blob: c59f2af2dcc20fd209148118c558efe43e488745 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <iostream> // NOLINT(readability/streams)
#include "src/v8.h"
#include "src/assembler-inl.h"
#include "src/base/utils/random-number-generator.h"
#include "src/disassembler.h"
#include "src/factory.h"
#include "src/macro-assembler.h"
#include "src/mips64/macro-assembler-mips64.h"
#include "src/simulator.h"
#include "test/cctest/cctest.h"
namespace v8 {
namespace internal {
// Define these function prototypes to match JSEntryFunction in execution.cc.
// TODO(mips64): Refine these signatures per test case.
typedef Object*(F1)(int x, int p1, int p2, int p3, int p4);
typedef Object*(F2)(int x, int y, int p2, int p3, int p4);
typedef Object*(F3)(void* p, int p1, int p2, int p3, int p4);
typedef Object*(F4)(int64_t x, int64_t y, int64_t p2, int64_t p3, int64_t p4);
typedef Object*(F5)(void* p0, void* p1, int p2, int p3, int p4);
#define __ assm.
TEST(MIPS0) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
// Addition.
__ addu(v0, a0, a1);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
auto f = GeneratedCode<F2>::FromCode(*code);
int64_t res = reinterpret_cast<int64_t>(f.Call(0xAB0, 0xC, 0, 0, 0));
CHECK_EQ(0xABCL, res);
}
TEST(MIPS1) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
Label L, C;
__ mov(a1, a0);
__ li(v0, 0);
__ b(&C);
__ nop();
__ bind(&L);
__ addu(v0, v0, a1);
__ addiu(a1, a1, -1);
__ bind(&C);
__ xori(v1, a1, 0);
__ Branch(&L, ne, v1, Operand((int64_t)0));
__ nop();
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
auto f = GeneratedCode<F1>::FromCode(*code);
int64_t res = reinterpret_cast<int64_t>(f.Call(50, 0, 0, 0, 0));
CHECK_EQ(1275L, res);
}
TEST(MIPS2) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
Label exit, error;
// ----- Test all instructions.
// Test lui, ori, and addiu, used in the li pseudo-instruction.
// This way we can then safely load registers with chosen values.
__ ori(a4, zero_reg, 0);
__ lui(a4, 0x1234);
__ ori(a4, a4, 0);
__ ori(a4, a4, 0x0F0F);
__ ori(a4, a4, 0xF0F0);
__ addiu(a5, a4, 1);
__ addiu(a6, a5, -0x10);
// Load values in temporary registers.
__ li(a4, 0x00000004);
__ li(a5, 0x00001234);
__ li(a6, 0x12345678);
__ li(a7, 0x7FFFFFFF);
__ li(t0, 0xFFFFFFFC);
__ li(t1, 0xFFFFEDCC);
__ li(t2, 0xEDCBA988);
__ li(t3, 0x80000000);
// SPECIAL class.
__ srl(v0, a6, 8); // 0x00123456
__ sll(v0, v0, 11); // 0x91A2B000
__ sra(v0, v0, 3); // 0xF2345600
__ srav(v0, v0, a4); // 0xFF234560
__ sllv(v0, v0, a4); // 0xF2345600
__ srlv(v0, v0, a4); // 0x0F234560
__ Branch(&error, ne, v0, Operand(0x0F234560));
__ nop();
__ addu(v0, a4, a5); // 0x00001238
__ subu(v0, v0, a4); // 0x00001234
__ Branch(&error, ne, v0, Operand(0x00001234));
__ nop();
__ addu(v1, a7, a4); // 32bit addu result is sign-extended into 64bit reg.
__ Branch(&error, ne, v1, Operand(0xFFFFFFFF80000003));
__ nop();
__ subu(v1, t3, a4); // 0x7FFFFFFC
__ Branch(&error, ne, v1, Operand(0x7FFFFFFC));
__ nop();
__ and_(v0, a5, a6); // 0x0000000000001230
__ or_(v0, v0, a5); // 0x0000000000001234
__ xor_(v0, v0, a6); // 0x000000001234444C
__ nor(v0, v0, a6); // 0xFFFFFFFFEDCBA987
__ Branch(&error, ne, v0, Operand(0xFFFFFFFFEDCBA983));
__ nop();
// Shift both 32bit number to left, to preserve meaning of next comparison.
__ dsll32(a7, a7, 0);
__ dsll32(t3, t3, 0);
__ slt(v0, t3, a7);
__ Branch(&error, ne, v0, Operand(0x1));
__ nop();
__ sltu(v0, t3, a7);
__ Branch(&error, ne, v0, Operand(zero_reg));
__ nop();
// Restore original values in registers.
__ dsrl32(a7, a7, 0);
__ dsrl32(t3, t3, 0);
// End of SPECIAL class.
__ addiu(v0, zero_reg, 0x7421); // 0x00007421
__ addiu(v0, v0, -0x1); // 0x00007420
__ addiu(v0, v0, -0x20); // 0x00007400
__ Branch(&error, ne, v0, Operand(0x00007400));
__ nop();
__ addiu(v1, a7, 0x1); // 0x80000000 - result is sign-extended.
__ Branch(&error, ne, v1, Operand(0xFFFFFFFF80000000));
__ nop();
__ slti(v0, a5, 0x00002000); // 0x1
__ slti(v0, v0, 0xFFFF8000); // 0x0
__ Branch(&error, ne, v0, Operand(zero_reg));
__ nop();
__ sltiu(v0, a5, 0x00002000); // 0x1
__ sltiu(v0, v0, 0x00008000); // 0x1
__ Branch(&error, ne, v0, Operand(0x1));
__ nop();
__ andi(v0, a5, 0xF0F0); // 0x00001030
__ ori(v0, v0, 0x8A00); // 0x00009A30
__ xori(v0, v0, 0x83CC); // 0x000019FC
__ Branch(&error, ne, v0, Operand(0x000019FC));
__ nop();
__ lui(v1, 0x8123); // Result is sign-extended into 64bit register.
__ Branch(&error, ne, v1, Operand(0xFFFFFFFF81230000));
__ nop();
// Bit twiddling instructions & conditional moves.
// Uses a4-t3 as set above.
__ Clz(v0, a4); // 29
__ Clz(v1, a5); // 19
__ addu(v0, v0, v1); // 48
__ Clz(v1, a6); // 3
__ addu(v0, v0, v1); // 51
__ Clz(v1, t3); // 0
__ addu(v0, v0, v1); // 51
__ Branch(&error, ne, v0, Operand(51));
__ Movn(a0, a7, a4); // Move a0<-a7 (a4 is NOT 0).
__ Ins(a0, a5, 12, 8); // 0x7FF34FFF
__ Branch(&error, ne, a0, Operand(0x7FF34FFF));
__ Movz(a0, t2, t3); // a0 not updated (t3 is NOT 0).
__ Ext(a1, a0, 8, 12); // 0x34F
__ Branch(&error, ne, a1, Operand(0x34F));
__ Movz(a0, t2, v1); // a0<-t2, v0 is 0, from 8 instr back.
__ Branch(&error, ne, a0, Operand(t2));
// Everything was correctly executed. Load the expected result.
__ li(v0, 0x31415926);
__ b(&exit);
__ nop();
__ bind(&error);
// Got an error. Return a wrong result.
__ li(v0, 666);
__ bind(&exit);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
auto f = GeneratedCode<F2>::FromCode(*code);
int64_t res = reinterpret_cast<int64_t>(f.Call(0xAB0, 0xC, 0, 0, 0));
CHECK_EQ(0x31415926L, res);
}
TEST(MIPS3) {
// Test floating point instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double a;
double b;
double c;
double d;
double e;
double f;
double g;
double h;
double i;
float fa;
float fb;
float fc;
float fd;
float fe;
float ff;
float fg;
} T;
T t;
// Create a function that accepts &t, and loads, manipulates, and stores
// the doubles t.a ... t.f.
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
Label L, C;
// Double precision floating point instructions.
__ Ldc1(f4, MemOperand(a0, offsetof(T, a)));
__ Ldc1(f6, MemOperand(a0, offsetof(T, b)));
__ add_d(f8, f4, f6);
__ Sdc1(f8, MemOperand(a0, offsetof(T, c))); // c = a + b.
__ mov_d(f10, f8); // c
__ neg_d(f12, f6); // -b
__ sub_d(f10, f10, f12);
__ Sdc1(f10, MemOperand(a0, offsetof(T, d))); // d = c - (-b).
__ Sdc1(f4, MemOperand(a0, offsetof(T, b))); // b = a.
__ li(a4, 120);
__ mtc1(a4, f14);
__ cvt_d_w(f14, f14); // f14 = 120.0.
__ mul_d(f10, f10, f14);
__ Sdc1(f10, MemOperand(a0, offsetof(T, e))); // e = d * 120 = 1.8066e16.
__ div_d(f12, f10, f4);
__ Sdc1(f12, MemOperand(a0, offsetof(T, f))); // f = e / a = 120.44.
__ sqrt_d(f14, f12);
__ Sdc1(f14, MemOperand(a0, offsetof(T, g)));
// g = sqrt(f) = 10.97451593465515908537
if (kArchVariant == kMips64r2) {
__ Ldc1(f4, MemOperand(a0, offsetof(T, h)));
__ Ldc1(f6, MemOperand(a0, offsetof(T, i)));
__ Madd_d(f14, f6, f4, f6, f8);
__ Sdc1(f14, MemOperand(a0, offsetof(T, h)));
}
// Single precision floating point instructions.
__ Lwc1(f4, MemOperand(a0, offsetof(T, fa)));
__ Lwc1(f6, MemOperand(a0, offsetof(T, fb)));
__ add_s(f8, f4, f6);
__ Swc1(f8, MemOperand(a0, offsetof(T, fc))); // fc = fa + fb.
__ neg_s(f10, f6); // -fb
__ sub_s(f10, f8, f10);
__ Swc1(f10, MemOperand(a0, offsetof(T, fd))); // fd = fc - (-fb).
__ Swc1(f4, MemOperand(a0, offsetof(T, fb))); // fb = fa.
__ li(t0, 120);
__ mtc1(t0, f14);
__ cvt_s_w(f14, f14); // f14 = 120.0.
__ mul_s(f10, f10, f14);
__ Swc1(f10, MemOperand(a0, offsetof(T, fe))); // fe = fd * 120
__ div_s(f12, f10, f4);
__ Swc1(f12, MemOperand(a0, offsetof(T, ff))); // ff = fe / fa
__ sqrt_s(f14, f12);
__ Swc1(f14, MemOperand(a0, offsetof(T, fg)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
auto f = GeneratedCode<F3>::FromCode(*code);
// Double test values.
t.a = 1.5e14;
t.b = 2.75e11;
t.c = 0.0;
t.d = 0.0;
t.e = 0.0;
t.f = 0.0;
t.h = 1.5;
t.i = 2.75;
// Single test values.
t.fa = 1.5e6;
t.fb = 2.75e4;
t.fc = 0.0;
t.fd = 0.0;
t.fe = 0.0;
t.ff = 0.0;
f.Call(&t, 0, 0, 0, 0);
// Expected double results.
CHECK_EQ(1.5e14, t.a);
CHECK_EQ(1.5e14, t.b);
CHECK_EQ(1.50275e14, t.c);
CHECK_EQ(1.50550e14, t.d);
CHECK_EQ(1.8066e16, t.e);
CHECK_EQ(120.44, t.f);
CHECK_EQ(10.97451593465515908537, t.g);
if (kArchVariant == kMips64r2) {
CHECK_EQ(6.875, t.h);
}
// Expected single results.
CHECK_EQ(1.5e6, t.fa);
CHECK_EQ(1.5e6, t.fb);
CHECK_EQ(1.5275e06, t.fc);
CHECK_EQ(1.5550e06, t.fd);
CHECK_EQ(1.866e08, t.fe);
CHECK_EQ(124.40000152587890625, t.ff);
CHECK_EQ(11.1534748077392578125, t.fg);
}
TEST(MIPS4) {
// Test moves between floating point and integer registers.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double a;
double b;
double c;
double d;
int64_t high;
int64_t low;
} T;
T t;
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
Label L, C;
__ Ldc1(f4, MemOperand(a0, offsetof(T, a)));
__ Ldc1(f5, MemOperand(a0, offsetof(T, b)));
// Swap f4 and f5, by using 3 integer registers, a4-a6,
// both two 32-bit chunks, and one 64-bit chunk.
// mXhc1 is mips32/64-r2 only, not r1,
// but we will not support r1 in practice.
__ mfc1(a4, f4);
__ mfhc1(a5, f4);
__ dmfc1(a6, f5);
__ mtc1(a4, f5);
__ mthc1(a5, f5);
__ dmtc1(a6, f4);
// Store the swapped f4 and f5 back to memory.
__ Sdc1(f4, MemOperand(a0, offsetof(T, a)));
__ Sdc1(f5, MemOperand(a0, offsetof(T, c)));
// Test sign extension of move operations from coprocessor.
__ Ldc1(f4, MemOperand(a0, offsetof(T, d)));
__ mfhc1(a4, f4);
__ mfc1(a5, f4);
__ Sd(a4, MemOperand(a0, offsetof(T, high)));
__ Sd(a5, MemOperand(a0, offsetof(T, low)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
auto f = GeneratedCode<F3>::FromCode(*code);
t.a = 1.5e22;
t.b = 2.75e11;
t.c = 17.17;
t.d = -2.75e11;
f.Call(&t, 0, 0, 0, 0);
CHECK_EQ(2.75e11, t.a);
CHECK_EQ(2.75e11, t.b);
CHECK_EQ(1.5e22, t.c);
CHECK_EQ(static_cast<int64_t>(0xFFFFFFFFC25001D1L), t.high);
CHECK_EQ(static_cast<int64_t>(0xFFFFFFFFBF800000L), t.low);
}
TEST(MIPS5) {
// Test conversions between doubles and integers.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double a;
double b;
int i;
int j;
} T;
T t;
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
Label L, C;
// Load all structure elements to registers.
__ Ldc1(f4, MemOperand(a0, offsetof(T, a)));
__ Ldc1(f6, MemOperand(a0, offsetof(T, b)));
__ Lw(a4, MemOperand(a0, offsetof(T, i)));
__ Lw(a5, MemOperand(a0, offsetof(T, j)));
// Convert double in f4 to int in element i.
__ cvt_w_d(f8, f4);
__ mfc1(a6, f8);
__ Sw(a6, MemOperand(a0, offsetof(T, i)));
// Convert double in f6 to int in element j.
__ cvt_w_d(f10, f6);
__ mfc1(a7, f10);
__ Sw(a7, MemOperand(a0, offsetof(T, j)));
// Convert int in original i (a4) to double in a.
__ mtc1(a4, f12);
__ cvt_d_w(f0, f12);
__ Sdc1(f0, MemOperand(a0, offsetof(T, a)));
// Convert int in original j (a5) to double in b.
__ mtc1(a5, f14);
__ cvt_d_w(f2, f14);
__ Sdc1(f2, MemOperand(a0, offsetof(T, b)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
auto f = GeneratedCode<F3>::FromCode(*code);
t.a = 1.5e4;
t.b = 2.75e8;
t.i = 12345678;
t.j = -100000;
f.Call(&t, 0, 0, 0, 0);
CHECK_EQ(12345678.0, t.a);
CHECK_EQ(-100000.0, t.b);
CHECK_EQ(15000, t.i);
CHECK_EQ(275000000, t.j);
}
TEST(MIPS6) {
// Test simple memory loads and stores.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
uint32_t ui;
int32_t si;
int32_t r1;
int32_t r2;
int32_t r3;
int32_t r4;
int32_t r5;
int32_t r6;
} T;
T t;
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
Label L, C;
// Basic word load/store.
__ Lw(a4, MemOperand(a0, offsetof(T, ui)));
__ Sw(a4, MemOperand(a0, offsetof(T, r1)));
// lh with positive data.
__ Lh(a5, MemOperand(a0, offsetof(T, ui)));
__ Sw(a5, MemOperand(a0, offsetof(T, r2)));
// lh with negative data.
__ Lh(a6, MemOperand(a0, offsetof(T, si)));
__ Sw(a6, MemOperand(a0, offsetof(T, r3)));
// lhu with negative data.
__ Lhu(a7, MemOperand(a0, offsetof(T, si)));
__ Sw(a7, MemOperand(a0, offsetof(T, r4)));
// Lb with negative data.
__ Lb(t0, MemOperand(a0, offsetof(T, si)));
__ Sw(t0, MemOperand(a0, offsetof(T, r5)));
// sh writes only 1/2 of word.
__ lui(t1, 0x3333);
__ ori(t1, t1, 0x3333);
__ Sw(t1, MemOperand(a0, offsetof(T, r6)));
__ Lhu(t1, MemOperand(a0, offsetof(T, si)));
__ Sh(t1, MemOperand(a0, offsetof(T, r6)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
auto f = GeneratedCode<F3>::FromCode(*code);
t.ui = 0x11223344;
t.si = 0x99AABBCC;
f.Call(&t, 0, 0, 0, 0);
CHECK_EQ(static_cast<int32_t>(0x11223344), t.r1);
if (kArchEndian == kLittle) {
CHECK_EQ(static_cast<int32_t>(0x3344), t.r2);
CHECK_EQ(static_cast<int32_t>(0xFFFFBBCC), t.r3);
CHECK_EQ(static_cast<int32_t>(0x0000BBCC), t.r4);
CHECK_EQ(static_cast<int32_t>(0xFFFFFFCC), t.r5);
CHECK_EQ(static_cast<int32_t>(0x3333BBCC), t.r6);
} else {
CHECK_EQ(static_cast<int32_t>(0x1122), t.r2);
CHECK_EQ(static_cast<int32_t>(0xFFFF99AA), t.r3);
CHECK_EQ(static_cast<int32_t>(0x000099AA), t.r4);
CHECK_EQ(static_cast<int32_t>(0xFFFFFF99), t.r5);
CHECK_EQ(static_cast<int32_t>(0x99AA3333), t.r6);
}
}
TEST(MIPS7) {
// Test floating point compare and branch instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double a;
double b;
double c;
double d;
double e;
double f;
int32_t result;
} T;
T t;
// Create a function that accepts &t, and loads, manipulates, and stores
// the doubles t.a ... t.f.
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
Label neither_is_nan, less_than, outa_here;
__ Ldc1(f4, MemOperand(a0, offsetof(T, a)));
__ Ldc1(f6, MemOperand(a0, offsetof(T, b)));
if (kArchVariant != kMips64r6) {
__ c(UN, D, f4, f6);
__ bc1f(&neither_is_nan);
} else {
__ cmp(UN, L, f2, f4, f6);
__ bc1eqz(&neither_is_nan, f2);
}
__ nop();
__ Sw(zero_reg, MemOperand(a0, offsetof(T, result)));
__ Branch(&outa_here);
__ bind(&neither_is_nan);
if (kArchVariant == kMips64r6) {
__ cmp(OLT, L, f2, f6, f4);
__ bc1nez(&less_than, f2);
} else {
__ c(OLT, D, f6, f4, 2);
__ bc1t(&less_than, 2);
}
__ nop();
__ Sw(zero_reg, MemOperand(a0, offsetof(T, result)));
__ Branch(&outa_here);
__ bind(&less_than);
__ Addu(a4, zero_reg, Operand(1));
__ Sw(a4, MemOperand(a0, offsetof(T, result))); // Set true.
// This test-case should have additional tests.
__ bind(&outa_here);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
auto f = GeneratedCode<F3>::FromCode(*code);
t.a = 1.5e14;
t.b = 2.75e11;
t.c = 2.0;
t.d = -4.0;
t.e = 0.0;
t.f = 0.0;
t.result = 0;
f.Call(&t, 0, 0, 0, 0);
CHECK_EQ(1.5e14, t.a);
CHECK_EQ(2.75e11, t.b);
CHECK_EQ(1, t.result);
}
TEST(MIPS8) {
if (kArchVariant == kMips64r2) {
// Test ROTR and ROTRV instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
int32_t input;
int32_t result_rotr_4;
int32_t result_rotr_8;
int32_t result_rotr_12;
int32_t result_rotr_16;
int32_t result_rotr_20;
int32_t result_rotr_24;
int32_t result_rotr_28;
int32_t result_rotrv_4;
int32_t result_rotrv_8;
int32_t result_rotrv_12;
int32_t result_rotrv_16;
int32_t result_rotrv_20;
int32_t result_rotrv_24;
int32_t result_rotrv_28;
} T;
T t;
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
// Basic word load.
__ Lw(a4, MemOperand(a0, offsetof(T, input)));
// ROTR instruction (called through the Ror macro).
__ Ror(a5, a4, 0x0004);
__ Ror(a6, a4, 0x0008);
__ Ror(a7, a4, 0x000C);
__ Ror(t0, a4, 0x0010);
__ Ror(t1, a4, 0x0014);
__ Ror(t2, a4, 0x0018);
__ Ror(t3, a4, 0x001C);
// Basic word store.
__ Sw(a5, MemOperand(a0, offsetof(T, result_rotr_4)));
__ Sw(a6, MemOperand(a0, offsetof(T, result_rotr_8)));
__ Sw(a7, MemOperand(a0, offsetof(T, result_rotr_12)));
__ Sw(t0, MemOperand(a0, offsetof(T, result_rotr_16)));
__ Sw(t1, MemOperand(a0, offsetof(T, result_rotr_20)));
__ Sw(t2, MemOperand(a0, offsetof(T, result_rotr_24)));
__ Sw(t3, MemOperand(a0, offsetof(T, result_rotr_28)));
// ROTRV instruction (called through the Ror macro).
__ li(t3, 0x0004);
__ Ror(a5, a4, t3);
__ li(t3, 0x0008);
__ Ror(a6, a4, t3);
__ li(t3, 0x000C);
__ Ror(a7, a4, t3);
__ li(t3, 0x0010);
__ Ror(t0, a4, t3);
__ li(t3, 0x0014);
__ Ror(t1, a4, t3);
__ li(t3, 0x0018);
__ Ror(t2, a4, t3);
__ li(t3, 0x001C);
__ Ror(t3, a4, t3);
// Basic word store.
__ Sw(a5, MemOperand(a0, offsetof(T, result_rotrv_4)));
__ Sw(a6, MemOperand(a0, offsetof(T, result_rotrv_8)));
__ Sw(a7, MemOperand(a0, offsetof(T, result_rotrv_12)));
__ Sw(t0, MemOperand(a0, offsetof(T, result_rotrv_16)));
__ Sw(t1, MemOperand(a0, offsetof(T, result_rotrv_20)));
__ Sw(t2, MemOperand(a0, offsetof(T, result_rotrv_24)));
__ Sw(t3, MemOperand(a0, offsetof(T, result_rotrv_28)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
auto f = GeneratedCode<F3>::FromCode(*code);
t.input = 0x12345678;
f.Call(&t, 0x0, 0, 0, 0);
CHECK_EQ(static_cast<int32_t>(0x81234567), t.result_rotr_4);
CHECK_EQ(static_cast<int32_t>(0x78123456), t.result_rotr_8);
CHECK_EQ(static_cast<int32_t>(0x67812345), t.result_rotr_12);
CHECK_EQ(static_cast<int32_t>(0x56781234), t.result_rotr_16);
CHECK_EQ(static_cast<int32_t>(0x45678123), t.result_rotr_20);
CHECK_EQ(static_cast<int32_t>(0x34567812), t.result_rotr_24);
CHECK_EQ(static_cast<int32_t>(0x23456781), t.result_rotr_28);
CHECK_EQ(static_cast<int32_t>(0x81234567), t.result_rotrv_4);
CHECK_EQ(static_cast<int32_t>(0x78123456), t.result_rotrv_8);
CHECK_EQ(static_cast<int32_t>(0x67812345), t.result_rotrv_12);
CHECK_EQ(static_cast<int32_t>(0x56781234), t.result_rotrv_16);
CHECK_EQ(static_cast<int32_t>(0x45678123), t.result_rotrv_20);
CHECK_EQ(static_cast<int32_t>(0x34567812), t.result_rotrv_24);
CHECK_EQ(static_cast<int32_t>(0x23456781), t.result_rotrv_28);
}
}
TEST(MIPS9) {
// Test BRANCH improvements.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
Label exit, exit2, exit3;
__ Branch(&exit, ge, a0, Operand(zero_reg));
__ Branch(&exit2, ge, a0, Operand(0x00001FFF));
__ Branch(&exit3, ge, a0, Operand(0x0001FFFF));
__ bind(&exit);
__ bind(&exit2);
__ bind(&exit3);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
}
TEST(MIPS10) {
// Test conversions between doubles and long integers.
// Test hos the long ints map to FP regs pairs.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double a;
double a_converted;
double b;
int32_t dbl_mant;
int32_t dbl_exp;
int32_t long_hi;
int32_t long_lo;
int64_t long_as_int64;
int32_t b_long_hi;
int32_t b_long_lo;
int64_t b_long_as_int64;
} T;
T t;
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
Label L, C;
if (kArchVariant == kMips64r2) {
// Rewritten for FR=1 FPU mode:
// - 32 FP regs of 64-bits each, no odd/even pairs.
// - Note that cvt_l_d/cvt_d_l ARE legal in FR=1 mode.
// Load all structure elements to registers.
__ Ldc1(f0, MemOperand(a0, offsetof(T, a)));
// Save the raw bits of the double.
__ mfc1(a4, f0);
__ mfhc1(a5, f0);
__ Sw(a4, MemOperand(a0, offsetof(T, dbl_mant)));
__ Sw(a5, MemOperand(a0, offsetof(T, dbl_exp)));
// Convert double in f0 to long, save hi/lo parts.
__ cvt_l_d(f0, f0);
__ mfc1(a4, f0); // f0 LS 32 bits of long.
__ mfhc1(a5, f0); // f0 MS 32 bits of long.
__ Sw(a4, MemOperand(a0, offsetof(T, long_lo)));
__ Sw(a5, MemOperand(a0, offsetof(T, long_hi)));
// Combine the high/low ints, convert back to double.
__ dsll32(a6, a5, 0); // Move a5 to high bits of a6.
__ or_(a6, a6, a4);
__ dmtc1(a6, f1);
__ cvt_d_l(f1, f1);
__ Sdc1(f1, MemOperand(a0, offsetof(T, a_converted)));
// Convert the b long integers to double b.
__ Lw(a4, MemOperand(a0, offsetof(T, b_long_lo)));
__ Lw(a5, MemOperand(a0, offsetof(T, b_long_hi)));
__ mtc1(a4, f8); // f8 LS 32-bits.
__ mthc1(a5, f8); // f8 MS 32-bits.
__ cvt_d_l(f10, f8);
__ Sdc1(f10, MemOperand(a0, offsetof(T, b)));
// Convert double b back to long-int.
__ Ldc1(f31, MemOperand(a0, offsetof(T, b)));
__ cvt_l_d(f31, f31);
__ dmfc1(a7, f31);
__ Sd(a7, MemOperand(a0, offsetof(T, b_long_as_int64)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
auto f = GeneratedCode<F3>::FromCode(*code);
t.a = 2.147483647e9; // 0x7FFFFFFF -> 0x41DFFFFFFFC00000 as double.
t.b_long_hi = 0x000000FF; // 0xFF00FF00FF -> 0x426FE01FE01FE000 as double.
t.b_long_lo = 0x00FF00FF;
f.Call(&t, 0, 0, 0, 0);
CHECK_EQ(static_cast<int32_t>(0x41DFFFFF), t.dbl_exp);
CHECK_EQ(static_cast<int32_t>(0xFFC00000), t.dbl_mant);
CHECK_EQ(0, t.long_hi);
CHECK_EQ(static_cast<int32_t>(0x7FFFFFFF), t.long_lo);
CHECK_EQ(2.147483647e9, t.a_converted);
// 0xFF00FF00FF -> 1.095233372415e12.
CHECK_EQ(1.095233372415e12, t.b);
CHECK_EQ(static_cast<int64_t>(0xFF00FF00FF), t.b_long_as_int64);
}
}
TEST(MIPS11) {
// Do not run test on MIPS64r6, as these instructions are removed.
if (kArchVariant != kMips64r6) {
// Test LWL, LWR, SWL and SWR instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
int32_t reg_init;
int32_t mem_init;
int32_t lwl_0;
int32_t lwl_1;
int32_t lwl_2;
int32_t lwl_3;
int32_t lwr_0;
int32_t lwr_1;
int32_t lwr_2;
int32_t lwr_3;
int32_t swl_0;
int32_t swl_1;
int32_t swl_2;
int32_t swl_3;
int32_t swr_0;
int32_t swr_1;
int32_t swr_2;
int32_t swr_3;
} T;
T t;
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
// Test all combinations of LWL and vAddr.
__ Lw(a4, MemOperand(a0, offsetof(T, reg_init)));
__ lwl(a4, MemOperand(a0, offsetof(T, mem_init)));
__ Sw(a4, MemOperand(a0, offsetof(T, lwl_0)));
__ Lw(a5, MemOperand(a0, offsetof(T, reg_init)));
__ lwl(a5, MemOperand(a0, offsetof(T, mem_init) + 1));
__ Sw(a5, MemOperand(a0, offsetof(T, lwl_1)));
__ Lw(a6, MemOperand(a0, offsetof(T, reg_init)));
__ lwl(a6, MemOperand(a0, offsetof(T, mem_init) + 2));
__ Sw(a6, MemOperand(a0, offsetof(T, lwl_2)));
__ Lw(a7, MemOperand(a0, offsetof(T, reg_init)));
__ lwl(a7, MemOperand(a0, offsetof(T, mem_init) + 3));
__ Sw(a7, MemOperand(a0, offsetof(T, lwl_3)));
// Test all combinations of LWR and vAddr.
__ Lw(a4, MemOperand(a0, offsetof(T, reg_init)));
__ lwr(a4, MemOperand(a0, offsetof(T, mem_init)));
__ Sw(a4, MemOperand(a0, offsetof(T, lwr_0)));
__ Lw(a5, MemOperand(a0, offsetof(T, reg_init)));
__ lwr(a5, MemOperand(a0, offsetof(T, mem_init) + 1));
__ Sw(a5, MemOperand(a0, offsetof(T, lwr_1)));
__ Lw(a6, MemOperand(a0, offsetof(T, reg_init)));
__ lwr(a6, MemOperand(a0, offsetof(T, mem_init) + 2));
__ Sw(a6, MemOperand(a0, offsetof(T, lwr_2)));
__ Lw(a7, MemOperand(a0, offsetof(T, reg_init)));
__ lwr(a7, MemOperand(a0, offsetof(T, mem_init) + 3));
__ Sw(a7, MemOperand(a0, offsetof(T, lwr_3)));
// Test all combinations of SWL and vAddr.
__ Lw(a4, MemOperand(a0, offsetof(T, mem_init)));
__ Sw(a4, MemOperand(a0, offsetof(T, swl_0)));
__ Lw(a4, MemOperand(a0, offsetof(T, reg_init)));
__ swl(a4, MemOperand(a0, offsetof(T, swl_0)));
__ Lw(a5, MemOperand(a0, offsetof(T, mem_init)));
__ Sw(a5, MemOperand(a0, offsetof(T, swl_1)));
__ Lw(a5, MemOperand(a0, offsetof(T, reg_init)));
__ swl(a5, MemOperand(a0, offsetof(T, swl_1) + 1));
__ Lw(a6, MemOperand(a0, offsetof(T, mem_init)));
__ Sw(a6, MemOperand(a0, offsetof(T, swl_2)));
__ Lw(a6, MemOperand(a0, offsetof(T, reg_init)));
__ swl(a6, MemOperand(a0, offsetof(T, swl_2) + 2));
__ Lw(a7, MemOperand(a0, offsetof(T, mem_init)));
__ Sw(a7, MemOperand(a0, offsetof(T, swl_3)));
__ Lw(a7, MemOperand(a0, offsetof(T, reg_init)));
__ swl(a7, MemOperand(a0, offsetof(T, swl_3) + 3));
// Test all combinations of SWR and vAddr.
__ Lw(a4, MemOperand(a0, offsetof(T, mem_init)));
__ Sw(a4, MemOperand(a0, offsetof(T, swr_0)));
__ Lw(a4, MemOperand(a0, offsetof(T, reg_init)));
__ swr(a4, MemOperand(a0, offsetof(T, swr_0)));
__ Lw(a5, MemOperand(a0, offsetof(T, mem_init)));
__ Sw(a5, MemOperand(a0, offsetof(T, swr_1)));
__ Lw(a5, MemOperand(a0, offsetof(T, reg_init)));
__ swr(a5, MemOperand(a0, offsetof(T, swr_1) + 1));
__ Lw(a6, MemOperand(a0, offsetof(T, mem_init)));
__ Sw(a6, MemOperand(a0, offsetof(T, swr_2)));
__ Lw(a6, MemOperand(a0, offsetof(T, reg_init)));
__ swr(a6, MemOperand(a0, offsetof(T, swr_2) + 2));
__ Lw(a7, MemOperand(a0, offsetof(T, mem_init)));
__ Sw(a7, MemOperand(a0, offsetof(T, swr_3)));
__ Lw(a7, MemOperand(a0, offsetof(T, reg_init)));
__ swr(a7, MemOperand(a0, offsetof(T, swr_3) + 3));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
auto f = GeneratedCode<F3>::FromCode(*code);
t.reg_init = 0xAABBCCDD;
t.mem_init = 0x11223344;
f.Call(&t, 0, 0, 0, 0);
if (kArchEndian == kLittle) {
CHECK_EQ(static_cast<int32_t>(0x44BBCCDD), t.lwl_0);
CHECK_EQ(static_cast<int32_t>(0x3344CCDD), t.lwl_1);
CHECK_EQ(static_cast<int32_t>(0x223344DD), t.lwl_2);
CHECK_EQ(static_cast<int32_t>(0x11223344), t.lwl_3);
CHECK_EQ(static_cast<int32_t>(0x11223344), t.lwr_0);
CHECK_EQ(static_cast<int32_t>(0xAA112233), t.lwr_1);
CHECK_EQ(static_cast<int32_t>(0xAABB1122), t.lwr_2);
CHECK_EQ(static_cast<int32_t>(0xAABBCC11), t.lwr_3);
CHECK_EQ(static_cast<int32_t>(0x112233AA), t.swl_0);
CHECK_EQ(static_cast<int32_t>(0x1122AABB), t.swl_1);
CHECK_EQ(static_cast<int32_t>(0x11AABBCC), t.swl_2);
CHECK_EQ(static_cast<int32_t>(0xAABBCCDD), t.swl_3);
CHECK_EQ(static_cast<int32_t>(0xAABBCCDD), t.swr_0);
CHECK_EQ(static_cast<int32_t>(0xBBCCDD44), t.swr_1);
CHECK_EQ(static_cast<int32_t>(0xCCDD3344), t.swr_2);
CHECK_EQ(static_cast<int32_t>(0xDD223344), t.swr_3);
} else {
CHECK_EQ(static_cast<int32_t>(0x11223344), t.lwl_0);
CHECK_EQ(static_cast<int32_t>(0x223344DD), t.lwl_1);
CHECK_EQ(static_cast<int32_t>(0x3344CCDD), t.lwl_2);
CHECK_EQ(static_cast<int32_t>(0x44BBCCDD), t.lwl_3);
CHECK_EQ(static_cast<int32_t>(0xAABBCC11), t.lwr_0);
CHECK_EQ(static_cast<int32_t>(0xAABB1122), t.lwr_1);
CHECK_EQ(static_cast<int32_t>(0xAA112233), t.lwr_2);
CHECK_EQ(static_cast<int32_t>(0x11223344), t.lwr_3);
CHECK_EQ(static_cast<int32_t>(0xAABBCCDD), t.swl_0);
CHECK_EQ(static_cast<int32_t>(0x11AABBCC), t.swl_1);
CHECK_EQ(static_cast<int32_t>(0x1122AABB), t.swl_2);
CHECK_EQ(static_cast<int32_t>(0x112233AA), t.swl_3);
CHECK_EQ(static_cast<int32_t>(0xDD223344), t.swr_0);
CHECK_EQ(static_cast<int32_t>(0xCCDD3344), t.swr_1);
CHECK_EQ(static_cast<int32_t>(0xBBCCDD44), t.swr_2);
CHECK_EQ(static_cast<int32_t>(0xAABBCCDD), t.swr_3);
}
}
}
TEST(MIPS12) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
int32_t x;
int32_t y;
int32_t y1;
int32_t y2;
int32_t y3;
int32_t y4;
} T;
T t;
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
__ mov(t2, fp); // Save frame pointer.
__ mov(fp, a0); // Access struct T by fp.
__ Lw(a4, MemOperand(a0, offsetof(T, y)));
__ Lw(a7, MemOperand(a0, offsetof(T, y4)));
__ addu(a5, a4, a7);
__ subu(t0, a4, a7);
__ nop();
__ push(a4); // These instructions disappear after opt.
__ Pop();
__ addu(a4, a4, a4);
__ nop();
__ Pop(); // These instructions disappear after opt.
__ push(a7);
__ nop();
__ push(a7); // These instructions disappear after opt.
__ pop(a7);
__ nop();
__ push(a7);
__ pop(t0);
__ nop();
__ Sw(a4, MemOperand(fp, offsetof(T, y)));
__ Lw(a4, MemOperand(fp, offsetof(T, y)));
__ nop();
__ Sw(a4, MemOperand(fp, offsetof(T, y)));
__ Lw(a5, MemOperand(fp, offsetof(T, y)));
__ nop();
__ push(a5);
__ Lw(a5, MemOperand(fp, offsetof(T, y)));
__ pop(a5);
__ nop();
__ push(a5);
__ Lw(a6, MemOperand(fp, offsetof(T, y)));
__ pop(a5);
__ nop();
__ push(a5);
__ Lw(a6, MemOperand(fp, offsetof(T, y)));
__ pop(a6);
__ nop();
__ push(a6);
__ Lw(a6, MemOperand(fp, offsetof(T, y)));
__ pop(a5);
__ nop();
__ push(a5);
__ Lw(a6, MemOperand(fp, offsetof(T, y)));
__ pop(a7);
__ nop();
__ mov(fp, t2);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
auto f = GeneratedCode<F3>::FromCode(*code);
t.x = 1;
t.y = 2;
t.y1 = 3;
t.y2 = 4;
t.y3 = 0XBABA;
t.y4 = 0xDEDA;
f.Call(&t, 0, 0, 0, 0);
CHECK_EQ(3, t.y1);
}
TEST(MIPS13) {
// Test Cvt_d_uw and Trunc_uw_d macros.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double cvt_big_out;
double cvt_small_out;
uint32_t trunc_big_out;
uint32_t trunc_small_out;
uint32_t cvt_big_in;
uint32_t cvt_small_in;
} T;
T t;
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
__ Sw(a4, MemOperand(a0, offsetof(T, cvt_small_in)));
__ Cvt_d_uw(f10, a4);
__ Sdc1(f10, MemOperand(a0, offsetof(T, cvt_small_out)));
__ Trunc_uw_d(f10, f10, f4);
__ Swc1(f10, MemOperand(a0, offsetof(T, trunc_small_out)));
__ Sw(a4, MemOperand(a0, offsetof(T, cvt_big_in)));
__ Cvt_d_uw(f8, a4);
__ Sdc1(f8, MemOperand(a0, offsetof(T, cvt_big_out)));
__ Trunc_uw_d(f8, f8, f4);
__ Swc1(f8, MemOperand(a0, offsetof(T, trunc_big_out)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
auto f = GeneratedCode<F3>::FromCode(*code);
t.cvt_big_in = 0xFFFFFFFF;
t.cvt_small_in = 333;
f.Call(&t, 0, 0, 0, 0);
CHECK_EQ(t.cvt_big_out, static_cast<double>(t.cvt_big_in));
CHECK_EQ(t.cvt_small_out, static_cast<double>(t.cvt_small_in));
CHECK_EQ(static_cast<int>(t.trunc_big_out), static_cast<int>(t.cvt_big_in));
CHECK_EQ(static_cast<int>(t.trunc_small_out),
static_cast<int>(t.cvt_small_in));
}
TEST(MIPS14) {
// Test round, floor, ceil, trunc, cvt.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
#define ROUND_STRUCT_ELEMENT(x) \
uint32_t x##_isNaN2008; \
int32_t x##_up_out; \
int32_t x##_down_out; \
int32_t neg_##x##_up_out; \
int32_t neg_##x##_down_out; \
uint32_t x##_err1_out; \
uint32_t x##_err2_out; \
uint32_t x##_err3_out; \
uint32_t x##_err4_out; \
int32_t x##_invalid_result;
typedef struct {
double round_up_in;
double round_down_in;
double neg_round_up_in;
double neg_round_down_in;
double err1_in;
double err2_in;
double err3_in;
double err4_in;
ROUND_STRUCT_ELEMENT(round)
ROUND_STRUCT_ELEMENT(floor)
ROUND_STRUCT_ELEMENT(ceil)
ROUND_STRUCT_ELEMENT(trunc)
ROUND_STRUCT_ELEMENT(cvt)
} T;
T t;
#undef ROUND_STRUCT_ELEMENT
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
// Save FCSR.
__ cfc1(a1, FCSR);
// Disable FPU exceptions.
__ ctc1(zero_reg, FCSR);
#define RUN_ROUND_TEST(x) \
__ cfc1(t0, FCSR); \
__ Sw(t0, MemOperand(a0, offsetof(T, x##_isNaN2008))); \
__ Ldc1(f0, MemOperand(a0, offsetof(T, round_up_in))); \
__ x##_w_d(f0, f0); \
__ Swc1(f0, MemOperand(a0, offsetof(T, x##_up_out))); \
\
__ Ldc1(f0, MemOperand(a0, offsetof(T, round_down_in))); \
__ x##_w_d(f0, f0); \
__ Swc1(f0, MemOperand(a0, offsetof(T, x##_down_out))); \
\
__ Ldc1(f0, MemOperand(a0, offsetof(T, neg_round_up_in))); \
__ x##_w_d(f0, f0); \
__ Swc1(f0, MemOperand(a0, offsetof(T, neg_##x##_up_out))); \
\
__ Ldc1(f0, MemOperand(a0, offsetof(T, neg_round_down_in))); \
__ x##_w_d(f0, f0); \
__ Swc1(f0, MemOperand(a0, offsetof(T, neg_##x##_down_out))); \
\
__ Ldc1(f0, MemOperand(a0, offsetof(T, err1_in))); \
__ ctc1(zero_reg, FCSR); \
__ x##_w_d(f0, f0); \
__ cfc1(a2, FCSR); \
__ Sw(a2, MemOperand(a0, offsetof(T, x##_err1_out))); \
\
__ Ldc1(f0, MemOperand(a0, offsetof(T, err2_in))); \
__ ctc1(zero_reg, FCSR); \
__ x##_w_d(f0, f0); \
__ cfc1(a2, FCSR); \
__ Sw(a2, MemOperand(a0, offsetof(T, x##_err2_out))); \
\
__ Ldc1(f0, MemOperand(a0, offsetof(T, err3_in))); \
__ ctc1(zero_reg, FCSR); \
__ x##_w_d(f0, f0); \
__ cfc1(a2, FCSR); \
__ Sw(a2, MemOperand(a0, offsetof(T, x##_err3_out))); \
\
__ Ldc1(f0, MemOperand(a0, offsetof(T, err4_in))); \
__ ctc1(zero_reg, FCSR); \
__ x##_w_d(f0, f0); \
__ cfc1(a2, FCSR); \
__ Sw(a2, MemOperand(a0, offsetof(T, x##_err4_out))); \
__ Swc1(f0, MemOperand(a0, offsetof(T, x##_invalid_result)));
RUN_ROUND_TEST(round)
RUN_ROUND_TEST(floor)
RUN_ROUND_TEST(ceil)
RUN_ROUND_TEST(trunc)
RUN_ROUND_TEST(cvt)
// Restore FCSR.
__ ctc1(a1, FCSR);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
auto f = GeneratedCode<F3>::FromCode(*code);
t.round_up_in = 123.51;
t.round_down_in = 123.49;
t.neg_round_up_in = -123.5;
t.neg_round_down_in = -123.49;
t.err1_in = 123.51;
t.err2_in = 1;
t.err3_in = static_cast<double>(1) + 0xFFFFFFFF;
t.err4_in = NAN;
f.Call(&t, 0, 0, 0, 0);
#define GET_FPU_ERR(x) (static_cast<int>(x & kFCSRFlagMask))
#define CHECK_NAN2008(x) (x & kFCSRNaN2008FlagMask)
#define CHECK_ROUND_RESULT(type) \
CHECK(GET_FPU_ERR(t.type##_err1_out) & kFCSRInexactFlagMask); \
CHECK_EQ(0, GET_FPU_ERR(t.type##_err2_out)); \
CHECK(GET_FPU_ERR(t.type##_err3_out) & kFCSRInvalidOpFlagMask); \
CHECK(GET_FPU_ERR(t.type##_err4_out) & kFCSRInvalidOpFlagMask); \
if (CHECK_NAN2008(t.type##_isNaN2008) && kArchVariant == kMips64r6) { \
CHECK_EQ(static_cast<int32_t>(0), t.type##_invalid_result);\
} else { \
CHECK_EQ(static_cast<int32_t>(kFPUInvalidResult), t.type##_invalid_result);\
}
CHECK_ROUND_RESULT(round);
CHECK_ROUND_RESULT(floor);
CHECK_ROUND_RESULT(ceil);
CHECK_ROUND_RESULT(cvt);
}
TEST(MIPS15) {
// Test chaining of label usages within instructions (issue 1644).
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(isolate, nullptr, 0);
Label target;
__ beq(v0, v1, &target);
__ nop();
__ bne(v0, v1, &target);
__ nop();
__ bind(&target);
__ nop();
}
// ----- mips64 tests -----------------------------------------------
TEST(MIPS16) {
// Test 64-bit memory loads and stores.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
struct T {
int64_t r1;
int64_t r2;
int64_t r3;
int64_t r4;
int64_t r5;
int64_t r6;
int64_t r7;
int64_t r8;
int64_t r9;
int64_t r10;
int64_t r11;
int64_t r12;
uint32_t ui;
int32_t si;
};
T t;
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
Label L, C;
// Basic 32-bit word load/store, with un-signed data.
__ Lw(a4, MemOperand(a0, offsetof(T, ui)));
__ Sw(a4, MemOperand(a0, offsetof(T, r1)));
// Check that the data got zero-extended into 64-bit a4.
__ Sd(a4, MemOperand(a0, offsetof(T, r2)));
// Basic 32-bit word load/store, with SIGNED data.
__ Lw(a5, MemOperand(a0, offsetof(T, si)));
__ Sw(a5, MemOperand(a0, offsetof(T, r3)));
// Check that the data got sign-extended into 64-bit a4.
__ Sd(a5, MemOperand(a0, offsetof(T, r4)));
// 32-bit UNSIGNED word load/store, with SIGNED data.
__ Lwu(a6, MemOperand(a0, offsetof(T, si)));
__ Sw(a6, MemOperand(a0, offsetof(T, r5)));
// Check that the data got zero-extended into 64-bit a4.
__ Sd(a6, MemOperand(a0, offsetof(T, r6)));
// lh with positive data.
__ Lh(a5, MemOperand(a0, offsetof(T, ui)));
__ Sw(a5, MemOperand(a0, offsetof(T, r7)));
// lh with negative data.
__ Lh(a6, MemOperand(a0, offsetof(T, si)));
__ Sw(a6, MemOperand(a0, offsetof(T, r8)));
// lhu with negative data.
__ Lhu(a7, MemOperand(a0, offsetof(T, si)));
__ Sw(a7, MemOperand(a0, offsetof(T, r9)));
// Lb with negative data.
__ Lb(t0, MemOperand(a0, offsetof(T, si)));
__ Sw(t0, MemOperand(a0, offsetof(T, r10)));
// sh writes only 1/2 of word.
__ Lw(a4, MemOperand(a0, offsetof(T, ui)));
__ Sh(a4, MemOperand(a0, offsetof(T, r11)));
__ Lw(a4, MemOperand(a0, offsetof(T, si)));
__ Sh(a4, MemOperand(a0, offsetof(T, r12)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
auto f = GeneratedCode<F3>::FromCode(*code);
t.ui = 0x44332211;
t.si = 0x99AABBCC;
t.r1 = 0x5555555555555555;
t.r2 = 0x5555555555555555;
t.r3 = 0x5555555555555555;
t.r4 = 0x5555555555555555;
t.r5 = 0x5555555555555555;
t.r6 = 0x5555555555555555;
t.r7 = 0x5555555555555555;
t.r8 = 0x5555555555555555;
t.r9 = 0x5555555555555555;
t.r10 = 0x5555555555555555;
t.r11 = 0x5555555555555555;
t.r12 = 0x5555555555555555;
f.Call(&t, 0, 0, 0, 0);
if (kArchEndian == kLittle) {
// Unsigned data, 32 & 64
CHECK_EQ(static_cast<int64_t>(0x5555555544332211L), t.r1); // lw, sw.
CHECK_EQ(static_cast<int64_t>(0x0000000044332211L), t.r2); // sd.
// Signed data, 32 & 64.
CHECK_EQ(static_cast<int64_t>(0x5555555599AABBCCL), t.r3); // lw, sw.
CHECK_EQ(static_cast<int64_t>(0xFFFFFFFF99AABBCCL), t.r4); // sd.
// Signed data, 32 & 64.
CHECK_EQ(static_cast<int64_t>(0x5555555599AABBCCL), t.r5); // lwu, sw.
CHECK_EQ(static_cast<int64_t>(0x0000000099AABBCCL), t.r6); // sd.
// lh with unsigned and signed data.
CHECK_EQ(static_cast<int64_t>(0x5555555500002211L), t.r7); // lh, sw.
CHECK_EQ(static_cast<int64_t>(0x55555555FFFFBBCCL), t.r8); // lh, sw.
// lhu with signed data.
CHECK_EQ(static_cast<int64_t>(0x555555550000BBCCL), t.r9); // lhu, sw.
// lb with signed data.
CHECK_EQ(static_cast<int64_t>(0x55555555FFFFFFCCL), t.r10); // lb, sw.
// sh with unsigned and signed data.
CHECK_EQ(static_cast<int64_t>(0x5555555555552211L), t.r11); // lw, sh.
CHECK_EQ(static_cast<int64_t>(0x555555555555BBCCL), t.r12); // lw, sh.
} else {
// Unsigned data, 32 & 64
CHECK_EQ(static_cast<int64_t>(0x4433221155555555L), t.r1); // lw, sw.
CHECK_EQ(static_cast<int64_t>(0x0000000044332211L), t.r2); // sd.
// Signed data, 32 & 64.
CHECK_EQ(static_cast<int64_t>(0x99AABBCC55555555L), t.r3); // lw, sw.
CHECK_EQ(static_cast<int64_t>(0xFFFFFFFF99AABBCCL), t.r4); // sd.
// Signed data, 32 & 64.
CHECK_EQ(static_cast<int64_t>(0x99AABBCC55555555L), t.r5); // lwu, sw.
CHECK_EQ(static_cast<int64_t>(0x0000000099AABBCCL), t.r6); // sd.
// lh with unsigned and signed data.
CHECK_EQ(static_cast<int64_t>(0x0000443355555555L), t.r7); // lh, sw.
CHECK_EQ(static_cast<int64_t>(0xFFFF99AA55555555L), t.r8); // lh, sw.
// lhu with signed data.
CHECK_EQ(static_cast<int64_t>(0x000099AA55555555L), t.r9); // lhu, sw.
// lb with signed data.
CHECK_EQ(static_cast<int64_t>(0xFFFFFF9955555555L), t.r10); // lb, sw.
// sh with unsigned and signed data.
CHECK_EQ(static_cast<int64_t>(0x2211555555555555L), t.r11); // lw, sh.
CHECK_EQ(static_cast<int64_t>(0xBBCC555555555555L), t.r12); // lw, sh.
}
}
// ----------------------mips64r6 specific tests----------------------
TEST(seleqz_selnez) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
typedef struct test {
int a;
int b;
int c;
int d;
double e;
double f;
double g;
double h;
float i;
float j;
float k;
float l;
} Test;
Test test;
// Integer part of test.
__ addiu(t1, zero_reg, 1); // t1 = 1
__ seleqz(t3, t1, zero_reg); // t3 = 1
__ Sw(t3, MemOperand(a0, offsetof(Test, a))); // a = 1
__ seleqz(t2, t1, t1); // t2 = 0
__ Sw(t2, MemOperand(a0, offsetof(Test, b))); // b = 0
__ selnez(t3, t1, zero_reg); // t3 = 1;
__ Sw(t3, MemOperand(a0, offsetof(Test, c))); // c = 0
__ selnez(t3, t1, t1); // t3 = 1
__ Sw(t3, MemOperand(a0, offsetof(Test, d))); // d = 1
// Floating point part of test.
__ Ldc1(f0, MemOperand(a0, offsetof(Test, e))); // src
__ Ldc1(f2, MemOperand(a0, offsetof(Test, f))); // test
__ Lwc1(f8, MemOperand(a0, offsetof(Test, i))); // src
__ Lwc1(f10, MemOperand(a0, offsetof(Test, j))); // test
__ seleqz_d(f4, f0, f2);
__ selnez_d(f6, f0, f2);
__ seleqz_s(f12, f8, f10);
__ selnez_s(f14, f8, f10);
__ Sdc1(f4, MemOperand(a0, offsetof(Test, g))); // src
__ Sdc1(f6, MemOperand(a0, offsetof(Test, h))); // src
__ Swc1(f12, MemOperand(a0, offsetof(Test, k))); // src
__ Swc1(f14, MemOperand(a0, offsetof(Test, l))); // src
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
auto f = GeneratedCode<F3>::FromCode(*code);
f.Call(&test, 0, 0, 0, 0);
CHECK_EQ(1, test.a);
CHECK_EQ(0, test.b);
CHECK_EQ(0, test.c);
CHECK_EQ(1, test.d);
const int test_size = 3;
const int input_size = 5;
double inputs_D[input_size] = {0.0, 65.2, -70.32,
18446744073709551621.0, -18446744073709551621.0};
double outputs_D[input_size] = {0.0, 65.2, -70.32,
18446744073709551621.0, -18446744073709551621.0};
double tests_D[test_size*2] = {2.8, 2.9, -2.8, -2.9,
18446744073709551616.0, 18446744073709555712.0};
float inputs_S[input_size] = {0.0, 65.2, -70.32,
18446744073709551621.0, -18446744073709551621.0};
float outputs_S[input_size] = {0.0, 65.2, -70.32,
18446744073709551621.0, -18446744073709551621.0};
float tests_S[test_size*2] = {2.9, 2.8, -2.9, -2.8,
18446744073709551616.0, 18446746272732807168.0};
for (int j=0; j < test_size; j+=2) {
for (int i=0; i < input_size; i++) {
test.e = inputs_D[i];
test.f = tests_D[j];
test.i = inputs_S[i];
test.j = tests_S[j];
f.Call(&test, 0, 0, 0, 0);
CHECK_EQ(outputs_D[i], test.g);
CHECK_EQ(0, test.h);
CHECK_EQ(outputs_S[i], test.k);
CHECK_EQ(0, test.l);
test.f = tests_D[j+1];
test.j = tests_S[j+1];
f.Call(&test, 0, 0, 0, 0);
CHECK_EQ(0, test.g);
CHECK_EQ(outputs_D[i], test.h);
CHECK_EQ(0, test.k);
CHECK_EQ(outputs_S[i], test.l);
}
}
}
}
TEST(min_max) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
struct TestFloat {
double a;
double b;
double c;
double d;
float e;
float f;
float g;
float h;
};
TestFloat test;
const double dnan = std::numeric_limits<double>::quiet_NaN();
const double dinf = std::numeric_limits<double>::infinity();
const double dminf = -std::numeric_limits<double>::infinity();
const float fnan = std::numeric_limits<float>::quiet_NaN();
const float finf = std::numeric_limits<float>::infinity();
const float fminf = std::numeric_limits<float>::infinity();
const int kTableLength = 13;
double inputsa[kTableLength] = {2.0, 3.0, dnan, 3.0, -0.0, 0.0, dinf,
dnan, 42.0, dinf, dminf, dinf, dnan};
double inputsb[kTableLength] = {3.0, 2.0, 3.0, dnan, 0.0, -0.0, dnan,
dinf, dinf, 42.0, dinf, dminf, dnan};
double outputsdmin[kTableLength] = {2.0, 2.0, 3.0, 3.0, -0.0,
-0.0, dinf, dinf, 42.0, 42.0,
dminf, dminf, dnan};
double outputsdmax[kTableLength] = {3.0, 3.0, 3.0, 3.0, 0.0, 0.0, dinf,
dinf, dinf, dinf, dinf, dinf, dnan};
float inputse[kTableLength] = {2.0, 3.0, fnan, 3.0, -0.0, 0.0, finf,
fnan, 42.0, finf, fminf, finf, fnan};
float inputsf[kTableLength] = {3.0, 2.0, 3.0, fnan, 0.0, -0.0, fnan,
finf, finf, 42.0, finf, fminf, fnan};
float outputsfmin[kTableLength] = {2.0, 2.0, 3.0, 3.0, -0.0,
-0.0, finf, finf, 42.0, 42.0,
fminf, fminf, fnan};
float outputsfmax[kTableLength] = {3.0, 3.0, 3.0, 3.0, 0.0, 0.0, finf,
finf, finf, finf, finf, finf, fnan};
__ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)));
__ Ldc1(f8, MemOperand(a0, offsetof(TestFloat, b)));
__ Lwc1(f2, MemOperand(a0, offsetof(TestFloat, e)));
__ Lwc1(f6, MemOperand(a0, offsetof(TestFloat, f)));
__ min_d(f10, f4, f8);
__ max_d(f12, f4, f8);
__ min_s(f14, f2, f6);
__ max_s(f16, f2, f6);
__ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, c)));
__ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, d)));
__ Swc1(f14, MemOperand(a0, offsetof(TestFloat, g)));
__ Swc1(f16, MemOperand(a0, offsetof(TestFloat, h)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
auto f = GeneratedCode<F3>::FromCode(*code);
for (int i = 4; i < kTableLength; i++) {
test.a = inputsa[i];
test.b = inputsb[i];
test.e = inputse[i];
test.f = inputsf[i];
f.Call(&test, 0, 0, 0, 0);
CHECK_EQ(0, memcmp(&test.c, &outputsdmin[i], sizeof(test.c)));
CHECK_EQ(0, memcmp(&test.d, &outputsdmax[i], sizeof(test.d)));
CHECK_EQ(0, memcmp(&test.g, &outputsfmin[i], sizeof(test.g)));
CHECK_EQ(0, memcmp(&test.h, &outputsfmax[i], sizeof(test.h)));
}
}
}
TEST(rint_d) {
if (kArchVariant == kMips64r6) {
const int kTableLength = 30;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
double a;
double b;
int fcsr;
}TestFloat;
TestFloat test;
double inputs[kTableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147,
1.7976931348623157E+308, 6.27463370218383111104242366943E-307,
309485009821345068724781056.89,
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
double outputs_RN[kTableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147,
1.7976931348623157E308, 0,
309485009821345068724781057.0,
2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
-2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
double outputs_RZ[kTableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147,
1.7976931348623157E308, 0,
309485009821345068724781057.0,
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
double outputs_RP[kTableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147,
1.7976931348623157E308, 1,
309485009821345068724781057.0,
3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
double outputs_RM[kTableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147,
1.7976931348623157E308, 0,
309485009821345068724781057.0,
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
int fcsr_inputs[4] =
{kRoundToNearest, kRoundToZero, kRoundToPlusInf, kRoundToMinusInf};
double* outputs[4] = {outputs_RN, outputs_RZ, outputs_RP, outputs_RM};
__ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)));
__ Lw(t0, MemOperand(a0, offsetof(TestFloat, fcsr)));
__ ctc1(t0, FCSR);
__ rint_d(f8, f4);
__ Sdc1(f8, MemOperand(a0, offsetof(TestFloat, b)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
auto f = GeneratedCode<F3>::FromCode(*code);
for (int j = 0; j < 4; j++) {
test.fcsr = fcsr_inputs[j];
for (int i = 0; i < kTableLength; i++) {
test.a = inputs[i];
f.Call(&test, 0, 0, 0, 0);
CHECK_EQ(test.b, outputs[j][i]);
}
}
}
}
TEST(sel) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
typedef struct test {
double dd;
double ds;
double dt;
float fd;
float fs;
float ft;
} Test;
Test test;
__ Ldc1(f0, MemOperand(a0, offsetof(Test, dd))); // test
__ Ldc1(f2, MemOperand(a0, offsetof(Test, ds))); // src1
__ Ldc1(f4, MemOperand(a0, offsetof(Test, dt))); // src2
__ Lwc1(f6, MemOperand(a0, offsetof(Test, fd))); // test
__ Lwc1(f8, MemOperand(a0, offsetof(Test, fs))); // src1
__ Lwc1(f10, MemOperand(a0, offsetof(Test, ft))); // src2
__ sel_d(f0, f2, f4);
__ sel_s(f6, f8, f10);
__ Sdc1(f0, MemOperand(a0, offsetof(Test, dd)));
__ Swc1(f6, MemOperand(a0, offsetof(Test, fd)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
auto f = GeneratedCode<F3>::FromCode(*code);
const int test_size = 3;
const int input_size = 5;
double inputs_dt[input_size] = {0.0, 65.2, -70.32,
18446744073709551621.0, -18446744073709551621.0};
double inputs_ds[input_size] = {0.1, 69.88, -91.325,
18446744073709551625.0, -18446744073709551625.0};
float inputs_ft[input_size] = {0.0, 65.2, -70.32,
18446744073709551621.0, -18446744073709551621.0};
float inputs_fs[input_size] = {0.1, 69.88, -91.325,
18446744073709551625.0, -18446744073709551625.0};
double tests_D[test_size*2] = {2.8, 2.9, -2.8, -2.9,
18446744073709551616.0, 18446744073709555712.0};
float tests_S[test_size*2] = {2.9, 2.8, -2.9, -2.8,
18446744073709551616.0, 18446746272732807168.0};
for (int j=0; j < test_size; j+=2) {
for (int i=0; i < input_size; i++) {
test.dt = inputs_dt[i];
test.dd = tests_D[j];
test.ds = inputs_ds[i];
test.ft = inputs_ft[i];
test.fd = tests_S[j];
test.fs = inputs_fs[i];
f.Call(&test, 0, 0, 0, 0);
CHECK_EQ(test.dd, inputs_ds[i]);
CHECK_EQ(test.fd, inputs_fs[i]);
test.dd = tests_D[j+1];
test.fd = tests_S[j+1];
f.Call(&test, 0, 0, 0, 0);
CHECK_EQ(test.dd, inputs_dt[i]);
CHECK_EQ(test.fd, inputs_ft[i]);
}
}
}
}
TEST(rint_s) {
if (kArchVariant == kMips64r6) {
const int kTableLength = 30;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
float a;
float b;
int fcsr;
}TestFloat;
TestFloat test;
float inputs[kTableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37,
1.7976931348623157E+38, 6.27463370218383111104242366943E-37,
309485009821345068724781056.89,
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
float outputs_RN[kTableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37,
1.7976931348623157E38, 0,
309485009821345068724781057.0,
2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
-2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
float outputs_RZ[kTableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37,
1.7976931348623157E38, 0,
309485009821345068724781057.0,
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
float outputs_RP[kTableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37,
1.7976931348623157E38, 1,
309485009821345068724781057.0,
3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
float outputs_RM[kTableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37,
1.7976931348623157E38, 0,
309485009821345068724781057.0,
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
int fcsr_inputs[4] =
{kRoundToNearest, kRoundToZero, kRoundToPlusInf, kRoundToMinusInf};
float* outputs[4] = {outputs_RN, outputs_RZ, outputs_RP, outputs_RM};
__ Lwc1(f4, MemOperand(a0, offsetof(TestFloat, a)));
__ Lw(t0, MemOperand(a0, offsetof(TestFloat, fcsr)));
__ cfc1(t1, FCSR);
__ ctc1(t0, FCSR);
__ rint_s(f8, f4);
__ Swc1(f8, MemOperand(a0, offsetof(TestFloat, b)));
__ ctc1(t1, FCSR);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
auto f = GeneratedCode<F3>::FromCode(*code);
for (int j = 0; j < 4; j++) {
test.fcsr = fcsr_inputs[j];
for (int i = 0; i < kTableLength; i++) {
test.a = inputs[i];
f.Call(&test, 0, 0, 0, 0);
CHECK_EQ(test.b, outputs[j][i]);
}
}
}
}
TEST(mina_maxa) {
if (kArchVariant == kMips64r6) {
const int kTableLength = 23;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
const double dnan = std::numeric_limits<double>::quiet_NaN();
const double dinf = std::numeric_limits<double>::infinity();
const double dminf = -std::numeric_limits<double>::infinity();
const float fnan = std::numeric_limits<float>::quiet_NaN();
const float finf = std::numeric_limits<float>::infinity();
const float fminf = std::numeric_limits<float>::infinity();
struct TestFloat {
double a;
double b;
double resd;
double resd1;
float c;
float d;
float resf;
float resf1;
};
TestFloat test;
double inputsa[kTableLength] = {
5.3, 4.8, 6.1, 9.8, 9.8, 9.8, -10.0, -8.9, -9.8, -10.0, -8.9, -9.8,
dnan, 3.0, -0.0, 0.0, dinf, dnan, 42.0, dinf, dminf, dinf, dnan};
double inputsb[kTableLength] = {
4.8, 5.3, 6.1, -10.0, -8.9, -9.8, 9.8, 9.8, 9.8, -9.8, -11.2, -9.8,
3.0, dnan, 0.0, -0.0, dnan, dinf, dinf, 42.0, dinf, dminf, dnan};
double resd[kTableLength] = {
4.8, 4.8, 6.1, 9.8, -8.9, -9.8, 9.8, -8.9, -9.8, -9.8, -8.9, -9.8,
3.0, 3.0, -0.0, -0.0, dinf, dinf, 42.0, 42.0, dminf, dminf, dnan};
double resd1[kTableLength] = {
5.3, 5.3, 6.1, -10.0, 9.8, 9.8, -10.0, 9.8, 9.8, -10.0, -11.2, -9.8,
3.0, 3.0, 0.0, 0.0, dinf, dinf, dinf, dinf, dinf, dinf, dnan};
float inputsc[kTableLength] = {
5.3, 4.8, 6.1, 9.8, 9.8, 9.8, -10.0, -8.9, -9.8, -10.0, -8.9, -9.8,
fnan, 3.0, -0.0, 0.0, finf, fnan, 42.0, finf, fminf, finf, fnan};
float inputsd[kTableLength] = {4.8, 5.3, 6.1, -10.0, -8.9, -9.8,
9.8, 9.8, 9.8, -9.8, -11.2, -9.8,
3.0, fnan, -0.0, 0.0, fnan, finf,
finf, 42.0, finf, fminf, fnan};
float resf[kTableLength] = {
4.8, 4.8, 6.1, 9.8, -8.9, -9.8, 9.8, -8.9, -9.8, -9.8, -8.9, -9.8,
3.0, 3.0, -0.0, -0.0, finf, finf, 42.0, 42.0, fminf, fminf, fnan};
float resf1[kTableLength] = {
5.3, 5.3, 6.1, -10.0, 9.8, 9.8, -10.0, 9.8, 9.8, -10.0, -11.2, -9.8,
3.0, 3.0, 0.0, 0.0, finf, finf, finf, finf, finf, finf, fnan};
__ Ldc1(f2, MemOperand(a0, offsetof(TestFloat, a)));
__ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, b)));
__ Lwc1(f8, MemOperand(a0, offsetof(TestFloat, c)));
__ Lwc1(f10, MemOperand(a0, offsetof(TestFloat, d)));
__ mina_d(f6, f2, f4);
__ mina_s(f12, f8, f10);
__ maxa_d(f14, f2, f4);
__ maxa_s(f16, f8, f10);
__ Swc1(f12, MemOperand(a0, offsetof(TestFloat, resf)));
__ Sdc1(f6, MemOperand(a0, offsetof(TestFloat, resd)));
__ Swc1(f16, MemOperand(a0, offsetof(TestFloat, resf1)));
__ Sdc1(f14, MemOperand(a0, offsetof(TestFloat, resd1)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
auto f = GeneratedCode<F3>::FromCode(*code);
for (int i = 0; i < kTableLength; i++) {
test.a = inputsa[i];
test.b = inputsb[i];
test.c = inputsc[i];
test.d = inputsd[i];
f.Call(&test, 0, 0, 0, 0);
if (i < kTableLength - 1) {
CHECK_EQ(test.resd, resd[i]);
CHECK_EQ(test.resf, resf[i]);
CHECK_EQ(test.resd1, resd1[i]);
CHECK_EQ(test.resf1, resf1[i]);
} else {
CHECK(std::isnan(test.resd));
CHECK(std::isnan(test.resf));
CHECK(std::isnan(test.resd1));
CHECK(std::isnan(test.resf1));
}
}
}
}
// ----------------------mips64r2 specific tests----------------------
TEST(trunc_l) {
if (kArchVariant == kMips64r2) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
const double dFPU64InvalidResult = static_cast<double>(kFPU64InvalidResult);
typedef struct test_float {
uint32_t isNaN2008;
double a;
float b;
int64_t c; // a trunc result
int64_t d; // b trunc result
}Test;
const int kTableLength = 15;
double inputs_D[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<double>::quiet_NaN(),
std::numeric_limits<double>::infinity()
};
float inputs_S[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::infinity()
};
double outputs[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
2147483648.0, dFPU64InvalidResult,
dFPU64InvalidResult};
double outputsNaN2008[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
2147483648.0, dFPU64InvalidResult,
dFPU64InvalidResult};
__ cfc1(t1, FCSR);
__ Sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
__ Ldc1(f4, MemOperand(a0, offsetof(Test, a)));
__ Lwc1(f6, MemOperand(a0, offsetof(Test, b)));
__ trunc_l_d(f8, f4);
__ trunc_l_s(f10, f6);
__ Sdc1(f8, MemOperand(a0, offsetof(Test, c)));
__ Sdc1(f10, MemOperand(a0, offsetof(Test, d)));
__ jr(ra);
__ nop();
Test test;
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
auto f = GeneratedCode<F3>::FromCode(*code);
for (int i = 0; i < kTableLength; i++) {
test.a = inputs_D[i];
test.b = inputs_S[i];
f.Call(&test, 0, 0, 0, 0);
if ((test.isNaN2008 & kFCSRNaN2008FlagMask) &&
kArchVariant == kMips64r6) {
CHECK_EQ(test.c, outputsNaN2008[i]);
} else {
CHECK_EQ(test.c, outputs[i]);
}
CHECK_EQ(test.d, test.c);
}
}
}
TEST(movz_movn) {
if (kArchVariant == kMips64r2) {
const int kTableLength = 4;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
int64_t rt;
double a;
double b;
double bold;
double b1;
double bold1;
float c;
float d;
float dold;
float d1;
float dold1;
}TestFloat;
TestFloat test;
double inputs_D[kTableLength] = {
5.3, -5.3, 5.3, -2.9
};
double inputs_S[kTableLength] = {
4.8, 4.8, -4.8, -0.29
};
float outputs_S[kTableLength] = {
4.8, 4.8, -4.8, -0.29
};
double outputs_D[kTableLength] = {
5.3, -5.3, 5.3, -2.9
};
__ Ldc1(f2, MemOperand(a0, offsetof(TestFloat, a)));
__ Lwc1(f6, MemOperand(a0, offsetof(TestFloat, c)));
__ Ld(t0, MemOperand(a0, offsetof(TestFloat, rt)));
__ Move(f12, 0.0);
__ Move(f10, 0.0);
__ Move(f16, 0.0);
__ Move(f14, 0.0);
__ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, bold)));
__ Swc1(f10, MemOperand(a0, offsetof(TestFloat, dold)));
__ Sdc1(f16, MemOperand(a0, offsetof(TestFloat, bold1)));
__ Swc1(f14, MemOperand(a0, offsetof(TestFloat, dold1)));
__ movz_s(f10, f6, t0);
__ movz_d(f12, f2, t0);
__ movn_s(f14, f6, t0);
__ movn_d(f16, f2, t0);
__ Swc1(f10, MemOperand(a0, offsetof(TestFloat, d)));
__ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, b)));
__ Swc1(f14, MemOperand(a0, offsetof(TestFloat, d1)));
__ Sdc1(f16, MemOperand(a0, offsetof(TestFloat, b1)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
auto f = GeneratedCode<F3>::FromCode(*code);
for (int i = 0; i < kTableLength; i++) {
test.a = inputs_D[i];
test.c = inputs_S[i];
test.rt = 1;
f.Call(&test, 0, 0, 0, 0);
CHECK_EQ(test.b, test.bold);
CHECK_EQ(test.d, test.dold);
CHECK_EQ(test.b1, outputs_D[i]);
CHECK_EQ(test.d1, outputs_S[i]);
test.rt = 0;
f.Call(&test, 0, 0, 0, 0);
CHECK_EQ(test.b, outputs_D[i]);
CHECK_EQ(test.d, outputs_S[i]);
CHECK_EQ(test.b1, test.bold1);
CHECK_EQ(test.d1, test.dold1);
}
}
}
TEST(movt_movd) {
if (kArchVariant == kMips64r2) {
const int kTableLength = 4;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
typedef struct test_float {
double srcd;
double dstd;
double dstdold;
double dstd1;
double dstdold1;
float srcf;
float dstf;
float dstfold;
float dstf1;
float dstfold1;
int32_t cc;
int32_t fcsr;
}TestFloat;
TestFloat test;
double inputs_D[kTableLength] = {
5.3, -5.3, 20.8, -2.9
};
double inputs_S[kTableLength] = {
4.88, 4.8, -4.8, -0.29
};
float outputs_S[kTableLength] = {
4.88, 4.8, -4.8, -0.29
};
double outputs_D[kTableLength] = {
5.3, -5.3, 20.8, -2.9
};
int condition_flags[8] = {0, 1, 2, 3, 4, 5, 6, 7};
for (int i = 0; i < kTableLength; i++) {
test.srcd = inputs_D[i];
test.srcf = inputs_S[i];
for (int j = 0; j< 8; j++) {
test.cc = condition_flags[j];
if (test.cc == 0) {
test.fcsr = 1 << 23;
} else {
test.fcsr = 1 << (24+condition_flags[j]);
}
HandleScope scope(isolate);
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
__ Ldc1(f2, MemOperand(a0, offsetof(TestFloat, srcd)));
__ Lwc1(f4, MemOperand(a0, offsetof(TestFloat, srcf)));
__ Lw(t1, MemOperand(a0, offsetof(TestFloat, fcsr)));
__ cfc1(t0, FCSR);
__ ctc1(t1, FCSR);
__ li(t2, 0x0);
__ mtc1(t2, f12);
__ mtc1(t2, f10);
__ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstdold)));
__ Swc1(f12, MemOperand(a0, offsetof(TestFloat, dstfold)));
__ movt_s(f12, f4, test.cc);
__ movt_d(f10, f2, test.cc);
__ Swc1(f12, MemOperand(a0, offsetof(TestFloat, dstf)));
__ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstd)));
__ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstdold1)));
__ Swc1(f12, MemOperand(a0, offsetof(TestFloat, dstfold1)));
__ movf_s(f12, f4, test.cc);
__ movf_d(f10, f2, test.cc);
__ Swc1(f12, MemOperand(a0, offsetof(TestFloat, dstf1)));
__ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstd1)));
__ ctc1(t0, FCSR);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
auto f = GeneratedCode<F3>::FromCode(*code);
f.Call(&test, 0, 0, 0, 0);
CHECK_EQ(test.dstf, outputs_S[i]);
CHECK_EQ(test.dstd, outputs_D[i]);
CHECK_EQ(test.dstf1, test.dstfold1);
CHECK_EQ(test.dstd1, test.dstdold1);
test.fcsr = 0;
f.Call(&test, 0, 0, 0, 0);
CHECK_EQ(test.dstf, test.dstfold);
CHECK_EQ(test.dstd, test.dstdold);
CHECK_EQ(test.dstf1, outputs_S[i]);
CHECK_EQ(test.dstd1, outputs_D[i]);
}
}
}
}
// ----------------------tests for all archs--------------------------
TEST(cvt_w_d) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
double a;
int32_t b;
int fcsr;
}Test;
const int kTableLength = 24;
double inputs[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483637.0, 2147483638.0, 2147483639.0,
2147483640.0, 2147483641.0, 2147483642.0,
2147483643.0, 2147483644.0, 2147483645.0,
2147483646.0, 2147483647.0, 2147483653.0
};
double outputs_RN[kTableLength] = {
2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
-2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
2147483637.0, 2147483638.0, 2147483639.0,
2147483640.0, 2147483641.0, 2147483642.0,
2147483643.0, 2147483644.0, 2147483645.0,
2147483646.0, 2147483647.0, kFPUInvalidResult};
double outputs_RZ[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
2147483637.0, 2147483638.0, 2147483639.0,
2147483640.0, 2147483641.0, 2147483642.0,
2147483643.0, 2147483644.0, 2147483645.0,
2147483646.0, 2147483647.0, kFPUInvalidResult};
double outputs_RP[kTableLength] = {
3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
2147483637.0, 2147483638.0, 2147483639.0,
2147483640.0, 2147483641.0, 2147483642.0,
2147483643.0, 2147483644.0, 2147483645.0,
2147483646.0, 2147483647.0, kFPUInvalidResult};
double outputs_RM[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
2147483637.0, 2147483638.0, 2147483639.0,
2147483640.0, 2147483641.0, 2147483642.0,
2147483643.0, 2147483644.0, 2147483645.0,
2147483646.0, 2147483647.0, kFPUInvalidResult};
int fcsr_inputs[4] =
{kRoundToNearest, kRoundToZero, kRoundToPlusInf, kRoundToMinusInf};
double* outputs[4] = {outputs_RN, outputs_RZ, outputs_RP, outputs_RM};
__ Ldc1(f4, MemOperand(a0, offsetof(Test, a)));
__ Lw(t0, MemOperand(a0, offsetof(Test, fcsr)));
__ cfc1(t1, FCSR);
__ ctc1(t0, FCSR);
__ cvt_w_d(f8, f4);
__ Swc1(f8, MemOperand(a0, offsetof(Test, b)));
__ ctc1(t1, FCSR);
__ jr(ra);
__ nop();
Test test;
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
auto f = GeneratedCode<F3>::FromCode(*code);
for (int j = 0; j < 4; j++) {
test.fcsr = fcsr_inputs[j];
for (int i = 0; i < kTableLength; i++) {
test.a = inputs[i];
f.Call(&test, 0, 0, 0, 0);
CHECK_EQ(test.b, outputs[j][i]);
}
}
}
TEST(trunc_w) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
uint32_t isNaN2008;
double a;
float b;
int32_t c; // a trunc result
int32_t d; // b trunc result
}Test;
const int kTableLength = 15;
double inputs_D[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<double>::quiet_NaN(),
std::numeric_limits<double>::infinity()
};
float inputs_S[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::infinity()
};
double outputs[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
kFPUInvalidResult, kFPUInvalidResult,
kFPUInvalidResult};
double outputsNaN2008[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
kFPUInvalidResult,
0,
kFPUInvalidResult};
__ cfc1(t1, FCSR);
__ Sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
__ Ldc1(f4, MemOperand(a0, offsetof(Test, a)));
__ Lwc1(f6, MemOperand(a0, offsetof(Test, b)));
__ trunc_w_d(f8, f4);
__ trunc_w_s(f10, f6);
__ Swc1(f8, MemOperand(a0, offsetof(Test, c)));
__ Swc1(f10, MemOperand(a0, offsetof(Test, d)));
__ jr(ra);
__ nop();
Test test;
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
auto f = GeneratedCode<F3>::FromCode(*code);
for (int i = 0; i < kTableLength; i++) {
test.a = inputs_D[i];
test.b = inputs_S[i];
f.Call(&test, 0, 0, 0, 0);
if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips64r6) {
CHECK_EQ(test.c, outputsNaN2008[i]);
} else {
CHECK_EQ(test.c, outputs[i]);
}
CHECK_EQ(test.d, test.c);
}
}
TEST(round_w) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
uint32_t isNaN2008;
double a;
float b;
int32_t c; // a trunc result
int32_t d; // b trunc result
}Test;
const int kTableLength = 15;
double inputs_D[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,