| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/zone/zone.h" |
| |
| #include <cstring> |
| |
| #include "src/utils.h" |
| #include "src/v8.h" |
| |
| #ifdef V8_USE_ADDRESS_SANITIZER |
| #include <sanitizer/asan_interface.h> |
| #endif // V8_USE_ADDRESS_SANITIZER |
| |
| namespace v8 { |
| namespace internal { |
| |
| namespace { |
| |
| #if V8_USE_ADDRESS_SANITIZER |
| |
| const size_t kASanRedzoneBytes = 24; // Must be a multiple of 8. |
| |
| #else |
| |
| #define ASAN_POISON_MEMORY_REGION(start, size) \ |
| do { \ |
| USE(start); \ |
| USE(size); \ |
| } while (false) |
| |
| #define ASAN_UNPOISON_MEMORY_REGION(start, size) \ |
| do { \ |
| USE(start); \ |
| USE(size); \ |
| } while (false) |
| |
| const size_t kASanRedzoneBytes = 0; |
| |
| #endif // V8_USE_ADDRESS_SANITIZER |
| |
| } // namespace |
| |
| Zone::Zone(AccountingAllocator* allocator, const char* name, |
| SegmentSize segment_size) |
| : allocation_size_(0), |
| segment_bytes_allocated_(0), |
| position_(0), |
| limit_(0), |
| allocator_(allocator), |
| segment_head_(nullptr), |
| name_(name), |
| sealed_(false), |
| segment_size_(segment_size) { |
| allocator_->ZoneCreation(this); |
| } |
| |
| Zone::~Zone() { |
| allocator_->ZoneDestruction(this); |
| |
| DeleteAll(); |
| |
| DCHECK_EQ(segment_bytes_allocated_, 0); |
| } |
| |
| void* Zone::New(size_t size) { |
| CHECK(!sealed_); |
| |
| // Round up the requested size to fit the alignment. |
| size = RoundUp(size, kAlignmentInBytes); |
| |
| // Check if the requested size is available without expanding. |
| Address result = position_; |
| |
| const size_t size_with_redzone = size + kASanRedzoneBytes; |
| const uintptr_t limit = reinterpret_cast<uintptr_t>(limit_); |
| const uintptr_t position = reinterpret_cast<uintptr_t>(position_); |
| // position_ > limit_ can be true after the alignment correction above. |
| if (limit < position || size_with_redzone > limit - position) { |
| result = NewExpand(size_with_redzone); |
| } else { |
| position_ += size_with_redzone; |
| } |
| |
| Address redzone_position = result + size; |
| DCHECK(redzone_position + kASanRedzoneBytes == position_); |
| ASAN_POISON_MEMORY_REGION(redzone_position, kASanRedzoneBytes); |
| |
| // Check that the result has the proper alignment and return it. |
| DCHECK(IsAddressAligned(result, kAlignmentInBytes, 0)); |
| allocation_size_ += size; |
| return reinterpret_cast<void*>(result); |
| } |
| |
| void Zone::DeleteAll() { |
| // Traverse the chained list of segments and return them all to the allocator. |
| for (Segment* current = segment_head_; current;) { |
| Segment* next = current->next(); |
| size_t size = current->size(); |
| |
| // Un-poison the segment content so we can re-use or zap it later. |
| ASAN_UNPOISON_MEMORY_REGION(current->start(), current->capacity()); |
| |
| segment_bytes_allocated_ -= size; |
| allocator_->ReturnSegment(current); |
| current = next; |
| } |
| |
| position_ = limit_ = 0; |
| allocation_size_ = 0; |
| segment_head_ = nullptr; |
| } |
| |
| // Creates a new segment, sets it size, and pushes it to the front |
| // of the segment chain. Returns the new segment. |
| Segment* Zone::NewSegment(size_t requested_size) { |
| Segment* result = allocator_->GetSegment(requested_size); |
| if (result != nullptr) { |
| DCHECK_GE(result->size(), requested_size); |
| segment_bytes_allocated_ += result->size(); |
| result->set_zone(this); |
| result->set_next(segment_head_); |
| segment_head_ = result; |
| } |
| return result; |
| } |
| |
| Address Zone::NewExpand(size_t size) { |
| // Make sure the requested size is already properly aligned and that |
| // there isn't enough room in the Zone to satisfy the request. |
| DCHECK_EQ(size, RoundDown(size, kAlignmentInBytes)); |
| DCHECK(limit_ < position_ || |
| reinterpret_cast<uintptr_t>(limit_) - |
| reinterpret_cast<uintptr_t>(position_) < |
| size); |
| |
| // Compute the new segment size. We use a 'high water mark' |
| // strategy, where we increase the segment size every time we expand |
| // except that we employ a maximum segment size when we delete. This |
| // is to avoid excessive malloc() and free() overhead. |
| Segment* head = segment_head_; |
| const size_t old_size = (head == nullptr) ? 0 : head->size(); |
| static const size_t kSegmentOverhead = sizeof(Segment) + kAlignmentInBytes; |
| const size_t new_size_no_overhead = size + (old_size << 1); |
| size_t new_size = kSegmentOverhead + new_size_no_overhead; |
| const size_t min_new_size = kSegmentOverhead + size; |
| // Guard against integer overflow. |
| if (new_size_no_overhead < size || new_size < kSegmentOverhead) { |
| V8::FatalProcessOutOfMemory("Zone"); |
| return nullptr; |
| } |
| if (segment_size_ == SegmentSize::kLarge) { |
| new_size = kMaximumSegmentSize; |
| } |
| if (new_size < kMinimumSegmentSize) { |
| new_size = kMinimumSegmentSize; |
| } else if (new_size > kMaximumSegmentSize) { |
| // Limit the size of new segments to avoid growing the segment size |
| // exponentially, thus putting pressure on contiguous virtual address space. |
| // All the while making sure to allocate a segment large enough to hold the |
| // requested size. |
| new_size = Max(min_new_size, kMaximumSegmentSize); |
| } |
| if (new_size > INT_MAX) { |
| V8::FatalProcessOutOfMemory("Zone"); |
| return nullptr; |
| } |
| Segment* segment = NewSegment(new_size); |
| if (segment == nullptr) { |
| V8::FatalProcessOutOfMemory("Zone"); |
| return nullptr; |
| } |
| |
| // Recompute 'top' and 'limit' based on the new segment. |
| Address result = RoundUp(segment->start(), kAlignmentInBytes); |
| position_ = result + size; |
| // Check for address overflow. |
| // (Should not happen since the segment is guaranteed to accommodate |
| // size bytes + header and alignment padding) |
| DCHECK(reinterpret_cast<uintptr_t>(position_) >= |
| reinterpret_cast<uintptr_t>(result)); |
| limit_ = segment->end(); |
| DCHECK(position_ <= limit_); |
| return result; |
| } |
| |
| } // namespace internal |
| } // namespace v8 |