blob: fe8119bf3d54d972fa7131b7547d2217256dfd81 [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: jschorr@google.com (Joseph Schorr)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// This file defines static methods and classes for comparing Protocol
// Messages (see //google/protobuf/util/message_differencer.h for more
// information).
#include <google/protobuf/util/message_differencer.h>
#include <algorithm>
#include <memory>
#ifndef _SHARED_PTR_H
#include <google/protobuf/stubs/shared_ptr.h>
#endif
#include <utility>
#include <google/protobuf/stubs/callback.h>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/stubs/logging.h>
#include <google/protobuf/stubs/stringprintf.h>
#include <google/protobuf/any.h>
#include <google/protobuf/io/printer.h>
#include <google/protobuf/io/zero_copy_stream.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <google/protobuf/dynamic_message.h>
#include <google/protobuf/text_format.h>
#include <google/protobuf/util/field_comparator.h>
#include <google/protobuf/stubs/strutil.h>
namespace google {
namespace protobuf {
namespace util {
// When comparing a repeated field as map, MultipleFieldMapKeyComparator can
// be used to specify multiple fields as key for key comparison.
// Two elements of a repeated field will be regarded as having the same key
// iff they have the same value for every specified key field.
// Note that you can also specify only one field as key.
class MessageDifferencer::MultipleFieldsMapKeyComparator
: public MessageDifferencer::MapKeyComparator {
public:
MultipleFieldsMapKeyComparator(
MessageDifferencer* message_differencer,
const vector<vector<const FieldDescriptor*> >& key_field_paths)
: message_differencer_(message_differencer),
key_field_paths_(key_field_paths) {
GOOGLE_CHECK(!key_field_paths_.empty());
for (int i = 0; i < key_field_paths_.size(); ++i) {
GOOGLE_CHECK(!key_field_paths_[i].empty());
}
}
MultipleFieldsMapKeyComparator(
MessageDifferencer* message_differencer,
const FieldDescriptor* key)
: message_differencer_(message_differencer) {
vector<const FieldDescriptor*> key_field_path;
key_field_path.push_back(key);
key_field_paths_.push_back(key_field_path);
}
virtual bool IsMatch(
const Message& message1,
const Message& message2,
const vector<SpecificField>& parent_fields) const {
for (int i = 0; i < key_field_paths_.size(); ++i) {
if (!IsMatchInternal(message1, message2, parent_fields,
key_field_paths_[i], 0)) {
return false;
}
}
return true;
}
private:
bool IsMatchInternal(
const Message& message1,
const Message& message2,
const vector<SpecificField>& parent_fields,
const vector<const FieldDescriptor*>& key_field_path,
int path_index) const {
const FieldDescriptor* field = key_field_path[path_index];
vector<SpecificField> current_parent_fields(parent_fields);
if (path_index == key_field_path.size() - 1) {
if (field->is_repeated()) {
if (!message_differencer_->CompareRepeatedField(
message1, message2, field, &current_parent_fields)) {
return false;
}
} else {
if (!message_differencer_->CompareFieldValueUsingParentFields(
message1, message2, field, -1, -1, &current_parent_fields)) {
return false;
}
}
return true;
} else {
const Reflection* reflection1 = message1.GetReflection();
const Reflection* reflection2 = message2.GetReflection();
bool has_field1 = reflection1->HasField(message1, field);
bool has_field2 = reflection2->HasField(message2, field);
if (!has_field1 && !has_field2) {
return true;
}
if (has_field1 != has_field2) {
return false;
}
SpecificField specific_field;
specific_field.field = field;
current_parent_fields.push_back(specific_field);
return IsMatchInternal(
reflection1->GetMessage(message1, field),
reflection2->GetMessage(message2, field),
current_parent_fields,
key_field_path,
path_index + 1);
}
}
MessageDifferencer* message_differencer_;
vector<vector<const FieldDescriptor*> > key_field_paths_;
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MultipleFieldsMapKeyComparator);
};
bool MessageDifferencer::Equals(const Message& message1,
const Message& message2) {
MessageDifferencer differencer;
return differencer.Compare(message1, message2);
}
bool MessageDifferencer::Equivalent(const Message& message1,
const Message& message2) {
MessageDifferencer differencer;
differencer.set_message_field_comparison(MessageDifferencer::EQUIVALENT);
return differencer.Compare(message1, message2);
}
bool MessageDifferencer::ApproximatelyEquals(const Message& message1,
const Message& message2) {
MessageDifferencer differencer;
differencer.set_float_comparison(
MessageDifferencer::APPROXIMATE);
return differencer.Compare(message1, message2);
}
bool MessageDifferencer::ApproximatelyEquivalent(const Message& message1,
const Message& message2) {
MessageDifferencer differencer;
differencer.set_message_field_comparison(MessageDifferencer::EQUIVALENT);
differencer.set_float_comparison(MessageDifferencer::APPROXIMATE);
return differencer.Compare(message1, message2);
}
// ===========================================================================
MessageDifferencer::MessageDifferencer()
: reporter_(NULL),
field_comparator_(NULL),
message_field_comparison_(EQUAL),
scope_(FULL),
repeated_field_comparison_(AS_LIST),
report_matches_(false),
output_string_(NULL) { }
MessageDifferencer::~MessageDifferencer() {
for (int i = 0; i < owned_key_comparators_.size(); ++i) {
delete owned_key_comparators_[i];
}
for (int i = 0; i < ignore_criteria_.size(); ++i) {
delete ignore_criteria_[i];
}
}
void MessageDifferencer::set_field_comparator(FieldComparator* comparator) {
GOOGLE_CHECK(comparator) << "Field comparator can't be NULL.";
field_comparator_ = comparator;
}
void MessageDifferencer::set_message_field_comparison(
MessageFieldComparison comparison) {
message_field_comparison_ = comparison;
}
void MessageDifferencer::set_scope(Scope scope) {
scope_ = scope;
}
MessageDifferencer::Scope MessageDifferencer::scope() {
return scope_;
}
void MessageDifferencer::set_float_comparison(FloatComparison comparison) {
default_field_comparator_.set_float_comparison(
comparison == EXACT ?
DefaultFieldComparator::EXACT : DefaultFieldComparator::APPROXIMATE);
}
void MessageDifferencer::set_repeated_field_comparison(
RepeatedFieldComparison comparison) {
repeated_field_comparison_ = comparison;
}
void MessageDifferencer::TreatAsSet(const FieldDescriptor* field) {
GOOGLE_CHECK(field->is_repeated()) << "Field must be repeated: "
<< field->full_name();
const MapKeyComparator* key_comparator = GetMapKeyComparator(field);
GOOGLE_CHECK(key_comparator == NULL)
<< "Cannot treat this repeated field as both Map and Set for"
<< " comparison. Field name is: " << field->full_name();
GOOGLE_CHECK(list_fields_.find(field) == list_fields_.end())
<< "Cannot treat the same field as both SET and LIST. Field name is: "
<< field->full_name();
set_fields_.insert(field);
}
void MessageDifferencer::TreatAsList(const FieldDescriptor* field) {
GOOGLE_CHECK(field->is_repeated()) << "Field must be repeated: "
<< field->full_name();
const MapKeyComparator* key_comparator = GetMapKeyComparator(field);
GOOGLE_CHECK(key_comparator == NULL)
<< "Cannot treat this repeated field as both Map and Set for"
<< " comparison. Field name is: " << field->full_name();
GOOGLE_CHECK(set_fields_.find(field) == set_fields_.end())
<< "Cannot treat the same field as both SET and LIST. Field name is: "
<< field->full_name();
list_fields_.insert(field);
}
void MessageDifferencer::TreatAsMap(const FieldDescriptor* field,
const FieldDescriptor* key) {
GOOGLE_CHECK(field->is_repeated()) << "Field must be repeated: "
<< field->full_name();
GOOGLE_CHECK_EQ(FieldDescriptor::CPPTYPE_MESSAGE, field->cpp_type())
<< "Field has to be message type. Field name is: "
<< field->full_name();
GOOGLE_CHECK(key->containing_type() == field->message_type())
<< key->full_name()
<< " must be a direct subfield within the repeated field "
<< field->full_name() << ", not " << key->containing_type()->full_name();
GOOGLE_CHECK(set_fields_.find(field) == set_fields_.end())
<< "Cannot treat this repeated field as both Map and Set for "
<< "comparison.";
GOOGLE_CHECK(list_fields_.find(field) == list_fields_.end())
<< "Cannot treat this repeated field as both Map and List for "
<< "comparison.";
MapKeyComparator* key_comparator =
new MultipleFieldsMapKeyComparator(this, key);
owned_key_comparators_.push_back(key_comparator);
map_field_key_comparator_[field] = key_comparator;
}
void MessageDifferencer::TreatAsMapWithMultipleFieldsAsKey(
const FieldDescriptor* field,
const vector<const FieldDescriptor*>& key_fields) {
vector<vector<const FieldDescriptor*> > key_field_paths;
for (int i = 0; i < key_fields.size(); ++i) {
vector<const FieldDescriptor*> key_field_path;
key_field_path.push_back(key_fields[i]);
key_field_paths.push_back(key_field_path);
}
TreatAsMapWithMultipleFieldPathsAsKey(field, key_field_paths);
}
void MessageDifferencer::TreatAsMapWithMultipleFieldPathsAsKey(
const FieldDescriptor* field,
const vector<vector<const FieldDescriptor*> >& key_field_paths) {
GOOGLE_CHECK(field->is_repeated()) << "Field must be repeated: "
<< field->full_name();
GOOGLE_CHECK_EQ(FieldDescriptor::CPPTYPE_MESSAGE, field->cpp_type())
<< "Field has to be message type. Field name is: "
<< field->full_name();
for (int i = 0; i < key_field_paths.size(); ++i) {
const vector<const FieldDescriptor*>& key_field_path = key_field_paths[i];
for (int j = 0; j < key_field_path.size(); ++j) {
const FieldDescriptor* parent_field =
j == 0 ? field : key_field_path[j - 1];
const FieldDescriptor* child_field = key_field_path[j];
GOOGLE_CHECK(child_field->containing_type() == parent_field->message_type())
<< child_field->full_name()
<< " must be a direct subfield within the field: "
<< parent_field->full_name();
if (j != 0) {
GOOGLE_CHECK_EQ(FieldDescriptor::CPPTYPE_MESSAGE, parent_field->cpp_type())
<< parent_field->full_name() << " has to be of type message.";
GOOGLE_CHECK(!parent_field->is_repeated())
<< parent_field->full_name() << " cannot be a repeated field.";
}
}
}
GOOGLE_CHECK(set_fields_.find(field) == set_fields_.end())
<< "Cannot treat this repeated field as both Map and Set for "
<< "comparison.";
MapKeyComparator* key_comparator =
new MultipleFieldsMapKeyComparator(this, key_field_paths);
owned_key_comparators_.push_back(key_comparator);
map_field_key_comparator_[field] = key_comparator;
}
void MessageDifferencer::TreatAsMapUsingKeyComparator(
const FieldDescriptor* field,
const MapKeyComparator* key_comparator) {
GOOGLE_CHECK(field->is_repeated()) << "Field must be repeated: "
<< field->full_name();
GOOGLE_CHECK_EQ(FieldDescriptor::CPPTYPE_MESSAGE, field->cpp_type())
<< "Field has to be message type. Field name is: "
<< field->full_name();
GOOGLE_CHECK(set_fields_.find(field) == set_fields_.end())
<< "Cannot treat this repeated field as both Map and Set for "
<< "comparison.";
map_field_key_comparator_[field] = key_comparator;
}
void MessageDifferencer::AddIgnoreCriteria(IgnoreCriteria* ignore_criteria) {
ignore_criteria_.push_back(ignore_criteria);
}
void MessageDifferencer::IgnoreField(const FieldDescriptor* field) {
ignored_fields_.insert(field);
}
void MessageDifferencer::SetFractionAndMargin(const FieldDescriptor* field,
double fraction, double margin) {
default_field_comparator_.SetFractionAndMargin(field, fraction, margin);
}
void MessageDifferencer::ReportDifferencesToString(string* output) {
GOOGLE_DCHECK(output) << "Specified output string was NULL";
output_string_ = output;
output_string_->clear();
}
void MessageDifferencer::ReportDifferencesTo(Reporter* reporter) {
// If an output string is set, clear it to prevent
// it superceding the specified reporter.
if (output_string_) {
output_string_ = NULL;
}
reporter_ = reporter;
}
bool MessageDifferencer::FieldBefore(const FieldDescriptor* field1,
const FieldDescriptor* field2) {
// Handle sentinel values (i.e. make sure NULLs are always ordered
// at the end of the list).
if (field1 == NULL) {
return false;
}
if (field2 == NULL) {
return true;
}
// Always order fields by their tag number
return (field1->number() < field2->number());
}
bool MessageDifferencer::Compare(const Message& message1,
const Message& message2) {
vector<SpecificField> parent_fields;
bool result = false;
// Setup the internal reporter if need be.
if (output_string_) {
io::StringOutputStream output_stream(output_string_);
StreamReporter reporter(&output_stream);
reporter_ = &reporter;
result = Compare(message1, message2, &parent_fields);
reporter_ = NULL;
} else {
result = Compare(message1, message2, &parent_fields);
}
return result;
}
bool MessageDifferencer::CompareWithFields(
const Message& message1,
const Message& message2,
const vector<const FieldDescriptor*>& message1_fields_arg,
const vector<const FieldDescriptor*>& message2_fields_arg) {
if (message1.GetDescriptor() != message2.GetDescriptor()) {
GOOGLE_LOG(DFATAL) << "Comparison between two messages with different "
<< "descriptors.";
return false;
}
vector<SpecificField> parent_fields;
bool result = false;
vector<const FieldDescriptor*> message1_fields(message1_fields_arg);
vector<const FieldDescriptor*> message2_fields(message2_fields_arg);
std::sort(message1_fields.begin(), message1_fields.end(), FieldBefore);
std::sort(message2_fields.begin(), message2_fields.end(), FieldBefore);
// Append NULL sentinel values.
message1_fields.push_back(NULL);
message2_fields.push_back(NULL);
// Setup the internal reporter if need be.
if (output_string_) {
io::StringOutputStream output_stream(output_string_);
StreamReporter reporter(&output_stream);
reporter_ = &reporter;
result = CompareRequestedFieldsUsingSettings(
message1, message2, message1_fields, message2_fields, &parent_fields);
reporter_ = NULL;
} else {
result = CompareRequestedFieldsUsingSettings(
message1, message2, message1_fields, message2_fields, &parent_fields);
}
return result;
}
bool MessageDifferencer::Compare(
const Message& message1,
const Message& message2,
vector<SpecificField>* parent_fields) {
const Descriptor* descriptor1 = message1.GetDescriptor();
const Descriptor* descriptor2 = message2.GetDescriptor();
if (descriptor1 != descriptor2) {
GOOGLE_LOG(DFATAL) << "Comparison between two messages with different "
<< "descriptors. "
<< descriptor1->full_name() << " vs "
<< descriptor2->full_name();
return false;
}
// Expand google.protobuf.Any payload if possible.
if (descriptor1->full_name() == internal::kAnyFullTypeName) {
google::protobuf::scoped_ptr<Message> data1;
google::protobuf::scoped_ptr<Message> data2;
if (UnpackAny(message1, &data1) && UnpackAny(message2, &data2)) {
return Compare(*data1, *data2, parent_fields);
}
}
const Reflection* reflection1 = message1.GetReflection();
const Reflection* reflection2 = message2.GetReflection();
// Retrieve all the set fields, including extensions.
vector<const FieldDescriptor*> message1_fields;
vector<const FieldDescriptor*> message2_fields;
reflection1->ListFields(message1, &message1_fields);
reflection2->ListFields(message2, &message2_fields);
// Add sentinel values to deal with the
// case where the number of the fields in
// each list are different.
message1_fields.push_back(NULL);
message2_fields.push_back(NULL);
bool unknown_compare_result = true;
// Ignore unknown fields in EQUIVALENT mode
if (message_field_comparison_ != EQUIVALENT) {
const google::protobuf::UnknownFieldSet* unknown_field_set1 =
&reflection1->GetUnknownFields(message1);
const google::protobuf::UnknownFieldSet* unknown_field_set2 =
&reflection2->GetUnknownFields(message2);
if (!CompareUnknownFields(message1, message2,
*unknown_field_set1, *unknown_field_set2,
parent_fields)) {
if (reporter_ == NULL) {
return false;
};
unknown_compare_result = false;
}
}
return CompareRequestedFieldsUsingSettings(
message1, message2,
message1_fields, message2_fields,
parent_fields) && unknown_compare_result;
}
bool MessageDifferencer::CompareRequestedFieldsUsingSettings(
const Message& message1,
const Message& message2,
const vector<const FieldDescriptor*>& message1_fields,
const vector<const FieldDescriptor*>& message2_fields,
vector<SpecificField>* parent_fields) {
if (scope_ == FULL) {
if (message_field_comparison_ == EQUIVALENT) {
// We need to merge the field lists of both messages (i.e.
// we are merely checking for a difference in field values,
// rather than the addition or deletion of fields).
vector<const FieldDescriptor*> fields_union;
CombineFields(message1_fields, FULL, message2_fields, FULL,
&fields_union);
return CompareWithFieldsInternal(message1, message2, fields_union,
fields_union, parent_fields);
} else {
// Simple equality comparison, use the unaltered field lists.
return CompareWithFieldsInternal(message1, message2, message1_fields,
message2_fields, parent_fields);
}
} else {
if (message_field_comparison_ == EQUIVALENT) {
// We use the list of fields for message1 for both messages when
// comparing. This way, extra fields in message2 are ignored,
// and missing fields in message2 use their default value.
return CompareWithFieldsInternal(message1, message2, message1_fields,
message1_fields, parent_fields);
} else {
// We need to consider the full list of fields for message1
// but only the intersection for message2. This way, any fields
// only present in message2 will be ignored, but any fields only
// present in message1 will be marked as a difference.
vector<const FieldDescriptor*> fields_intersection;
CombineFields(message1_fields, PARTIAL, message2_fields, PARTIAL,
&fields_intersection);
return CompareWithFieldsInternal(message1, message2, message1_fields,
fields_intersection, parent_fields);
}
}
}
void MessageDifferencer::CombineFields(
const vector<const FieldDescriptor*>& fields1,
Scope fields1_scope,
const vector<const FieldDescriptor*>& fields2,
Scope fields2_scope,
vector<const FieldDescriptor*>* combined_fields) {
int index1 = 0;
int index2 = 0;
while (index1 < fields1.size() && index2 < fields2.size()) {
const FieldDescriptor* field1 = fields1[index1];
const FieldDescriptor* field2 = fields2[index2];
if (FieldBefore(field1, field2)) {
if (fields1_scope == FULL) {
combined_fields->push_back(fields1[index1]);
}
++index1;
} else if (FieldBefore(field2, field1)) {
if (fields2_scope == FULL) {
combined_fields->push_back(fields2[index2]);
}
++index2;
} else {
combined_fields->push_back(fields1[index1]);
++index1;
++index2;
}
}
}
bool MessageDifferencer::CompareWithFieldsInternal(
const Message& message1,
const Message& message2,
const vector<const FieldDescriptor*>& message1_fields,
const vector<const FieldDescriptor*>& message2_fields,
vector<SpecificField>* parent_fields) {
bool isDifferent = false;
int field_index1 = 0;
int field_index2 = 0;
const Reflection* reflection1 = message1.GetReflection();
const Reflection* reflection2 = message2.GetReflection();
while (true) {
const FieldDescriptor* field1 = message1_fields[field_index1];
const FieldDescriptor* field2 = message2_fields[field_index2];
// Once we have reached sentinel values, we are done the comparison.
if (field1 == NULL && field2 == NULL) {
break;
}
// Check for differences in the field itself.
if (FieldBefore(field1, field2)) {
// Field 1 is not in the field list for message 2.
if (IsIgnored(message1, message2, field1, *parent_fields)) {
// We are ignoring field1. Report the ignore and move on to
// the next field in message1_fields.
if (reporter_ != NULL) {
SpecificField specific_field;
specific_field.field = field1;
parent_fields->push_back(specific_field);
reporter_->ReportIgnored(message1, message2, *parent_fields);
parent_fields->pop_back();
}
++field_index1;
continue;
}
if (reporter_ != NULL) {
int count = field1->is_repeated() ?
reflection1->FieldSize(message1, field1) : 1;
for (int i = 0; i < count; ++i) {
SpecificField specific_field;
specific_field.field = field1;
specific_field.index = field1->is_repeated() ? i : -1;
parent_fields->push_back(specific_field);
reporter_->ReportDeleted(message1, message2, *parent_fields);
parent_fields->pop_back();
}
isDifferent = true;
} else {
return false;
}
++field_index1;
continue;
} else if (FieldBefore(field2, field1)) {
// Field 2 is not in the field list for message 1.
if (IsIgnored(message1, message2, field2, *parent_fields)) {
// We are ignoring field2. Report the ignore and move on to
// the next field in message2_fields.
if (reporter_ != NULL) {
SpecificField specific_field;
specific_field.field = field2;
parent_fields->push_back(specific_field);
reporter_->ReportIgnored(message1, message2, *parent_fields);
parent_fields->pop_back();
}
++field_index2;
continue;
}
if (reporter_ != NULL) {
int count = field2->is_repeated() ?
reflection2->FieldSize(message2, field2) : 1;
for (int i = 0; i < count; ++i) {
SpecificField specific_field;
specific_field.field = field2;
specific_field.index = field2->is_repeated() ? i : -1;
specific_field.new_index = specific_field.index;
parent_fields->push_back(specific_field);
reporter_->ReportAdded(message1, message2, *parent_fields);
parent_fields->pop_back();
}
isDifferent = true;
} else {
return false;
}
++field_index2;
continue;
}
// By this point, field1 and field2 are guarenteed to point to the same
// field, so we can now compare the values.
if (IsIgnored(message1, message2, field1, *parent_fields)) {
// Ignore this field. Report and move on.
if (reporter_ != NULL) {
SpecificField specific_field;
specific_field.field = field1;
parent_fields->push_back(specific_field);
reporter_->ReportIgnored(message1, message2, *parent_fields);
parent_fields->pop_back();
}
++field_index1;
++field_index2;
continue;
}
bool fieldDifferent = false;
if (field1->is_repeated()) {
fieldDifferent = !CompareRepeatedField(message1, message2, field1,
parent_fields);
if (fieldDifferent) {
if (reporter_ == NULL) return false;
isDifferent = true;
}
} else {
fieldDifferent = !CompareFieldValueUsingParentFields(
message1, message2, field1, -1, -1, parent_fields);
// If we have found differences, either report them or terminate if
// no reporter is present.
if (fieldDifferent && reporter_ == NULL) {
return false;
}
if (reporter_ != NULL) {
SpecificField specific_field;
specific_field.field = field1;
parent_fields->push_back(specific_field);
if (fieldDifferent) {
reporter_->ReportModified(message1, message2, *parent_fields);
isDifferent = true;
} else if (report_matches_) {
reporter_->ReportMatched(message1, message2, *parent_fields);
}
parent_fields->pop_back();
}
}
// Increment the field indicies.
++field_index1;
++field_index2;
}
return !isDifferent;
}
bool MessageDifferencer::IsMatch(const FieldDescriptor* repeated_field,
const MapKeyComparator* key_comparator,
const Message* message1,
const Message* message2,
const vector<SpecificField>& parent_fields,
int index1, int index2) {
vector<SpecificField> current_parent_fields(parent_fields);
if (repeated_field->cpp_type() != FieldDescriptor::CPPTYPE_MESSAGE) {
return CompareFieldValueUsingParentFields(
*message1, *message2, repeated_field, index1, index2,
&current_parent_fields);
}
// Back up the Reporter and output_string_. They will be reset in the
// following code.
Reporter* backup_reporter = reporter_;
string* output_string = output_string_;
reporter_ = NULL;
output_string_ = NULL;
bool match;
if (key_comparator == NULL) {
match = CompareFieldValueUsingParentFields(
*message1, *message2, repeated_field, index1, index2,
&current_parent_fields);
} else {
const Reflection* reflection1 = message1->GetReflection();
const Reflection* reflection2 = message2->GetReflection();
const Message& m1 =
reflection1->GetRepeatedMessage(*message1, repeated_field, index1);
const Message& m2 =
reflection2->GetRepeatedMessage(*message2, repeated_field, index2);
SpecificField specific_field;
specific_field.field = repeated_field;
current_parent_fields.push_back(specific_field);
match = key_comparator->IsMatch(m1, m2, current_parent_fields);
}
reporter_ = backup_reporter;
output_string_ = output_string;
return match;
}
bool MessageDifferencer::CompareRepeatedField(
const Message& message1,
const Message& message2,
const FieldDescriptor* repeated_field,
vector<SpecificField>* parent_fields) {
// the input FieldDescriptor is guaranteed to be repeated field.
const Reflection* reflection1 = message1.GetReflection();
const Reflection* reflection2 = message2.GetReflection();
const int count1 = reflection1->FieldSize(message1, repeated_field);
const int count2 = reflection2->FieldSize(message2, repeated_field);
const bool treated_as_subset = IsTreatedAsSubset(repeated_field);
// If the field is not treated as subset and no detailed reports is needed,
// we do a quick check on the number of the elements to avoid unnecessary
// comparison.
if (count1 != count2 && reporter_ == NULL && !treated_as_subset) {
return false;
}
// A match can never be found if message1 has more items than message2.
if (count1 > count2 && reporter_ == NULL) {
return false;
}
// These two list are used for store the index of the correspondent
// element in peer repeated field.
vector<int> match_list1;
vector<int> match_list2;
// Try to match indices of the repeated fields. Return false if match fails
// and there's no detailed report needed.
if (!MatchRepeatedFieldIndices(message1, message2, repeated_field,
*parent_fields, &match_list1, &match_list2) &&
reporter_ == NULL) {
return false;
}
bool fieldDifferent = false;
SpecificField specific_field;
specific_field.field = repeated_field;
// At this point, we have already matched pairs of fields (with the reporting
// to be done later). Now to check if the paired elements are different.
for (int i = 0; i < count1; i++) {
if (match_list1[i] == -1) continue;
specific_field.index = i;
specific_field.new_index = match_list1[i];
const bool result = CompareFieldValueUsingParentFields(
message1, message2, repeated_field, i, specific_field.new_index,
parent_fields);
// If we have found differences, either report them or terminate if
// no reporter is present. Note that ReportModified, ReportMoved, and
// ReportMatched are all mutually exclusive.
if (!result) {
if (reporter_ == NULL) return false;
parent_fields->push_back(specific_field);
reporter_->ReportModified(message1, message2, *parent_fields);
parent_fields->pop_back();
fieldDifferent = true;
} else if (reporter_ != NULL &&
specific_field.index != specific_field.new_index) {
parent_fields->push_back(specific_field);
reporter_->ReportMoved(message1, message2, *parent_fields);
parent_fields->pop_back();
} else if (report_matches_ && reporter_ != NULL) {
parent_fields->push_back(specific_field);
reporter_->ReportMatched(message1, message2, *parent_fields);
parent_fields->pop_back();
}
}
// Report any remaining additions or deletions.
for (int i = 0; i < count2; ++i) {
if (match_list2[i] != -1) continue;
if (!treated_as_subset) {
fieldDifferent = true;
}
if (reporter_ == NULL) continue;
specific_field.index = i;
specific_field.new_index = i;
parent_fields->push_back(specific_field);
reporter_->ReportAdded(message1, message2, *parent_fields);
parent_fields->pop_back();
}
for (int i = 0; i < count1; ++i) {
if (match_list1[i] != -1) continue;
specific_field.index = i;
parent_fields->push_back(specific_field);
reporter_->ReportDeleted(message1, message2, *parent_fields);
parent_fields->pop_back();
fieldDifferent = true;
}
return !fieldDifferent;
}
bool MessageDifferencer::CompareFieldValue(const Message& message1,
const Message& message2,
const FieldDescriptor* field,
int index1,
int index2) {
return CompareFieldValueUsingParentFields(message1, message2, field, index1,
index2, NULL);
}
bool MessageDifferencer::CompareFieldValueUsingParentFields(
const Message& message1, const Message& message2,
const FieldDescriptor* field, int index1, int index2,
vector<SpecificField>* parent_fields) {
FieldContext field_context(parent_fields);
FieldComparator::ComparisonResult result = GetFieldComparisonResult(
message1, message2, field, index1, index2, &field_context);
if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE &&
result == FieldComparator::RECURSE) {
// Get the nested messages and compare them using one of the Compare
// methods.
const Reflection* reflection1 = message1.GetReflection();
const Reflection* reflection2 = message2.GetReflection();
const Message& m1 = field->is_repeated() ?
reflection1->GetRepeatedMessage(message1, field, index1) :
reflection1->GetMessage(message1, field);
const Message& m2 = field->is_repeated() ?
reflection2->GetRepeatedMessage(message2, field, index2) :
reflection2->GetMessage(message2, field);
// parent_fields is used in calls to Reporter methods.
if (parent_fields != NULL) {
// Append currently compared field to the end of parent_fields.
SpecificField specific_field;
specific_field.field = field;
specific_field.index = index1;
specific_field.new_index = index2;
parent_fields->push_back(specific_field);
const bool compare_result = Compare(m1, m2, parent_fields);
parent_fields->pop_back();
return compare_result;
} else {
// Recreates parent_fields as if m1 and m2 had no parents.
return Compare(m1, m2);
}
} else {
return (result == FieldComparator::SAME);
}
}
bool MessageDifferencer::CheckPathChanged(
const vector<SpecificField>& field_path) {
for (int i = 0; i < field_path.size(); ++i) {
if (field_path[i].index != field_path[i].new_index) return true;
}
return false;
}
bool MessageDifferencer::IsTreatedAsSet(const FieldDescriptor* field) {
if (!field->is_repeated()) return false;
if (field->is_map()) return true;
if (repeated_field_comparison_ == AS_SET)
return list_fields_.find(field) == list_fields_.end();
return (set_fields_.find(field) != set_fields_.end());
}
bool MessageDifferencer::IsTreatedAsSubset(const FieldDescriptor* field) {
return scope_ == PARTIAL &&
(IsTreatedAsSet(field) || GetMapKeyComparator(field) != NULL);
}
bool MessageDifferencer::IsIgnored(
const Message& message1,
const Message& message2,
const FieldDescriptor* field,
const vector<SpecificField>& parent_fields) {
if (ignored_fields_.find(field) != ignored_fields_.end()) {
return true;
}
for (int i = 0; i < ignore_criteria_.size(); ++i) {
if (ignore_criteria_[i]->IsIgnored(message1, message2, field,
parent_fields)) {
return true;
}
}
return false;
}
bool MessageDifferencer::IsUnknownFieldIgnored(
const Message& message1, const Message& message2,
const SpecificField& field, const vector<SpecificField>& parent_fields) {
for (int i = 0; i < ignore_criteria_.size(); ++i) {
if (ignore_criteria_[i]->IsUnknownFieldIgnored(message1, message2, field,
parent_fields)) {
return true;
}
}
return false;
}
const MessageDifferencer::MapKeyComparator* MessageDifferencer
::GetMapKeyComparator(const FieldDescriptor* field) {
if (!field->is_repeated()) return NULL;
if (map_field_key_comparator_.find(field) !=
map_field_key_comparator_.end()) {
return map_field_key_comparator_[field];
}
return NULL;
}
namespace {
typedef pair<int, const UnknownField*> IndexUnknownFieldPair;
struct UnknownFieldOrdering {
inline bool operator()(const IndexUnknownFieldPair& a,
const IndexUnknownFieldPair& b) const {
if (a.second->number() < b.second->number()) return true;
if (a.second->number() > b.second->number()) return false;
return a.second->type() < b.second->type();
}
};
} // namespace
bool MessageDifferencer::UnpackAny(const Message& any,
google::protobuf::scoped_ptr<Message>* data) {
const Reflection* reflection = any.GetReflection();
const FieldDescriptor* type_url_field;
const FieldDescriptor* value_field;
if (!internal::GetAnyFieldDescriptors(any, &type_url_field, &value_field)) {
return false;
}
const string& type_url = reflection->GetString(any, type_url_field);
string full_type_name;
if (!internal::ParseAnyTypeUrl(type_url, &full_type_name)) {
return false;
}
const google::protobuf::Descriptor* desc =
any.GetDescriptor()->file()->pool()->FindMessageTypeByName(
full_type_name);
if (desc == NULL) {
GOOGLE_DLOG(ERROR) << "Proto type '" << full_type_name << "' not found";
return false;
}
if (dynamic_message_factory_ == NULL) {
dynamic_message_factory_.reset(new DynamicMessageFactory());
}
data->reset(dynamic_message_factory_->GetPrototype(desc)->New());
string serialized_value = reflection->GetString(any, value_field);
if (!(*data)->ParseFromString(serialized_value)) {
GOOGLE_DLOG(ERROR) << "Failed to parse value for " << full_type_name;
return false;
}
return true;
}
bool MessageDifferencer::CompareUnknownFields(
const Message& message1, const Message& message2,
const google::protobuf::UnknownFieldSet& unknown_field_set1,
const google::protobuf::UnknownFieldSet& unknown_field_set2,
vector<SpecificField>* parent_field) {
// Ignore unknown fields in EQUIVALENT mode.
if (message_field_comparison_ == EQUIVALENT) return true;
if (unknown_field_set1.empty() && unknown_field_set2.empty()) {
return true;
}
bool is_different = false;
// We first sort the unknown fields by field number and type (in other words,
// in tag order), making sure to preserve ordering of values with the same
// tag. This allows us to report only meaningful differences between the
// two sets -- that is, differing values for the same tag. We use
// IndexUnknownFieldPairs to keep track of the field's original index for
// reporting purposes.
vector<IndexUnknownFieldPair> fields1; // unknown_field_set1, sorted
vector<IndexUnknownFieldPair> fields2; // unknown_field_set2, sorted
fields1.reserve(unknown_field_set1.field_count());
fields2.reserve(unknown_field_set2.field_count());
for (int i = 0; i < unknown_field_set1.field_count(); i++) {
fields1.push_back(std::make_pair(i, &unknown_field_set1.field(i)));
}
for (int i = 0; i < unknown_field_set2.field_count(); i++) {
fields2.push_back(std::make_pair(i, &unknown_field_set2.field(i)));
}
UnknownFieldOrdering is_before;
std::stable_sort(fields1.begin(), fields1.end(), is_before);
std::stable_sort(fields2.begin(), fields2.end(), is_before);
// In order to fill in SpecificField::index, we have to keep track of how
// many values we've seen with the same field number and type.
// current_repeated points at the first field in this range, and
// current_repeated_start{1,2} are the indexes of the first field in the
// range within fields1 and fields2.
const UnknownField* current_repeated = NULL;
int current_repeated_start1 = 0;
int current_repeated_start2 = 0;
// Now that we have two sorted lists, we can detect fields which appear only
// in one list or the other by traversing them simultaneously.
int index1 = 0;
int index2 = 0;
while (index1 < fields1.size() || index2 < fields2.size()) {
enum { ADDITION, DELETION, MODIFICATION, COMPARE_GROUPS,
NO_CHANGE } change_type;
// focus_field is the field we're currently reporting on. (In the case
// of a modification, it's the field on the left side.)
const UnknownField* focus_field;
bool match = false;
if (index2 == fields2.size() ||
(index1 < fields1.size() &&
is_before(fields1[index1], fields2[index2]))) {
// fields1[index1] is not present in fields2.
change_type = DELETION;
focus_field = fields1[index1].second;
} else if (index1 == fields1.size() ||
is_before(fields2[index2], fields1[index1])) {
// fields2[index2] is not present in fields1.
if (scope_ == PARTIAL) {
// Ignore.
++index2;
continue;
}
change_type = ADDITION;
focus_field = fields2[index2].second;
} else {
// Field type and number are the same. See if the values differ.
change_type = MODIFICATION;
focus_field = fields1[index1].second;
switch (focus_field->type()) {
case UnknownField::TYPE_VARINT:
match = fields1[index1].second->varint() ==
fields2[index2].second->varint();
break;
case UnknownField::TYPE_FIXED32:
match = fields1[index1].second->fixed32() ==
fields2[index2].second->fixed32();
break;
case UnknownField::TYPE_FIXED64:
match = fields1[index1].second->fixed64() ==
fields2[index2].second->fixed64();
break;
case UnknownField::TYPE_LENGTH_DELIMITED:
match = fields1[index1].second->length_delimited() ==
fields2[index2].second->length_delimited();
break;
case UnknownField::TYPE_GROUP:
// We must deal with this later, after building the SpecificField.
change_type = COMPARE_GROUPS;
break;
}
if (match && change_type != COMPARE_GROUPS) {
change_type = NO_CHANGE;
}
}
if (current_repeated == NULL ||
focus_field->number() != current_repeated->number() ||
focus_field->type() != current_repeated->type()) {
// We've started a new repeated field.
current_repeated = focus_field;
current_repeated_start1 = index1;
current_repeated_start2 = index2;
}
if (change_type == NO_CHANGE && reporter_ == NULL) {
// Fields were already compared and matched and we have no reporter.
++index1;
++index2;
continue;
}
// Build the SpecificField. This is slightly complicated.
SpecificField specific_field;
specific_field.unknown_field_number = focus_field->number();
specific_field.unknown_field_type = focus_field->type();
specific_field.unknown_field_set1 = &unknown_field_set1;
specific_field.unknown_field_set2 = &unknown_field_set2;
if (change_type != ADDITION) {
specific_field.unknown_field_index1 = fields1[index1].first;
}
if (change_type != DELETION) {
specific_field.unknown_field_index2 = fields2[index2].first;
}
// Calculate the field index.
if (change_type == ADDITION) {
specific_field.index = index2 - current_repeated_start2;
specific_field.new_index = index2 - current_repeated_start2;
} else {
specific_field.index = index1 - current_repeated_start1;
specific_field.new_index = index2 - current_repeated_start2;
}
if (IsUnknownFieldIgnored(message1, message2, specific_field,
*parent_field)) {
if (reporter_ != NULL) {
parent_field->push_back(specific_field);
reporter_->ReportUnknownFieldIgnored(message1, message2, *parent_field);
parent_field->pop_back();
}
return true;
}
if (change_type == ADDITION || change_type == DELETION ||
change_type == MODIFICATION) {
if (reporter_ == NULL) {
// We found a difference and we have no reproter.
return false;
}
is_different = true;
}
parent_field->push_back(specific_field);
switch (change_type) {
case ADDITION:
reporter_->ReportAdded(message1, message2, *parent_field);
++index2;
break;
case DELETION:
reporter_->ReportDeleted(message1, message2, *parent_field);
++index1;
break;
case MODIFICATION:
reporter_->ReportModified(message1, message2, *parent_field);
++index1;
++index2;
break;
case COMPARE_GROUPS:
if (!CompareUnknownFields(message1, message2,
fields1[index1].second->group(),
fields2[index2].second->group(),
parent_field)) {
if (reporter_ == NULL) return false;
is_different = true;
reporter_->ReportModified(message1, message2, *parent_field);
}
++index1;
++index2;
break;
case NO_CHANGE:
++index1;
++index2;
if (report_matches_) {
reporter_->ReportMatched(message1, message2, *parent_field);
}
}
parent_field->pop_back();
}
return !is_different;
}
namespace {
// Find maximum bipartite matching using the argumenting path algorithm.
class MaximumMatcher {
public:
typedef ResultCallback2<bool, int, int> NodeMatchCallback;
// MaximumMatcher takes ownership of the passed in callback and uses it to
// determine whether a node on the left side of the bipartial graph matches
// a node on the right side. count1 is the number of nodes on the left side
// of the graph and count2 to is the number of nodes on the right side.
// Every node is referred to using 0-based indices.
// If a maximum match is found, the result will be stored in match_list1 and
// match_list2. match_list1[i] == j means the i-th node on the left side is
// matched to the j-th node on the right side and match_list2[x] == y means
// the x-th node on the right side is matched to y-th node on the left side.
// match_list1[i] == -1 means the node is not matched. Same with match_list2.
MaximumMatcher(int count1, int count2, NodeMatchCallback* callback,
vector<int>* match_list1, vector<int>* match_list2);
// Find a maximum match and return the number of matched node pairs.
// If early_return is true, this method will return 0 immediately when it
// finds that not all nodes on the left side can be matched.
int FindMaximumMatch(bool early_return);
private:
// Determines whether the node on the left side of the bipartial graph
// matches the one on the right side.
bool Match(int left, int right);
// Find an argumenting path starting from the node v on the left side. If a
// path can be found, update match_list2_ to reflect the path and return
// true.
bool FindArgumentPathDFS(int v, vector<bool>* visited);
int count1_;
int count2_;
google::protobuf::scoped_ptr<NodeMatchCallback> match_callback_;
map<pair<int, int>, bool> cached_match_results_;
vector<int>* match_list1_;
vector<int>* match_list2_;
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MaximumMatcher);
};
MaximumMatcher::MaximumMatcher(int count1, int count2,
NodeMatchCallback* callback,
vector<int>* match_list1,
vector<int>* match_list2)
: count1_(count1), count2_(count2), match_callback_(callback),
match_list1_(match_list1), match_list2_(match_list2) {
match_list1_->assign(count1, -1);
match_list2_->assign(count2, -1);
}
int MaximumMatcher::FindMaximumMatch(bool early_return) {
int result = 0;
for (int i = 0; i < count1_; ++i) {
vector<bool> visited(count1_);
if (FindArgumentPathDFS(i, &visited)) {
++result;
} else if (early_return) {
return 0;
}
}
// Backfill match_list1_ as we only filled match_list2_ when finding
// argumenting pathes.
for (int i = 0; i < count2_; ++i) {
if ((*match_list2_)[i] != -1) {
(*match_list1_)[(*match_list2_)[i]] = i;
}
}
return result;
}
bool MaximumMatcher::Match(int left, int right) {
pair<int, int> p(left, right);
map<pair<int, int>, bool>::iterator it = cached_match_results_.find(p);
if (it != cached_match_results_.end()) {
return it->second;
}
cached_match_results_[p] = match_callback_->Run(left, right);
return cached_match_results_[p];
}
bool MaximumMatcher::FindArgumentPathDFS(int v, vector<bool>* visited) {
(*visited)[v] = true;
// We try to match those un-matched nodes on the right side first. This is
// the step that the navie greedy matching algorithm uses. In the best cases
// where the greedy algorithm can find a maximum matching, we will always
// find a match in this step and the performance will be identical to the
// greedy algorithm.
for (int i = 0; i < count2_; ++i) {
int matched = (*match_list2_)[i];
if (matched == -1 && Match(v, i)) {
(*match_list2_)[i] = v;
return true;
}
}
// Then we try those already matched nodes and see if we can find an
// alternaive match for the node matched to them.
// The greedy algorithm will stop before this and fail to produce the
// correct result.
for (int i = 0; i < count2_; ++i) {
int matched = (*match_list2_)[i];
if (matched != -1 && Match(v, i)) {
if (!(*visited)[matched] && FindArgumentPathDFS(matched, visited)) {
(*match_list2_)[i] = v;
return true;
}
}
}
return false;
}
} // namespace
bool MessageDifferencer::MatchRepeatedFieldIndices(
const Message& message1,
const Message& message2,
const FieldDescriptor* repeated_field,
const vector<SpecificField>& parent_fields,
vector<int>* match_list1,
vector<int>* match_list2) {
const int count1 =
message1.GetReflection()->FieldSize(message1, repeated_field);
const int count2 =
message2.GetReflection()->FieldSize(message2, repeated_field);
const MapKeyComparator* key_comparator = GetMapKeyComparator(repeated_field);
match_list1->assign(count1, -1);
match_list2->assign(count2, -1);
SpecificField specific_field;
specific_field.field = repeated_field;
bool success = true;
// Find potential match if this is a special repeated field.
if (key_comparator != NULL || IsTreatedAsSet(repeated_field)) {
if (scope_ == PARTIAL) {
// When partial matching is enabled, Compare(a, b) && Compare(a, c)
// doesn't neccessarily imply Compare(b, c). Therefore a naive greedy
// algorithm will fail to find a maximum matching.
// Here we use the argumenting path algorithm.
MaximumMatcher::NodeMatchCallback* callback =
::google::protobuf::internal::NewPermanentCallback(
this, &MessageDifferencer::IsMatch,
repeated_field, key_comparator,
&message1, &message2, parent_fields);
MaximumMatcher matcher(count1, count2, callback, match_list1,
match_list2);
// If diff info is not needed, we should end the matching process as
// soon as possible if not all items can be matched.
bool early_return = (reporter_ == NULL);
int match_count = matcher.FindMaximumMatch(early_return);
if (match_count != count1 && reporter_ == NULL) return false;
success = success && (match_count == count1);
} else {
for (int i = 0; i < count1; ++i) {
// Indicates any matched elements for this repeated field.
bool match = false;
specific_field.index = i;
specific_field.new_index = i;
for (int j = 0; j < count2; j++) {
if (match_list2->at(j) != -1) continue;
specific_field.index = i;
specific_field.new_index = j;
match = IsMatch(repeated_field, key_comparator,
&message1, &message2, parent_fields, i, j);
if (match) {
match_list1->at(specific_field.index) = specific_field.new_index;
match_list2->at(specific_field.new_index) = specific_field.index;
break;
}
}
if (!match && reporter_ == NULL) return false;
success = success && match;
}
}
} else {
// If this field should be treated as list, just label the match_list.
for (int i = 0; i < count1 && i < count2; i++) {
match_list1->at(i) = i;
match_list2->at(i) = i;
}
}
return success;
}
FieldComparator::ComparisonResult MessageDifferencer::GetFieldComparisonResult(
const Message& message1, const Message& message2,
const FieldDescriptor* field, int index1, int index2,
const FieldContext* field_context) {
FieldComparator* comparator = field_comparator_ != NULL ?
field_comparator_ : &default_field_comparator_;
return comparator->Compare(message1, message2, field,
index1, index2, field_context);
}
// ===========================================================================
MessageDifferencer::Reporter::Reporter() { }
MessageDifferencer::Reporter::~Reporter() {}
// ===========================================================================
MessageDifferencer::MapKeyComparator::MapKeyComparator() {}
MessageDifferencer::MapKeyComparator::~MapKeyComparator() {}
// ===========================================================================
MessageDifferencer::IgnoreCriteria::IgnoreCriteria() {}
MessageDifferencer::IgnoreCriteria::~IgnoreCriteria() {}
// ===========================================================================
// Note that the printer's delimiter is not used, because if we are given a
// printer, we don't know its delimiter.
MessageDifferencer::StreamReporter::StreamReporter(
io::ZeroCopyOutputStream* output) : printer_(new io::Printer(output, '$')),
delete_printer_(true),
report_modified_aggregates_(false) { }
MessageDifferencer::StreamReporter::StreamReporter(
io::Printer* printer) : printer_(printer),
delete_printer_(false),
report_modified_aggregates_(false) { }
MessageDifferencer::StreamReporter::~StreamReporter() {
if (delete_printer_) delete printer_;
}
void MessageDifferencer::StreamReporter::PrintPath(
const vector<SpecificField>& field_path, bool left_side) {
for (int i = 0; i < field_path.size(); ++i) {
if (i > 0) {
printer_->Print(".");
}
SpecificField specific_field = field_path[i];
if (specific_field.field != NULL) {
if (specific_field.field->is_extension()) {
printer_->Print("($name$)", "name",
specific_field.field->full_name());
} else {
printer_->PrintRaw(specific_field.field->name());
}
} else {
printer_->PrintRaw(SimpleItoa(specific_field.unknown_field_number));
}
if (left_side && specific_field.index >= 0) {
printer_->Print("[$name$]", "name", SimpleItoa(specific_field.index));
}
if (!left_side && specific_field.new_index >= 0) {
printer_->Print("[$name$]", "name", SimpleItoa(specific_field.new_index));
}
}
}
void MessageDifferencer::
StreamReporter::PrintValue(const Message& message,
const vector<SpecificField>& field_path,
bool left_side) {
const SpecificField& specific_field = field_path.back();
const FieldDescriptor* field = specific_field.field;
if (field != NULL) {
string output;
int index = left_side ? specific_field.index : specific_field.new_index;
if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
const Reflection* reflection = message.GetReflection();
const Message& field_message = field->is_repeated() ?
reflection->GetRepeatedMessage(message, field, index) :
reflection->GetMessage(message, field);
output = field_message.ShortDebugString();
if (output.empty()) {
printer_->Print("{ }");
} else {
printer_->Print("{ $name$ }", "name", output);
}
} else {
TextFormat::PrintFieldValueToString(message, field, index, &output);
printer_->PrintRaw(output);
}
} else {
const UnknownFieldSet* unknown_fields =
(left_side ?
specific_field.unknown_field_set1 :
specific_field.unknown_field_set2);
const UnknownField* unknown_field = &unknown_fields->field(
left_side ?
specific_field.unknown_field_index1 :
specific_field.unknown_field_index2);
PrintUnknownFieldValue(unknown_field);
}
}
void MessageDifferencer::
StreamReporter::PrintUnknownFieldValue(const UnknownField* unknown_field) {
GOOGLE_CHECK(unknown_field != NULL) << " Cannot print NULL unknown_field.";
string output;
switch (unknown_field->type()) {
case UnknownField::TYPE_VARINT:
output = SimpleItoa(unknown_field->varint());
break;
case UnknownField::TYPE_FIXED32:
output = StrCat("0x", strings::Hex(unknown_field->fixed32(),
strings::ZERO_PAD_8));
break;
case UnknownField::TYPE_FIXED64:
output = StrCat("0x", strings::Hex(unknown_field->fixed64(),
strings::ZERO_PAD_16));
break;
case UnknownField::TYPE_LENGTH_DELIMITED:
output = StringPrintf("\"%s\"",
CEscape(unknown_field->length_delimited()).c_str());
break;
case UnknownField::TYPE_GROUP:
// TODO(kenton): Print the contents of the group like we do for
// messages. Requires an equivalent of ShortDebugString() for
// UnknownFieldSet.
output = "{ ... }";
break;
}
printer_->PrintRaw(output);
}
void MessageDifferencer::StreamReporter::Print(const string& str) {
printer_->Print(str.c_str());
}
void MessageDifferencer::StreamReporter::ReportAdded(
const Message& message1,
const Message& message2,
const vector<SpecificField>& field_path) {
printer_->Print("added: ");
PrintPath(field_path, false);
printer_->Print(": ");
PrintValue(message2, field_path, false);
printer_->Print("\n"); // Print for newlines.
}
void MessageDifferencer::StreamReporter::ReportDeleted(
const Message& message1,
const Message& message2,
const vector<SpecificField>& field_path) {
printer_->Print("deleted: ");
PrintPath(field_path, true);
printer_->Print(": ");
PrintValue(message1, field_path, true);
printer_->Print("\n"); // Print for newlines
}
void MessageDifferencer::StreamReporter::ReportModified(
const Message& message1,
const Message& message2,
const vector<SpecificField>& field_path) {
if (!report_modified_aggregates_ && field_path.back().field == NULL) {
if (field_path.back().unknown_field_type == UnknownField::TYPE_GROUP) {
// Any changes to the subfields have already been printed.
return;
}
} else if (!report_modified_aggregates_) {
if (field_path.back().field->cpp_type() ==
FieldDescriptor::CPPTYPE_MESSAGE) {
// Any changes to the subfields have already been printed.
return;
}
}
printer_->Print("modified: ");
PrintPath(field_path, true);
if (CheckPathChanged(field_path)) {
printer_->Print(" -> ");
PrintPath(field_path, false);
}
printer_->Print(": ");
PrintValue(message1, field_path, true);
printer_->Print(" -> ");
PrintValue(message2, field_path, false);
printer_->Print("\n"); // Print for newlines.
}
void MessageDifferencer::StreamReporter::ReportMoved(
const Message& message1,
const Message& message2,
const vector<SpecificField>& field_path) {
printer_->Print("moved: ");
PrintPath(field_path, true);
printer_->Print(" -> ");
PrintPath(field_path, false);
printer_->Print(" : ");
PrintValue(message1, field_path, true);
printer_->Print("\n"); // Print for newlines.
}
void MessageDifferencer::StreamReporter::ReportMatched(
const Message& message1,
const Message& message2,
const vector<SpecificField>& field_path) {
printer_->Print("matched: ");
PrintPath(field_path, true);
if (CheckPathChanged(field_path)) {
printer_->Print(" -> ");
PrintPath(field_path, false);
}
printer_->Print(" : ");
PrintValue(message1, field_path, true);
printer_->Print("\n"); // Print for newlines.
}
void MessageDifferencer::StreamReporter::ReportIgnored(
const Message& message1,
const Message& message2,
const vector<SpecificField>& field_path) {
printer_->Print("ignored: ");
PrintPath(field_path, true);
if (CheckPathChanged(field_path)) {
printer_->Print(" -> ");
PrintPath(field_path, false);
}
printer_->Print("\n"); // Print for newlines.
}
void MessageDifferencer::StreamReporter::ReportUnknownFieldIgnored(
const Message& message1, const Message& message2,
const vector<SpecificField>& field_path) {
printer_->Print("ignored: ");
PrintPath(field_path, true);
if (CheckPathChanged(field_path)) {
printer_->Print(" -> ");
PrintPath(field_path, false);
}
printer_->Print("\n"); // Print for newlines.
}
} // namespace util
} // namespace protobuf
} // namespace google