blob: d4b41ae71b41167a424a78dbd5f9dd613cbdf6e1 [file] [log] [blame]
/*
* QR Code generator library (Rust)
*
* Copyright (c) Project Nayuki. (MIT License)
* https://www.nayuki.io/page/qr-code-generator-library
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
* - The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
* - The Software is provided "as is", without warranty of any kind, express or
* implied, including but not limited to the warranties of merchantability,
* fitness for a particular purpose and noninfringement. In no event shall the
* authors or copyright holders be liable for any claim, damages or other
* liability, whether in an action of contract, tort or otherwise, arising from,
* out of or in connection with the Software or the use or other dealings in the
* Software.
*/
/*---- QrCode functionality ----*/
// Represents an immutable square grid of black and white cells for a QR Code symbol, and
// provides static functions to create a QR Code from user-supplied textual or binary data.
// This struct covers the QR Code model 2 specification, supporting all versions (sizes)
// from 1 to 40, all 4 error correction levels, and only 3 character encoding modes.
pub struct QrCode {
// This QR Code symbol's version number, which is always between 1 and 40 (inclusive).
version: Version,
// The width and height of this QR Code symbol, measured in modules.
// Always equal to version × 4 + 17, in the range 21 to 177.
size: i32,
// The error correction level used in this QR Code symbol.
errorcorrectionlevel: QrCodeEcc,
// The mask pattern used in this QR Code symbol, in the range 0 to 7 (i.e. unsigned 3-bit integer).
// Note that even if a constructor was called with automatic masking requested
// (mask = -1), the resulting object will still have a mask value between 0 and 7.
mask: Mask,
// The modules of this QR Code symbol (false = white, true = black)
modules: Vec<bool>,
// Indicates function modules that are not subjected to masking
isfunction: Vec<bool>,
}
impl QrCode {
/*---- Public static factory functions ----*/
// Returns a QR Code symbol representing the given Unicode text string at the given error correction level.
// As a conservative upper bound, this function is guaranteed to succeed for strings that have 738 or fewer Unicode
// code points (not UTF-8 code units) if the low error correction level is used. The smallest possible
// QR Code version is automatically chosen for the output. The ECC level of the result may be higher than
// the ecl argument if it can be done without increasing the version. Returns a wrapped QrCode if successful,
// or None if the data is too long to fit in any version at the given ECC level.
pub fn encode_text(text: &str, ecl: QrCodeEcc) -> Option<QrCode> {
let chrs: Vec<char> = text.chars().collect();
let segs: Vec<QrSegment> = QrSegment::make_segments(&chrs);
QrCode::encode_segments(&segs, ecl)
}
// Returns a QR Code symbol representing the given binary data string at the given error correction level.
// This function always encodes using the binary segment mode, not any text mode. The maximum number of
// bytes allowed is 2953. The smallest possible QR Code version is automatically chosen for the output.
// The ECC level of the result may be higher than the ecl argument if it can be done without increasing the version.
// Returns a wrapped QrCode if successful, or None if the data is too long to fit in any version at the given ECC level.
pub fn encode_binary(data: &[u8], ecl: QrCodeEcc) -> Option<QrCode> {
let segs: Vec<QrSegment> = vec![QrSegment::make_bytes(data)];
QrCode::encode_segments(&segs, ecl)
}
// Returns a QR Code symbol representing the given data segments at the given error correction
// level or higher. The smallest possible QR Code version is automatically chosen for the output.
// This function allows the user to create a custom sequence of segments that switches
// between modes (such as alphanumeric and binary) to encode text more efficiently.
// This function is considered to be lower level than simply encoding text or binary data.
// Returns a wrapped QrCode if successful, or None if the data is too long to fit in any version at the given ECC level.
pub fn encode_segments(segs: &[QrSegment], ecl: QrCodeEcc) -> Option<QrCode> {
QrCode::encode_segments_advanced(segs, ecl, QrCode_MIN_VERSION, QrCode_MAX_VERSION, None, true)
}
// Returns a QR Code symbol representing the given data segments with the given encoding parameters.
// The smallest possible QR Code version within the given range is automatically chosen for the output.
// This function allows the user to create a custom sequence of segments that switches
// between modes (such as alphanumeric and binary) to encode text more efficiently.
// This function is considered to be lower level than simply encoding text or binary data.
// Returns a wrapped QrCode if successful, or None if the data is too long to fit
// in any version in the given range at the given ECC level.
pub fn encode_segments_advanced(segs: &[QrSegment], mut ecl: QrCodeEcc,
minversion: Version, maxversion: Version, mask: Option<Mask>, boostecl: bool) -> Option<QrCode> {
assert!(minversion.value() <= maxversion.value(), "Invalid value");
// Find the minimal version number to use
let mut version = minversion;
let datausedbits: usize;
loop {
// Number of data bits available
let datacapacitybits: usize = QrCode::get_num_data_codewords(version, ecl) * 8;
if let Some(n) = QrSegment::get_total_bits(segs, version) {
if n <= datacapacitybits {
datausedbits = n;
break; // This version number is found to be suitable
}
}
if version.value() >= maxversion.value() { // All versions in the range could not fit the given data
return None;
}
version = Version::new(version.value() + 1);
}
// Increase the error correction level while the data still fits in the current version number
for newecl in &[QrCodeEcc::Medium, QrCodeEcc::Quartile, QrCodeEcc::High] {
if boostecl && datausedbits <= QrCode::get_num_data_codewords(version, *newecl) * 8 {
ecl = *newecl;
}
}
// Create the data bit string by concatenating all segments
let datacapacitybits: usize = QrCode::get_num_data_codewords(version, ecl) * 8;
let mut bb = BitBuffer(Vec::new());
for seg in segs {
bb.append_bits(seg.mode.mode_bits(), 4);
bb.append_bits(seg.numchars as u32, seg.mode.num_char_count_bits(version));
bb.0.extend_from_slice(&seg.data);
}
// Add terminator and pad up to a byte if applicable
let numzerobits = std::cmp::min(4, datacapacitybits - bb.0.len());
bb.append_bits(0, numzerobits as u8);
let numzerobits = bb.0.len().wrapping_neg() & 7;
bb.append_bits(0, numzerobits as u8);
// Pad with alternate bytes until data capacity is reached
let mut padbyte: u32 = 0xEC;
while bb.0.len() < datacapacitybits {
bb.append_bits(padbyte, 8);
padbyte ^= 0xEC ^ 0x11;
}
assert_eq!(bb.0.len() % 8, 0, "Assertion error");
let mut bytes = vec![0u8; bb.0.len() / 8];
for (i, bit) in bb.0.iter().enumerate() {
bytes[i >> 3] |= (*bit as u8) << (7 - (i & 7));
}
// Create the QR Code symbol
Some(QrCode::encode_codewords(version, ecl, &bytes, mask))
}
/*---- Constructors ----*/
// Creates a new QR Code symbol with the given version number, error correction level,
// binary data array, and mask number. This is a cumbersome low-level constructor that
// should not be invoked directly by the user. To go one level up, see the encode_segments() function.
pub fn encode_codewords(ver: Version, ecl: QrCodeEcc, datacodewords: &[u8], mask: Option<Mask>) -> QrCode {
// Initialize fields
let size: usize = (ver.value() as usize) * 4 + 17;
let mut result = QrCode {
version: ver,
size: size as i32,
mask: Mask::new(0), // Dummy value
errorcorrectionlevel: ecl,
modules: vec![false; size * size], // Entirely white grid
isfunction: vec![false; size * size],
};
// Draw function patterns, draw all codewords, do masking
result.draw_function_patterns();
let allcodewords: Vec<u8> = result.append_error_correction(datacodewords);
result.draw_codewords(&allcodewords);
result.handle_constructor_masking(mask);
result
}
// Returns this QR Code's version, in the range [1, 40].
pub fn version(&self) -> Version {
self.version
}
// Returns this QR Code's size, in the range [21, 177].
pub fn size(&self) -> i32 {
self.size
}
// Returns this QR Code's error correction level.
pub fn error_correction_level(&self) -> QrCodeEcc {
self.errorcorrectionlevel
}
// Returns this QR Code's mask, in the range [0, 7].
pub fn mask(&self) -> Mask {
self.mask
}
// Returns the color of the module (pixel) at the given coordinates, which is either
// false for white or true for black. The top left corner has the coordinates (x=0, y=0).
// If the given coordinates are out of bounds, then 0 (white) is returned.
pub fn get_module(&self, x: i32, y: i32) -> bool {
0 <= x && x < self.size && 0 <= y && y < self.size && self.module(x, y)
}
// Returns the color of the module at the given coordinates, which must be in bounds.
fn module(&self, x: i32, y: i32) -> bool {
self.modules[(y * self.size + x) as usize]
}
// Returns a mutable reference to the module's color at the given coordinates, which must be in bounds.
fn module_mut(&mut self, x: i32, y: i32) -> &mut bool {
&mut self.modules[(y * self.size + x) as usize]
}
// Based on the given number of border modules to add as padding, this returns a
// string whose contents represents an SVG XML file that depicts this QR Code symbol.
// Note that Unix newlines (\n) are always used, regardless of the platform.
pub fn to_svg_string(&self, border: i32) -> String {
assert!(border >= 0, "Border must be non-negative");
let mut result: String = String::new();
result.push_str("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
result.push_str("<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\" \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n");
let dimension = self.size.checked_add(border.checked_mul(2).unwrap()).unwrap();
result.push_str(&format!(
"<svg xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\" viewBox=\"0 0 {0} {0}\" stroke=\"none\">\n", dimension));
result.push_str("\t<rect width=\"100%\" height=\"100%\" fill=\"#FFFFFF\"/>\n");
result.push_str("\t<path d=\"");
let mut head: bool = true;
for y in -border .. self.size + border {
for x in -border .. self.size + border {
if self.get_module(x, y) {
if head {
head = false;
} else {
result.push_str(" ");
}
result.push_str(&format!("M{},{}h1v1h-1z", x + border, y + border));
}
}
}
result.push_str("\" fill=\"#000000\"/>\n");
result.push_str("</svg>\n");
result
}
/*---- Private helper methods for constructor: Drawing function modules ----*/
fn draw_function_patterns(&mut self) {
// Draw horizontal and vertical timing patterns
let size: i32 = self.size;
for i in 0 .. size {
self.set_function_module(6, i, i % 2 == 0);
self.set_function_module(i, 6, i % 2 == 0);
}
// Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules)
self.draw_finder_pattern(3, 3);
self.draw_finder_pattern(size - 4, 3);
self.draw_finder_pattern(3, size - 4);
// Draw numerous alignment patterns
let alignpatpos: Vec<i32> = QrCode::get_alignment_pattern_positions(self.version);
let numalign: usize = alignpatpos.len();
for i in 0 .. numalign {
for j in 0 .. numalign {
if i == 0 && j == 0 || i == 0 && j == numalign - 1 || i == numalign - 1 && j == 0 {
continue; // Skip the three finder corners
} else {
self.draw_alignment_pattern(alignpatpos[i], alignpatpos[j]);
}
}
}
// Draw configuration data
self.draw_format_bits(Mask::new(0)); // Dummy mask value; overwritten later in the constructor
self.draw_version();
}
// Draws two copies of the format bits (with its own error correction code)
// based on the given mask and this object's error correction level field.
fn draw_format_bits(&mut self, mask: Mask) {
// Calculate error correction code and pack bits
let size: i32 = self.size;
// errcorrlvl is uint2, mask is uint3
let mut data: u32 = self.errorcorrectionlevel.format_bits() << 3 | (mask.value() as u32);
let mut rem: u32 = data;
for _ in 0 .. 10 {
rem = (rem << 1) ^ ((rem >> 9) * 0x537);
}
data = data << 10 | rem;
data ^= 0x5412; // uint15
assert_eq!(data >> 15, 0, "Assertion error");
// Draw first copy
for i in 0 .. 6 {
self.set_function_module(8, i, (data >> i) & 1 != 0);
}
self.set_function_module(8, 7, (data >> 6) & 1 != 0);
self.set_function_module(8, 8, (data >> 7) & 1 != 0);
self.set_function_module(7, 8, (data >> 8) & 1 != 0);
for i in 9 .. 15 {
self.set_function_module(14 - i, 8, (data >> i) & 1 != 0);
}
// Draw second copy
for i in 0 .. 8 {
self.set_function_module(size - 1 - i, 8, (data >> i) & 1 != 0);
}
for i in 8 .. 15 {
self.set_function_module(8, size - 15 + i, (data >> i) & 1 != 0);
}
self.set_function_module(8, size - 8, true);
}
// Draws two copies of the version bits (with its own error correction code),
// based on this object's version field (which only has an effect for 7 <= version <= 40).
fn draw_version(&mut self) {
if self.version.value() < 7 {
return;
}
// Calculate error correction code and pack bits
let mut rem: u32 = self.version.value() as u32; // version is uint6, in the range [7, 40]
for _ in 0 .. 12 {
rem = (rem << 1) ^ ((rem >> 11) * 0x1F25);
}
let data: u32 = (self.version.value() as u32) << 12 | rem; // uint18
assert!(data >> 18 == 0, "Assertion error");
// Draw two copies
for i in 0 .. 18 {
let bit: bool = (data >> i) & 1 != 0;
let a: i32 = self.size - 11 + i % 3;
let b: i32 = i / 3;
self.set_function_module(a, b, bit);
self.set_function_module(b, a, bit);
}
}
// Draws a 9*9 finder pattern including the border separator, with the center module at (x, y).
fn draw_finder_pattern(&mut self, x: i32, y: i32) {
for i in -4 .. 5 {
for j in -4 .. 5 {
let xx: i32 = x + j;
let yy: i32 = y + i;
if 0 <= xx && xx < self.size && 0 <= yy && yy < self.size {
let dist: i32 = std::cmp::max(i.abs(), j.abs()); // Chebyshev/infinity norm
self.set_function_module(xx, yy, dist != 2 && dist != 4);
}
}
}
}
// Draws a 5*5 alignment pattern, with the center module at (x, y).
fn draw_alignment_pattern(&mut self, x: i32, y: i32) {
for i in -2 .. 3 {
for j in -2 .. 3 {
self.set_function_module(x + j, y + i, std::cmp::max(i.abs(), j.abs()) != 1);
}
}
}
// Sets the color of a module and marks it as a function module.
// Only used by the constructor. Coordinates must be in range.
fn set_function_module(&mut self, x: i32, y: i32, isblack: bool) {
*self.module_mut(x, y) = isblack;
self.isfunction[(y * self.size + x) as usize] = true;
}
/*---- Private helper methods for constructor: Codewords and masking ----*/
// Returns a new byte string representing the given data with the appropriate error correction
// codewords appended to it, based on this object's version and error correction level.
fn append_error_correction(&self, data: &[u8]) -> Vec<u8> {
assert_eq!(data.len(), QrCode::get_num_data_codewords(self.version, self.errorcorrectionlevel), "Illegal argument");
// Calculate parameter numbers
let numblocks: usize = QrCode::table_get(&NUM_ERROR_CORRECTION_BLOCKS, self.version, self.errorcorrectionlevel);
let blockecclen: usize = QrCode::table_get(&ECC_CODEWORDS_PER_BLOCK, self.version, self.errorcorrectionlevel);
let rawcodewords: usize = QrCode::get_num_raw_data_modules(self.version) / 8;
let numshortblocks: usize = numblocks - rawcodewords % numblocks;
let shortblocklen: usize = rawcodewords / numblocks;
// Split data into blocks and append ECC to each block
let mut blocks = Vec::<Vec<u8>>::with_capacity(numblocks);
let rs = ReedSolomonGenerator::new(blockecclen);
let mut k: usize = 0;
for i in 0 .. numblocks {
let mut dat = Vec::<u8>::with_capacity(shortblocklen + 1);
dat.extend_from_slice(&data[k .. k + shortblocklen - blockecclen + ((i >= numshortblocks) as usize)]);
k += dat.len();
let ecc: Vec<u8> = rs.get_remainder(&dat);
if i < numshortblocks {
dat.push(0);
}
dat.extend_from_slice(&ecc);
blocks.push(dat);
}
// Interleave (not concatenate) the bytes from every block into a single sequence
let mut result = Vec::<u8>::with_capacity(rawcodewords);
for i in 0 .. shortblocklen + 1 {
for j in 0 .. numblocks {
// Skip the padding byte in short blocks
if i != shortblocklen - blockecclen || j >= numshortblocks {
result.push(blocks[j][i]);
}
}
}
result
}
// Draws the given sequence of 8-bit codewords (data and error correction) onto the entire
// data area of this QR Code symbol. Function modules need to be marked off before this is called.
fn draw_codewords(&mut self, data: &[u8]) {
assert_eq!(data.len(), QrCode::get_num_raw_data_modules(self.version) / 8, "Illegal argument");
let mut i: usize = 0; // Bit index into the data
// Do the funny zigzag scan
let mut right: i32 = self.size - 1;
while right >= 1 { // Index of right column in each column pair
if right == 6 {
right = 5;
}
for vert in 0 .. self.size { // Vertical counter
for j in 0 .. 2 {
let x: i32 = right - j; // Actual x coordinate
let upward: bool = (right + 1) & 2 == 0;
let y: i32 = if upward { self.size - 1 - vert } else { vert }; // Actual y coordinate
if !self.isfunction[(y * self.size + x) as usize] && i < data.len() * 8 {
*self.module_mut(x, y) = (data[i >> 3] >> (7 - (i & 7))) & 1 != 0;
i += 1;
}
// If there are any remainder bits (0 to 7), they are already
// set to 0/false/white when the grid of modules was initialized
}
}
right -= 2;
}
assert_eq!(i, data.len() * 8, "Assertion error");
}
// XORs the data modules in this QR Code with the given mask pattern. Due to XOR's mathematical
// properties, calling applyMask(m) twice with the same value is equivalent to no change at all.
// This means it is possible to apply a mask, undo it, and try another mask. Note that a final
// well-formed QR Code symbol needs exactly one mask applied (not zero, not two, etc.).
fn apply_mask(&mut self, mask: Mask) {
let mask = mask.value();
for y in 0 .. self.size {
for x in 0 .. self.size {
let invert: bool = match mask {
0 => (x + y) % 2 == 0,
1 => y % 2 == 0,
2 => x % 3 == 0,
3 => (x + y) % 3 == 0,
4 => (x / 3 + y / 2) % 2 == 0,
5 => x * y % 2 + x * y % 3 == 0,
6 => (x * y % 2 + x * y % 3) % 2 == 0,
7 => ((x + y) % 2 + x * y % 3) % 2 == 0,
_ => unreachable!(),
};
*self.module_mut(x, y) ^= invert & !self.isfunction[(y * self.size + x) as usize];
}
}
}
// A messy helper function for the constructors. This QR Code must be in an unmasked state when this
// method is called. The given argument is the requested mask, which is -1 for auto or 0 to 7 for fixed.
// This method applies and returns the actual mask chosen, from 0 to 7.
fn handle_constructor_masking(&mut self, mut mask: Option<Mask>) {
if mask.is_none() { // Automatically choose best mask
let mut minpenalty: i32 = std::i32::MAX;
for i in 0u8 .. 8 {
let newmask = Mask::new(i);
self.draw_format_bits(newmask);
self.apply_mask(newmask);
let penalty: i32 = self.get_penalty_score();
if penalty < minpenalty {
mask = Some(newmask);
minpenalty = penalty;
}
self.apply_mask(newmask); // Undoes the mask due to XOR
}
}
let msk: Mask = mask.unwrap();
self.draw_format_bits(msk); // Overwrite old format bits
self.apply_mask(msk); // Apply the final choice of mask
self.mask = msk;
}
// Calculates and returns the penalty score based on state of this QR Code's current modules.
// This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score.
fn get_penalty_score(&self) -> i32 {
let mut result: i32 = 0;
let size: i32 = self.size;
// Adjacent modules in row having same color
for y in 0 .. size {
let mut colorx: bool = false;
let mut runx: i32 = 0;
for x in 0 .. size {
if x == 0 || self.module(x, y) != colorx {
colorx = self.module(x, y);
runx = 1;
} else {
runx += 1;
if runx == 5 {
result += PENALTY_N1;
} else if runx > 5 {
result += 1;
}
}
}
}
// Adjacent modules in column having same color
for x in 0 .. size {
let mut colory: bool = false;
let mut runy: i32 = 0;
for y in 0 .. size {
if y == 0 || self.module(x, y) != colory {
colory = self.module(x, y);
runy = 1;
} else {
runy += 1;
if runy == 5 {
result += PENALTY_N1;
} else if runy > 5 {
result += 1;
}
}
}
}
// 2*2 blocks of modules having same color
for y in 0 .. size - 1 {
for x in 0 .. size - 1 {
let color: bool = self.module(x, y);
if color == self.module(x + 1, y) &&
color == self.module(x, y + 1) &&
color == self.module(x + 1, y + 1) {
result += PENALTY_N2;
}
}
}
// Finder-like pattern in rows
for y in 0 .. size {
let mut bits: u32 = 0;
for x in 0 .. size {
bits = ((bits << 1) & 0x7FF) | (self.module(x, y) as u32);
if x >= 10 && (bits == 0x05D || bits == 0x5D0) { // Needs 11 bits accumulated
result += PENALTY_N3;
}
}
}
// Finder-like pattern in columns
for x in 0 .. size {
let mut bits: u32 = 0;
for y in 0 .. size {
bits = ((bits << 1) & 0x7FF) | (self.module(x, y) as u32);
if y >= 10 && (bits == 0x05D || bits == 0x5D0) { // Needs 11 bits accumulated
result += PENALTY_N3;
}
}
}
// Balance of black and white modules
let mut black: i32 = 0;
for color in &self.modules {
black += *color as i32;
}
let total: i32 = size * size;
// Find smallest k such that (45-5k)% <= dark/total <= (55+5k)%
let mut k: i32 = 0;
while black*20 < (9-k)*total || black*20 > (11+k)*total {
result += PENALTY_N4;
k += 1;
}
result
}
/*---- Private static helper functions ----*/
// Returns a set of positions of the alignment patterns in ascending order. These positions are
// used on both the x and y axes. Each value in the resulting list is in the range [0, 177).
// This stateless pure function could be implemented as table of 40 variable-length lists of unsigned bytes.
fn get_alignment_pattern_positions(ver: Version) -> Vec<i32> {
let ver = ver.value();
if ver == 1 {
vec![]
} else {
let numalign: i32 = (ver as i32) / 7 + 2;
let step: i32 = if ver != 32 {
// ceil((size - 13) / (2*numAlign - 2)) * 2
((ver as i32) * 4 + numalign * 2 + 1) / (2 * numalign - 2) * 2
} else { // C-C-C-Combo breaker!
26
};
let mut result = vec![6i32];
let mut pos: i32 = (ver as i32) * 4 + 10;
for _ in 0 .. numalign - 1 {
result.insert(1, pos);
pos -= step;
}
result
}
}
// Returns the number of data bits that can be stored in a QR Code of the given version number, after
// all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8.
// The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table.
fn get_num_raw_data_modules(ver: Version) -> usize {
let ver = ver.value();
let mut result: usize = (16 * (ver as usize) + 128) * (ver as usize) + 64;
if ver >= 2 {
let numalign: usize = (ver as usize) / 7 + 2;
result -= (25 * numalign - 10) * numalign - 55;
if ver >= 7 {
result -= 18 * 2; // Subtract version information
}
}
result
}
// Returns the number of 8-bit data (i.e. not error correction) codewords contained in any
// QR Code of the given version number and error correction level, with remainder bits discarded.
// This stateless pure function could be implemented as a (40*4)-cell lookup table.
fn get_num_data_codewords(ver: Version, ecl: QrCodeEcc) -> usize {
QrCode::get_num_raw_data_modules(ver) / 8
- QrCode::table_get(&ECC_CODEWORDS_PER_BLOCK, ver, ecl)
* QrCode::table_get(&NUM_ERROR_CORRECTION_BLOCKS, ver, ecl)
}
// Returns an entry from the given table based on the given values.
fn table_get(table: &'static [[i8; 41]; 4], ver: Version, ecl: QrCodeEcc) -> usize {
table[ecl.ordinal()][ver.value() as usize] as usize
}
}
/*---- Public constants ----*/
pub const QrCode_MIN_VERSION: Version = Version( 1);
pub const QrCode_MAX_VERSION: Version = Version(40);
/*---- Private tables of constants ----*/
// For use in get_penalty_score(), when evaluating which mask is best.
const PENALTY_N1: i32 = 3;
const PENALTY_N2: i32 = 3;
const PENALTY_N3: i32 = 40;
const PENALTY_N4: i32 = 10;
static ECC_CODEWORDS_PER_BLOCK: [[i8; 41]; 4] = [
// Version: (note that index 0 is for padding, and is set to an illegal value)
//0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level
[-1, 7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // Low
[-1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28], // Medium
[-1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // Quartile
[-1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // High
];
static NUM_ERROR_CORRECTION_BLOCKS: [[i8; 41]; 4] = [
// Version: (note that index 0 is for padding, and is set to an illegal value)
//0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level
[-1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 7, 8, 8, 9, 9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25], // Low
[-1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5, 5, 8, 9, 9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49], // Medium
[-1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8, 8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68], // Quartile
[-1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81], // High
];
/*---- QrCodeEcc functionality ----*/
// Represents the error correction level used in a QR Code symbol. Immutable.
#[derive(Clone, Copy)]
pub enum QrCodeEcc {
Low,
Medium,
Quartile,
High,
}
impl QrCodeEcc {
// Returns an unsigned 2-bit integer (in the range 0 to 3).
fn ordinal(&self) -> usize {
match *self {
QrCodeEcc::Low => 0,
QrCodeEcc::Medium => 1,
QrCodeEcc::Quartile => 2,
QrCodeEcc::High => 3,
}
}
// Returns an unsigned 2-bit integer (in the range 0 to 3).
fn format_bits(&self) -> u32 {
match *self {
QrCodeEcc::Low => 1,
QrCodeEcc::Medium => 0,
QrCodeEcc::Quartile => 3,
QrCodeEcc::High => 2,
}
}
}
/*---- ReedSolomonGenerator functionality ----*/
// Computes the Reed-Solomon error correction codewords for a sequence of data codewords
// at a given degree. Objects are immutable, and the state only depends on the degree.
// This class exists because each data block in a QR Code shares the same the divisor polynomial.
struct ReedSolomonGenerator {
// Coefficients of the divisor polynomial, stored from highest to lowest power, excluding the leading term which
// is always 1. For example the polynomial x^3 + 255x^2 + 8x + 93 is stored as the uint8 array {255, 8, 93}.
coefficients: Vec<u8>,
}
impl ReedSolomonGenerator {
// Creates a Reed-Solomon ECC generator for the given degree. This could be implemented
// as a lookup table over all possible parameter values, instead of as an algorithm.
fn new(degree: usize) -> ReedSolomonGenerator {
assert!(1 <= degree && degree <= 255, "Degree out of range");
// Start with the monomial x^0
let mut coefs = vec![0u8; degree - 1];
coefs.push(1);
// Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}),
// drop the highest term, and store the rest of the coefficients in order of descending powers.
// Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D).
let mut root: u8 = 1;
for _ in 0 .. degree { // Unused variable i
// Multiply the current product by (x - r^i)
for j in 0 .. degree {
coefs[j] = ReedSolomonGenerator::multiply(coefs[j], root);
if j + 1 < coefs.len() {
coefs[j] ^= coefs[j + 1];
}
}
root = ReedSolomonGenerator::multiply(root, 0x02);
}
ReedSolomonGenerator {
coefficients: coefs
}
}
// Computes and returns the Reed-Solomon error correction codewords for the given sequence of data codewords.
fn get_remainder(&self, data: &[u8]) -> Vec<u8> {
// Compute the remainder by performing polynomial division
let mut result = vec![0u8; self.coefficients.len()];
for b in data {
let factor: u8 = b ^ result.remove(0);
result.push(0);
for (x, y) in result.iter_mut().zip(self.coefficients.iter()) {
*x ^= ReedSolomonGenerator::multiply(*y, factor);
}
}
result
}
// Returns the product of the two given field elements modulo GF(2^8/0x11D). The arguments and result
// are unsigned 8-bit integers. This could be implemented as a lookup table of 256*256 entries of uint8.
fn multiply(x: u8, y: u8) -> u8 {
// Russian peasant multiplication
let mut z: u8 = 0;
for i in (0 .. 8).rev() {
z = (z << 1) ^ ((z >> 7) * 0x1D);
z ^= ((y >> i) & 1) * x;
}
z
}
}
/*---- QrSegment functionality ----*/
// Represents a character string to be encoded in a QR Code symbol.
// Each segment has a mode, and a sequence of characters that is already
// encoded as a sequence of bits. Instances of this struct are immutable.
pub struct QrSegment {
// The mode indicator for this segment.
mode: QrSegmentMode,
// The length of this segment's unencoded data, measured in characters.
numchars: usize,
// The bits of this segment.
data: Vec<bool>,
}
impl QrSegment {
/*---- Static factory functions ----*/
// Returns a segment representing the given binary data encoded in byte mode.
pub fn make_bytes(data: &[u8]) -> QrSegment {
let mut bb = BitBuffer(Vec::with_capacity(data.len() * 8));
for b in data {
bb.append_bits(*b as u32, 8);
}
QrSegment::new(QrSegmentMode::Byte, data.len(), bb.0)
}
// Returns a segment representing the given string of decimal digits encoded in numeric mode.
// Panics if the string contains non-digit characters.
pub fn make_numeric(text: &[char]) -> QrSegment {
let mut bb = BitBuffer(Vec::with_capacity(text.len() * 3 + (text.len() + 2) / 3));
let mut accumdata: u32 = 0;
let mut accumcount: u32 = 0;
for c in text {
assert!('0' <= *c && *c <= '9', "String contains non-numeric characters");
accumdata = accumdata * 10 + ((*c as u32) - ('0' as u32));
accumcount += 1;
if accumcount == 3 {
bb.append_bits(accumdata, 10);
accumdata = 0;
accumcount = 0;
}
}
if accumcount > 0 { // 1 or 2 digits remaining
bb.append_bits(accumdata, (accumcount as u8) * 3 + 1);
}
QrSegment::new(QrSegmentMode::Numeric, text.len(), bb.0)
}
// Returns a segment representing the given text string encoded in alphanumeric mode.
// The characters allowed are: 0 to 9, A to Z (uppercase only), space, dollar, percent, asterisk,
// plus, hyphen, period, slash, colon. Panics if the string contains non-encodable characters.
pub fn make_alphanumeric(text: &[char]) -> QrSegment {
let mut bb = BitBuffer(Vec::with_capacity(text.len() * 5 + (text.len() + 1) / 2));
let mut accumdata: u32 = 0;
let mut accumcount: u32 = 0;
for c in text {
let i = match ALPHANUMERIC_CHARSET.iter().position(|x| *x == *c) {
None => panic!("String contains unencodable characters in alphanumeric mode"),
Some(j) => j,
};
accumdata = accumdata * 45 + (i as u32);
accumcount += 1;
if accumcount == 2 {
bb.append_bits(accumdata, 11);
accumdata = 0;
accumcount = 0;
}
}
if accumcount > 0 { // 1 character remaining
bb.append_bits(accumdata, 6);
}
QrSegment::new(QrSegmentMode::Alphanumeric, text.len(), bb.0)
}
// Returns a new mutable list of zero or more segments to represent the given Unicode text string.
// The result may use various segment modes and switch modes to optimize the length of the bit stream.
pub fn make_segments(text: &[char]) -> Vec<QrSegment> {
if text.is_empty() {
vec![]
} else if QrSegment::is_numeric(text) {
vec![QrSegment::make_numeric(text)]
} else if QrSegment::is_alphanumeric(text) {
vec![QrSegment::make_alphanumeric(text)]
} else {
let s: String = text.iter().cloned().collect();
vec![QrSegment::make_bytes(s.as_bytes())]
}
}
// Returns a segment representing an Extended Channel Interpretation
// (ECI) designator with the given assignment value.
pub fn make_eci(assignval: u32) -> QrSegment {
let mut bb = BitBuffer(Vec::with_capacity(24));
if assignval < (1 << 7) {
bb.append_bits(assignval, 8);
} else if assignval < (1 << 14) {
bb.append_bits(2, 2);
bb.append_bits(assignval, 14);
} else if assignval < 1_000_000 {
bb.append_bits(6, 3);
bb.append_bits(assignval, 21);
} else {
panic!("ECI assignment value out of range");
}
QrSegment::new(QrSegmentMode::Eci, 0, bb.0)
}
// Creates a new QR Code data segment with the given parameters and data.
pub fn new(mode: QrSegmentMode, numchars: usize, data: Vec<bool>) -> QrSegment {
QrSegment {
mode: mode,
numchars: numchars,
data: data,
}
}
/*---- Instance field getters ----*/
// Returns the mode indicator for this segment.
pub fn mode(&self) -> QrSegmentMode {
self.mode
}
// Returns the length of this segment's unencoded data, measured in characters.
pub fn num_chars(&self) -> usize {
self.numchars
}
// Returns a view of the bits of this segment.
pub fn data(&self) -> &Vec<bool> {
&self.data
}
/*---- Other static functions ----*/
// Package-private helper function.
fn get_total_bits(segs: &[QrSegment], version: Version) -> Option<usize> {
let mut result: usize = 0;
for seg in segs {
let ccbits = seg.mode.num_char_count_bits(version);
if seg.numchars >= 1 << ccbits {
return None;
}
match result.checked_add(4 + (ccbits as usize) + seg.data.len()) {
None => return None,
Some(val) => result = val,
}
}
Some(result)
}
// Tests whether the given string can be encoded as a segment in alphanumeric mode.
fn is_alphanumeric(text: &[char]) -> bool {
text.iter().all(|c| ALPHANUMERIC_CHARSET.contains(c))
}
// Tests whether the given string can be encoded as a segment in numeric mode.
fn is_numeric(text: &[char]) -> bool {
text.iter().all(|c| '0' <= *c && *c <= '9')
}
}
// The set of all legal characters in alphanumeric mode,
// where each character value maps to the index in the string.
static ALPHANUMERIC_CHARSET: [char; 45] = ['0','1','2','3','4','5','6','7','8','9',
'A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z',
' ','$','%','*','+','-','.','/',':'];
/*---- QrSegmentMode functionality ----*/
// The mode field of a segment. Immutable.
#[derive(Clone, Copy)]
pub enum QrSegmentMode {
Numeric,
Alphanumeric,
Byte,
Kanji,
Eci,
}
impl QrSegmentMode {
// Returns an unsigned 4-bit integer value (range 0 to 15)
// representing the mode indicator bits for this mode object.
fn mode_bits(&self) -> u32 {
match *self {
QrSegmentMode::Numeric => 0x1,
QrSegmentMode::Alphanumeric => 0x2,
QrSegmentMode::Byte => 0x4,
QrSegmentMode::Kanji => 0x8,
QrSegmentMode::Eci => 0x7,
}
}
// Returns the bit width of the segment character count field
// for this mode object at the given version number.
pub fn num_char_count_bits(&self, ver: Version) -> u8 {
let array: [u8; 3] = match *self {
QrSegmentMode::Numeric => [10, 12, 14],
QrSegmentMode::Alphanumeric => [ 9, 11, 13],
QrSegmentMode::Byte => [ 8, 16, 16],
QrSegmentMode::Kanji => [ 8, 10, 12],
QrSegmentMode::Eci => [ 0, 0, 0],
};
let ver = ver.value();
if 1 <= ver && ver <= 9 {
array[0]
} else if 10 <= ver && ver <= 26 {
array[1]
} else if 27 <= ver && ver <= 40 {
array[2]
} else {
panic!("Version number out of range");
}
}
}
/*---- Bit buffer functionality ----*/
pub struct BitBuffer(pub Vec<bool>);
impl BitBuffer {
// Appends the given number of low bits of the given value
// to this sequence. Requires 0 <= val < 2^len.
pub fn append_bits(&mut self, val: u32, len: u8) {
assert!(len < 32 && (val >> len) == 0 || len == 32, "Value out of range");
for i in (0 .. len).rev() { // Append bit by bit
self.0.push((val >> i) & 1 != 0);
}
}
}
/*---- Miscellaneous values ----*/
#[derive(Copy, Clone)]
pub struct Version(u8);
impl Version {
pub fn new(ver: u8) -> Self {
assert!(QrCode_MIN_VERSION.value() <= ver && ver <= QrCode_MAX_VERSION.value(), "Version number out of range");
Version(ver)
}
pub fn value(&self) -> u8 {
self.0
}
}
#[derive(Copy, Clone)]
pub struct Mask(u8);
impl Mask {
pub fn new(mask: u8) -> Self {
assert!(mask <= 7, "Mask value out of range");
Mask(mask)
}
pub fn value(&self) -> u8 {
self.0
}
}