blob: 470f4c4177f6d498b413460c656a95ebe3034d31 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/zone/zone.h"
#include <cstring>
#include "src/utils.h"
#include "src/v8.h"
#ifdef V8_USE_ADDRESS_SANITIZER
#include <sanitizer/asan_interface.h>
#endif // V8_USE_ADDRESS_SANITIZER
namespace v8 {
namespace internal {
namespace {
#if V8_USE_ADDRESS_SANITIZER
const size_t kASanRedzoneBytes = 24; // Must be a multiple of 8.
#else
#define ASAN_POISON_MEMORY_REGION(start, size) \
do { \
USE(start); \
USE(size); \
} while (false)
#define ASAN_UNPOISON_MEMORY_REGION(start, size) \
do { \
USE(start); \
USE(size); \
} while (false)
const size_t kASanRedzoneBytes = 0;
#endif // V8_USE_ADDRESS_SANITIZER
} // namespace
Zone::Zone(AccountingAllocator* allocator, const char* name,
SegmentSize segment_size)
: allocation_size_(0),
segment_bytes_allocated_(0),
position_(0),
limit_(0),
allocator_(allocator),
segment_head_(nullptr),
name_(name),
sealed_(false),
segment_size_(segment_size) {
allocator_->ZoneCreation(this);
}
Zone::~Zone() {
allocator_->ZoneDestruction(this);
DeleteAll();
DCHECK_EQ(segment_bytes_allocated_, 0);
}
void* Zone::New(size_t size) {
CHECK(!sealed_);
// Round up the requested size to fit the alignment.
size = RoundUp(size, kAlignmentInBytes);
// Check if the requested size is available without expanding.
Address result = position_;
const size_t size_with_redzone = size + kASanRedzoneBytes;
const uintptr_t limit = reinterpret_cast<uintptr_t>(limit_);
const uintptr_t position = reinterpret_cast<uintptr_t>(position_);
// position_ > limit_ can be true after the alignment correction above.
if (limit < position || size_with_redzone > limit - position) {
result = NewExpand(size_with_redzone);
} else {
position_ += size_with_redzone;
}
Address redzone_position = result + size;
DCHECK(redzone_position + kASanRedzoneBytes == position_);
ASAN_POISON_MEMORY_REGION(redzone_position, kASanRedzoneBytes);
// Check that the result has the proper alignment and return it.
DCHECK(IsAddressAligned(result, kAlignmentInBytes, 0));
allocation_size_ += size;
return reinterpret_cast<void*>(result);
}
void Zone::DeleteAll() {
// Traverse the chained list of segments and return them all to the allocator.
for (Segment* current = segment_head_; current;) {
Segment* next = current->next();
size_t size = current->size();
// Un-poison the segment content so we can re-use or zap it later.
ASAN_UNPOISON_MEMORY_REGION(current->start(), current->capacity());
segment_bytes_allocated_ -= size;
allocator_->ReturnSegment(current);
current = next;
}
position_ = limit_ = 0;
allocation_size_ = 0;
segment_head_ = nullptr;
}
// Creates a new segment, sets it size, and pushes it to the front
// of the segment chain. Returns the new segment.
Segment* Zone::NewSegment(size_t requested_size) {
Segment* result = allocator_->GetSegment(requested_size);
if (result != nullptr) {
DCHECK_GE(result->size(), requested_size);
segment_bytes_allocated_ += result->size();
result->set_zone(this);
result->set_next(segment_head_);
segment_head_ = result;
}
return result;
}
Address Zone::NewExpand(size_t size) {
// Make sure the requested size is already properly aligned and that
// there isn't enough room in the Zone to satisfy the request.
DCHECK_EQ(size, RoundDown(size, kAlignmentInBytes));
DCHECK(limit_ < position_ ||
reinterpret_cast<uintptr_t>(limit_) -
reinterpret_cast<uintptr_t>(position_) <
size);
// Compute the new segment size. We use a 'high water mark'
// strategy, where we increase the segment size every time we expand
// except that we employ a maximum segment size when we delete. This
// is to avoid excessive malloc() and free() overhead.
Segment* head = segment_head_;
const size_t old_size = (head == nullptr) ? 0 : head->size();
static const size_t kSegmentOverhead = sizeof(Segment) + kAlignmentInBytes;
const size_t new_size_no_overhead = size + (old_size << 1);
size_t new_size = kSegmentOverhead + new_size_no_overhead;
const size_t min_new_size = kSegmentOverhead + size;
// Guard against integer overflow.
if (new_size_no_overhead < size || new_size < kSegmentOverhead) {
V8::FatalProcessOutOfMemory("Zone");
return nullptr;
}
if (segment_size_ == SegmentSize::kLarge) {
new_size = kMaximumSegmentSize;
}
if (new_size < kMinimumSegmentSize) {
new_size = kMinimumSegmentSize;
} else if (new_size > kMaximumSegmentSize) {
// Limit the size of new segments to avoid growing the segment size
// exponentially, thus putting pressure on contiguous virtual address space.
// All the while making sure to allocate a segment large enough to hold the
// requested size.
new_size = Max(min_new_size, kMaximumSegmentSize);
}
if (new_size > INT_MAX) {
V8::FatalProcessOutOfMemory("Zone");
return nullptr;
}
Segment* segment = NewSegment(new_size);
if (segment == nullptr) {
V8::FatalProcessOutOfMemory("Zone");
return nullptr;
}
// Recompute 'top' and 'limit' based on the new segment.
Address result = RoundUp(segment->start(), kAlignmentInBytes);
position_ = result + size;
// Check for address overflow.
// (Should not happen since the segment is guaranteed to accommodate
// size bytes + header and alignment padding)
DCHECK(reinterpret_cast<uintptr_t>(position_) >=
reinterpret_cast<uintptr_t>(result));
limit_ = segment->end();
DCHECK(position_ <= limit_);
return result;
}
} // namespace internal
} // namespace v8