last_argument_(
extra_displacement_to_last_argument) {}
StackArgumentsAccessor(Register base_reg, Register argument_count_reg,
StackArgumentsAccessorReceiverMode receiver_mode =
ARGUMENTS_CONTAIN_RECEIVER,
int extra_displacement_to_last_argument = 0)
: base_reg_(base_reg),
argument_count_reg_(argument_count_reg),
argument_count_immediate_(0),
receiver_mode_(receiver_mode),
extra_displacement_to_last_argument_(
extra_displacement_to_last_argument) {}
StackArgumentsAccessor(Register base_reg,
const ParameterCount& parameter_count,
StackArgumentsAccessorReceiverMode receiver_mode =
ARGUMENTS_CONTAIN_RECEIVER,
int extra_displacement_to_last_argument = 0);
Operand GetArgumentOperand(int index);
Operand GetReceiverOperand() {
DCHECK(receiver_mode_ == ARGUMENTS_CONTAIN_RECEIVER);
return GetArgumentOperand(0);
}
private:
const Register base_reg_;
const Register argument_count_reg_;
const int argument_count_immediate_;
const StackArgumentsAccessorReceiverMode receiver_mode_;
const int extra_displacement_to_last_argument_;
DISALLOW_IMPLICIT_CONSTRUCTORS(StackArgumentsAccessor);
};
class TurboAssembler : public Assembler {
public:
TurboAssembler(Isolate* isolate, void* buffer, int buffer_size,
CodeObjectRequired create_code_object);
void set_has_frame(bool value) { has_frame_ = value; }
bool has_frame() const { return has_frame_; }
Isolate* isolate() const { return isolate_; }
Handle<HeapObject> CodeObject() {
DCHECK(!code_object_.is_null());
return code_object_;
}
#define AVX_OP2_WITH_TYPE(macro_name, name, src_type) \
void macro_name(XMMRegister dst, src_type src) { \
if (CpuFeatures::IsSupported(AVX)) { \
CpuFeatureScope scope(this, AVX); \
v##name(dst, dst, src); \
} else { \
name(dst, src); \
} \
}
#define AVX_OP2_X(macro_name, name) \
AVX_OP2_WITH_TYPE(macro_name, name, XMMRegister)
#define AVX_OP2_O(macro_name, name) \
AVX_OP2_WITH_TYPE(macro_name, name, const Operand&)
#define AVX_OP2_XO(macro_name, name) \
AVX_OP2_X(macro_name, name) \
AVX_OP2_O(macro_name, name)
AVX_OP2_XO(Subsd, subsd)
AVX_OP2_XO(Divss, divss)
AVX_OP2_XO(Divsd, divsd)
AVX_OP2_XO(Xorpd, xorpd)
AVX_OP2_X(Pcmpeqd, pcmpeqd)
AVX_OP2_WITH_TYPE(Psllq, psllq, byte)
AVX_OP2_WITH_TYPE(Psrlq, psrlq, byte)
#undef AVX_OP2_O
#undef AVX_OP2_X
#undef AVX_OP2_XO
#undef AVX_OP2_WITH_TYPE
void Xorps(XMMRegister dst, XMMRegister src);
void Xorps(XMMRegister dst, const Operand& src);
void Movd(XMMRegister dst, Register src);
void Movd(XMMRegister dst, const Operand& src);
void Movd(Register dst, XMMRegister src);
void Movq(XMMRegister dst, Register src);
void Movq(Register dst, XMMRegister src);
void Movsd(XMMRegister dst, XMMRegister src);
void Movsd(XMMRegister dst, const Operand& src);
void Movsd(const Operand& dst, XMMRegister src);
void Movss(XMMRegister dst, XMMRegister src);
void Movss(XMMRegister dst, const Operand& src);
void Movss(const Operand& dst, XMMRegister src);
void PushReturnAddressFrom(Register src) { pushq(src); }
void PopReturnAddressTo(Register dst) { popq(dst); }
void Ret();
// Return and drop arguments from stack, where the number of arguments
// may be bigger than 2^16 - 1. Requires a scratch register.
void Ret(int bytes_dropped, Register scratch);
// Load a register with a long value as efficiently as possible.
void Set(Register dst, int64_t x);
void Set(const Operand& dst, intptr_t x);
// Operations on roots in the root-array.
void LoadRoot(Register destination, Heap::RootListIndex index);
void LoadRoot(const Operand& destination, Heap::RootListIndex index) {
LoadRoot(kScratchRegister, index);
movp(destination, kScratchRegister);
}
void Movups(XMMRegister dst, XMMRegister src);
void Movups(XMMRegister dst, const Operand& src);
void Movups(const Operand& dst, XMMRegister src);
void Movapd(XMMRegister dst, XMMRegister src);
void Movaps(XMMRegister dst, XMMRegister src);
void Movmskpd(Register dst, XMMRegister src);
void Movmskps(Register dst, XMMRegister src);
void Push(Register src);
void Push(const Operand& src);
void Push(Immediate value);
void Push(Smi* smi);
void Push(Handle<HeapObject> source);
// Before calling a C-function from generated code, align arguments on stack.
// After aligning the frame, arguments must be stored in rsp[0], rsp[8],
// etc., not pushed. The argument count assumes all arguments are word sized.
// The number of slots reserved for arguments depends on platform. On Windows
// stack slots are reserved for the arguments passed in registers. On other
// platforms stack slots are only reserved for the arguments actually passed
// on the stack.
void PrepareCallCFunction(int num_arguments);
// Calls a C function and cleans up the space for arguments allocated
// by PrepareCallCFunction. The called function is not allowed to trigger a
// garbage collection, since that might move the code and invalidate the
// return address (unless this is somehow accounted for by the called
// function).
void CallCFunction(ExternalReference function, int num_arguments);
void CallCFunction(Register function, int num_arguments);
// Calculate the number of stack slots to reserve for arguments when calling a
// C function.
int ArgumentStackSlotsForCFunctionCall(int num_arguments);
void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
Label* condition_met,
Label::Distance condition_met_distance = Label::kFar);
void Cvtss2sd(XMMRegister dst, XMMRegister src);
void Cvtss2sd(XMMRegister dst, const Operand& src);
void Cvtsd2ss(XMMRegister dst, XMMRegister src);
void Cvtsd2ss(XMMRegister dst, const Operand& src);
void Cvttsd2si(Register dst, XMMRegister src);
void Cvttsd2si(Register dst, const Operand& src);
void Cvttsd2siq(Register dst, XMMRegister src);
void Cvttsd2siq(Register dst, const Operand& src);
void Cvttss2si(Register dst, XMMRegister src);
void Cvttss2si(Register dst, const Operand& src);
void Cvttss2siq(Register dst, XMMRegister src);
void Cvttss2siq(Register dst, const Operand& src);
void Cvtqsi2ss(XMMRegister dst, Register src);
void Cvtqsi2ss(XMMRegister dst, const Operand& src);
void Cvtqsi2sd(XMMRegister dst, Register src);
void Cvtqsi2sd(XMMRegister dst, const Operand& src);
void Cvtlsi2ss(XMMRegister dst, Register src);
void Cvtlsi2ss(XMMRegister dst, const Operand& src);
void Cvtqui2ss(XMMRegister dst, Register src, Register tmp);
void Cvtqui2sd(XMMRegister dst, Register src, Register tmp);
// cvtsi2sd instruction only writes to the low 64-bit of dst register, which
// hinders register renaming and makes dependence chains longer. So we use
// xorpd to clear the dst register before cvtsi2sd to solve this issue.
void Cvtlsi2sd(XMMRegister dst, Register src);
void Cvtlsi2sd(XMMRegister dst, const Operand& src);
void Roundss(XMMRegister dst, XMMRegister src, RoundingMode mode);
void Roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode);
void Sqrtsd(XMMRegister dst, XMMRegister src);
void Sqrtsd(XMMRegister dst, const Operand& src);
void Ucomiss(XMMRegister src1, XMMRegister src2);
void Ucomiss(XMMRegister src1, const Operand& src2);
void Ucomisd(XMMRegister src1, XMMRegister src2);
void Ucomisd(XMMRegister src1, const Operand& src2);
void Lzcntq(Register dst, Register src);
void Lzcntq(Register dst, const Operand& src);
void Lzcntl(Register dst, Register src);
void Lzcntl(Register dst, const Operand& src);
void Tzcntq(Register dst, Register src);
void Tzcntq(Register dst, const Operand& src);
void Tzcntl(Register dst, Register src);
void Tzcntl(Register dst, const Operand& src);
void Popcntl(Register dst, Register src);
void Popcntl(Register dst, const Operand& src);
void Popcntq(Register dst, Register src);
void Popcntq(Register dst, const Operand& src);
// Is the value a tagged smi.
Condition CheckSmi(Register src);
Condition CheckSmi(const Operand& src);
// Jump to label if the value is a tagged smi.
void JumpIfSmi(Register src, Label* on_smi,
Label::Distance near_jump = Label::kFar);
void Move(Register dst, Smi* source);
void Move(const Operand& dst, Smi* source) {
Register constant = GetSmiConstant(source);
movp(dst, constant);
}
void Move(Register dst, ExternalReference ext) {
movp(dst, reinterpret_cast<void*>(ext.address()),
RelocInfo::EXTERNAL_REFERENCE);
}
void Move(XMMRegister dst, uint32_t src);
void Move(XMMRegister dst, uint64_t src);
void Move(XMMRegister dst, float src) { Move(dst, bit_cast<uint32_t>(src)); }
void Move(XMMRegister dst, double src) { Move(dst, bit_cast<uint64_t>(src)); }
// Move if the registers are not identical.
void Move(Register target, Register source);
void Move(Register dst, Handle<HeapObject> source,
RelocInfo::Mode rmode = RelocInfo::EMBEDDED_OBJECT);
void Move(const Operand& dst, Handle<HeapObject> source,
RelocInfo::Mode rmode = RelocInfo::EMBEDDED_OBJECT);
// Loads a pointer into a register with a relocation mode.
void Move(Register dst, void* ptr, RelocInfo::Mode rmode) {
// This method must not be used with heap object references. The stored
// address is not GC safe. Use the handle version instead.
DCHECK(rmode > RelocInfo::LAST_GCED_ENUM);
movp(dst, ptr, rmode);
}
// Convert smi to 32-bit integer. I.e., not sign extended into
// high 32 bits of destination.
void SmiToInteger32(Register dst, Register src);
void SmiToInteger32(Register dst, const Operand& src);
// Loads the address of the external reference into the destination
// register.
void LoadAddress(Register destination, ExternalReference source);
void Call(const Operand& op);
void Call(Handle<Code> code_object, RelocInfo::Mode rmode);
void Call(Address destination, RelocInfo::Mode rmode);
void Call(ExternalReference ext);
void Call(Label* target) { call(target); }
void RetpolineCall(Register reg);
void RetpolineCall(Address destination, RelocInfo::Mode rmode);
void RetpolineJump(Register reg);
void CallForDeoptimization(Address target, RelocInfo::Mode rmode) {
call(target, rmode);
}
// The size of the code generated for different call instructions.
int CallSize(ExternalReference ext);
int CallSize(Address destination) { return kCallSequenceLength; }
int CallSize(Handle<Code> code_object) {
// Code calls use 32-bit relative addressing.
return kShortCallInstructionLength;
}
int CallSize(Register target) {
// Opcode: REX_opt FF /2 m64
return (target.high_bit() != 0) ? 3 : 2;
}
int CallSize(const Operand& target) {
// Opcode: REX_opt FF /2 m64
return (target.requires_rex() ? 2 : 1) + target.operand_size();
}
// Returns the size of the code generated by LoadAddress.
// Used by CallSize(ExternalReference) to find the size of a call.
int LoadAddressSize(ExternalReference source);
// Non-SSE2 instructions.
void Pextrd(Register dst, XMMRegister src, int8_t imm8);
void Pinsrd(XMMRegister dst, Register src, int8_t imm8);
void Pinsrd(XMMRegister dst, const Operand& src, int8_t imm8);
void CompareRoot(Register with, Heap::RootListIndex index);
void CompareRoot(const Operand& with, Heap::RootListIndex index);
// Generates function and stub prologue code.
void StubPrologue(StackFrame::Type type);
void Prologue();
// Calls Abort(msg) if the condition cc is not satisfied.
// Use --debug_code to enable.
void Assert(Condition cc, AbortReason reason);
// Like Assert(), but without condition.
// Use --debug_code to enable.
void AssertUnreachable(AbortReason reason);
// Abort execution if a 64 bit register containing a 32 bit payload does not
// have zeros in the top 32 bits, enabled via --debug-code.
void AssertZeroExtended(Register reg);
// Like Assert(), but always enabled.
void Check(Condition cc, AbortReason reason);
// Print a message to stdout and abort execution.
void Abort(AbortReason msg);
// Check that the stack is aligned.
void CheckStackAlignment();
// Activation support.
void EnterFrame(StackFrame::Type type);
void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) {
// Out-of-line constant pool not implemented on x64.
UNREACHABLE();
}
void LeaveFrame(StackFrame::Type type);
// Removes current frame and its arguments from the stack preserving the
// arguments and a return address pushed to the stack for the next call. Both
// |callee_args_count| and |caller_args_count_reg| do not include receiver.
// |callee_args_count| is not modified, |caller_args_count_reg| is trashed.
void PrepareForTailCall(const ParameterCount& callee_args_count,
Register caller_args_count_reg, Register scratch0,
Register scratch1);
inline bool AllowThisStubCall(CodeStub* stub);
// Call a code stub. This expects {stub} to be zone-allocated, as it does not
// trigger generation of the stub's code object but instead files a
// HeapObjectRequest that will be fulfilled after code assembly.
void CallStubDelayed(CodeStub* stub);
void SlowTruncateToIDelayed(Zone* zone, Register result_reg);
// Call a runtime routine.
void CallRuntimeDelayed(Zone* zone, Runtime::FunctionId fid,
SaveFPRegsMode save_doubles = kDontSaveFPRegs);
void InitializeRootRegister() {
ExternalReference roots_array_start =
ExternalReference::roots_array_start(isolate());
Move(kRootRegister, roots_array_start);
addp(kRootRegister, Immediate(kRootRegisterBias));
}
void SaveRegisters(RegList registers);
void RestoreRegisters(RegList registers);
void CallRecordWriteStub(Register object, Register address,
RememberedSetAction remembered_set_action,
SaveFPRegsMode fp_mode);
void MoveNumber(Register dst, double value);
void MoveNonSmi(Register dst, double value);
// Calculate how much stack space (in bytes) are required to store caller
// registers excluding those specified in the arguments.
int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg) const;
// PushCallerSaved and PopCallerSaved do not arrange the registers in any
// particular order so they are not useful for calls that can cause a GC.
// The caller can exclude up to 3 registers that do not need to be saved and
// restored.
// Push caller saved registers on the stack, and return the number of bytes
// stack pointer is adjusted.
int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg);
// Restore caller saved registers from the stack, and return the number of
// bytes stack pointer is adjusted.
int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg);
protected:
static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
int smi_count = 0;
int heap_object_count = 0;
bool root_array_available_ = true;
int64_t RootRegisterDelta(ExternalReference other);
// Returns a register holding the smi value. The register MUST NOT be
// modified. It may be the "smi 1 constant" register.
Register GetSmiConstant(Smi* value);
private:
bool has_frame_ = false;
// This handle will be patched with the code object on installation.
Handle<HeapObject> code_object_;
Isolate* const isolate_;
};
// MacroAssembler implements a collection of frequently used macros.
class MacroAssembler : public TurboAssembler {
public:
MacroAssembler(Isolate* isolate, void* buffer, int size,
CodeObjectRequired create_code_object);
// Prevent the use of the RootArray during the lifetime of this
// scope object.
class NoRootArrayScope BASE_EMBEDDED {
public:
explicit NoRootArrayScope(MacroAssembler* assembler)
: variable_(&assembler->root_array_available_),
old_value_(assembler->root_array_available_) {
assembler->root_array_available_ = false;
}
~NoRootArrayScope() {
*variable_ = old_value_;
}
private:
bool* variable_;
bool old_value_;
};
// Operand pointing to an external reference.
// May emit code to set up the scratch register. The operand is
// only guaranteed to be correct as long as the scratch register
// isn't changed.
// If the operand is used more than once, use a scratch register
// that is guaranteed not to be clobbered.
Operand ExternalOperand(ExternalReference reference,
Register scratch = kScratchRegister);
// Loads and stores the value of an external reference.
// Special case code for load and store to take advantage of
// load_rax/store_rax if possible/necessary.
// For other operations, just use:
// Operand operand = ExternalOperand(extref);
// operation(operand, ..);
void Load(Register destination, ExternalReference source);
void Store(ExternalReference destination, Register source);
// Pushes the address of the external reference onto the stack.
void PushAddress(ExternalReference source);
// Operations on roots in the root-array.
// Load a root value where the index (or part of it) is variable.
// The variable_offset register is added to the fixed_offset value
// to get the index into the root-array.
void PushRoot(Heap::RootListIndex index);
// Compare the object in a register to a value and jump if they are equal.
void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal,
Label::Distance if_equal_distance = Label::kFar) {
CompareRoot(with, index);
j(equal, if_equal, if_equal_distance);
}
void JumpIfRoot(const Operand& with, Heap::RootListIndex index,
Label* if_equal,
Label::Distance if_equal_distance = Label::kFar) {
CompareRoot(with, index);
j(equal, if_equal, if_equal_distance);
}
// Compare the object in a register to a value and jump if they are not equal.
void JumpIfNotRoot(Register with, Heap::RootListIndex index,
Label* if_not_equal,
Label::Distance if_not_equal_distance = Label::kFar) {
CompareRoot(with, index);
j(not_equal, if_not_equal, if_not_equal_distance);
}
void JumpIfNotRoot(const Operand& with, Heap::RootListIndex index,
Label* if_not_equal,
Label::Distance if_not_equal_distance = Label::kFar) {
CompareRoot(with, index);
j(not_equal, if_not_equal, if_not_equal_distance);
}
// ---------------------------------------------------------------------------
// GC Support
// Notify the garbage collector that we wrote a pointer into an object.
// |object| is the object being stored into, |value| is the object being
// stored. value and scratch registers are clobbered by the operation.
// The offset is the offset from the start of the object, not the offset from
// the tagged HeapObject pointer. For use with FieldOperand(reg, off).
void RecordWriteField(
Register object, int offset, Register value, Register scratch,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK);
// For page containing |object| mark region covering |address|
// dirty. |object| is the object being stored into, |value| is the
// object being stored. The address and value registers are clobbered by the
// operation. RecordWrite filters out smis so it does not update
// the write barrier if the value is a smi.
void RecordWrite(
Register object, Register address, Register value, SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK);
// Frame restart support.
void MaybeDropFrames();
// Enter specific kind of exit frame; either in normal or
// debug mode. Expects the number of arguments in register rax and
// sets up the number of arguments in register rdi and the pointer
// to the first argument in register rsi.
//
// Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
// accessible via StackSpaceOperand.
void EnterExitFrame(int arg_stack_space = 0, bool save_doubles = false,
StackFrame::Type frame_type = StackFrame::EXIT);
// Enter specific kind of exit frame. Allocates arg_stack_space * kPointerSize
// memory (not GCed) on the stack accessible via StackSpaceOperand.
void EnterApiExitFrame(int arg_stack_space);
// Leave the current exit frame. Expects/provides the return value in
// register rax:rdx (untouched) and the pointer to the first
// argument in register rsi (if pop_arguments == true).
void LeaveExitFrame(bool save_doubles = false, bool pop_arguments = true);
// Leave the current exit frame. Expects/provides the return value in
// register rax (untouched).
void LeaveApiExitFrame();
// Push and pop the registers that can hold pointers.
void PushSafepointRegisters() { Pushad(); }
void PopSafepointRegisters() { Popad(); }
// ---------------------------------------------------------------------------
// JavaScript invokes
// Invoke the JavaScript function code by either calling or jumping.
void InvokeFunctionCode(Register function, Register new_target,
const ParameterCount& expected,
const ParameterCount& actual, InvokeFlag flag);
// On function call, call into the debugger if necessary.
void CheckDebugHook(Register fun, Register new_target,
const ParameterCount& expected,
const ParameterCount& actual);
// Invoke the JavaScript function in the given register. Changes the
// current context to the context in the function before invoking.
void InvokeFunction(Register function, Register new_target,
const ParameterCount& actual, InvokeFlag flag);
void InvokeFunction(Register function, Register new_target,
const ParameterCount& expected,
const ParameterCount& actual, InvokeFlag flag);
void InvokeFunction(Handle<JSFunction> function,
const ParameterCount& expected,
const ParameterCount& actual, InvokeFlag flag);
// ---------------------------------------------------------------------------
// Conversions between tagged smi values and non-tagged integer values.
// Tag an integer value. The result must be known to be a valid smi value.
// Only uses the low 32 bits of the src register. Sets the N and Z flags
// based on the value of the resulting smi.
void Integer32ToSmi(Register dst, Register src);
// Convert smi to 64-bit integer (sign extended if necessary).
void SmiToInteger64(Register dst, Register src);
// Simple comparison of smis. Both sides must be known smis to use these,
// otherwise use Cmp.
void SmiCompare(Register smi1, Register smi2);
void SmiCompare(Register dst, Smi* src);
void SmiCompare(Register dst, const Operand& src);
void SmiCompare(const Operand& dst, Register src);
void SmiCompare(const Operand& dst, Smi* src);
// Functions performing a check on a known or potential smi. Returns
// a condition that is satisfied if the check is successful.
// Test-and-jump functions. Typically combines a check function
// above with a conditional jump.
// Jump to label if the value is not a tagged smi.
void JumpIfNotSmi(Register src,
Label* on_not_smi,
Label::Distance near_jump = Label::kFar);
// Jump to label if the value is not a tagged smi.
void JumpIfNotSmi(Operand src, Label* on_not_smi,
Label::Distance near_jump = Label::kFar);
// Operations on tagged smi values.
// Smis represent a subset of integers. The subset is always equivalent to
// a two's complement interpretation of a fixed number of bits.
// Add an integer constant to a tagged smi, giving a tagged smi as result.
// No overflow testing on the result is done.
void SmiAddConstant(const Operand& dst, Smi* constant);
// Specialized operations
// Converts, if necessary, a smi to a combination of number and
// multiplier to be used as a scaled index.
// The src register contains a *positive* smi value. The shift is the
// power of two to multiply the index value by (e.g.
// to index by smi-value * kPointerSize, pass the smi and kPointerSizeLog2).
// The returned index register may be either src or dst, depending
// on what is most efficient. If src and dst are different registers,
// src is always unchanged.
SmiIndex SmiToIndex(Register dst, Register src, int shift);
// ---------------------------------------------------------------------------
// Macro instructions.
// Load/store with specific representation.
void Load(Register dst, const Operand& src, Representation r);
void Store(const Operand& dst, Register src, Representation r);
void Cmp(Register dst, Handle<Object> source);
void Cmp(const Operand& dst, Handle<Object> source);
void Cmp(Register dst, Smi* src);
void Cmp(const Operand& dst, Smi* src);
// Emit code to discard a non-negative number of pointer-sized elements
// from the stack, clobbering only the rsp register.
void Drop(int stack_elements);
// Emit code to discard a positive number of pointer-sized elements
// from the stack under the return address which remains on the top,
// clobbering the rsp register.
void DropUnderReturnAddress(int stack_elements,
Register scratch = kScratchRegister);
void PushQuad(const Operand& src);
void PushImm32(int32_t imm32);
void Pop(Register dst);
void Pop(const Operand& dst);
void PopQuad(const Operand& dst);
#define AVX_OP2_WITH_TYPE(macro_name, name, src_type) \
void macro_name(XMMRegister dst, src_type src) { \
if (CpuFeatures::IsSupported(AVX)) { \
CpuFeatureScope scope(this, AVX); \
v##name(dst, dst, src); \
} else { \
name(dst, src); \
} \
}
#define AVX_OP2_X(macro_name, name) \
AVX_OP2_WITH_TYPE(macro_name, name, XMMRegister)
#define AVX_OP2_O(macro_name, name) \
AVX_OP2_WITH_TYPE(macro_name, name, const Operand&)
#define AVX_OP2_XO(macro_name, name) \
AVX_OP2_X(macro_name, name) \
AVX_OP2_O(macro_name, name)
AVX_OP2_XO(Addsd, addsd)
AVX_OP2_XO(Mulsd, mulsd)
AVX_OP2_XO(Andps, andps)
AVX_OP2_XO(Andpd, andpd)
AVX_OP2_XO(Orpd, orpd)
AVX_OP2_XO(Cmpeqps, cmpeqps)
AVX_OP2_XO(Cmpltps, cmpltps)
AVX_OP2_XO(Cmpleps, cmpleps)
AVX_OP2_XO(Cmpneqps, cmpneqps)
AVX_OP2_XO(Cmpnltps, cmpnltps)
AVX_OP2_XO(Cmpnleps, cmpnleps)
AVX_OP2_XO(Cmpeqpd, cmpeqpd)
AVX_OP2_XO(Cmpltpd, cmpltpd)
AVX_OP2_XO(Cmplepd, cmplepd)
AVX_OP2_XO(Cmpneqpd, cmpneqpd)
AVX_OP2_XO(Cmpnltpd, cmpnltpd)
AVX_OP2_XO(Cmpnlepd, cmpnlepd)
#undef AVX_OP2_O
#undef AVX_OP2_X
#undef AVX_OP2_XO
#undef AVX_OP2_WITH_TYPE
// ---------------------------------------------------------------------------
// SIMD macros.
void Absps(XMMRegister dst);
void Negps(XMMRegister dst);
void Abspd(XMMRegister dst);
void Negpd(XMMRegister dst);
// Control Flow
void Jump(Address destination, RelocInfo::Mode rmode);
void Jump(ExternalReference ext);
void Jump(const Operand& op);
void Jump(Handle<Code> code_object, RelocInfo::Mode rmode);
// Non-x64 instructions.
// Push/pop all general purpose registers.
// Does not push rsp/rbp nor any of the assembler's special purpose registers
// (kScratchRegister, kRootRegister).
void Pushad();
void Popad();
// Compare object type for heap object.
// Always use unsigned comparisons: above and below, not less and greater.
// Incoming register is heap_object and outgoing register is map.
// They may be the same register, and may be kScratchRegister.
void CmpObjectType(Register heap_object, InstanceType type, Register map);
// Compare instance type for map.
// Always use unsigned comparisons: above and below, not less and greater.
void CmpInstanceType(Register map, InstanceType type);
void DoubleToI(Register result_reg, XMMRegister input_reg,
XMMRegister scratch, MinusZeroMode minus_zero_mode,
Label* lost_precision, Label* is_nan, Label* minus_zero,
Label::Distance dst = Label::kFar);
template<typename Field>
void DecodeField(Register reg) {
static const int shift = Field::kShift;
static const int mask = Field::kMask >> Field::kShift;
if (shift != 0) {
shrp(reg, Immediate(shift));
}
andp(reg, Immediate(mask));
}
// Abort execution if argument is a smi, enabled via --debug-code.
void AssertNotSmi(Register object);
// Abort execution if argument is not a smi, enabled via --debug-code.
void AssertSmi(Register object);
void AssertSmi(const Operand& object);
// Abort execution if argument is not a FixedArray, enabled via --debug-code.
void AssertFixedArray(Register object);
// Abort execution if argument is not a JSFunction, enabled via --debug-code.
void AssertFunction(Register object);
// Abort execution if argument is not a JSBoundFunction,
// enabled via --debug-code.
void AssertBoundFunction(Register object);
// Abort execution if argument is not a JSGeneratorObject (or subclass),
// enabled via --debug-code.
void AssertGeneratorObject(Register object);
// Abort execution if argument is not undefined or an AllocationSite, enabled
// via --debug-code.
void AssertUndefinedOrAllocationSite(Register object);
// ---------------------------------------------------------------------------
// Exception handling
// Push a new stack handler and link it into stack handler chain.
void PushStackHandler();
// Unlink the stack handler on top of the stack from the stack handler chain.
void PopStackHandler();
// ---------------------------------------------------------------------------
// Support functions.
// Load the global proxy from the current context.
void LoadGlobalProxy(Register dst) {
LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
}
// Load the native context slot with the current index.
void LoadNativeContextSlot(int index, Register dst);
// ---------------------------------------------------------------------------
// Runtime calls
// Call a code stub.
// The code object is generated immediately, in contrast to
// TurboAssembler::CallStubDelayed.
void CallStub(CodeStub* stub);
// Tail call a code stub (jump).
void TailCallStub(CodeStub* stub);
// Call a runtime routine.
void CallRuntime(const Runtime::Function* f,
int num_arguments,
SaveFPRegsMode save_doubles = kDontSaveFPRegs);
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid,
SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
const Runtime::Function* function = Runtime::FunctionForId(fid);
CallRuntime(function, function->nargs, save_doubles);
}
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid, int num_arguments,
SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
}
// Convenience function: tail call a runtime routine (jump)
void TailCallRuntime(Runtime::FunctionId fid);
// Jump to a runtime routines
void JumpToExternalReference(const ExternalReference& ext,
bool builtin_exit_frame = false);
// ---------------------------------------------------------------------------
// StatsCounter support
void IncrementCounter(StatsCounter* counter, int value);
void DecrementCounter(StatsCounter* counter, int value);
// ---------------------------------------------------------------------------
// Debugging
static int SafepointRegisterStackIndex(Register reg) {
return SafepointRegisterStackIndex(reg.code());
}
void EnterBuiltinFrame(Register context, Register target, Register argc);
void LeaveBuiltinFrame(Register context, Register target, Register argc);
private:
// Order general registers are pushed by Pushad.
// rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r12, r14, r15.
static const int kSafepointPushRegisterIndices[Register::kNumRegisters];
static const int kNumSafepointSavedRegisters = 12;
// Helper functions for generating invokes.
void InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual, Label* done,
bool* definitely_mismatches, InvokeFlag flag,
Label::Distance near_jump);
void EnterExitFramePrologue(bool save_rax, StackFrame::Type frame_type);
// Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
// accessible via StackSpaceOperand.
void EnterExitFrameEpilogue(int arg_stack_space, bool save_doubles);
void LeaveExitFrameEpilogue();
// Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
void InNewSpace(Register object,
Register scratch,
Condition cc,
Label* branch,
Label::Distance distance = Label::kFar);
// Compute memory operands for safepoint stack slots.
static int SafepointRegisterStackIndex(int reg_code) {
return kNumSafepointRegisters - kSafepointPushRegisterIndices[reg_code] - 1;
}
// Needs access to SafepointRegisterStackIndex for compiled frame
// traversal.
friend class StandardFrame;
};
// -----------------------------------------------------------------------------
// Static helper functions.
// Generate an Operand for loading a field from an object.
inline Operand FieldOperand(Register object, int offset) {
return Operand(object, offset - kHeapObjectTag);
}
// Generate an Operand for loading an indexed field from an object.
inline Operand FieldOperand(Register object,
Register index,
ScaleFactor scale,
int offset) {
return Operand(object, index, scale, offset - kHeapObjectTag);
}
inline Operand ContextOperand(Register context, int index) {
return Operand(context, Context::SlotOffset(index));
}
inline Operand ContextOperand(Register context, Register index) {
return Operand(context, index, times_pointer_size, Context::SlotOffset(0));
}
inline Operand NativeContextOperand() {
return ContextOperand(rsi, Context::NATIVE_CONTEXT_INDEX);
}
// Provides access to exit frame stack space (not GCed).
inline Operand StackSpaceOperand(int index) {
#ifdef _WIN64
const int kShaddowSpace = 4;
return Operand(rsp, (index + kShaddowSpace) * kPointerSize);
#else
return Operand(rsp, index * kPointerSize);
#endif
}
inline Operand StackOperandForReturnAddress(int32_t disp) {
return Operand(rsp, disp);
}
#define ACCESS_MASM(masm) masm->
} // namespace internal
} // namespace v8
#endif // V8_X64_MACRO_ASSEMBLER_X64_H_