blob: 5d13c748b3d620addb6b6619519c4d6feda742d7 [file] [log] [blame]
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jsstr.h"
#include "mozilla/Attributes.h"
#include "mozilla/Casting.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/FloatingPoint.h"
#include "mozilla/PodOperations.h"
#include "mozilla/Range.h"
#include "mozilla/TypeTraits.h"
#include "mozilla/UniquePtr.h"
#include <ctype.h>
#include <string.h>
#include "jsapi.h"
#include "jsarray.h"
#include "jsatom.h"
#include "jsbool.h"
#include "jscntxt.h"
#include "jsgc.h"
#include "jsnum.h"
#include "jsobj.h"
#include "jsopcode.h"
#include "jstypes.h"
#include "jsutil.h"
#include "builtin/Intl.h"
#include "builtin/RegExp.h"
#include "jit/InlinableNatives.h"
#include "js/Conversions.h"
#if ENABLE_INTL_API
#include "unicode/unorm.h"
#endif
#include "vm/GlobalObject.h"
#include "vm/Interpreter.h"
#include "vm/Opcodes.h"
#include "vm/Printer.h"
#include "vm/RegExpObject.h"
#include "vm/RegExpStatics.h"
#include "vm/ScopeObject.h"
#include "vm/StringBuffer.h"
#include "vm/Interpreter-inl.h"
#include "vm/String-inl.h"
#include "vm/StringObject-inl.h"
#include "vm/TypeInference-inl.h"
using namespace js;
using namespace js::gc;
using namespace js::unicode;
using JS::Symbol;
using JS::SymbolCode;
using JS::ToInt32;
using JS::ToUint32;
using mozilla::AssertedCast;
using mozilla::CheckedInt;
using mozilla::IsNaN;
using mozilla::IsNegativeZero;
using mozilla::IsSame;
using mozilla::Move;
using mozilla::PodCopy;
using mozilla::PodEqual;
using mozilla::RangedPtr;
using mozilla::UniquePtr;
using JS::AutoCheckCannotGC;
static JSLinearString*
ArgToRootedString(JSContext* cx, const CallArgs& args, unsigned argno)
{
if (argno >= args.length())
return cx->names().undefined;
JSString* str = ToString<CanGC>(cx, args[argno]);
if (!str)
return nullptr;
args[argno].setString(str);
return str->ensureLinear(cx);
}
/*
* Forward declarations for URI encode/decode and helper routines
*/
static bool
str_decodeURI(JSContext* cx, unsigned argc, Value* vp);
static bool
str_decodeURI_Component(JSContext* cx, unsigned argc, Value* vp);
static bool
str_encodeURI(JSContext* cx, unsigned argc, Value* vp);
static bool
str_encodeURI_Component(JSContext* cx, unsigned argc, Value* vp);
/*
* Global string methods
*/
/* ES5 B.2.1 */
template <typename CharT>
static Latin1Char*
Escape(JSContext* cx, const CharT* chars, uint32_t length, uint32_t* newLengthOut)
{
static const uint8_t shouldPassThrough[128] = {
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,1, /* !"#$%&'()*+,-./ */
1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0, /* 0123456789:;<=>? */
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* @ABCDEFGHIJKLMNO */
1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,1, /* PQRSTUVWXYZ[\]^_ */
0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* `abcdefghijklmno */
1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0, /* pqrstuvwxyz{\}~ DEL */
};
/* Take a first pass and see how big the result string will need to be. */
uint32_t newLength = length;
for (size_t i = 0; i < length; i++) {
char16_t ch = chars[i];
if (ch < 128 && shouldPassThrough[ch])
continue;
/* The character will be encoded as %XX or %uXXXX. */
newLength += (ch < 256) ? 2 : 5;
/*
* newlength is incremented by at most 5 on each iteration, so worst
* case newlength == length * 6. This can't overflow.
*/
static_assert(JSString::MAX_LENGTH < UINT32_MAX / 6,
"newlength must not overflow");
}
Latin1Char* newChars = cx->pod_malloc<Latin1Char>(newLength + 1);
if (!newChars)
return nullptr;
static const char digits[] = "0123456789ABCDEF";
size_t i, ni;
for (i = 0, ni = 0; i < length; i++) {
char16_t ch = chars[i];
if (ch < 128 && shouldPassThrough[ch]) {
newChars[ni++] = ch;
} else if (ch < 256) {
newChars[ni++] = '%';
newChars[ni++] = digits[ch >> 4];
newChars[ni++] = digits[ch & 0xF];
} else {
newChars[ni++] = '%';
newChars[ni++] = 'u';
newChars[ni++] = digits[ch >> 12];
newChars[ni++] = digits[(ch & 0xF00) >> 8];
newChars[ni++] = digits[(ch & 0xF0) >> 4];
newChars[ni++] = digits[ch & 0xF];
}
}
MOZ_ASSERT(ni == newLength);
newChars[newLength] = 0;
*newLengthOut = newLength;
return newChars;
}
static bool
str_escape(JSContext* cx, unsigned argc, Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
JSLinearString* str = ArgToRootedString(cx, args, 0);
if (!str)
return false;
ScopedJSFreePtr<Latin1Char> newChars;
uint32_t newLength = 0; // initialize to silence GCC warning
if (str->hasLatin1Chars()) {
AutoCheckCannotGC nogc;
newChars = Escape(cx, str->latin1Chars(nogc), str->length(), &newLength);
} else {
AutoCheckCannotGC nogc;
newChars = Escape(cx, str->twoByteChars(nogc), str->length(), &newLength);
}
if (!newChars)
return false;
JSString* res = NewString<CanGC>(cx, newChars.get(), newLength);
if (!res)
return false;
newChars.forget();
args.rval().setString(res);
return true;
}
template <typename CharT>
static inline bool
Unhex4(const RangedPtr<const CharT> chars, char16_t* result)
{
char16_t a = chars[0],
b = chars[1],
c = chars[2],
d = chars[3];
if (!(JS7_ISHEX(a) && JS7_ISHEX(b) && JS7_ISHEX(c) && JS7_ISHEX(d)))
return false;
*result = (((((JS7_UNHEX(a) << 4) + JS7_UNHEX(b)) << 4) + JS7_UNHEX(c)) << 4) + JS7_UNHEX(d);
return true;
}
template <typename CharT>
static inline bool
Unhex2(const RangedPtr<const CharT> chars, char16_t* result)
{
char16_t a = chars[0],
b = chars[1];
if (!(JS7_ISHEX(a) && JS7_ISHEX(b)))
return false;
*result = (JS7_UNHEX(a) << 4) + JS7_UNHEX(b);
return true;
}
template <typename CharT>
static bool
Unescape(StringBuffer& sb, const mozilla::Range<const CharT> chars)
{
/*
* NB: use signed integers for length/index to allow simple length
* comparisons without unsigned-underflow hazards.
*/
static_assert(JSString::MAX_LENGTH <= INT_MAX, "String length must fit in a signed integer");
int length = AssertedCast<int>(chars.length());
/*
* Note that the spec algorithm has been optimized to avoid building
* a string in the case where no escapes are present.
*/
/* Step 4. */
int k = 0;
bool building = false;
/* Step 5. */
while (k < length) {
/* Step 6. */
char16_t c = chars[k];
/* Step 7. */
if (c != '%')
goto step_18;
/* Step 8. */
if (k > length - 6)
goto step_14;
/* Step 9. */
if (chars[k + 1] != 'u')
goto step_14;
#define ENSURE_BUILDING \
do { \
if (!building) { \
building = true; \
if (!sb.reserve(length)) \
return false; \
sb.infallibleAppend(chars.start().get(), k); \
} \
} while(false);
/* Step 10-13. */
if (Unhex4(chars.start() + k + 2, &c)) {
ENSURE_BUILDING;
k += 5;
goto step_18;
}
step_14:
/* Step 14. */
if (k > length - 3)
goto step_18;
/* Step 15-17. */
if (Unhex2(chars.start() + k + 1, &c)) {
ENSURE_BUILDING;
k += 2;
}
step_18:
if (building && !sb.append(c))
return false;
/* Step 19. */
k += 1;
}
return true;
#undef ENSURE_BUILDING
}
/* ES5 B.2.2 */
static bool
str_unescape(JSContext* cx, unsigned argc, Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
/* Step 1. */
RootedLinearString str(cx, ArgToRootedString(cx, args, 0));
if (!str)
return false;
/* Step 3. */
StringBuffer sb(cx);
if (str->hasTwoByteChars() && !sb.ensureTwoByteChars())
return false;
if (str->hasLatin1Chars()) {
AutoCheckCannotGC nogc;
if (!Unescape(sb, str->latin1Range(nogc)))
return false;
} else {
AutoCheckCannotGC nogc;
if (!Unescape(sb, str->twoByteRange(nogc)))
return false;
}
JSLinearString* result;
if (!sb.empty()) {
result = sb.finishString();
if (!result)
return false;
} else {
result = str;
}
args.rval().setString(result);
return true;
}
#if JS_HAS_UNEVAL
static bool
str_uneval(JSContext* cx, unsigned argc, Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
JSString* str = ValueToSource(cx, args.get(0));
if (!str)
return false;
args.rval().setString(str);
return true;
}
#endif
static const JSFunctionSpec string_functions[] = {
JS_FN(js_escape_str, str_escape, 1, JSPROP_RESOLVING),
JS_FN(js_unescape_str, str_unescape, 1, JSPROP_RESOLVING),
#if JS_HAS_UNEVAL
JS_FN(js_uneval_str, str_uneval, 1, JSPROP_RESOLVING),
#endif
JS_FN(js_decodeURI_str, str_decodeURI, 1, JSPROP_RESOLVING),
JS_FN(js_encodeURI_str, str_encodeURI, 1, JSPROP_RESOLVING),
JS_FN(js_decodeURIComponent_str, str_decodeURI_Component, 1, JSPROP_RESOLVING),
JS_FN(js_encodeURIComponent_str, str_encodeURI_Component, 1, JSPROP_RESOLVING),
JS_FS_END
};
static const unsigned STRING_ELEMENT_ATTRS = JSPROP_ENUMERATE | JSPROP_READONLY | JSPROP_PERMANENT;
static bool
str_enumerate(JSContext* cx, HandleObject obj)
{
RootedString str(cx, obj->as<StringObject>().unbox());
RootedValue value(cx);
for (size_t i = 0, length = str->length(); i < length; i++) {
JSString* str1 = NewDependentString(cx, str, i, 1);
if (!str1)
return false;
value.setString(str1);
if (!DefineElement(cx, obj, i, value, nullptr, nullptr,
STRING_ELEMENT_ATTRS | JSPROP_RESOLVING))
{
return false;
}
}
return true;
}
static bool
str_mayResolve(const JSAtomState&, jsid id, JSObject*)
{
// str_resolve ignores non-integer ids.
return JSID_IS_INT(id);
}
static bool
str_resolve(JSContext* cx, HandleObject obj, HandleId id, bool* resolvedp)
{
if (!JSID_IS_INT(id))
return true;
RootedString str(cx, obj->as<StringObject>().unbox());
int32_t slot = JSID_TO_INT(id);
if ((size_t)slot < str->length()) {
JSString* str1 = cx->staticStrings().getUnitStringForElement(cx, str, size_t(slot));
if (!str1)
return false;
RootedValue value(cx, StringValue(str1));
if (!DefineElement(cx, obj, uint32_t(slot), value, nullptr, nullptr,
STRING_ELEMENT_ATTRS | JSPROP_RESOLVING))
{
return false;
}
*resolvedp = true;
}
return true;
}
const Class StringObject::class_ = {
js_String_str,
JSCLASS_HAS_RESERVED_SLOTS(StringObject::RESERVED_SLOTS) |
JSCLASS_HAS_CACHED_PROTO(JSProto_String),
nullptr, /* addProperty */
nullptr, /* delProperty */
nullptr, /* getProperty */
nullptr, /* setProperty */
str_enumerate,
str_resolve,
str_mayResolve
};
/*
* Returns a JSString * for the |this| value associated with 'call', or throws
* a TypeError if |this| is null or undefined. This algorithm is the same as
* calling CheckObjectCoercible(this), then returning ToString(this), as all
* String.prototype.* methods do (other than toString and valueOf).
*/
static MOZ_ALWAYS_INLINE JSString*
ThisToStringForStringProto(JSContext* cx, CallReceiver call)
{
JS_CHECK_RECURSION(cx, return nullptr);
if (call.thisv().isString())
return call.thisv().toString();
if (call.thisv().isObject()) {
RootedObject obj(cx, &call.thisv().toObject());
if (obj->is<StringObject>()) {
StringObject* nobj = &obj->as<StringObject>();
Rooted<jsid> id(cx, NameToId(cx->names().toString));
if (ClassMethodIsNative(cx, nobj, &StringObject::class_, id, str_toString)) {
JSString* str = nobj->unbox();
call.setThis(StringValue(str));
return str;
}
}
} else if (call.thisv().isNullOrUndefined()) {
JS_ReportErrorNumber(cx, GetErrorMessage, nullptr, JSMSG_CANT_CONVERT_TO,
call.thisv().isNull() ? "null" : "undefined", "object");
return nullptr;
}
JSString* str = ToStringSlow<CanGC>(cx, call.thisv());
if (!str)
return nullptr;
call.setThis(StringValue(str));
return str;
}
MOZ_ALWAYS_INLINE bool
IsString(HandleValue v)
{
return v.isString() || (v.isObject() && v.toObject().is<StringObject>());
}
#if JS_HAS_TOSOURCE
MOZ_ALWAYS_INLINE bool
str_toSource_impl(JSContext* cx, const CallArgs& args)
{
MOZ_ASSERT(IsString(args.thisv()));
Rooted<JSString*> str(cx, ToString<CanGC>(cx, args.thisv()));
if (!str)
return false;
str = QuoteString(cx, str, '"');
if (!str)
return false;
StringBuffer sb(cx);
if (!sb.append("(new String(") || !sb.append(str) || !sb.append("))"))
return false;
str = sb.finishString();
if (!str)
return false;
args.rval().setString(str);
return true;
}
static bool
str_toSource(JSContext* cx, unsigned argc, Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
return CallNonGenericMethod<IsString, str_toSource_impl>(cx, args);
}
#endif /* JS_HAS_TOSOURCE */
MOZ_ALWAYS_INLINE bool
str_toString_impl(JSContext* cx, const CallArgs& args)
{
MOZ_ASSERT(IsString(args.thisv()));
args.rval().setString(args.thisv().isString()
? args.thisv().toString()
: args.thisv().toObject().as<StringObject>().unbox());
return true;
}
bool
js::str_toString(JSContext* cx, unsigned argc, Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
return CallNonGenericMethod<IsString, str_toString_impl>(cx, args);
}
/*
* Java-like string native methods.
*/
JSString*
js::SubstringKernel(JSContext* cx, HandleString str, int32_t beginInt, int32_t lengthInt)
{
MOZ_ASSERT(0 <= beginInt);
MOZ_ASSERT(0 <= lengthInt);
MOZ_ASSERT(uint32_t(beginInt) <= str->length());
MOZ_ASSERT(uint32_t(lengthInt) <= str->length() - beginInt);
uint32_t begin = beginInt;
uint32_t len = lengthInt;
/*
* Optimization for one level deep ropes.
* This is common for the following pattern:
*
* while() {
* text = text.substr(0, x) + "bla" + text.substr(x)
* test.charCodeAt(x + 1)
* }
*/
if (str->isRope()) {
JSRope* rope = &str->asRope();
/* Substring is totally in leftChild of rope. */
if (begin + len <= rope->leftChild()->length())
return NewDependentString(cx, rope->leftChild(), begin, len);
/* Substring is totally in rightChild of rope. */
if (begin >= rope->leftChild()->length()) {
begin -= rope->leftChild()->length();
return NewDependentString(cx, rope->rightChild(), begin, len);
}
/*
* Requested substring is partly in the left and partly in right child.
* Create a rope of substrings for both childs.
*/
MOZ_ASSERT(begin < rope->leftChild()->length() &&
begin + len > rope->leftChild()->length());
size_t lhsLength = rope->leftChild()->length() - begin;
size_t rhsLength = begin + len - rope->leftChild()->length();
Rooted<JSRope*> ropeRoot(cx, rope);
RootedString lhs(cx, NewDependentString(cx, ropeRoot->leftChild(), begin, lhsLength));
if (!lhs)
return nullptr;
RootedString rhs(cx, NewDependentString(cx, ropeRoot->rightChild(), 0, rhsLength));
if (!rhs)
return nullptr;
return JSRope::new_<CanGC>(cx, lhs, rhs, len);
}
return NewDependentString(cx, str, begin, len);
}
template <typename CharT>
static JSString*
ToLowerCase(JSContext* cx, JSLinearString* str)
{
// Unlike toUpperCase, toLowerCase has the nice invariant that if the input
// is a Latin1 string, the output is also a Latin1 string.
UniquePtr<CharT[], JS::FreePolicy> newChars;
size_t length = str->length();
{
AutoCheckCannotGC nogc;
const CharT* chars = str->chars<CharT>(nogc);
// Look for the first upper case character.
size_t i = 0;
for (; i < length; i++) {
char16_t c = chars[i];
if (unicode::CanLowerCase(c))
break;
}
// If all characters are lower case, return the input string.
if (i == length)
return str;
newChars = cx->make_pod_array<CharT>(length + 1);
if (!newChars)
return nullptr;
PodCopy(newChars.get(), chars, i);
for (; i < length; i++) {
char16_t c = unicode::ToLowerCase(chars[i]);
MOZ_ASSERT_IF((IsSame<CharT, Latin1Char>::value), c <= JSString::MAX_LATIN1_CHAR);
newChars[i] = c;
}
newChars[length] = 0;
}
JSString* res = NewStringDontDeflate<CanGC>(cx, newChars.get(), length);
if (!res)
return nullptr;
newChars.release();
return res;
}
static inline bool
ToLowerCaseHelper(JSContext* cx, CallReceiver call)
{
RootedString str(cx, ThisToStringForStringProto(cx, call));
if (!str)
return false;
JSLinearString* linear = str->ensureLinear(cx);
if (!linear)
return false;
if (linear->hasLatin1Chars())
str = ToLowerCase<Latin1Char>(cx, linear);
else
str = ToLowerCase<char16_t>(cx, linear);
if (!str)
return false;
call.rval().setString(str);
return true;
}
bool
js::str_toLowerCase(JSContext* cx, unsigned argc, Value* vp)
{
return ToLowerCaseHelper(cx, CallArgsFromVp(argc, vp));
}
static bool
str_toLocaleLowerCase(JSContext* cx, unsigned argc, Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
/*
* Forcefully ignore the first (or any) argument and return toLowerCase(),
* ECMA has reserved that argument, presumably for defining the locale.
*/
if (cx->runtime()->localeCallbacks && cx->runtime()->localeCallbacks->localeToLowerCase) {
RootedString str(cx, ThisToStringForStringProto(cx, args));
if (!str)
return false;
RootedValue result(cx);
if (!cx->runtime()->localeCallbacks->localeToLowerCase(cx, str, &result))
return false;
args.rval().set(result);
return true;
}
return ToLowerCaseHelper(cx, args);
}
template <typename DestChar, typename SrcChar>
static void
ToUpperCaseImpl(DestChar* destChars, const SrcChar* srcChars, size_t firstLowerCase, size_t length)
{
MOZ_ASSERT(firstLowerCase < length);
for (size_t i = 0; i < firstLowerCase; i++)
destChars[i] = srcChars[i];
for (size_t i = firstLowerCase; i < length; i++) {
char16_t c = unicode::ToUpperCase(srcChars[i]);
MOZ_ASSERT_IF((IsSame<DestChar, Latin1Char>::value), c <= JSString::MAX_LATIN1_CHAR);
destChars[i] = c;
}
destChars[length] = '\0';
}
template <typename CharT>
static JSString*
ToUpperCase(JSContext* cx, JSLinearString* str)
{
typedef UniquePtr<Latin1Char[], JS::FreePolicy> Latin1CharPtr;
typedef UniquePtr<char16_t[], JS::FreePolicy> TwoByteCharPtr;
mozilla::MaybeOneOf<Latin1CharPtr, TwoByteCharPtr> newChars;
size_t length = str->length();
{
AutoCheckCannotGC nogc;
const CharT* chars = str->chars<CharT>(nogc);
// Look for the first lower case character.
size_t i = 0;
for (; i < length; i++) {
char16_t c = chars[i];
if (unicode::CanUpperCase(c))
break;
}
// If all characters are upper case, return the input string.
if (i == length)
return str;
// If the string is Latin1, check if it contains the MICRO SIGN (0xb5)
// or SMALL LETTER Y WITH DIAERESIS (0xff) character. The corresponding
// upper case characters are not in the Latin1 range.
bool resultIsLatin1;
if (IsSame<CharT, Latin1Char>::value) {
resultIsLatin1 = true;
for (size_t j = i; j < length; j++) {
Latin1Char c = chars[j];
if (c == 0xb5 || c == 0xff) {
MOZ_ASSERT(unicode::ToUpperCase(c) > JSString::MAX_LATIN1_CHAR);
resultIsLatin1 = false;
break;
} else {
MOZ_ASSERT(unicode::ToUpperCase(c) <= JSString::MAX_LATIN1_CHAR);
}
}
} else {
resultIsLatin1 = false;
}
if (resultIsLatin1) {
Latin1CharPtr buf = cx->make_pod_array<Latin1Char>(length + 1);
if (!buf)
return nullptr;
ToUpperCaseImpl(buf.get(), chars, i, length);
newChars.construct<Latin1CharPtr>(Move(buf));
} else {
TwoByteCharPtr buf = cx->make_pod_array<char16_t>(length + 1);
if (!buf)
return nullptr;
ToUpperCaseImpl(buf.get(), chars, i, length);
newChars.construct<TwoByteCharPtr>(Move(buf));
}
}
JSString* res;
if (newChars.constructed<Latin1CharPtr>()) {
res = NewStringDontDeflate<CanGC>(cx, newChars.ref<Latin1CharPtr>().get(), length);
if (!res)
return nullptr;
newChars.ref<Latin1CharPtr>().release();
} else {
res = NewStringDontDeflate<CanGC>(cx, newChars.ref<TwoByteCharPtr>().get(), length);
if (!res)
return nullptr;
newChars.ref<TwoByteCharPtr>().release();
}
return res;
}
static bool
ToUpperCaseHelper(JSContext* cx, CallReceiver call)
{
RootedString str(cx, ThisToStringForStringProto(cx, call));
if (!str)
return false;
JSLinearString* linear = str->ensureLinear(cx);
if (!linear)
return false;
if (linear->hasLatin1Chars())
str = ToUpperCase<Latin1Char>(cx, linear);
else
str = ToUpperCase<char16_t>(cx, linear);
if (!str)
return false;
call.rval().setString(str);
return true;
}
bool
js::str_toUpperCase(JSContext* cx, unsigned argc, Value* vp)
{
return ToUpperCaseHelper(cx, CallArgsFromVp(argc, vp));
}
static bool
str_toLocaleUpperCase(JSContext* cx, unsigned argc, Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
/*
* Forcefully ignore the first (or any) argument and return toUpperCase(),
* ECMA has reserved that argument, presumably for defining the locale.
*/
if (cx->runtime()->localeCallbacks && cx->runtime()->localeCallbacks->localeToUpperCase) {
RootedString str(cx, ThisToStringForStringProto(cx, args));
if (!str)
return false;
RootedValue result(cx);
if (!cx->runtime()->localeCallbacks->localeToUpperCase(cx, str, &result))
return false;
args.rval().set(result);
return true;
}
return ToUpperCaseHelper(cx, args);
}
#if !EXPOSE_INTL_API
static bool
str_localeCompare(JSContext* cx, unsigned argc, Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
RootedString str(cx, ThisToStringForStringProto(cx, args));
if (!str)
return false;
RootedString thatStr(cx, ToString<CanGC>(cx, args.get(0)));
if (!thatStr)
return false;
if (cx->runtime()->localeCallbacks && cx->runtime()->localeCallbacks->localeCompare) {
RootedValue result(cx);
if (!cx->runtime()->localeCallbacks->localeCompare(cx, str, thatStr, &result))
return false;
args.rval().set(result);
return true;
}
int32_t result;
if (!CompareStrings(cx, str, thatStr, &result))
return false;
args.rval().setInt32(result);
return true;
}
#endif
#if EXPOSE_INTL_API
/* ES6 20140210 draft 21.1.3.12. */
static bool
str_normalize(JSContext* cx, unsigned argc, Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
// Steps 1-3.
RootedString str(cx, ThisToStringForStringProto(cx, args));
if (!str)
return false;
// Step 4.
UNormalizationMode form;
if (!args.hasDefined(0)) {
form = UNORM_NFC;
} else {
// Steps 5-6.
RootedLinearString formStr(cx, ArgToRootedString(cx, args, 0));
if (!formStr)
return false;
// Step 7.
if (EqualStrings(formStr, cx->names().NFC)) {
form = UNORM_NFC;
} else if (EqualStrings(formStr, cx->names().NFD)) {
form = UNORM_NFD;
} else if (EqualStrings(formStr, cx->names().NFKC)) {
form = UNORM_NFKC;
} else if (EqualStrings(formStr, cx->names().NFKD)) {
form = UNORM_NFKD;
} else {
JS_ReportErrorNumber(cx, GetErrorMessage, nullptr,
JSMSG_INVALID_NORMALIZE_FORM);
return false;
}
}
// Step 8.
AutoStableStringChars stableChars(cx);
if (!str->ensureFlat(cx) || !stableChars.initTwoByte(cx, str))
return false;
static const size_t INLINE_CAPACITY = 32;
const UChar* srcChars = Char16ToUChar(stableChars.twoByteRange().start().get());
int32_t srcLen = AssertedCast<int32_t>(str->length());
Vector<char16_t, INLINE_CAPACITY> chars(cx);
if (!chars.resize(INLINE_CAPACITY))
return false;
UErrorCode status = U_ZERO_ERROR;
int32_t size = unorm_normalize(srcChars, srcLen, form, 0,
Char16ToUChar(chars.begin()), INLINE_CAPACITY,
&status);
if (status == U_BUFFER_OVERFLOW_ERROR) {
if (!chars.resize(size))
return false;
status = U_ZERO_ERROR;
#ifdef DEBUG
int32_t finalSize =
#endif
unorm_normalize(srcChars, srcLen, form, 0,
Char16ToUChar(chars.begin()), size,
&status);
MOZ_ASSERT(size == finalSize || U_FAILURE(status), "unorm_normalize behaved inconsistently");
}
if (U_FAILURE(status))
return false;
JSString* ns = NewStringCopyN<CanGC>(cx, chars.begin(), size);
if (!ns)
return false;
// Step 9.
args.rval().setString(ns);
return true;
}
#endif
bool
js::str_charAt(JSContext* cx, unsigned argc, Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
RootedString str(cx);
size_t i;
if (args.thisv().isString() && args.length() != 0 && args[0].isInt32()) {
str = args.thisv().toString();
i = size_t(args[0].toInt32());
if (i >= str->length())
goto out_of_range;
} else {
str = ThisToStringForStringProto(cx, args);
if (!str)
return false;
double d = 0.0;
if (args.length() > 0 && !ToInteger(cx, args[0], &d))
return false;
if (d < 0 || str->length() <= d)
goto out_of_range;
i = size_t(d);
}
str = cx->staticStrings().getUnitStringForElement(cx, str, i);
if (!str)
return false;
args.rval().setString(str);
return true;
out_of_range:
args.rval().setString(cx->runtime()->emptyString);
return true;
}
bool
js::str_charCodeAt_impl(JSContext* cx, HandleString string, HandleValue index, MutableHandleValue res)
{
RootedString str(cx);
size_t i;
if (index.isInt32()) {
i = index.toInt32();
if (i >= string->length())
goto out_of_range;
} else {
double d = 0.0;
if (!ToInteger(cx, index, &d))
return false;
// check whether d is negative as size_t is unsigned
if (d < 0 || string->length() <= d )
goto out_of_range;
i = size_t(d);
}
char16_t c;
if (!string->getChar(cx, i , &c))
return false;
res.setInt32(c);
return true;
out_of_range:
res.setNaN();
return true;
}
bool
js::str_charCodeAt(JSContext* cx, unsigned argc, Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
RootedString str(cx);
RootedValue index(cx);
if (args.thisv().isString()) {
str = args.thisv().toString();
} else {
str = ThisToStringForStringProto(cx, args);
if (!str)
return false;
}
if (args.length() != 0)
index = args[0];
else
index.setInt32(0);
return js::str_charCodeAt_impl(cx, str, index, args.rval());
}
/*
* Boyer-Moore-Horspool superlinear search for pat:patlen in text:textlen.
* The patlen argument must be positive and no greater than sBMHPatLenMax.
*
* Return the index of pat in text, or -1 if not found.
*/
static const uint32_t sBMHCharSetSize = 256; /* ISO-Latin-1 */
static const uint32_t sBMHPatLenMax = 255; /* skip table element is uint8_t */
static const int sBMHBadPattern = -2; /* return value if pat is not ISO-Latin-1 */
template <typename TextChar, typename PatChar>
static int
BoyerMooreHorspool(const TextChar* text, uint32_t textLen, const PatChar* pat, uint32_t patLen)
{
MOZ_ASSERT(0 < patLen && patLen <= sBMHPatLenMax);
uint8_t skip[sBMHCharSetSize];
for (uint32_t i = 0; i < sBMHCharSetSize; i++)
skip[i] = uint8_t(patLen);
uint32_t patLast = patLen - 1;
for (uint32_t i = 0; i < patLast; i++) {
char16_t c = pat[i];
if (c >= sBMHCharSetSize)
return sBMHBadPattern;
skip[c] = uint8_t(patLast - i);
}
for (uint32_t k = patLast; k < textLen; ) {
for (uint32_t i = k, j = patLast; ; i--, j--) {
if (text[i] != pat[j])
break;
if (j == 0)
return static_cast<int>(i); /* safe: max string size */
}
char16_t c = text[k];
k += (c >= sBMHCharSetSize) ? patLen : skip[c];
}
return -1;
}
template <typename TextChar, typename PatChar>
struct MemCmp {
typedef uint32_t Extent;
static MOZ_ALWAYS_INLINE Extent computeExtent(const PatChar*, uint32_t patLen) {
return (patLen - 1) * sizeof(PatChar);
}
static MOZ_ALWAYS_INLINE bool match(const PatChar* p, const TextChar* t, Extent extent) {
MOZ_ASSERT(sizeof(TextChar) == sizeof(PatChar));
return memcmp(p, t, extent) == 0;
}
};
template <typename TextChar, typename PatChar>
struct ManualCmp {
typedef const PatChar* Extent;
static MOZ_ALWAYS_INLINE Extent computeExtent(const PatChar* pat, uint32_t patLen) {
return pat + patLen;
}
static MOZ_ALWAYS_INLINE bool match(const PatChar* p, const TextChar* t, Extent extent) {
for (; p != extent; ++p, ++t) {
if (*p != *t)
return false;
}
return true;
}
};
template <typename TextChar, typename PatChar>
static const TextChar*
FirstCharMatcherUnrolled(const TextChar* text, uint32_t n, const PatChar pat)
{
const TextChar* textend = text + n;
const TextChar* t = text;
switch ((textend - t) & 7) {
case 0: if (*t++ == pat) return t - 1;
case 7: if (*t++ == pat) return t - 1;
case 6: if (*t++ == pat) return t - 1;
case 5: if (*t++ == pat) return t - 1;
case 4: if (*t++ == pat) return t - 1;
case 3: if (*t++ == pat) return t - 1;
case 2: if (*t++ == pat) return t - 1;
case 1: if (*t++ == pat) return t - 1;
}
while (textend != t) {
if (t[0] == pat) return t;
if (t[1] == pat) return t + 1;
if (t[2] == pat) return t + 2;
if (t[3] == pat) return t + 3;
if (t[4] == pat) return t + 4;
if (t[5] == pat) return t + 5;
if (t[6] == pat) return t + 6;
if (t[7] == pat) return t + 7;
t += 8;
}
return nullptr;
}
static const char*
FirstCharMatcher8bit(const char* text, uint32_t n, const char pat)
{
#if defined(__clang__)
return FirstCharMatcherUnrolled<char, char>(text, n, pat);
#else
return reinterpret_cast<const char*>(memchr(text, pat, n));
#endif
}
static const char16_t*
FirstCharMatcher16bit(const char16_t* text, uint32_t n, const char16_t pat)
{
#if defined(XP_DARWIN) || defined(XP_WIN)
/*
* Performance of memchr is horrible in OSX. Windows is better,
* but it is still better to use UnrolledMatcher.
*/
return FirstCharMatcherUnrolled<char16_t, char16_t>(text, n, pat);
#else
/*
* For linux the best performance is obtained by slightly hacking memchr.
* memchr works only on 8bit char but char16_t is 16bit. So we treat char16_t
* in blocks of 8bit and use memchr.
*/
const char* text8 = (const char*) text;
const char* pat8 = reinterpret_cast<const char*>(&pat);
MOZ_ASSERT(n < UINT32_MAX/2);
n *= 2;
uint32_t i = 0;
while (i < n) {
/* Find the first 8 bits of 16bit character in text. */
const char* pos8 = FirstCharMatcher8bit(text8 + i, n - i, pat8[0]);
if (pos8 == nullptr)
return nullptr;
i = static_cast<uint32_t>(pos8 - text8);
/* Incorrect match if it matches the last 8 bits of 16bit char. */
if (i % 2 != 0) {
i++;
continue;
}
/* Test if last 8 bits match last 8 bits of 16bit char. */
if (pat8[1] == text8[i + 1])
return (text + (i/2));
i += 2;
}
return nullptr;
#endif
}
template <class InnerMatch, typename TextChar, typename PatChar>
static int
Matcher(const TextChar* text, uint32_t textlen, const PatChar* pat, uint32_t patlen)
{
const typename InnerMatch::Extent extent = InnerMatch::computeExtent(pat, patlen);
uint32_t i = 0;
uint32_t n = textlen - patlen + 1;
while (i < n) {
const TextChar* pos;
if (sizeof(TextChar) == 2 && sizeof(PatChar) == 2)
pos = (TextChar*) FirstCharMatcher16bit((char16_t*)text + i, n - i, pat[0]);
else if (sizeof(TextChar) == 1 && sizeof(PatChar) == 1)
pos = (TextChar*) FirstCharMatcher8bit((char*) text + i, n - i, pat[0]);
else
pos = (TextChar*) FirstCharMatcherUnrolled<TextChar, PatChar>(text + i, n - i, pat[0]);
if (pos == nullptr)
return -1;
i = static_cast<uint32_t>(pos - text);
if (InnerMatch::match(pat + 1, text + i + 1, extent))
return i;
i += 1;
}
return -1;
}
template <typename TextChar, typename PatChar>
static MOZ_ALWAYS_INLINE int
StringMatch(const TextChar* text, uint32_t textLen, const PatChar* pat, uint32_t patLen)
{
if (patLen == 0)
return 0;
if (textLen < patLen)
return -1;
#if defined(__i386__) || defined(_M_IX86) || defined(__i386)
/*
* Given enough registers, the unrolled loop below is faster than the
* following loop. 32-bit x86 does not have enough registers.
*/
if (patLen == 1) {
const PatChar p0 = *pat;
const TextChar* end = text + textLen;
for (const TextChar* c = text; c != end; ++c) {
if (*c == p0)
return c - text;
}
return -1;
}
#endif
/*
* If the text or pattern string is short, BMH will be more expensive than
* the basic linear scan due to initialization cost and a more complex loop
* body. While the correct threshold is input-dependent, we can make a few
* conservative observations:
* - When |textLen| is "big enough", the initialization time will be
* proportionally small, so the worst-case slowdown is minimized.
* - When |patLen| is "too small", even the best case for BMH will be
* slower than a simple scan for large |textLen| due to the more complex
* loop body of BMH.
* From this, the values for "big enough" and "too small" are determined
* empirically. See bug 526348.
*/
if (textLen >= 512 && patLen >= 11 && patLen <= sBMHPatLenMax) {
int index = BoyerMooreHorspool(text, textLen, pat, patLen);
if (index != sBMHBadPattern)
return index;
}
/*
* For big patterns with large potential overlap we want the SIMD-optimized
* speed of memcmp. For small patterns, a simple loop is faster. We also can't
* use memcmp if one of the strings is TwoByte and the other is Latin1.
*
* FIXME: Linux memcmp performance is sad and the manual loop is faster.
*/
return
#if !defined(__linux__)
(patLen > 128 && IsSame<TextChar, PatChar>::value)
? Matcher<MemCmp<TextChar, PatChar>, TextChar, PatChar>(text, textLen, pat, patLen)
:
#endif
Matcher<ManualCmp<TextChar, PatChar>, TextChar, PatChar>(text, textLen, pat, patLen);
}
static int32_t
StringMatch(JSLinearString* text, JSLinearString* pat, uint32_t start = 0)
{
MOZ_ASSERT(start <= text->length());
uint32_t textLen = text->length() - start;
uint32_t patLen = pat->length();
int match;
AutoCheckCannotGC nogc;
if (text->hasLatin1Chars()) {
const Latin1Char* textChars = text->latin1Chars(nogc) + start;
if (pat->hasLatin1Chars())
match = StringMatch(textChars, textLen, pat->latin1Chars(nogc), patLen);
else
match = StringMatch(textChars, textLen, pat->twoByteChars(nogc), patLen);
} else {
const char16_t* textChars = text->twoByteChars(nogc) + start;
if (pat->hasLatin1Chars())
match = StringMatch(textChars, textLen, pat->latin1Chars(nogc), patLen);
else
match = StringMatch(textChars, textLen, pat->twoByteChars(nogc), patLen);
}
return (match == -1) ? -1 : start + match;
}
static const size_t sRopeMatchThresholdRatioLog2 = 5;
bool
js::StringHasPattern(JSLinearString* text, const char16_t* pat, uint32_t patLen)
{
AutoCheckCannotGC nogc;
return text->hasLatin1Chars()
? StringMatch(text->latin1Chars(nogc), text->length(), pat, patLen) != -1
: StringMatch(text->twoByteChars(nogc), text->length(), pat, patLen) != -1;
}
int
js::StringFindPattern(JSLinearString* text, JSLinearString* pat, size_t start)
{
return StringMatch(text, pat, start);
}
// When an algorithm does not need a string represented as a single linear
// array of characters, this range utility may be used to traverse the string a
// sequence of linear arrays of characters. This avoids flattening ropes.
class StringSegmentRange
{
// If malloc() shows up in any profiles from this vector, we can add a new
// StackAllocPolicy which stashes a reusable freed-at-gc buffer in the cx.
Rooted<StringVector> stack;
RootedLinearString cur;
bool settle(JSString* str) {
while (str->isRope()) {
JSRope& rope = str->asRope();
if (!stack.append(rope.rightChild()))
return false;
str = rope.leftChild();
}
cur = &str->asLinear();
return true;
}
public:
explicit StringSegmentRange(JSContext* cx)
: stack(cx, StringVector(cx)), cur(cx)
{}
MOZ_WARN_UNUSED_RESULT bool init(JSString* str) {
MOZ_ASSERT(stack.empty());
return settle(str);
}
bool empty() const {
return cur == nullptr;
}
JSLinearString* front() const {
MOZ_ASSERT(!cur->isRope());
return cur;
}
MOZ_WARN_UNUSED_RESULT bool popFront() {
MOZ_ASSERT(!empty());
if (stack.empty()) {
cur = nullptr;
return true;
}
return settle(stack.popCopy());
}
};
typedef Vector<JSLinearString*, 16, SystemAllocPolicy> LinearStringVector;
template <typename TextChar, typename PatChar>
static int
RopeMatchImpl(const AutoCheckCannotGC& nogc, LinearStringVector& strings,
const PatChar* pat, size_t patLen)
{
/* Absolute offset from the beginning of the logical text string. */
int pos = 0;
for (JSLinearString** outerp = strings.begin(); outerp != strings.end(); ++outerp) {
/* Try to find a match within 'outer'. */
JSLinearString* outer = *outerp;
const TextChar* chars = outer->chars<TextChar>(nogc);
size_t len = outer->length();
int matchResult = StringMatch(chars, len, pat, patLen);
if (matchResult != -1) {
/* Matched! */
return pos + matchResult;
}
/* Try to find a match starting in 'outer' and running into other nodes. */
const TextChar* const text = chars + (patLen > len ? 0 : len - patLen + 1);
const TextChar* const textend = chars + len;
const PatChar p0 = *pat;
const PatChar* const p1 = pat + 1;
const PatChar* const patend = pat + patLen;
for (const TextChar* t = text; t != textend; ) {
if (*t++ != p0)
continue;
JSLinearString** innerp = outerp;
const TextChar* ttend = textend;
const TextChar* tt = t;
for (const PatChar* pp = p1; pp != patend; ++pp, ++tt) {
while (tt == ttend) {
if (++innerp == strings.end())
return -1;
JSLinearString* inner = *innerp;
tt = inner->chars<TextChar>(nogc);
ttend = tt + inner->length();
}
if (*pp != *tt)
goto break_continue;
}
/* Matched! */
return pos + (t - chars) - 1; /* -1 because of *t++ above */
break_continue:;
}
pos += len;
}
return -1;
}
/*
* RopeMatch takes the text to search and the pattern to search for in the text.
* RopeMatch returns false on OOM and otherwise returns the match index through
* the 'match' outparam (-1 for not found).
*/
static bool
RopeMatch(JSContext* cx, JSRope* text, JSLinearString* pat, int* match)
{
uint32_t patLen = pat->length();
if (patLen == 0) {
*match = 0;
return true;
}
if (text->length() < patLen) {
*match = -1;
return true;
}
/*
* List of leaf nodes in the rope. If we run out of memory when trying to
* append to this list, we can still fall back to StringMatch, so use the
* system allocator so we don't report OOM in that case.
*/
LinearStringVector strings;
/*
* We don't want to do rope matching if there is a poor node-to-char ratio,
* since this means spending a lot of time in the match loop below. We also
* need to build the list of leaf nodes. Do both here: iterate over the
* nodes so long as there are not too many.
*
* We also don't use rope matching if the rope contains both Latin1 and
* TwoByte nodes, to simplify the match algorithm.
*/
{
size_t threshold = text->length() >> sRopeMatchThresholdRatioLog2;
StringSegmentRange r(cx);
if (!r.init(text))
return false;
bool textIsLatin1 = text->hasLatin1Chars();
while (!r.empty()) {
if (threshold-- == 0 ||
r.front()->hasLatin1Chars() != textIsLatin1 ||
!strings.append(r.front()))
{
JSLinearString* linear = text->ensureLinear(cx);
if (!linear)
return false;
*match = StringMatch(linear, pat);
return true;
}
if (!r.popFront())
return false;
}
}
AutoCheckCannotGC nogc;
if (text->hasLatin1Chars()) {
if (pat->hasLatin1Chars())
*match = RopeMatchImpl<Latin1Char>(nogc, strings, pat->latin1Chars(nogc), patLen);
else
*match = RopeMatchImpl<Latin1Char>(nogc, strings, pat->twoByteChars(nogc), patLen);
} else {
if (pat->hasLatin1Chars())
*match = RopeMatchImpl<char16_t>(nogc, strings, pat->latin1Chars(nogc), patLen);
else
*match = RopeMatchImpl<char16_t>(nogc, strings, pat->twoByteChars(nogc), patLen);
}
return true;
}
/* ES6 draft rc4 21.1.3.7. */
static bool
str_includes(JSContext* cx, unsigned argc, Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
// Steps 1, 2, and 3
RootedString str(cx, ThisToStringForStringProto(cx, args));
if (!str)
return false;
// Steps 4 and 5
bool isRegExp;
if (!IsRegExp(cx, args.get(0), &isRegExp))
return false;
// Step 6
if (isRegExp) {
JS_ReportErrorNumber(cx, GetErrorMessage, nullptr, JSMSG_INVALID_ARG_TYPE,
"first", "", "Regular Expression");
return false;
}
// Steps 7 and 8
RootedLinearString searchStr(cx, ArgToRootedString(cx, args, 0));
if (!searchStr)
return false;
// Steps 9 and 10
uint32_t pos = 0;
if (args.hasDefined(1)) {
if (args[1].isInt32()) {
int i = args[1].toInt32();
pos = (i < 0) ? 0U : uint32_t(i);
} else {
double d;
if (!ToInteger(cx, args[1], &d))
return false;
pos = uint32_t(Min(Max(d, 0.0), double(UINT32_MAX)));
}
}
// Step 11
uint32_t textLen = str->length();
// Step 12
uint32_t start = Min(Max(pos, 0U), textLen);
// Steps 13 and 14
JSLinearString* text = str->ensureLinear(cx);
if (!text)
return false;
args.rval().setBoolean(StringMatch(text, searchStr, start) != -1);
return true;
}
/* TODO: remove String.prototype.contains (bug 1103588) */
static bool
str_contains(JSContext *cx, unsigned argc, Value *vp)
{
#ifndef RELEASE_BUILD
CallArgs args = CallArgsFromVp(argc, vp);
RootedObject callee(cx, &args.callee());
if (!GlobalObject::warnOnceAboutStringContains(cx, callee))
return false;
#endif
return str_includes(cx, argc, vp);
}
/* ES6 20120927 draft 15.5.4.7. */
bool
js::str_indexOf(JSContext* cx, unsigned argc, Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
// Steps 1, 2, and 3
RootedString str(cx, ThisToStringForStringProto(cx, args));
if (!str)
return false;
// Steps 4 and 5
RootedLinearString searchStr(cx, ArgToRootedString(cx, args, 0));
if (!searchStr)
return false;
// Steps 6 and 7
uint32_t pos = 0;
if (args.hasDefined(1)) {
if (args[1].isInt32()) {
int i = args[1].toInt32();
pos = (i < 0) ? 0U : uint32_t(i);
} else {
double d;
if (!ToInteger(cx, args[1], &d))
return false;
pos = uint32_t(Min(Max(d, 0.0), double(UINT32_MAX)));
}
}
// Step 8
uint32_t textLen = str->length();
// Step 9
uint32_t start = Min(Max(pos, 0U), textLen);
// Steps 10 and 11
JSLinearString* text = str->ensureLinear(cx);
if (!text)
return false;
args.rval().setInt32(StringMatch(text, searchStr, start));
return true;
}
template <typename TextChar, typename PatChar>
static int32_t
LastIndexOfImpl(const TextChar* text, size_t textLen, const PatChar* pat, size_t patLen,
size_t start)
{
MOZ_ASSERT(patLen > 0);
MOZ_ASSERT(patLen <= textLen);
MOZ_ASSERT(start <= textLen - patLen);
const PatChar p0 = *pat;
const PatChar* patNext = pat + 1;
const PatChar* patEnd = pat + patLen;
for (const TextChar* t = text + start; t >= text; --t) {
if (*t == p0) {
const TextChar* t1 = t + 1;
for (const PatChar* p1 = patNext; p1 < patEnd; ++p1, ++t1) {
if (*t1 != *p1)
goto break_continue;
}
return static_cast<int32_t>(t - text);
}
break_continue:;
}
return -1;
}
bool
js::str_lastIndexOf(JSContext* cx, unsigned argc, Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
RootedString textstr(cx, ThisToStringForStringProto(cx, args));
if (!textstr)
return false;
RootedLinearString pat(cx, ArgToRootedString(cx, args, 0));
if (!pat)
return false;
size_t textLen = textstr->length();
size_t patLen = pat->length();
int start = textLen - patLen; // Start searching here
if (start < 0) {
args.rval().setInt32(-1);
return true;
}
if (args.hasDefined(1)) {
if (args[1].isInt32()) {
int i = args[1].toInt32();
if (i <= 0)
start = 0;
else if (i < start)
start = i;
} else {
double d;
if (!ToNumber(cx, args[1], &d))
return false;
if (!IsNaN(d)) {
d = JS::ToInteger(d);
if (d <= 0)
start = 0;
else if (d < start)
start = int(d);
}
}
}
if (patLen == 0) {
args.rval().setInt32(start);
return true;
}
JSLinearString* text = textstr->ensureLinear(cx);
if (!text)
return false;
int32_t res;
AutoCheckCannotGC nogc;
if (text->hasLatin1Chars()) {
const Latin1Char* textChars = text->latin1Chars(nogc);
if (pat->hasLatin1Chars())
res = LastIndexOfImpl(textChars, textLen, pat->latin1Chars(nogc), patLen, start);
else
res = LastIndexOfImpl(textChars, textLen, pat->twoByteChars(nogc), patLen, start);
} else {
const char16_t* textChars = text->twoByteChars(nogc);
if (pat->hasLatin1Chars())
res = LastIndexOfImpl(textChars, textLen, pat->latin1Chars(nogc), patLen, start);
else
res = LastIndexOfImpl(textChars, textLen, pat->twoByteChars(nogc), patLen, start);
}
args.rval().setInt32(res);
return true;
}
bool
js::HasSubstringAt(JSLinearString* text, JSLinearString* pat, size_t start)
{
MOZ_ASSERT(start + pat->length() <= text->length());
size_t patLen = pat->length();
AutoCheckCannotGC nogc;
if (text->hasLatin1Chars()) {
const Latin1Char* textChars = text->latin1Chars(nogc) + start;
if (pat->hasLatin1Chars())
return PodEqual(textChars, pat->latin1Chars(nogc), patLen);
return EqualChars(textChars, pat->twoByteChars(nogc), patLen);
}
const char16_t* textChars = text->twoByteChars(nogc) + start;
if (pat->hasTwoByteChars())
return PodEqual(textChars, pat->twoByteChars(nogc), patLen);
return EqualChars(pat->latin1Chars(nogc), textChars, patLen);
}
/* ES6 draft rc3 21.1.3.18. */
bool
js::str_startsWith(JSContext* cx, unsigned argc, Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
// Steps 1, 2, and 3
RootedString str(cx, ThisToStringForStringProto(cx, args));
if (!str)
return false;
// Steps 4 and 5
bool isRegExp;
if (!IsRegExp(cx, args.get(0), &isRegExp))
return false;
// Step 6
if (isRegExp) {
JS_ReportErrorNumber(cx, GetErrorMessage, nullptr, JSMSG_INVALID_ARG_TYPE,
"first", "", "Regular Expression");
return false;
}
// Steps 7 and 8
RootedLinearString searchStr(cx, ArgToRootedString(cx, args, 0));
if (!searchStr)
return false;
// Steps 9 and 10
uint32_t pos = 0;
if (args.hasDefined(1)) {
if (args[1].isInt32()) {
int i = args[1].toInt32();
pos = (i < 0) ? 0U : uint32_t(i);
} else {
double d;
if (!ToInteger(cx, args[1], &d))
return false;
pos = uint32_t(Min(Max(d, 0.0), double(UINT32_MAX)));
}
}
// Step 11
uint32_t textLen = str->length();
// Step 12
uint32_t start = Min(Max(pos, 0U), textLen);
// Step 13
uint32_t searchLen = searchStr->length();
// Step 14
if (searchLen + start < searchLen || searchLen + start > textLen) {
args.rval().setBoolean(false);
return true;
}
// Steps 15 and 16
JSLinearString* text = str->ensureLinear(cx);
if (!text)
return false;
args.rval().setBoolean(HasSubstringAt(text, searchStr, start));
return true;
}
/* ES6 draft rc3 21.1.3.6. */
static bool
str_endsWith(JSContext* cx, unsigned argc, Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
// Steps 1, 2, and 3
RootedString str(cx, ThisToStringForStringProto(cx, args));
if (!str)
return false;
// Steps 4 and 5
bool isRegExp;
if (!IsRegExp(cx, args.get(0), &isRegExp))
return false;
// Step 6
if (isRegExp) {
JS_ReportErrorNumber(cx, GetErrorMessage, nullptr, JSMSG_INVALID_ARG_TYPE,
"first", "", "Regular Expression");
return false;
}
// Steps 7 and 8
RootedLinearString searchStr(cx, ArgToRootedString(cx, args, 0));
if (!searchStr)
return false;
// Step 9
uint32_t textLen = str->length();
// Steps 10 and 11
uint32_t pos = textLen;
if (args.hasDefined(1)) {
if (args[1].isInt32()) {
int i = args[1].toInt32();
pos = (i < 0) ? 0U : uint32_t(i);
} else {
double d;
if (!ToInteger(cx, args[1], &d))
return false;
pos = uint32_t(Min(Max(d, 0.0), double(UINT32_MAX)));
}
}
// Step 12
uint32_t end = Min(Max(pos, 0U), textLen);
// Step 13
uint32_t searchLen = searchStr->length();
// Step 15 (reordered)
if (searchLen > end) {
args.rval().setBoolean(false);
return true;
}
// Step 14
uint32_t start = end - searchLen;
// Steps 16 and 17
JSLinearString* text = str->ensureLinear(cx);
if (!text)
return false;
args.rval().setBoolean(HasSubstringAt(text, searchStr, start));
return true;
}
template <typename CharT>
static void
TrimString(const CharT* chars, bool trimLeft, bool trimRight, size_t length,
size_t* pBegin, size_t* pEnd)
{
size_t begin = 0, end = length;
if (trimLeft) {
while (begin < length && unicode::IsSpace(chars[begin]))
++begin;
}
if (trimRight) {
while (end > begin && unicode::IsSpace(chars[end - 1]))
--end;
}
*pBegin = begin;
*pEnd = end;
}
static bool
TrimString(JSContext* cx, Value* vp, bool trimLeft, bool trimRight)
{
CallReceiver call = CallReceiverFromVp(vp);
RootedString str(cx, ThisToStringForStringProto(cx, call));
if (!str)
return false;
JSLinearString* linear = str->ensureLinear(cx);
if (!linear)
return false;
size_t length = linear->length();
size_t begin, end;
if (linear->hasLatin1Chars()) {
AutoCheckCannotGC nogc;
TrimString(linear->latin1Chars(nogc), trimLeft, trimRight, length, &begin, &end);
} else {
AutoCheckCannotGC nogc;
TrimString(linear->twoByteChars(nogc), trimLeft, trimRight, length, &begin, &end);
}
str = NewDependentString(cx, str, begin, end - begin);
if (!str)
return false;
call.rval().setString(str);
return true;
}
static bool
str_trim(JSContext* cx, unsigned argc, Value* vp)
{
return TrimString(cx, vp, true, true);
}
static bool
str_trimLeft(JSContext* cx, unsigned argc, Value* vp)
{
return TrimString(cx, vp, true, false);
}
static bool
str_trimRight(JSContext* cx, unsigned argc, Value* vp)
{
return TrimString(cx, vp, false, true);
}
/*
* Perl-inspired string functions.
*/
namespace {
/* Result of a successfully performed flat match. */
class FlatMatch
{
RootedAtom pat_;
int32_t match_;
friend class StringRegExpGuard;
public:
explicit FlatMatch(JSContext* cx) : pat_(cx) {}
JSLinearString* pattern() const { return pat_; }
size_t patternLength() const { return pat_->length(); }
/*
* Note: The match is -1 when the match is performed successfully,
* but no match is found.
*/
int32_t match() const { return match_; }
};
} /* anonymous namespace */
static inline bool
IsRegExpMetaChar(char16_t c)
{
switch (c) {
/* Taken from the PatternCharacter production in 15.10.1. */
case '^': case '$': case '\\': case '.': case '*': case '+':
case '?': case '(': case ')': case '[': case ']': case '{':
case '}': case '|':
return true;
default:
return false;
}
}
template <typename CharT>
bool
js::HasRegExpMetaChars(const CharT* chars, size_t length)
{
for (size_t i = 0; i < length; ++i) {
if (IsRegExpMetaChar(chars[i]))
return true;
}
return false;
}
template bool
js::HasRegExpMetaChars<Latin1Char>(const Latin1Char* chars, size_t length);
template bool
js::HasRegExpMetaChars<char16_t>(const char16_t* chars, size_t length);
bool
js::StringHasRegExpMetaChars(JSLinearString* str)
{
AutoCheckCannotGC nogc;
if (str->hasLatin1Chars())
return HasRegExpMetaChars(str->latin1Chars(nogc), str->length());
return HasRegExpMetaChars(str->twoByteChars(nogc), str->length());
}
namespace {
/*
* StringRegExpGuard factors logic out of String regexp operations.
*
* |optarg| indicates in which argument position RegExp flags will be found, if
* present. This is a Mozilla extension and not part of any ECMA spec.
*/
class MOZ_STACK_CLASS StringRegExpGuard
{
RegExpGuard re_;
FlatMatch fm;
RootedObject obj_;
/*
* Upper bound on the number of characters we are willing to potentially
* waste on searching for RegExp meta-characters.
*/
static const size_t MAX_FLAT_PAT_LEN = 256;
template <typename CharT>
static bool
flattenPattern(StringBuffer& sb, const CharT* chars, size_t len)
{
static const char ESCAPE_CHAR = '\\';
for (const CharT* it = chars; it < chars + len; ++it) {
if (IsRegExpMetaChar(*it)) {
if (!sb.append(ESCAPE_CHAR) || !sb.append(*it))
return false;
} else {
if (!sb.append(*it))
return false;
}
}
return true;
}
static JSAtom*
flattenPattern(JSContext* cx, JSAtom* pat)
{
StringBuffer sb(cx);
if (!sb.reserve(pat->length()))
return nullptr;
if (pat->hasLatin1Chars()) {
AutoCheckCannotGC nogc;
if (!flattenPattern(sb, pat->latin1Chars(nogc), pat->length()))
return nullptr;
} else {
AutoCheckCannotGC nogc;
if (!flattenPattern(sb, pat->twoByteChars(nogc), pat->length()))
return nullptr;
}
return sb.finishAtom();
}
public:
explicit StringRegExpGuard(JSContext* cx)
: re_(cx), fm(cx), obj_(cx)
{ }
/* init must succeed in order to call tryFlatMatch or normalizeRegExp. */
bool init(JSContext* cx, const CallArgs& args, bool convertVoid = false)
{
if (args.length() != 0) {
ESClassValue cls;
if (!GetClassOfValue(cx, args[0], &cls))
return false;
if (cls == ESClass_RegExp)
return initRegExp(cx, &args[0].toObject());
}
if (convertVoid && !args.hasDefined(0)) {
fm.pat_ = cx->runtime()->emptyString;
return true;
}
JSString* arg = ArgToRootedString(cx, args, 0);
if (!arg)
return false;
fm.pat_ = AtomizeString(cx, arg);
if (!fm.pat_)
return false;
return true;
}
bool initRegExp(JSContext* cx, JSObject* regexp) {
obj_ = regexp;
return RegExpToShared(cx, obj_, &re_);
}
bool init(JSContext* cx, HandleString pattern) {
fm.pat_ = AtomizeString(cx, pattern);
if (!fm.pat_)
return false;
return true;
}
/*
* Attempt to match |patstr| to |textstr|. A flags argument, metachars in
* the pattern string, or a lengthy pattern string can thwart this process.
*
* |checkMetaChars| looks for regexp metachars in the pattern string.
*
* Return whether flat matching could be used.
*
* N.B. tryFlatMatch returns nullptr on OOM, so the caller must check
* cx->isExceptionPending().
*/
const FlatMatch*
tryFlatMatch(JSContext* cx, JSString* text, unsigned optarg, unsigned argc,
bool checkMetaChars = true)
{
if (re_.initialized())
return nullptr;
if (optarg < argc)
return nullptr;
size_t patLen = fm.pat_->length();
if (checkMetaChars && (patLen > MAX_FLAT_PAT_LEN || StringHasRegExpMetaChars(fm.pat_)))
return nullptr;
/*
* |text| could be a rope, so we want to avoid flattening it for as
* long as possible.
*/
if (text->isRope()) {
if (!RopeMatch(cx, &text->asRope(), fm.pat_, &fm.match_))
return nullptr;
} else {
fm.match_ = StringMatch(&text->asLinear(), fm.pat_, 0);
}
return &fm;
}
/* If the pattern is not already a regular expression, make it so. */
bool normalizeRegExp(JSContext* cx, bool flat, unsigned optarg, const CallArgs& args)
{
if (re_.initialized())
return true;
/* Build RegExp from pattern string. */
RootedString opt(cx);
if (optarg < args.length()) {
if (JSScript* script = cx->currentScript()) {
const char* filename = script->filename();
cx->compartment()->addTelemetry(filename, JSCompartment::DeprecatedFlagsArgument);
}
if (!cx->compartment()->warnedAboutFlagsArgument) {
if (!JS_ReportErrorFlagsAndNumber(cx, JSREPORT_WARNING, GetErrorMessage, nullptr,
JSMSG_DEPRECATED_FLAGS_ARG))
return false;
cx->compartment()->warnedAboutFlagsArgument = true;
}
opt = ToString<CanGC>(cx, args[optarg]);
if (!opt)
return false;
} else {
opt = nullptr;
}
Rooted<JSAtom*> pat(cx);
if (flat) {
pat = flattenPattern(cx, fm.pat_);
if (!pat)
return false;
} else {
pat = fm.pat_;
}
MOZ_ASSERT(pat);
return cx->compartment()->regExps.get(cx, pat, opt, &re_);
}
bool zeroLastIndex(JSContext* cx) {
if (!regExpIsObject())
return true;
// Use a fast path for same-global RegExp objects with writable
// lastIndex.
if (obj_->is<RegExpObject>()) {
RegExpObject* nobj = &obj_->as<RegExpObject>();
if (nobj->lookup(cx, cx->names().lastIndex)->writable()) {
nobj->zeroLastIndex(cx);
return true;
}
}
// Handle everything else generically (including throwing if .lastIndex is non-writable).
RootedValue zero(cx, Int32Value(0));
return SetProperty(cx, obj_, cx->names().lastIndex, zero);
}
RegExpShared& regExp() { return *re_; }
bool regExpIsObject() { return obj_ != nullptr; }
HandleObject regExpObject() {
MOZ_ASSERT(regExpIsObject());
return obj_;
}
private:
StringRegExpGuard(const StringRegExpGuard&) = delete;
void operator=(const StringRegExpGuard&) = delete;
};
} /* anonymous namespace */
static bool
DoMatchLocal(JSContext* cx, const CallArgs& args, RegExpStatics* res, HandleLinearString input,
RegExpShared& re)
{
ScopedMatchPairs matches(&cx->tempLifoAlloc());
RegExpRunStatus status = re.execute(cx, input, 0, &matches);
if (status == RegExpRunStatus_Error)
return false;
if (status == RegExpRunStatus_Success_NotFound) {
args.rval().setNull();
return true;
}
if (!res->updateFromMatchPairs(cx, input, matches))
return false;
RootedValue rval(cx);
if (!CreateRegExpMatchResult(cx, input, matches, &rval))
return false;
args.rval().set(rval);
return true;
}
/* ES5 15.5.4.10 step 8. */
static bool
DoMatchGlobal(JSContext* cx, const CallArgs& args, RegExpStatics* res, HandleLinearString input,
StringRegExpGuard& g)
{
// Step 8a.
//
// This single zeroing of "lastIndex" covers all "lastIndex" changes in the
// rest of String.prototype.match, particularly in steps 8f(i) and
// 8f(iii)(2)(a). Here's why.
//
// The inputs to the calls to RegExp.prototype.exec are a RegExp object
// whose .global is true and a string. The only side effect of a call in
// these circumstances is that the RegExp's .lastIndex will be modified to
// the next starting index after the discovered match (or to 0 if there's
// no remaining match). Because .lastIndex is a non-configurable data
// property and no script-controllable code executes after step 8a, passing
// step 8a implies *every* .lastIndex set succeeds. String.prototype.match
// calls RegExp.prototype.exec repeatedly, and the last call doesn't match,
// so the final value of .lastIndex is 0: exactly the state after step 8a
// succeeds. No spec step lets script observe intermediate .lastIndex
// values.
//
// The arrays returned by RegExp.prototype.exec always have a string at
// index 0, for which [[Get]]s have no side effects.
//
// Filling in a new array using [[DefineOwnProperty]] is unobservable.
//
// This is a tricky point, because after this set, our implementation *can*
// fail. The key is that script can't distinguish these failure modes from
// one where, in spec terms, we fail immediately after step 8a. That *in
// reality* we might have done extra matching work, or created a partial
// results array to return, or hit an interrupt, is irrelevant. The
// script can't tell we did any of those things but didn't update
// .lastIndex. Thus we can optimize steps 8b onward however we want,
// including eliminating intermediate .lastIndex sets, as long as we don't
// add ways for script to observe the intermediate states.
//
// In short: it's okay to cheat (by setting .lastIndex to 0, once) because
// we can't get caught.
if (!g.zeroLastIndex(cx))
return false;
// Step 8b.
AutoValueVector elements(cx);
size_t lastSuccessfulStart = 0;
// The loop variables from steps 8c-e aren't needed, as we use different
// techniques from the spec to implement step 8f's loop.
// Step 8f.
ScopedMatchPairs matches(&cx->tempLifoAlloc());
size_t charsLen = input->length();
RegExpShared& re = g.regExp();
for (size_t searchIndex = 0; searchIndex <= charsLen; ) {
if (!CheckForInterrupt(cx))
return false;
// Steps 8f(i-ii), minus "lastIndex" updates (see above).
RegExpRunStatus status = re.execute(cx, input, searchIndex, &matches);
if (status == RegExpRunStatus_Error)
return false;
// Step 8f(ii).
if (status == RegExpRunStatus_Success_NotFound)
break;
lastSuccessfulStart = searchIndex;
MatchPair& match = matches[0];
// Steps 8f(iii)(1-3).
searchIndex = match.isEmpty() ? match.limit + 1 : match.limit;
// Step 8f(iii)(4-5).
JSLinearString* str = NewDependentString(cx, input, match.start, match.length());
if (!str)
return false;
if (!elements.append(StringValue(str)))
return false;
}
// Step 8g.
if (elements.empty()) {
args.rval().setNull();
return true;
}
// The last *successful* match updates the RegExpStatics. (Interestingly,
// this implies that String.prototype.match's semantics aren't those
// implied by the RegExp.prototype.exec calls in the ES5 algorithm.)
res->updateLazily(cx, input, &re, lastSuccessfulStart);
// Steps 8b, 8f(iii)(5-6), 8h.
JSObject* array = NewDenseCopiedArray(cx, elements.length(), elements.begin());
if (!array)
return false;
args.rval().setObject(*array);
return true;
}
static bool
BuildFlatMatchArray(JSContext* cx, HandleString textstr, const FlatMatch& fm, CallArgs* args)
{
if (fm.match() < 0) {
args->rval().setNull();
return true;
}
/* Get the templateObject that defines the shape and type of the output object */
JSObject* templateObject = cx->compartment()->regExps.getOrCreateMatchResultTemplateObject(cx);
if (!templateObject)
return false;
RootedArrayObject arr(cx, NewDenseFullyAllocatedArrayWithTemplate(cx, 1, templateObject));
if (!arr)
return false;
/* Store a Value for each pair. */
arr->setDenseInitializedLength(1);
arr->initDenseElement(0, StringValue(fm.pattern()));
/* Set the |index| property. (TemplateObject positions it in slot 0) */
arr->setSlot(0, Int32Value(fm.match()));
/* Set the |input| property. (TemplateObject positions it in slot 1) */
arr->setSlot(1, StringValue(textstr));
#ifdef DEBUG
RootedValue test(cx);
RootedId id(cx, NameToId(cx->names().index));
if (!NativeGetProperty(cx, arr, id, &test))
return false;
MOZ_ASSERT(test == arr->getSlot(0));
id = NameToId(cx->names().input);
if (!NativeGetProperty(cx, arr, id, &test))
return false;
MOZ_ASSERT(test == arr->getSlot(1));
#endif
args->rval().setObject(*arr);
return true;
}
/* ES5 15.5.4.10. */
bool
js::str_match(JSContext* cx, unsigned argc, Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
/* Steps 1-2. */
RootedString str(cx, ThisToStringForStringProto(cx, args));
if (!str)
return false;
/* Steps 3-4, plus the trailing-argument "flags" extension. */
StringRegExpGuard g(cx);
if (!g.init(cx, args, true))
return false;
/* Fast path when the search pattern can be searched for as a string. */
if (const FlatMatch* fm = g.tryFlatMatch(cx, str, 1, args.length()))
return BuildFlatMatchArray(cx, str, *fm, &args);
/* Return if there was an error in tryFlatMatch. */
if (cx->isExceptionPending())
return false;
/* Create regular-expression internals as needed to perform the match. */
if (!g.normalizeRegExp(cx, false, 1, args))
return false;
RegExpStatics* res = cx->global()->getRegExpStatics(cx);
if (!res)
return false;
RootedLinearString linearStr(cx, str->ensureLinear(cx));
if (!linearStr)
return false;
/* Steps 5-6, 7. */
if (!g.regExp().global())
return DoMatchLocal(cx, args, res, linearStr, g.regExp());
/* Steps 6, 8. */
return DoMatchGlobal(cx, args, res, linearStr, g);
}
bool
js::str_search(JSContext* cx, unsigned argc, Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
RootedString str(cx, ThisToStringForStringProto(cx, args));
if (!str)
return false;
StringRegExpGuard g(cx);
if (!g.init(cx, args, true))
return false;
if (const FlatMatch* fm = g.tryFlatMatch(cx, str, 1, args.length())) {
args.rval().setInt32(fm->match());
return true;
}
if (cx->isExceptionPending()) /* from tryFlatMatch */
return false;
if (!g.normalizeRegExp(cx, false, 1, args))
return false;
RootedLinearString linearStr(cx, str->ensureLinear(cx));
if (!linearStr)
return false;
RegExpStatics* res = cx->global()->getRegExpStatics(cx);
if (!res)
return false;
/* Per ECMAv5 15.5.4.12 (5) The last index property is ignored and left unchanged. */
ScopedMatchPairs matches(&cx->tempLifoAlloc());
RegExpRunStatus status = g.regExp().execute(cx, linearStr, 0, &matches);
if (status == RegExpRunStatus_Error)
return false;
if (status == RegExpRunStatus_Success)
res->updateLazily(cx, linearStr, &g.regExp(), 0);
args.rval().setInt32(status == RegExpRunStatus_Success_NotFound ? -1 : matches[0].start);
return true;
}
// Utility for building a rope (lazy concatenation) of strings.
class RopeBuilder {
JSContext* cx;
RootedString res;
RopeBuilder(const RopeBuilder& other) = delete;
void operator=(const RopeBuilder& other) = delete;
public:
explicit RopeBuilder(JSContext* cx)
: cx(cx), res(cx, cx->runtime()->emptyString)
{}
inline bool append(HandleString str) {
res = ConcatStrings<CanGC>(cx, res, str);
return !!res;
}
inline JSString* result() {
return res;
}
};
namespace {
template <typename CharT>
static uint32_t
FindDollarIndex(const CharT* chars, size_t length)
{
if (const CharT* p = js_strchr_limit(chars, '$', chars + length)) {
uint32_t dollarIndex = p - chars;
MOZ_ASSERT(dollarIndex < length);
return dollarIndex;
}
return UINT32_MAX;
}
struct ReplaceData
{
explicit ReplaceData(JSContext* cx)
: str(cx), g(cx), lambda(cx), elembase(cx), repstr(cx),
fig(cx, NullValue()), sb(cx)
{}
inline void setReplacementString(JSLinearString* string) {
MOZ_ASSERT(string);
lambda = nullptr;
elembase = nullptr;
repstr = string;
AutoCheckCannotGC nogc;
dollarIndex = string->hasLatin1Chars()
? FindDollarIndex(string->latin1Chars(nogc), string->length())
: FindDollarIndex(string->twoByteChars(nogc), string->length());
}
inline void setReplacementFunction(JSObject* func) {
MOZ_ASSERT(func);
lambda = func;
elembase = nullptr;
repstr = nullptr;
dollarIndex = UINT32_MAX;
}
RootedString str; /* 'this' parameter object as a string */
StringRegExpGuard g; /* regexp parameter object and private data */
RootedObject lambda; /* replacement function object or null */
RootedNativeObject elembase; /* object for function(a){return b[a]} replace */
RootedLinearString repstr; /* replacement string */
uint32_t dollarIndex; /* index of first $ in repstr, or UINT32_MAX */
int leftIndex; /* left context index in str->chars */
bool calledBack; /* record whether callback has been called */
FastInvokeGuard fig; /* used for lambda calls, also holds arguments */
StringBuffer sb; /* buffer built during DoMatch */
};
} /* anonymous namespace */
static bool
ReplaceRegExp(JSContext* cx, RegExpStatics* res, ReplaceData& rdata);
static bool
DoMatchForReplaceLocal(JSContext* cx, RegExpStatics* res, HandleLinearString linearStr,
RegExpShared& re, ReplaceData& rdata, size_t* rightContextOffset)
{
ScopedMatchPairs matches(&cx->tempLifoAlloc());
RegExpRunStatus status = re.execute(cx, linearStr, 0, &matches);
if (status == RegExpRunStatus_Error)
return false;
if (status == RegExpRunStatus_Success_NotFound)
return true;
MatchPair& match = matches[0];
*rightContextOffset = match.limit;
if (!res->updateFromMatchPairs(cx, linearStr, matches))
return false;
return ReplaceRegExp(cx, res, rdata);
}
static bool
DoMatchForReplaceGlobal(JSContext* cx, RegExpStatics* res, HandleLinearString linearStr,
RegExpShared& re, ReplaceData& rdata, size_t* rightContextOffset)
{
size_t charsLen = linearStr->length();
ScopedMatchPairs matches(&cx->tempLifoAlloc());
for (size_t count = 0, searchIndex = 0; searchIndex <= charsLen; ++count) {
if (!CheckForInterrupt(cx))
return false;
RegExpRunStatus status = re.execute(cx, linearStr, searchIndex, &matches);
if (status == RegExpRunStatus_Error)
return false;
if (status == RegExpRunStatus_Success_NotFound)
break;
MatchPair& match = matches[0];
searchIndex = match.isEmpty() ? match.limit + 1 : match.limit;
*rightContextOffset = match.limit;
if (!res->updateFromMatchPairs(cx, linearStr, matches))
return false;
if (!ReplaceRegExp(cx, res, rdata))
return false;
}
return true;
}
template <typename CharT>
static bool
InterpretDollar(RegExpStatics* res, const CharT* bp, const CharT* dp, const CharT* ep,
ReplaceData& rdata, JSSubString* out, size_t* skip)
{
MOZ_ASSERT(*dp == '$');
/* If there is only a dollar, bail now */
if (dp + 1 >= ep)
return false;
/* Interpret all Perl match-induced dollar variables. */
char16_t dc = dp[1];
if (JS7_ISDEC(dc)) {
/* ECMA-262 Edition 3: 1-9 or 01-99 */
unsigned num = JS7_UNDEC(dc);
if (num > res->getMatches().parenCount())
return false;
const CharT* cp = dp + 2;
if (cp < ep && (dc = *cp, JS7_ISDEC(dc))) {
unsigned tmp = 10 * num + JS7_UNDEC(dc);
if (tmp <= res->getMatches().parenCount()) {
cp++;
num = tmp;
}
}
if (num == 0)
return false;
*skip = cp - dp;
MOZ_ASSERT(num <= res->getMatches().parenCount());
/*
* Note: we index to get the paren with the (1-indexed) pair
* number, as opposed to a (0-indexed) paren number.
*/
res->getParen(num, out);
return true;
}
*skip = 2;
switch (dc) {
case '$':
out->init(rdata.repstr, dp - bp, 1);
return true;
case '&':
res->getLastMatch(out);
return true;
case '+':
res->getLastParen(out);
return true;
case '`':
res->getLeftContext(out);
return true;
case '\'':
res->getRightContext(out);
return true;
}
return false;
}
template <typename CharT>
static bool
FindReplaceLengthString(JSContext* cx, RegExpStatics* res, ReplaceData& rdata, size_t* sizep)
{
JSLinearString* repstr = rdata.repstr;
CheckedInt<uint32_t> replen = repstr->length();
if (rdata.dollarIndex != UINT32_MAX) {
AutoCheckCannotGC nogc;
MOZ_ASSERT(rdata.dollarIndex < repstr->length());
const CharT* bp = repstr->chars<CharT>(nogc);
const CharT* dp = bp + rdata.dollarIndex;
const CharT* ep = bp + repstr->length();
do {
JSSubString sub;
size_t skip;
if (InterpretDollar(res, bp, dp, ep, rdata, &sub, &skip)) {
if (sub.length > skip)
replen += sub.length - skip;
else
replen -= skip - sub.length;
dp += skip;
} else {
dp++;
}
dp = js_strchr_limit(dp, '$', ep);
} while (dp);
}
if (!replen.isValid()) {
ReportAllocationOverflow(cx);
return false;
}
*sizep = replen.value();
return true;
}
static bool
FindReplaceLength(JSContext* cx, RegExpStatics* res, ReplaceData& rdata, size_t* sizep)
{
if (rdata.elembase) {
/*
* The base object is used when replace was passed a lambda which looks like
* 'function(a) { return b[a]; }' for the base object b. b will not change
* in the course of the replace unless we end up making a scripted call due
* to accessing a scripted getter or a value with a scripted toString.
*/
MOZ_ASSERT(rdata.lambda);
MOZ_ASSERT(!rdata.elembase->getOps()->lookupProperty);
MOZ_ASSERT(!rdata.elembase->getOps()->getProperty);
RootedValue match(cx);
if (!res->createLastMatch(cx, &match))
return false;
JSAtom* atom = ToAtom<CanGC>(cx, match);
if (!atom)
return false;
RootedValue v(cx);
if (HasDataProperty(cx, rdata.elembase, AtomToId(atom), v.address()) && v.isString()) {
rdata.repstr = v.toString()->ensureLinear(cx);
if (!rdata.repstr)
return false;
*sizep = rdata.repstr->length();
return true;
}
/*
* Couldn't handle this property, fall through and despecialize to the
* general lambda case.
*/
rdata.elembase = nullptr;
}
if (rdata.lambda) {
RootedObject lambda(cx, rdata.lambda);
/*
* In the lambda case, not only do we find the replacement string's
* length, we compute repstr and return it via rdata for use within
* DoReplace. The lambda is called with arguments ($&, $1, $2, ...,
* index, input), i.e., all the properties of a regexp match array.
* For $&, etc., we must create string jsvals from cx->regExpStatics.
* We grab up stack space to keep the newborn strings GC-rooted.
*/
unsigned p = res->getMatches().parenCount();
unsigned argc = 1 + p + 2;
InvokeArgs& args = rdata.fig.args();
if (!args.init(argc))
return false;
args.setCallee(ObjectValue(*lambda));
args.setThis(UndefinedValue());
/* Push $&, $1, $2, ... */
unsigned argi = 0;
if (!res->createLastMatch(cx, args[argi++]))
return false;
for (size_t i = 0; i < res->getMatches().parenCount(); ++i) {
if (!res->createParen(cx, i + 1, args[argi++]))
return false;
}
/* Push match index and input string. */
args[argi++].setInt32(res->getMatches()[0].start);
args[argi].setString(rdata.str);
if (!rdata.fig.invoke(cx))
return false;
/* root repstr: rdata is on the stack, so scanned by conservative gc. */
JSString* repstr = ToString<CanGC>(cx, args.rval());
if (!repstr)
return false;
rdata.repstr = repstr->ensureLinear(cx);
if (!rdata.repstr)
return false;
*sizep = rdata.repstr->length();
return true;
}
return rdata.repstr->hasLatin1Chars()
? FindReplaceLengthString<Latin1Char>(cx, res, rdata, sizep)
: FindReplaceLengthString<char16_t>(cx, res, rdata, sizep);
}
/*
* Precondition: |rdata.sb| already has necessary growth space reserved (as
* derived from FindReplaceLength), and has been inflated to TwoByte if
* necessary.
*/
template <typename CharT>
static void
DoReplace(RegExpStatics* res, ReplaceData& rdata)
{
AutoCheckCannotGC nogc;
JSLinearString* repstr = rdata.repstr;
const CharT* bp = repstr->chars<CharT>(nogc);
const CharT* cp = bp;
if (rdata.dollarIndex != UINT32_MAX) {
MOZ_ASSERT(rdata.dollarIndex < repstr->length());
const CharT* dp = bp + rdata.dollarIndex;
const CharT* ep = bp + repstr->length();
do {
/* Move one of the constant portions of the replacement value. */
size_t len = dp - cp;
rdata.sb.infallibleAppend(cp, len);
cp = dp;
JSSubString sub;
size_t skip;
if (InterpretDollar(res, bp, dp, ep, rdata, &sub, &skip)) {
rdata.sb.infallibleAppendSubstring(sub.base, sub.offset, sub.length);
cp += skip;
dp += skip;
} else {
dp++;
}
dp = js_strchr_limit(dp, '$', ep);
} while (dp);
}
rdata.sb.infallibleAppend(cp, repstr->length() - (cp - bp));
}
static bool
ReplaceRegExp(JSContext* cx, RegExpStatics* res, ReplaceData& rdata)
{
const MatchPair& match = res->getMatches()[0];
MOZ_ASSERT(!match.isUndefined());
MOZ_ASSERT(match.limit >= match.start && match.limit >= 0);
rdata.calledBack = true;
size_t leftoff = rdata.leftIndex;
size_t leftlen = match.start - leftoff;
rdata.leftIndex = match.limit;
size_t replen = 0; /* silence 'unused' warning */
if (!FindReplaceLength(cx, res, rdata, &replen))
return false;
CheckedInt<uint32_t> newlen(rdata.sb.length());
newlen += leftlen;
newlen += replen;
if (!newlen.isValid()) {
ReportAllocationOverflow(cx);
return false;
}
/*
* Inflate the buffer now if needed, to avoid (fallible) Latin1 to TwoByte
* inflation later on.
*/
JSLinearString& str = rdata.str->asLinear(); /* flattened for regexp */
if (str.hasTwoByteChars() || rdata.repstr->hasTwoByteChars()) {
if (!rdata.sb.ensureTwoByteChars())
return false;
}
if (!rdata.sb.reserve(newlen.value()))
return false;
/* Append skipped-over portion of the search value. */
rdata.sb.infallibleAppendSubstring(&str, leftoff, leftlen);
if (rdata.repstr->hasLatin1Chars())
DoReplace<Latin1Char>(res, rdata);
else
DoReplace<char16_t>(res, rdata);
return true;
}
static JSString*
BuildFlatReplacement(JSContext* cx, HandleString textstr, HandleString repstr,
const FlatMatch& fm)
{
RopeBuilder builder(cx);
size_t match = fm.match();
size_t matchEnd = match + fm.patternLength();
if (textstr->isRope()) {
/*
* If we are replacing over a rope, avoid flattening it by iterating
* through it, building a new rope.
*/
StringSegmentRange r(cx);
if (!r.init(textstr))
return nullptr;
size_t pos = 0;
while (!r.empty()) {
RootedString str(cx, r.front());
size_t len = str->length();
size_t strEnd = pos + len;
if (pos < matchEnd && strEnd > match) {
/*
* We need to special-case any part of the rope that overlaps
* with the replacement string.
*/
if (match >= pos) {
/*
* If this part of the rope overlaps with the left side of
* the pattern, then it must be the only one to overlap with
* the first character in the pattern, so we include the
* replacement string here.
*/
RootedString leftSide(cx, NewDependentString(cx, str, 0, match - pos));
if (!leftSide ||
!builder.append(leftSide) ||
!builder.append(repstr))
{
return nullptr;
}
}
/*
* If str runs off the end of the matched string, append the
* last part of str.
*/
if (strEnd > matchEnd) {
RootedString rightSide(cx, NewDependentString(cx, str, matchEnd - pos,
strEnd - matchEnd));
if (!rightSide || !builder.append(rightSide))
return nullptr;
}
} else {
if (!builder.append(str))
return nullptr;
}
pos += str->length();
if (!r.popFront())
return nullptr;
}
} else {
RootedString leftSide(cx, NewDependentString(cx, textstr, 0, match));
if (!leftSide)
return nullptr;
RootedString rightSide(cx);
rightSide = NewDependentString(cx, textstr, match + fm.patternLength(),
textstr->length() - match - fm.patternLength());
if (!rightSide ||
!builder.append(leftSide) ||
!builder.append(repstr) ||
!builder.append(rightSide))
{
return nullptr;
}
}
return builder.result();
}
template <typename CharT>
static bool
AppendDollarReplacement(StringBuffer& newReplaceChars, size_t firstDollarIndex,
const FlatMatch& fm, JSLinearString* text,
const CharT* repChars, size_t repLength)
{
MOZ_ASSERT(firstDollarIndex < repLength);
size_t matchStart = fm.match();
size_t matchLimit = matchStart + fm.patternLength();
/* Move the pre-dollar chunk in bulk. */
newReplaceChars.infallibleAppend(repChars, firstDollarIndex);
/* Move the rest char-by-char, interpreting dollars as we encounter them. */
const CharT* repLimit = repChars + repLength;
for (const CharT* it = repChars + firstDollarIndex; it < repLimit; ++it) {
if (*it != '$' || it == repLimit - 1) {
if (!newReplaceChars.append(*it))
return false;
continue;
}
switch (*(it + 1)) {
case '$': /* Eat one of the dollars. */
if (!newReplaceChars.append(*it))
return false;
break;
case '&':
if (!newReplaceChars.appendSubstring(text, matchStart, matchLimit - matchStart))
return false;
break;
case '`':
if (!newReplaceChars.appendSubstring(text, 0, matchStart))
return false;
break;
case '\'':
if (!newReplaceChars.appendSubstring(text, matchLimit, text->length() - matchLimit))
return false;
break;
default: /* The dollar we saw was not special (no matter what its mother told it). */
if (!newReplaceChars.append(*it))
return false;
continue;
}
++it; /* We always eat an extra char in the above switch. */
}
return true;
}
/*
* Perform a linear-scan dollar substitution on the replacement text,
* constructing a result string that looks like:
*
* newstring = string[:matchStart] + dollarSub(replaceValue) + string[matchLimit:]
*/
static JSString*
BuildDollarReplacement(JSContext* cx, JSString* textstrArg, JSLinearString* repstr,
uint32_t firstDollarIndex, const FlatMatch& fm)
{
RootedLinearString textstr(cx, textstrArg->ensureLinear(cx));
if (!textstr)
return nullptr;
size_t matchStart = fm.match();
size_t matchLimit = matchStart + fm.patternLength();
/*
* Most probably:
*
* len(newstr) >= len(orig) - len(match) + len(replacement)
*
* Note that dollar vars _could_ make the resulting text smaller than this.
*/
StringBuffer newReplaceChars(cx);
if (repstr->hasTwoByteChars() && !newReplaceChars.ensureTwoByteChars())
return nullptr;
if (!newReplaceChars.reserve(textstr->length() - fm.patternLength() + repstr->length()))
return nullptr;
bool res;
if (repstr->hasLatin1Chars()) {
AutoCheckCannotGC nogc;
res = AppendDollarReplacement(newReplaceChars, firstDollarIndex, fm, textstr,
repstr->latin1Chars(nogc), repstr->length());
} else {
AutoCheckCannotGC nogc;
res = AppendDollarReplacement(newReplaceChars, firstDollarIndex, fm, textstr,
repstr->twoByteChars(nogc), repstr->length());
}
if (!res)
return nullptr;
RootedString leftSide(cx, NewDependentString(cx, textstr, 0, matchStart));
if (!leftSide)
return nullptr;
RootedString newReplace(cx, newReplaceChars.finishString());
if (!newReplace)
return nullptr;
MOZ_ASSERT(textstr->length() >= matchLimit);
RootedString rightSide(cx, NewDependentString(cx, textstr, matchLimit,
textstr->length() - matchLimit));
if (!rightSide)
return nullptr;
RopeBuilder builder(cx);
if (!builder.append(leftSide) || !builder.append(newReplace) || !builder.append(rightSide))
return nullptr;
return builder.result();
}
struct StringRange
{
size_t start;
size_t length;
StringRange(size_t s, size_t l)
: start(s), length(l)
{ }
};
template <typename CharT>
static void
CopySubstringsToFatInline(JSFatInlineString* dest, const CharT* src, const StringRange* ranges,
size_t rangesLen, size_t outputLen)
{
CharT* buf = dest->init<CharT>(outputLen);
size_t pos = 0;
for (size_t i = 0; i < rangesLen; i++) {
PodCopy(buf + pos, src + ranges[i].start, ranges[i].length);
pos += ranges[i].length;
}
MOZ_ASSERT(pos == outputLen);
buf[outputLen] = 0;
}
static inline JSFatInlineString*
FlattenSubstrings(JSContext* cx, HandleLinearString str, const StringRange* ranges,
size_t rangesLen, size_t outputLen)
{
JSFatInlineString* result = Allocate<JSFatInlineString>(cx);
if (!result)
return nullptr;
AutoCheckCannotGC nogc;
if (str->hasLatin1Chars())
CopySubstringsToFatInline(result, str->latin1Chars(nogc), ranges, rangesLen, outputLen);
else
CopySubstringsToFatInline(result, str->twoByteChars(nogc), ranges, rangesLen, outputLen);
return result;
}
static JSString*
AppendSubstrings(JSContext* cx, HandleLinearString str, const StringRange* ranges,
size_t rangesLen)
{
MOZ_ASSERT(rangesLen);
/* For single substrings, construct a dependent string. */
if (rangesLen == 1)
return NewDependentString(cx, str, ranges[0].start, ranges[0].length);
bool isLatin1 = str->hasLatin1Chars();
uint32_t fatInlineMaxLength = JSFatInlineString::MAX_LENGTH_TWO_BYTE;
if (isLatin1)
fatInlineMaxLength = JSFatInlineString::MAX_LENGTH_LATIN1;
/* Collect substrings into a rope */
size_t i = 0;
RopeBuilder rope(cx);
RootedString part(cx, nullptr);
while (i < rangesLen) {
/* Find maximum range that fits in JSFatInlineString */
size_t substrLen = 0;
size_t end = i;
for (; end < rangesLen; end++) {
if (substrLen + ranges[end].length > fatInlineMaxLength)
break;
substrLen += ranges[end].length;
}
if (i == end) {
/* Not even one range fits JSFatInlineString, use DependentString */
const StringRange& sr = ranges[i++];
part = NewDependentString(cx, str, sr.start, sr.length);
} else {
/* Copy the ranges (linearly) into a JSFatInlineString */
part = FlattenSubstrings(cx, str, ranges + i, end - i, substrLen);
i = end;
}
if (!part)
return nullptr;
/* Appending to the rope permanently roots the substring. */
if (!rope.append(part))
return nullptr;
}
return rope.result();
}
static JSString*
StrReplaceRegexpRemove(JSContext* cx, HandleString str, RegExpShared& re)
{
RootedLinearString linearStr(cx, str->ensureLinear(cx));
if (!linearStr)
return nullptr;
Vector<StringRange, 16, SystemAllocPolicy> ranges;
size_t charsLen = linearStr->length();
ScopedMatchPairs matches(&cx->tempLifoAlloc());
size_t startIndex = 0; /* Index used for iterating through the string. */
size_t lastIndex = 0; /* Index after last successful match. */
size_t lazyIndex = 0; /* Index before last successful match. */
/* Accumulate StringRanges for unmatched substrings. */
while (startIndex <= charsLen) {
if (!CheckForInterrupt(cx))
return nullptr;
RegExpRunStatus status = re.execute(cx, linearStr, startIndex, &matches);
if (status == RegExpRunStatus_Error)
return nullptr;
if (status == RegExpRunStatus_Success_NotFound)
break;
MatchPair& match = matches[0];
/* Include the latest unmatched substring. */
if (size_t(match.start) > lastIndex) {
if (!ranges.append(StringRange(lastIndex, match.start - lastIndex)))
return nullptr;
}
lazyIndex = lastIndex;
lastIndex = match.limit;
startIndex = match.isEmpty() ? match.limit + 1 : match.limit;
/* Non-global removal executes at most once. */
if (!re.global())
break;
}
RegExpStatics* res;
/* If unmatched, return the input string. */
if (!lastIndex) {
if (startIndex > 0) {
res = cx->global()->getRegExpStatics(cx);
if (!res)
return nullptr;
res->updateLazily(cx, linearStr, &re, lazyIndex);
}
return str;
}
/* The last successful match updates the RegExpStatics. */
res = cx->global()->getRegExpStatics(cx);
if (!res)
return nullptr;
res->updateLazily(cx, linearStr, &re, lazyIndex);
/* Include any remaining part of the string. */
if (lastIndex < charsLen) {
if (!ranges.append(StringRange(lastIndex, charsLen - lastIndex)))
return nullptr;
}
/* Handle the empty string before calling .begin(). */
if (ranges.empty())
return cx->runtime()->emptyString;
return AppendSubstrings(cx, linearStr, ranges.begin(), ranges.length());
}
static inline JSString*
StrReplaceRegExp(JSContext* cx, ReplaceData& rdata)
{
rdata.leftIndex = 0;
rdata.calledBack = false;
RegExpStatics* res = cx->global()->getRegExpStatics(cx);
if (!res)
return nullptr;
RegExpShared& re = rdata.g.regExp();
// The spec doesn't describe this function very clearly, so we go ahead and
// assume that when the input to String.prototype.replace is a global
// RegExp, calling the replacer function (assuming one was provided) takes
// place only after the matching is done. See the comment at the beginning
// of DoMatchGlobal explaining why we can zero the the RegExp object's
// lastIndex property here.
if (re.global() && !rdata.g.zeroLastIndex(cx))
return nullptr;
/* Optimize removal. */
if (rdata.repstr && rdata.repstr->length() == 0) {
MOZ_ASSERT(!rdata.lambda && !rdata.elembase && rdata.dollarIndex == UINT32_MAX);
return StrReplaceRegexpRemove(cx, rdata.str, re);
}
RootedLinearString linearStr(cx, rdata.str->ensureLinear(cx));
if (!linearStr)
return nullptr;
size_t rightContextOffset = 0;
if (re.global()) {
if (!DoMatchForReplaceGlobal(cx, res, linearStr, re, rdata, &rightContextOffset))
return nullptr;
} else {
if (!DoMatchForReplaceLocal(cx, res, linearStr, re, rdata, &rightContextOffset))
return nullptr;
}
if (!rdata.calledBack) {
/* Didn't match, so the string is unmodified. */
return rdata.str;
}
MOZ_ASSERT(rightContextOffset <= rdata.str->length());
size_t length = rdata.str->length() - rightContextOffset;
if (!rdata.sb.appendSubstring(rdata.str, rightContextOffset, length))
return nullptr;
return rdata.sb.finishString();
}
static inline bool
str_replace_regexp(JSContext* cx, const CallArgs& args, ReplaceData& rdata)
{
if (!rdata.g.normalizeRegExp(cx, true, 2, args))
return false;
JSString* res = StrReplaceRegExp(cx, rdata);
if (!res)
return false;
args.rval().setString(res);
return true;
}
JSString*
js::str_replace_regexp_raw(JSContext* cx, HandleString string, Handle<RegExpObject*> regexp,
HandleString replacement)
{
/* Optimize removal, so we don't have to create ReplaceData */
if (replacement->length() == 0) {
StringRegExpGuard guard(cx);
if (!guard.initRegExp(cx, regexp))
return nullptr;
RegExpShared& re = guard.regExp();
return StrReplaceRegexpRemove(cx, string, re);
}
ReplaceData rdata(cx);
rdata.str = string;
JSLinearString* repl = replacement->ensureLinear(cx);
if (!repl)
return nullptr;
rdata.setReplacementString(repl);
if (!rdata.g.initRegExp(cx, regexp))
return nullptr;
return StrReplaceRegExp(cx, rdata);
}
static JSString*
StrReplaceString(JSContext* cx, ReplaceData& rdata, const FlatMatch& fm)
{
/*
* Note: we could optimize the text.length == pattern.length case if we wanted,
* even in the presence of dollar metachars.
*/
if (rdata.dollarIndex != UINT32_MAX)
return BuildDollarReplacement(cx, rdata.str, rdata.repstr, rdata.dollarIndex, fm);
return BuildFlatReplacement(cx, rdata.str, rdata.repstr, fm);
}
static const uint32_t ReplaceOptArg = 2;
JSString*
js::str_replace_string_raw(JSContext* cx, HandleString string, HandleString pattern,
HandleString replacement)
{
ReplaceData rdata(cx);
rdata.str = string;
JSLinearString* repl = replacement->ensureLinear(cx);
if (!repl)
return nullptr;
rdata.setReplacementString(repl);
if (!rdata.g.init(cx, pattern))
return nullptr;
const FlatMatch* fm = rdata.g.tryFlatMatch(cx, rdata.str, ReplaceOptArg, ReplaceOptArg, false);
if (fm->match() < 0)
return string;
return StrReplaceString(cx, rdata, *fm);
}
static inline bool
str_replace_flat_lambda(JSContext* cx, const CallArgs& outerArgs, ReplaceData& rdata,
const FlatMatch& fm)
{
RootedString matchStr(cx, NewDependentString(cx, rdata.str, fm.match(), fm.patternLength()));
if (!matchStr)
return false;
/* lambda(matchStr, matchStart, textstr) */
static const uint32_t lambdaArgc = 3;
if (!rdata.fig.args().init(lambdaArgc))
return false;
CallArgs& args = rdata.fig.args();
args.setCallee(ObjectValue(*rdata.lambda));
args.setThis(UndefinedValue());
Value* sp = args.array();
sp[0].setString(matchStr);
sp[1].setInt32(fm.match());
sp[2].setString(rdata.str);
if (!rdata.fig.invoke(cx))
return false;
RootedString repstr(cx, ToString<CanGC>(cx, args.rval()));
if (!repstr)
return false;
RootedString leftSide(cx, NewDependentString(cx, rdata.str, 0, fm.match()));
if (!leftSide)
return false;
size_t matchLimit = fm.match() + fm.patternLength();
RootedString rightSide(cx, NewDependentString(cx, rdata.str, matchLimit,
rdata.str->length() - matchLimit));
if (!rightSide)
return false;
RopeBuilder builder(cx);
if (!(builder.append(leftSide) &&
builder.append(repstr) &&
builder.append(rightSide))) {
return false;
}
outerArgs.rval().setString(builder.result());
return true;
}
/*
* Pattern match the script to check if it is is indexing into a particular
* object, e.g. 'function(a) { return b[a]; }'. Avoid calling the script in
* such cases, which are used by javascript packers (particularly the popular
* Dean Edwards packer) to efficiently encode large scripts. We only handle the
* code patterns generated by such packers here.
*/
static bool
LambdaIsGetElem(JSContext* cx, JSObject& lambda, MutableHandleNativeObject pobj)
{
if (!lambda.is<JSFunction>())
return true;
RootedFunction fun(cx, &lambda.as<JSFunction>());
if (!fun->isInterpreted() || fun->isClassConstructor())
return true;
JSScript* script = fun->getOrCreateScript(cx);
if (!script)
return false;
jsbytecode* pc = script->code();
/*
* JSOP_GETALIASEDVAR tells us exactly where to find the base object 'b'.
* Rule out the (unlikely) possibility of a function with a call object
* since it would make our scope walk off by 1.
*/
if (JSOp(*pc) != JSOP_GETALIASEDVAR || fun->needsCallObject())
return true;
ScopeCoordinate sc(pc);
ScopeObject* scope = &fun->environment()->as<ScopeObject>();
for (unsigned i = 0; i < sc.hops(); ++i)
scope = &scope->enclosingScope().as<ScopeObject>();
Value b = scope->aliasedVar(sc);
pc += JSOP_GETALIASEDVAR_LENGTH;
/* Look for 'a' to be the lambda's first argument. */
if (JSOp(*pc) != JSOP_GETARG || GET_ARGNO(pc) != 0)
return true;
pc += JSOP_GETARG_LENGTH;
/* 'b[a]' */
if (JSOp(*pc) != JSOP_GETELEM)
return true;
pc += JSOP_GETELEM_LENGTH;
/* 'return b[a]' */
if (JSOp(*pc) != JSOP_RETURN)
return true;
/* 'b' must behave like a normal object. */
if (!b.isObject())
return true;
JSObject& bobj = b.toObject();
const Class* clasp = bobj.getClass();
if (!clasp->isNative() || clasp->ops.lookupProperty || clasp->ops.getProperty)
return true;
pobj.set(&bobj.as<NativeObject>());
return true;
}
bool
js::str_replace(JSContext* cx, unsigned argc, Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
ReplaceData rdata(cx);
rdata.str = ThisToStringForStringProto(cx, args);
if (!rdata.str)
return false;
if (!rdata.g.init(cx, args))
return false;
/* Extract replacement string/function. */
if (args.length() >= ReplaceOptArg && IsCallable(args[1])) {
rdata.setReplacementFunction(&args[1].toObject());
if (!LambdaIsGetElem(cx, *rdata.lambda, &rdata.elembase))
return false;
} else {
JSLinearString* string = ArgToRootedString(cx, args, 1);
if (!string)
return false;
rdata.setReplacementString(string);
}
rdata.fig.initFunction(ObjectOrNullValue(rdata.lambda));
/*
* Unlike its |String.prototype| brethren, |replace| doesn't convert
* its input to a regular expression. (Even if it contains metachars.)
*
* However, if the user invokes our (non-standard) |flags| argument
* extension then we revert to creating a regular expression. Note that
* this is observable behavior through the side-effect mutation of the
* |RegExp| statics.
*/
const FlatMatch* fm = rdata.g.tryFlatMatch(cx, rdata.str, ReplaceOptArg, args.length(), false);
if (!fm) {
if (cx->isExceptionPending()) /* oom in RopeMatch in tryFlatMatch */
return false;
return str_replace_regexp(cx, args, rdata);
}
if (fm->match() < 0) {
args.rval().setString(rdata.str);
return true;
}
if (rdata.lambda)
return str_replace_flat_lambda(cx, args, rdata, *fm);
JSString* res = StrReplaceString(cx, rdata, *fm);
if (!res)
return false;
args.rval().setString(res);
return true;
}
namespace {
class SplitMatchResult {
size_t endIndex_;
size_t length_;
public:
void setFailure() {
JS_STATIC_ASSERT(SIZE_MAX > JSString::MAX_LENGTH);
endIndex_ = SIZE_MAX;
}
bool isFailure() const {
return endIndex_ == SIZE_MAX;
}
size_t endIndex() const {
MOZ_ASSERT(!isFailure());
return endIndex_;
}
size_t length() const {
MOZ_ASSERT(!isFailure());
return length_;
}
void setResult(size_t length, size_t endIndex) {
length_ = length;
endIndex_ = endIndex;
}
};
} /* anonymous namespace */
template<class Matcher>
static JSObject*
SplitHelper(JSContext* cx, HandleLinearString str, uint32_t limit, const Matcher& splitMatch,
HandleObjectGroup group)
{
size_t strLength = str->length();
SplitMatchResult result;
/* Step 11. */
if (strLength == 0) {
if (!splitMatch(cx, str, 0, &result))
return nullptr;
/*
* NB: Unlike in the non-empty string case, it's perfectly fine
* (indeed the spec requires it) if we match at the end of the
* string. Thus these cases should hold:
*
* var a = "".split("");
* assertEq(a.length, 0);
* var b = "".split(/.?/);
* assertEq(b.length, 0);
*/
if (!result.isFailure())
return NewFullyAllocatedArrayTryUseGroup(cx, group, 0);
RootedValue v(cx, StringValue(str));
return NewCopiedArrayTryUseGroup(cx, group, v.address(), 1);
}
/* Step 12. */
size_t lastEndIndex = 0;
size_t index = 0;
/* Step 13. */
AutoValueVector splits(cx);
while (index < strLength) {
/* Step 13(a). */
if (!splitMatch(cx, str, index, &result))
return nullptr;
/*
* Step 13(b).
*
* Our match algorithm differs from the spec in that it returns the
* next index at which a match happens. If no match happens we're
* done.
*
* But what if the match is at the end of the string (and the string is
* not empty)? Per 13(c)(ii) this shouldn't be a match, so we have to
* specially exclude it. Thus this case should hold:
*
* var a = "abc".split(/\b/);
* assertEq(a.length, 1);
* assertEq(a[0], "abc");
*/
if (result.isFailure())
break;
/* Step 13(c)(i). */
size_t sepLength = result.length();
size_t endIndex = result.endIndex();
if (sepLength == 0 && endIndex == strLength)
break;
/* Step 13(c)(ii). */
if (endIndex == lastEndIndex) {
index++;
continue;
}
/* Step 13(c)(iii). */
MOZ_ASSERT(lastEndIndex < endIndex);
MOZ_ASSERT(sepLength <= strLength);
MOZ_ASSERT(lastEndIndex + sepLength <= endIndex);
/* Steps 13(c)(iii)(1-3). */
size_t subLength = size_t(endIndex - sepLength - lastEndIndex);
JSString* sub = NewDependentString(cx, str, lastEndIndex, subLength);
if (!sub || !splits.append(StringValue(sub)))
return nullptr;
/* Step 13(c)(iii)(4). */
if (splits.length() == limit)
return NewCopiedArrayTryUseGroup(cx, group, splits.begin(), splits.length());
/* Step 13(c)(iii)(5). */
lastEndIndex = endIndex;
/* Step 13(c)(iii)(6-7). */
if (Matcher::returnsCaptures) {
RegExpStatics* res = cx->global()->getRegExpStatics(cx);
if (!res)
return nullptr;
const MatchPairs& matches = res->getMatches();
for (size_t i = 0; i < matches.parenCount(); i++) {
/* Steps 13(c)(iii)(7)(a-c). */
if (!matches[i + 1].isUndefined()) {
JSSubString parsub;
res->getParen(i + 1, &parsub);
sub = NewDependentString(cx, parsub.base, parsub.offset, parsub.length);
if (!sub || !splits.append(StringValue(sub)))
return nullptr;
} else {
if (!splits.append(UndefinedValue()))
return nullptr;
}
/* Step 13(c)(iii)(7)(d). */
if (splits.length() == limit)
return NewCopiedArrayTryUseGroup(cx, group, splits.begin(), splits.length());
}
}
/* Step 13(c)(iii)(8). */
index = lastEndIndex;
}
/* Steps 14-15. */
JSString* sub = NewDependentString(cx, str, lastEndIndex, strLength - lastEndIndex);
if (!sub || !splits.append(StringValue(sub)))
return nullptr;
/* Step 16. */
return NewCopiedArrayTryUseGroup(cx, group, splits.begin(), splits.length());
}
// Fast-path for splitting a string into a character array via split("").
static JSObject*
CharSplitHelper(JSContext* cx, HandleLinearString str, uint32_t limit, HandleObjectGroup group)
{
size_t strLength = str->length();
if (strLength == 0)
return NewFullyAllocatedArrayTryUseGroup(cx, group, 0);
js::StaticStrings& staticStrings = cx->staticStrings();
uint32_t resultlen = (limit < strLength ? limit : strLength);
AutoValueVector splits(cx);
if (!splits.reserve(resultlen))
return nullptr;
for (size_t i = 0; i < resultlen; ++i) {
JSString* sub = staticStrings.getUnitStringForElement(cx, str, i);
if (!sub)
return nullptr;
splits.infallibleAppend(StringValue(sub));
}
return NewCopiedArrayTryUseGroup(cx, group, splits.begin(), splits.length());
}
namespace {
/*
* The SplitMatch operation from ES5 15.5.4.14 is implemented using different
* paths for regular expression and string separators.
*
* The algorithm differs from the spec in that the we return the next index at
* which a match happens.
*/
class SplitRegExpMatcher
{
RegExpShared& re;
RegExpStatics* res;
public:
SplitRegExpMatcher(RegExpShared& re, RegExpStatics* res) : re(re), res(res) {}
static const bool returnsCaptures = true;
bool operator()(JSContext* cx, HandleLinearString str, size_t index,
SplitMatchResult* result) const
{
ScopedMatchPairs matches(&cx->tempLifoAlloc());
RegExpRunStatus status = re.execute(cx, str, index, &matches);
if (status == RegExpRunStatus_Error)
return false;
if (status == RegExpRunStatus_Success_NotFound) {
result->setFailure();
return true;
}
if (!res->updateFromMatchPairs(cx, str, matches))
return false;
JSSubString sep;
res->getLastMatch(&sep);
result->setResult(sep.length, matches[0].limit);
return true;
}
};
class SplitStringMatcher
{
RootedLinearString sep;
public:
SplitStringMatcher(JSContext* cx, HandleLinearString sep)
: sep(cx, sep)
{}
static const bool returnsCaptures = false;
bool operator()(JSContext* cx, JSLinearString* str, size_t index, SplitMatchResult* res) const
{
MOZ_ASSERT(index == 0 || index < str->length());
int match = StringMatch(str, sep, index);
if (match == -1)
res->setFailure();
else
res->setResult(sep->length(), match + sep->length());
return true;
}
};
} /* anonymous namespace */
/* ES5 15.5.4.14 */
bool
js::str_split(JSContext* cx, unsigned argc, Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
/* Steps 1-2. */
RootedString str(cx, ThisToStringForStringProto(cx, args));
if (!str)
return false;
RootedObjectGroup group(cx, ObjectGroup::callingAllocationSiteGroup(cx, JSProto_Array));
if (!group)
return false;
/* Step 5: Use the second argument as the split limit, if given. */
uint32_t limit;
if (args.hasDefined(1)) {
double d;
if (!ToNumber(cx, args[1], &d))
return false;
limit = ToUint32(d);
} else {
limit = UINT32_MAX;
}
/* Step 8. */
RegExpGuard re(cx);
RootedLinearString sepstr(cx);
bool sepDefined = args.hasDefined(0);
if (sepDefined) {
ESClassValue cls;
if (!GetClassOfValue(cx, args[0], &cls))
return false;
if (cls == ESClass_RegExp) {
RootedObject obj(cx, &args[0].toObject());
if (!RegExpToShared(cx, obj, &re))
return false;
} else {
sepstr = ArgToRootedString(cx, args, 0);
if (!sepstr)
return false;
}
}
/* Step 9. */
if (limit == 0) {
JSObject* aobj = NewFullyAllocatedArrayTryUseGroup(cx, group, 0);
if (!aobj)
return false;
args.rval().setObject(*aobj);
return true;
}
/* Step 10. */
if (!sepDefined) {
RootedValue v(cx, StringValue(str));
JSObject* aobj = NewCopiedArrayTryUseGroup(cx, group, v.address(), 1);
if (!aobj)
return false;
args.rval().setObject(*aobj);
return true;
}
RootedLinearString linearStr(cx, str->ensureLinear(cx));
if (!linearStr)
return false;
/* Steps 11-15. */
RootedObject aobj(cx);
if (!re.initialized()) {
if (sepstr->length() == 0) {
aobj = CharSplitHelper(cx, linearStr, limit, group);
} else {
SplitStringMatcher matcher(cx, sepstr);
aobj = SplitHelper(cx, linearStr, limit, matcher, group);
}
} else {
RegExpStatics* res = cx->global()->getRegExpStatics(cx);
if (!res)
return false;
SplitRegExpMatcher matcher(*re, res);
aobj = SplitHelper(cx, linearStr, limit, matcher, group);
}
if (!aobj)
return false;
/* Step 16. */
MOZ_ASSERT(aobj->group() == group);
args.rval().setObject(*aobj);
return true;
}
JSObject*
js::str_split_string(JSContext* cx, HandleObjectGroup group, HandleString str, HandleString sep)
{
RootedLinearString linearStr(cx, str->ensureLinear(cx));
if (!linearStr)
return nullptr;
RootedLinearString linearSep(cx, sep->ensureLinear(cx));
if (!linearSep)
return nullptr;
uint32_t limit = UINT32_MAX;
if (linearSep->length() == 0)
return CharSplitHelper(cx, linearStr, limit, group);
SplitStringMatcher matcher(cx, linearSep);
return SplitHelper(cx, linearStr, limit, matcher, group);
}
/*
* Python-esque sequence operations.
*/
static bool
str_concat(JSContext* cx, unsigned argc, Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
JSString* str = ThisToStringForStringProto(cx, args);
if (!str)
return false;
for (unsigned i = 0; i < args.length(); i++) {
JSString* argStr = ToString<NoGC>(cx, args[i]);
if (!argStr) {
RootedString strRoot(cx, str);
argStr = ToString<CanGC>(cx, args[i]);
if (!argStr)
return false;
str = strRoot;
}
JSString* next = ConcatStrings<NoGC>(cx, str, argStr);
if (next) {
str = next;
} else {
RootedString strRoot(cx, str), argStrRoot(cx, argStr);
str = ConcatStrings<CanGC>(cx, strRoot, argStrRoot);
if (!str)
return false;
}
}
args.rval().setString(str);
return true;
}
static const JSFunctionSpec string_methods[] = {
#if JS_HAS_TOSOURCE
JS_FN(js_toSource_str, str_toSource, 0,0),
#endif
/* Java-like methods. */
JS_FN(js_toString_str, str_toString, 0,0),
JS_FN(js_valueOf_str, str_toString, 0,0),
JS_FN("toLowerCase", str_toLowerCase, 0,JSFUN_GENERIC_NATIVE),
JS_FN("toUpperCase", str_toUpperCase, 0,JSFUN_GENERIC_NATIVE),
JS_INLINABLE_FN("charAt", str_charAt, 1,JSFUN_GENERIC_NATIVE, StringCharAt),
JS_INLINABLE_FN("charCodeAt", str_charCodeAt, 1,JSFUN_GENERIC_NATIVE, StringCharCodeAt),
JS_SELF_HOSTED_FN("substring", "String_substring", 2,0),
JS_SELF_HOSTED_FN("codePointAt", "String_codePointAt", 1,0),
JS_FN("includes", str_includes, 1,JSFUN_GENERIC_NATIVE),
JS_FN("contains", str_contains, 1,JSFUN_GENERIC_NATIVE),
JS_FN("indexOf", str_indexOf, 1,JSFUN_GENERIC_NATIVE),
JS_FN("lastIndexOf", str_lastIndexOf, 1,JSFUN_GENERIC_NATIVE),
JS_FN("startsWith", str_startsWith, 1,JSFUN_GENERIC_NATIVE),
JS_FN("endsWith", str_endsWith, 1,JSFUN_GENERIC_NATIVE),
JS_FN("trim", str_trim, 0,JSFUN_GENERIC_NATIVE),
JS_FN("trimLeft", str_trimLeft, 0,JSFUN_GENERIC_NATIVE),
JS_FN("trimRight", str_trimRight, 0,JSFUN_GENERIC_NATIVE),
JS_FN("toLocaleLowerCase", str_toLocaleLowerCase, 0,JSFUN_GENERIC_NATIVE),
JS_FN("toLocaleUpperCase", str_toLocaleUpperCase, 0,JSFUN_GENERIC_NATIVE),
#if EXPOSE_INTL_API
JS_SELF_HOSTED_FN("localeCompare", "String_localeCompare", 1,0),
#else
JS_FN("localeCompare", str_localeCompare, 1,JSFUN_GENERIC_NATIVE),
#endif
JS_SELF_HOSTED_FN("repeat", "String_repeat", 1,0),
#if EXPOSE_INTL_API
JS_FN("normalize", str_normalize, 0,JSFUN_GENERIC_NATIVE),
#endif
/* Perl-ish methods (search is actually Python-esque). */
JS_FN("match", str_match, 1,JSFUN_GENERIC_NATIVE),
JS_FN("search", str_search, 1,JSFUN_GENERIC_NATIVE),
JS_INLINABLE_FN("replace", str_replace, 2,JSFUN_GENERIC_NATIVE, StringReplace),
JS_INLINABLE_FN("split", str_split, 2,JSFUN_GENERIC_NATIVE, StringSplit),
JS_SELF_HOSTED_FN("substr", "String_substr", 2,0),
/* Python-esque sequence methods. */
JS_FN("concat", str_concat, 1,JSFUN_GENERIC_NATIVE),
JS_SELF_HOSTED_FN("slice", "String_slice", 2,0),
/* HTML string methods. */
JS_SELF_HOSTED_FN("bold", "String_bold", 0,0),
JS_SELF_HOSTED_FN("italics", "String_italics", 0,0),
JS_SELF_HOSTED_FN("fixed", "String_fixed", 0,0),
JS_SELF_HOSTED_FN("strike", "String_strike", 0,0),
JS_SELF_HOSTED_FN("small", "String_small", 0,0),
JS_SELF_HOSTED_FN("big", "String_big", 0,0),
JS_SELF_HOSTED_FN("blink", "String_blink", 0,0),
JS_SELF_HOSTED_FN("sup", "String_sup", 0,0),
JS_SELF_HOSTED_FN("sub", "String_sub", 0,0),
JS_SELF_HOSTED_FN("anchor", "String_anchor", 1,0),
JS_SELF_HOSTED_FN("link", "String_link", 1,0),
JS_SELF_HOSTED_FN("fontcolor","String_fontcolor", 1,0),
JS_SELF_HOSTED_FN("fontsize", "String_fontsize", 1,0),
JS_SELF_HOSTED_SYM_FN(iterator, "String_iterator", 0,0),
JS_FS_END
};
// ES6 rev 27 (2014 Aug 24) 21.1.1
bool
js::StringConstructor(JSContext* cx, unsigned argc, Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
RootedString str(cx);
if (args.length() > 0) {
if (!args.isConstructing() && args[0].isSymbol())
return js::SymbolDescriptiveString(cx, args[0].toSymbol(), args.rval());
str = ToString<CanGC>(cx, args[0]);
if (!str)
return false;
} else {
str = cx->runtime()->emptyString;
}
if (args.isConstructing()) {
RootedObject proto(cx);
RootedObject newTarget(cx, &args.newTarget().toObject());
if (!GetPrototypeFromConstructor(cx, newTarget, &proto))
return false;
StringObject* strobj = StringObject::create(cx, str, proto);
if (!strobj)
return false;
args.rval().setObject(*strobj);
return true;
}
args.rval().setString(str);
return true;
}
static bool
str_fromCharCode_few_args(JSContext* cx, const CallArgs& args)
{
MOZ_ASSERT(args.length() <= JSFatInlineString::MAX_LENGTH_TWO_BYTE);
char16_t chars[JSFatInlineString::MAX_LENGTH_TWO_BYTE];
for (unsigned i = 0; i < args.length(); i++) {
uint16_t code;
if (!ToUint16(cx, args[i], &code))
return false;
chars[i] = char16_t(code);
}
JSString* str = NewStringCopyN<CanGC>(cx, chars, args.length());
if (!str)
return false;
args.rval().setString(str);
return true;
}
bool
js::str_fromCharCode(JSContext* cx, unsigned argc, Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
MOZ_ASSERT(args.length() <= ARGS_LENGTH_MAX);
// Optimize the single-char case.
if (args.length() == 1)
return str_fromCharCode_one_arg(cx, args[0], args.rval());
// Optimize the case where the result will definitely fit in an inline
// string (thin or fat) and so we don't need to malloc the chars. (We could
// cover some cases where args.length() goes up to
// JSFatInlineString::MAX_LENGTH_LATIN1 if we also checked if the chars are
// all Latin1, but it doesn't seem worth the effort.)
if (args.length() <= JSFatInlineString::MAX_LENGTH_TWO_BYTE)
return str_fromCharCode_few_args(cx, args);
char16_t* chars = cx->pod_malloc<char16_t>(args.length() + 1);
if (!chars)
return false;
for (unsigned i = 0; i < args.length(); i++) {
uint16_t code;
if (!ToUint16(cx, args[i], &code)) {
js_free(chars);
return false;
}
chars[i] = char16_t(code);
}
chars[args.length()] = 0;
JSString* str = NewString<CanGC>(cx, chars, args.length());
if (!str) {
js_free(chars);
return false;
}
args.rval().setString(str);
return true;
}
bool
js::str_fromCharCode_one_arg(JSContext* cx, HandleValue code, MutableHandleValue rval)
{
uint16_t ucode;
if (!ToUint16(cx, code, &ucode))
return false;
if (StaticStrings::hasUnit(ucode)) {
rval.setString(cx->staticStrings().getUnit(ucode));
return true;
}
char16_t c = char16_t(ucode);
JSString* str = NewStringCopyN<CanGC>(cx, &c, 1);
if (!str)
return false;
rval.setString(str);
return true;
}
static const JSFunctionSpec string_static_methods[] = {
JS_INLINABLE_FN("fromCharCode", js::str_fromCharCode, 1, 0, StringFromCharCode),
JS_SELF_HOSTED_FN("fromCodePoint", "String_static_fromCodePoint", 1,0),
JS_SELF_HOSTED_FN("raw", "String_static_raw", 2,0),
JS_SELF_HOSTED_FN("substring", "String_static_substring", 3,0),
JS_SELF_HOSTED_FN("substr", "String_static_substr", 3,0),
JS_SELF_HOSTED_FN("slice", "String_static_slice", 3,0),
// This must be at the end because of bug 853075: functions listed after
// self-hosted methods aren't available in self-hosted code.
#if EXPOSE_INTL_API
JS_SELF_HOSTED_FN("localeCompare", "String_static_localeCompare", 2,0),
#endif
JS_FS_END
};
/* static */ Shape*
StringObject::assignInitialShape(ExclusiveContext* cx, Handle<StringObject*> obj)
{
MOZ_ASSERT(obj->empty());
return obj->addDataProperty(cx, cx->names().length, LENGTH_SLOT,
JSPROP_PERMANENT | JSPROP_READONLY);
}
JSObject*
js::InitStringClass(JSContext* cx, HandleObject obj)
{
MOZ_ASSERT(obj->isNative());
Rooted<GlobalObject*> global(cx, &obj->as<GlobalObject>());
Rooted<JSString*> empty(cx, cx->runtime()->emptyString);
RootedObject proto(cx, global->createBlankPrototype(cx, &StringObject::class_));
if (!proto || !proto->as<StringObject>().init(cx, empty))
return nullptr;
/* Now create the String function. */
RootedFunction ctor(cx);
ctor = global->createConstructor(cx, StringConstructor, cx->names().String, 1,
AllocKind::FUNCTION, &jit::JitInfo_String);
if (!ctor)
return nullptr;
if (!GlobalObject::initBuiltinConstructor(cx, global, JSProto_String, ctor, proto))
return nullptr;
if (!LinkConstructorAndPrototype(cx, ctor, proto))
return nullptr;
if (!DefinePropertiesAndFunctions(cx, proto, nullptr, string_methods) ||
!DefinePropertiesAndFunctions(cx, ctor, nullptr, string_static_methods))
{
return nullptr;
}
/*
* Define escape/unescape, the URI encode/decode functions, and maybe
* uneval on the global object.
*/
if (!JS_DefineFunctions(cx, global, string_functions))
return nullptr;
return proto;
}
const char*
js::ValueToPrintable(JSContext* cx, const Value& vArg, JSAutoByteString* bytes, bool asSource)
{
RootedValue v(cx, vArg);
JSString* str;
if (asSource)
str = ValueToSource(cx, v);
else
str = ToString<CanGC>(cx, v);
if (!str)
return nullptr;
str = QuoteString(cx, str, 0);
if (!str)
return nullptr;
return bytes->encodeLatin1(cx, str);
}
template <AllowGC allowGC>
JSString*
js::ToStringSlow(ExclusiveContext* cx, typename MaybeRooted<Value, allowGC>::HandleType arg)
{
/* As with ToObjectSlow, callers must verify that |arg| isn't a string. */
MOZ_ASSERT(!arg.isString());
Value v = arg;
if (!v.isPrimitive()) {
if (!cx->shouldBeJSContext() || !allowGC)
return nullptr;
RootedValue v2(cx, v);
if (!ToPrimitive(cx->asJSContext(), JSTYPE_STRING, &v2))
return nullptr;
v = v2;
}
JSString* str;
if (v.isString()) {
str = v.toString();
} else if (v.isInt32()) {
str = Int32ToString<allowGC>(cx, v.toInt32());
} else if (v.isDouble()) {
str = NumberToString<allowGC>(cx, v.toDouble());
} else if (v.isBoolean()) {
str = BooleanToString(cx, v.toBoolean());
} else if (v.isNull()) {
str = cx->names().null;
} else if (v.isSymbol()) {
if (cx->shouldBeJSContext() && allowGC) {
JS_ReportErrorNumber(cx->asJSContext(), GetErrorMessage, nullptr,
JSMSG_SYMBOL_TO_STRING);
}
return nullptr;
} else {
MOZ_ASSERT(v.isUndefined());
str = cx->names().undefined;
}
return str;
}
template JSString*
js::ToStringSlow<CanGC>(ExclusiveContext* cx, HandleValue arg);
template JSString*
js::ToStringSlow<NoGC>(ExclusiveContext* cx, Value arg);
JS_PUBLIC_API(JSString*)
js::ToStringSlow(JSContext* cx, HandleValue v)
{
return ToStringSlow<CanGC>(cx, v);
}
static JSString*
SymbolToSource(JSContext* cx, Symbol* symbol)
{
RootedString desc(cx, symbol->description());
SymbolCode code = symbol->code();
if (code != SymbolCode::InSymbolRegistry && code != SymbolCode::UniqueSymbol) {
// Well-known symbol.
MOZ_ASSERT(uint32_t(code) < JS::WellKnownSymbolLimit);
return desc;
}
StringBuffer buf(cx);
if (code == SymbolCode::InSymbolRegistry ? !buf.append("Symbol.for(") : !buf.append("Symbol("))
return nullptr;
if (desc) {
desc = StringToSource(cx, desc);
if (!desc || !buf.append(desc))
return nullptr;
}
if (!buf.append(')'))
return nullptr;
return buf.finishString();
}
JSString*
js::ValueToSource(JSContext* cx, HandleValue v)
{
JS_CHECK_RECURSION(cx, return nullptr);
assertSameCompartment(cx, v);
if (v.isUndefined())
return cx->names().void0;
if (v.isString())
return StringToSource(cx, v.toString());
if (v.isSymbol())
return SymbolToSource(cx, v.toSymbol());
if (v.isPrimitive()) {
/* Special case to preserve negative zero, _contra_ toString. */
if (v.isDouble() && IsNegativeZero(v.toDouble())) {
/* NB: _ucNstr rather than _ucstr to indicate non-terminated. */
static const char16_t js_negzero_ucNstr[] = {'-', '0'};
return NewStringCopyN<CanGC>(cx, js_negzero_ucNstr, 2);
}
return ToString<CanGC>(cx, v);
}
RootedValue fval(cx);
RootedObject obj(cx, &v.toObject());
if (!GetProperty(cx, obj, obj, cx->names().toSource, &fval))
return nullptr;
if (IsCallable(fval)) {
RootedValue rval(cx);
if (!Invoke(cx, ObjectValue(*obj), fval, 0, nullptr, &rval))
return nullptr;
return ToString<CanGC>(cx, rval);
}
return ObjectToSource(cx, obj);
}
JSString*
js::StringToSource(JSContext* cx, JSString* str)
{
return QuoteString(cx, str, '"');
}
bool
js::EqualChars(JSLinearString* str1, JSLinearString* str2)
{
MOZ_ASSERT(str1->length() == str2->length());
size_t len = str1->length();
AutoCheckCannotGC nogc;
if (str1->hasTwoByteChars()) {
if (str2->hasTwoByteChars())
return PodEqual(str1->twoByteChars(nogc), str2->twoByteChars(nogc), len);
return EqualChars(str2->latin1Chars(nogc), str1->twoByteChars(nogc), len);
}
if (str2->hasLatin1Chars())
return PodEqual(str1->latin1Chars(nogc), str2->latin1Chars(nogc), len);
return EqualChars(str1->latin1Chars(nogc), str2->twoByteChars(nogc), len);
}
bool
js::EqualStrings(JSContext* cx, JSString* str1, JSString* str2, bool* result)
{
if (str1 == str2) {
*result = true;
return true;
}
size_t length1 = str1->length();
if (length1 != str2->length()) {
*result = false;
return true;
}
JSLinearString* linear1 = str1->ensureLinear(cx);
if (!linear1)
return false;
JSLinearString* linear2 = str2->ensureLinear(cx);
if (!linear2)
return false;
*result = EqualChars(linear1, linear2);
return true;
}
bool
js::EqualStrings(JSLinearString* str1, JSLinearString* str2)
{
if (str1 == str2)
return true;
size_t length1 = str1->length();
if (length1 != str2->length())
return false;
return EqualChars(str1, str2);
}
static int32_t
CompareStringsImpl(JSLinearString* str1, JSLinearString* str2)
{
size_t len1 = str1->length();
size_t len2 = str2->length();
AutoCheckCannotGC nogc;
if (str1->hasLatin1Chars()) {
const Latin1Char* chars1 = str1->latin1Chars(nogc);
return str2->hasLatin1Chars()
? CompareChars(chars1, len1, str2->latin1Chars(nogc), len2)
: CompareChars(chars1, len1, str2->twoByteChars(nogc), len2);
}
const char16_t* chars1 = str1->twoByteChars(nogc);
return str2->hasLatin1Chars()
? CompareChars(chars1, len1, str2->latin1Chars(nogc), len2)
: CompareChars(chars1, len1, str2->twoByteChars(nogc), len2);
}
int32_t
js::CompareChars(const char16_t* s1, size_t len1, JSLinearString* s2)
{
AutoCheckCannotGC nogc;
return s2->hasLatin1Chars()
? CompareChars(s1, len1, s2->latin1Chars(nogc), s2->length())
: CompareChars(s1, len1, s2->twoByteChars(nogc), s2->length());
}
bool
js::CompareStrings(JSContext* cx, JSString* str1, JSString* str2, int32_t* result)
{
MOZ_ASSERT(str1);
MOZ_ASSERT(str2);
if (str1 == str2) {
*result = 0;
return true;
}
JSLinearString* linear1 = str1->ensureLinear(cx);
if (!linear1)
return false;
JSLinearString* linear2 = str2->ensureLinear(cx);
if (!linear2)
return false;
*result = CompareStringsImpl(linear1, linear2);
return true;
}
int32_t
js::CompareAtoms(JSAtom* atom1, JSAtom* atom2)
{
return CompareStringsImpl(atom1, atom2);
}
bool
js::StringEqualsAscii(JSLinearString* str, const char* asciiBytes)
{
size_t length = strlen(asciiBytes);
#ifdef DEBUG
for (size_t i = 0; i != length; ++i)
MOZ_ASSERT(unsigned(asciiBytes[i]) <= 127);
#endif
if (length != str->length())
return false;
const Latin1Char* latin1 = reinterpret_cast<const Latin1Char*>(asciiBytes);
AutoCheckCannotGC nogc;
return str->hasLatin1Chars()
? PodEqual(latin1, str->latin1Chars(nogc), length)
: EqualChars(latin1, str->twoByteChars(nogc), length);
}
size_t
js_strlen(const char16_t* s)
{
const char16_t* t;
for (t = s; *t != 0; t++)
continue;
return (size_t)(t - s);
}
int32_t
js_strcmp(const char16_t* lhs, const char16_t* rhs)
{
while (true) {
if (*lhs != *rhs)
return int32_t(*lhs) - int32_t(*rhs);
if (*lhs == 0)
return 0;
++lhs, ++rhs;
}
}
UniquePtr<char[], JS::FreePolicy>
js::DuplicateString(js::ExclusiveContext* cx, const char* s)
{
size_t n = strlen(s) + 1;
auto ret = cx->make_pod_array<char>(n);
if (!ret)
return ret;
PodCopy(ret.get(), s, n);
return ret;
}
UniquePtr<char16_t[], JS::FreePolicy>
js::DuplicateString(js::ExclusiveContext* cx, const char16_t* s)
{
size_t n = js_strlen(s) + 1;
auto ret = cx->make_pod_array<char16_t>(n);
if (!ret)
return ret;
PodCopy(ret.get(), s, n);
return ret;
}
UniquePtr<char16_t[], JS::FreePolicy>
js::DuplicateString(const char16_t* s)
{
size_t n = js_strlen(s) + 1;
UniquePtr<char16_t[], JS::FreePolicy> ret(js_pod_malloc<char16_t>(n));
if (!ret)
return nullptr;
PodCopy(ret.get(), s, n);
return ret;
}
template <typename CharT>
const CharT*
js_strchr_limit(const CharT* s, char16_t c, const CharT* limit)
{
while (s < limit) {
if (*s == c)
return s;
s++;
}
return nullptr;
}
template const Latin1Char*
js_strchr_limit(const Latin1Char* s, char16_t c, const Latin1Char* limit);
template const char16_t*
js_strchr_limit(const char16_t* s, char16_t c, const char16_t* limit);
char16_t*
js::InflateString(ExclusiveContext* cx, const char* bytes, size_t* lengthp)
{
size_t nchars;
char16_t* chars;
size_t nbytes = *lengthp;
nchars = nbytes;
chars = cx->pod_malloc<char16_t>(nchars + 1);
if (!chars)
goto bad;
for (size_t i = 0; i < nchars; i++)
chars[i] = (unsigned char) bytes[i];
*lengthp = nchars;
chars[nchars] = 0;
return chars;
bad:
// For compatibility with callers of JS_DecodeBytes we must zero lengthp
// on errors.
*lengthp = 0;
return nullptr;
}
template <typename CharT>
bool
js::DeflateStringToBuffer(JSContext* maybecx, const CharT* src, size_t srclen,
char* dst, size_t* dstlenp)
{
size_t dstlen = *dstlenp;
if (srclen > dstlen) {
for (size_t i = 0; i < dstlen; i++)
dst[i] = char(src[i]);
if (maybecx) {
AutoSuppressGC suppress(maybecx);
JS_ReportErrorNumber(maybecx, GetErrorMessage, nullptr,
JSMSG_BUFFER_TOO_SMALL);
}
return false;
}
for (size_t i = 0; i < srclen; i++)
dst[i] = char(src[i]);
*dstlenp = srclen;
return true;
}
template bool
js::DeflateStringToBuffer(JSContext* maybecx, const Latin1Char* src, size_t srclen,
char* dst, size_t* dstlenp);
template bool
js::DeflateStringToBuffer(JSContext* maybecx, const char16_t* src, size_t srclen,
char* dst, size_t* dstlenp);
#define ____ false
/*
* Identifier start chars:
* - 36: $
* - 65..90: A..Z
* - 95: _
* - 97..122: a..z
*/
const bool js_isidstart[] = {
/* 0 1 2 3 4 5 6 7 8 9 */
/* 0 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
/* 1 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
/* 2 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
/* 3 */ ____, ____, ____, ____, ____, ____, true, ____, ____, ____,
/* 4 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
/* 5 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
/* 6 */ ____, ____, ____, ____, ____, true, true, true, true, true,
/* 7 */ true, true, true, true, true, true, true, true, true, true,
/* 8 */ true, true, true, true, true, true, true, true, true, true,
/* 9 */ true, ____, ____, ____, ____, true, ____, true, true, true,
/* 10 */ true, true, true, true, true, true, true, true, true, true,
/* 11 */ true, true, true, true, true, true, true, true, true, true,
/* 12 */ true, true, true, ____, ____, ____, ____, ____
};
/*
* Identifier chars:
* - 36: $
* - 48..57: 0..9
* - 65..90: A..Z
* - 95: _
* - 97..122: a..z
*/
const bool js_isident[] = {
/* 0 1 2 3 4 5 6 7 8 9 */
/* 0 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
/* 1 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
/* 2 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
/* 3 */ ____, ____, ____, ____, ____, ____, true, ____, ____, ____,
/* 4 */ ____, ____, ____, ____, ____, ____, ____, ____, true, true,
/* 5 */ true, true, true, true, true, true, true, true, ____, ____,
/* 6 */ ____, ____, ____, ____, ____, true, true, true, true, true,
/* 7 */ true, true, true, true, true, true, true, true, true, true,
/* 8 */ true, true, true, true, true, true, true, true, true, true,
/* 9 */ true, ____, ____, ____, ____, true, ____, true, true, true,
/* 10 */ true, true, true, true, true, true, true, true, true, true,
/* 11 */ true, true, true, true, true, true, true, true, true, true,
/* 12 */ true, true, true, ____, ____, ____, ____, ____
};
/* Whitespace chars: '\t', '\n', '\v', '\f', '\r', ' '. */
const bool js_isspace[] = {
/* 0 1 2 3 4 5 6 7 8 9 */
/* 0 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, true,
/* 1 */ true, true, true, true, ____, ____, ____, ____, ____, ____,
/* 2 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
/* 3 */ ____, ____, true, ____, ____, ____, ____, ____, ____, ____,
/* 4 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
/* 5 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
/* 6 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
/* 7 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
/* 8 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
/* 9 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
/* 10 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
/* 11 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
/* 12 */ ____, ____, ____, ____, ____, ____, ____, ____
};
/*
* Uri reserved chars + #:
* - 35: #
* - 36: $
* - 38: &
* - 43: +
* - 44: ,
* - 47: /
* - 58: :
* - 59: ;
* - 61: =
* - 63: ?
* - 64: @
*/
static const bool js_isUriReservedPlusPound[] = {
/* 0 1 2 3 4 5 6 7 8 9 */
/* 0 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
/* 1 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
/* 2 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
/* 3 */ ____, ____, ____, ____, ____, true, true, ____, true, ____,
/* 4 */ ____, ____, ____, true, true, ____, ____, true, ____, ____,
/* 5 */ ____, ____, ____, ____, ____, ____, ____, ____, true, true,
/* 6 */ ____, true, ____, true, true, ____, ____, ____, ____, ____,
/* 7 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
/* 8 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
/* 9 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
/* 10 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
/* 11 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
/* 12 */ ____, ____, ____, ____, ____, ____, ____, ____
};
/*
* Uri unescaped chars:
* - 33: !
* - 39: '
* - 40: (
* - 41: )
* - 42: *
* - 45: -
* - 46: .
* - 48..57: 0-9
* - 65..90: A-Z
* - 95: _
* - 97..122: a-z
* - 126: ~
*/
static const bool js_isUriUnescaped[] = {
/* 0 1 2 3 4 5 6 7 8 9 */
/* 0 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
/* 1 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
/* 2 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
/* 3 */ ____, ____, ____, true, ____, ____, ____, ____, ____, true,
/* 4 */ true, true, true, ____, ____, true, true, ____, true, true,
/* 5 */ true, true, true, true, true, true, true, true, ____, ____,
/* 6 */ ____, ____, ____, ____, ____, true, true, true, true, true,
/* 7 */ true, true, true, true, true, true, true, true, true, true,
/* 8 */ true, true, true, true, true, true, true, true, true, true,
/* 9 */ true, ____, ____, ____, ____, true, ____, true, true, true,
/* 10 */ true, true, true, true, true, true, true, true, true, true,
/* 11 */ true, true, true, true, true, true, true, true, true, true,
/* 12 */ true, true, true, ____, ____, ____, true, ____
};
#undef ____
#define URI_CHUNK 64U
static inline bool
TransferBufferToString(StringBuffer& sb, MutableHandleValue rval)
{
JSString* str = sb.finishString();
if (!str)
return false;
rval.setString(str);
return true;
}
/*
* ECMA 3, 15.1.3 URI Handling Function Properties
*
* The following are implementations of the algorithms
* given in the ECMA specification for the hidden functions
* 'Encode' and 'Decode'.
*/
enum EncodeResult { Encode_Failure, Encode_BadUri, Encode_Success };
template <typename CharT>
static EncodeResult
Encode(StringBuffer& sb, const CharT* chars, size_t length,
const bool* unescapedSet, const bool* unescapedSet2)
{
static const char HexDigits[] = "0123456789ABCDEF"; /* NB: uppercase */
char16_t hexBuf[4];
hexBuf[0] = '%';
hexBuf[3] = 0;
for (size_t k = 0; k < length; k++) {
char16_t c = chars[k];
if (c < 128 && (unescapedSet[c] || (unescapedSet2 && unescapedSet2[c]))) {
if (!sb.append(c))
return Encode_Failure;
} else {
if (c >= 0xDC00 && c <= 0xDFFF)
return Encode_BadUri;
uint32_t v;
if (c < 0xD800 || c > 0xDBFF) {
v = c;
} else {
k++;
if (k == length)
return Encode_BadUri;
char16_t c2 = chars[k];
if (c2 < 0xDC00 || c2 > 0xDFFF)
return Encode_BadUri;
v = ((c - 0xD800) << 10) + (c2 - 0xDC00) + 0x10000;
}
uint8_t utf8buf[4];
size_t L = OneUcs4ToUtf8Char(utf8buf, v);
for (size_t j = 0; j < L; j++) {
hexBuf[1] = HexDigits[utf8buf[j] >> 4];
hexBuf[2] = HexDigits[utf8buf[j] & 0xf];
if (!sb.append(hexBuf, 3))
return Encode_Failure;
}
}
}
return Encode_Success;
}
static bool
Encode(JSContext* cx, HandleLinearString str, const bool* unescapedSet,
const bool* unescapedSet2, MutableHandleValue rval)
{
size_t length = str->length();
if (length == 0) {
rval.setString(cx->runtime()->emptyString);
return true;
}
StringBuffer sb(cx);
if (!sb.reserve(length))
return false;
EncodeResult res;
if (str->hasLatin1Chars()) {
AutoCheckCannotGC nogc;
res = Encode(sb, str->latin1Chars(nogc), str->length(), unescapedSet, unescapedSet2);
} else {
AutoCheckCannotGC nogc;
res = Encode(sb, str->twoByteChars(nogc), str->length(), unescapedSet, unescapedSet2);
}
if (res == Encode_Failure)
return false;
if (res == Encode_BadUri) {
JS_ReportErrorNumber(cx, GetErrorMessage, nullptr, JSMSG_BAD_URI, nullptr);
return false;
}
MOZ_ASSERT(res == Encode_Success);
return TransferBufferToString(sb, rval);
}
enum DecodeResult { Decode_Failure, Decode_BadUri, Decode_Success };
template <typename CharT>
static DecodeResult
Decode(StringBuffer& sb, const CharT* chars, size_t length, const bool* reservedSet)
{
for (size_t k = 0; k < length; k++) {
char16_t c = chars[k];
if (c == '%') {
size_t start = k;
if ((k + 2) >= length)
return Decode_BadUri;
if (!JS7_ISHEX(chars[k+1]) || !JS7_ISHEX(chars[k+2]))
return Decode_BadUri;
uint32_t B = JS7_UNHEX(chars[k+1]) * 16 + JS7_UNHEX(chars[k+2]);
k += 2;
if (!(B & 0x80)) {
c = char16_t(B);
} else {
int n = 1;
while (B & (0x80 >> n))
n++;
if (n == 1 || n > 4)
return Decode_BadUri;
uint8_t octets[4];
octets[0] = (uint8_t)B;
if (k + 3 * (n - 1) >= length)
return Decode_BadUri;
for (int j = 1; j < n; j++) {
k++;
if (chars[k] != '%')
return Decode_BadUri;
if (!JS7_ISHEX(chars[k+1]) || !JS7_ISHEX(chars[k+2]))
return Decode_BadUri;
B = JS7_UNHEX(chars[k+1]) * 16 + JS7_UNHEX(chars[k+2]);
if ((B & 0xC0) != 0x80)
return Decode_BadUri;
k += 2;
octets[j] = char(B);
}
uint32_t v = JS::Utf8ToOneUcs4Char(octets, n);
if (v >= 0x10000) {
v -= 0x10000;
if (v > 0xFFFFF)
return Decode_BadUri;
c = char16_t((v & 0x3FF) + 0xDC00);
char16_t H = char16_t((v >> 10) + 0xD800);
if (!sb.append(H))
return Decode_Failure;
} else {
c = char16_t(v);
}
}
if (c < 128 && reservedSet && reservedSet[c]) {
if (!sb.append(chars + start, k - start + 1))
return Decode_Failure;
} else {
if (!sb.append(c))
return Decode_Failure;
}
} else {
if (!sb.append(c))
return Decode_Failure;
}
}
return Decode_Success;
}
static bool
Decode(JSContext* cx, HandleLinearString str, const bool* reservedSet, MutableHandleValue rval)
{
size_t length = str->length();
if (length == 0) {
rval.setString(cx->runtime()->emptyString);
return true;
}
StringBuffer sb(cx);
DecodeResult res;
if (str->hasLatin1Chars()) {
AutoCheckCannotGC nogc;
res = Decode(sb, str->latin1Chars(nogc), str->length(), reservedSet);
} else {
AutoCheckCannotGC nogc;
res = Decode(sb, str->twoByteChars(nogc), str->length(), reservedSet);
}
if (res == Decode_Failure)
return false;
if (res == Decode_BadUri) {
JS_ReportErrorNumber(cx, GetErrorMessage, nullptr, JSMSG_BAD_URI);
return false;
}
MOZ_ASSERT(res == Decode_Success);
return TransferBufferToString(sb, rval);
}
static bool
str_decodeURI(JSContext* cx, unsigned argc, Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
RootedLinearString str(cx, ArgToRootedString(cx, args, 0));
if (!str)
return false;
return Decode(cx, str, js_isUriReservedPlusPound, args.rval());
}
static bool
str_decodeURI_Component(JSContext* cx, unsigned argc, Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
RootedLinearString str(cx, ArgToRootedString(cx, args, 0));
if (!str)
return false;
return Decode(cx, str, nullptr, args.rval());
}
static bool
str_encodeURI(JSContext* cx, unsigned argc, Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
RootedLinearString str(cx, ArgToRootedString(cx, args, 0));
if (!str)
return false;
return Encode(cx, str, js_isUriUnescaped, js_isUriReservedPlusPound, args.rval());
}
static bool
str_encodeURI_Component(JSContext* cx, unsigned argc, Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
RootedLinearString str(cx, ArgToRootedString(cx, args, 0));
if (!str)
return false;
return Encode(cx, str, js_isUriUnescaped, nullptr, args.rval());
}
/*
* Convert one UCS-4 char and write it into a UTF-8 buffer, which must be at
* least 4 bytes long. Return the number of UTF-8 bytes of data written.
*/
uint32_t
js::OneUcs4ToUtf8Char(uint8_t* utf8Buffer, uint32_t ucs4Char)
{
MOZ_ASSERT(ucs4Char <= 0x10FFFF);
if (ucs4Char < 0x80) {
utf8Buffer[0] = uint8_t(ucs4Char);
return 1;
}
uint32_t a = ucs4Char >> 11;
uint32_t utf8Length = 2;
while (a) {
a >>= 5;
utf8Length++;
}
MOZ_ASSERT(utf8Length <= 4);
uint32_t i = utf8Length;
while (--i) {
utf8Buffer[i] = uint8_t((ucs4Char & 0x3F) | 0x80);
ucs4Char >>= 6;
}
utf8Buffer[0] = uint8_t(0x100 - (1 << (8 - utf8Length)) + ucs4Char);
return utf8Length;
}
size_t
js::PutEscapedStringImpl(char* buffer, size_t bufferSize, GenericPrinter* out, JSLinearString* str,
uint32_t quote)
{
size_t len = str->length();
AutoCheckCannotGC nogc;
return str->hasLatin1Chars()
? PutEscapedStringImpl(buffer, bufferSize, out, str->latin1Chars(nogc), len, quote)
: PutEscapedStringImpl(buffer, bufferSize, out, str->twoByteChars(nogc), len, quote);
}
template <typename CharT>
size_t
js::PutEscapedStringImpl(char* buffer, size_t bufferSize, GenericPrinter* out, const CharT* chars,
size_t length, uint32_t quote)
{
enum {
STOP, FIRST_QUOTE, LAST_QUOTE, CHARS, ESCAPE_START, ESCAPE_MORE
} state;
MOZ_ASSERT(quote == 0 || quote == '\'' || quote == '"');
MOZ_ASSERT_IF(!buffer, bufferSize == 0);
MOZ_ASSERT_IF(out, !buffer);
if (bufferSize == 0)
buffer = nullptr;
else
bufferSize--;
const CharT* charsEnd = chars + length;
size_t n = 0;
state = FIRST_QUOTE;
unsigned shift = 0;
unsigned hex = 0;
unsigned u = 0;
char c = 0; /* to quell GCC warnings */
for (;;) {
switch (state) {
case STOP:
goto stop;
case FIRST_QUOTE:
state = CHARS;
goto do_quote;
case LAST_QUOTE:
state = STOP;
do_quote:
if (quote == 0)
continue;
c = (char)quote;
break;
case CHARS:
if (chars == charsEnd) {
state = LAST_QUOTE;
continue;
}
u = *chars++;
if (u < ' ') {
if (u != 0) {
const char* escape = strchr(js_EscapeMap, (int)u);
if (escape) {
u = escape[1];
goto do_escape;
}
}
goto do_hex_escape;
}
if (u < 127) {
if (u == quote || u == '\\')
goto do_escape;
c = (char)u;
} else if (u < 0x100) {
goto do_hex_escape;
} else {
shift = 16;
hex = u;
u = 'u';
goto do_escape;
}
break;
do_hex_escape:
shift = 8;
hex = u;
u = 'x';
do_escape:
c = '\\';
state = ESCAPE_START;
break;
case ESCAPE_START:
MOZ_ASSERT(' ' <= u && u < 127);
c = (char)u;
state = ESCAPE_MORE;
break;
case ESCAPE_MORE:
if (shift == 0) {
state = CHARS;
continue;
}
shift -= 4;
u = 0xF & (hex >> shift);
c = (char)(u + (u < 10 ? '0' : 'A' - 10));
break;
}
if (buffer) {
MOZ_ASSERT(n <= bufferSize);
if (n != bufferSize) {
buffer[n] = c;
} else {
buffer[n] = '\0';
buffer = nullptr;
}
} else if (out) {
if (out->put(&c, 1) < 0)
return size_t(-1);
}
n++;
}
stop:
if (buffer)
buffer[n] = '\0';
return n;
}
template size_t
js::PutEscapedStringImpl(char* buffer, size_t bufferSize, GenericPrinter* out, const Latin1Char* chars,
size_t length, uint32_t quote);
template size_t
js::PutEscapedStringImpl(char* buffer, size_t bufferSize, GenericPrinter* out, const char* chars,
size_t length, uint32_t quote);
template size_t
js::PutEscapedStringImpl(char* buffer, size_t bufferSize, GenericPrinter* out, const char16_t* chars,
size_t length, uint32_t quote);
template size_t
js::PutEscapedString(char* buffer, size_t bufferSize, const Latin1Char* chars, size_t length,
uint32_t quote);
template size_t
js::PutEscapedString(char* buffer, size_t bufferSize, const char16_t* chars, size_t length,
uint32_t quote);