blob: 9104e850db7694ab7e72531faefbc541df06485b [file] [log] [blame]
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/api/api-inl.h"
#include "src/common/globals.h"
#include "src/execution/isolate.h"
#include "src/handles/handles-inl.h"
#include "src/heap/factory.h"
#include "src/init/v8.h"
#include "src/objects/function-kind.h"
#include "src/objects/objects-inl.h"
#include "test/cctest/cctest.h"
namespace v8 {
namespace internal {
static void CheckObject(Isolate* isolate, Handle<Object> obj,
const char* string) {
Handle<String> print_string = String::Flatten(
isolate,
Handle<String>::cast(Object::NoSideEffectsToString(isolate, obj)));
CHECK(print_string->IsOneByteEqualTo(CStrVector(string)));
}
static void CheckSmi(Isolate* isolate, int value, const char* string) {
Handle<Object> handle(Smi::FromInt(value), isolate);
CheckObject(isolate, handle, string);
}
static void CheckString(Isolate* isolate, const char* value,
const char* string) {
Handle<String> handle(isolate->factory()->NewStringFromAsciiChecked(value));
CheckObject(isolate, handle, string);
}
static void CheckNumber(Isolate* isolate, double value, const char* string) {
Handle<Object> number = isolate->factory()->NewNumber(value);
CHECK(number->IsNumber());
CheckObject(isolate, number, string);
}
static void CheckBoolean(Isolate* isolate, bool value, const char* string) {
CheckObject(isolate, value ? isolate->factory()->true_value()
: isolate->factory()->false_value(),
string);
}
TEST(NoSideEffectsToString) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
HandleScope scope(isolate);
CheckString(isolate, "fisk hest", "fisk hest");
CheckNumber(isolate, 42.3, "42.3");
CheckSmi(isolate, 42, "42");
CheckBoolean(isolate, true, "true");
CheckBoolean(isolate, false, "false");
CheckBoolean(isolate, false, "false");
Handle<Object> smi_42 = handle(Smi::FromInt(42), isolate);
CheckObject(isolate, BigInt::FromNumber(isolate, smi_42).ToHandleChecked(),
"42");
CheckObject(isolate, factory->undefined_value(), "undefined");
CheckObject(isolate, factory->null_value(), "null");
CheckObject(isolate, factory->error_to_string(), "[object Error]");
CheckObject(isolate, factory->unscopables_symbol(),
"Symbol(Symbol.unscopables)");
CheckObject(isolate, factory->NewError(isolate->error_function(),
factory->empty_string()),
"Error");
CheckObject(isolate, factory->NewError(
isolate->error_function(),
factory->NewStringFromAsciiChecked("fisk hest")),
"Error: fisk hest");
CheckObject(isolate, factory->NewJSObject(isolate->object_function()),
"#<Object>");
}
TEST(EnumCache) {
LocalContext env;
v8::Isolate* isolate = env->GetIsolate();
i::Factory* factory = CcTest::i_isolate()->factory();
v8::HandleScope scope(isolate);
// Create a nice transition tree:
// (a) --> (b) --> (c) shared DescriptorArray 1
// |
// +---> (cc) shared DescriptorArray 2
CompileRun(
"function O(a) { this.a = 1 };"
"a = new O();"
"b = new O();"
"b.b = 2;"
"c = new O();"
"c.b = 2;"
"c.c = 3;"
"cc = new O();"
"cc.b = 2;"
"cc.cc = 4;");
Handle<JSObject> a = Handle<JSObject>::cast(v8::Utils::OpenHandle(
*env->Global()->Get(env.local(), v8_str("a")).ToLocalChecked()));
Handle<JSObject> b = Handle<JSObject>::cast(v8::Utils::OpenHandle(
*env->Global()->Get(env.local(), v8_str("b")).ToLocalChecked()));
Handle<JSObject> c = Handle<JSObject>::cast(v8::Utils::OpenHandle(
*env->Global()->Get(env.local(), v8_str("c")).ToLocalChecked()));
Handle<JSObject> cc = Handle<JSObject>::cast(v8::Utils::OpenHandle(
*env->Global()->Get(env.local(), v8_str("cc")).ToLocalChecked()));
// Check the transition tree.
CHECK_EQ(a->map().instance_descriptors(), b->map().instance_descriptors());
CHECK_EQ(b->map().instance_descriptors(), c->map().instance_descriptors());
CHECK_NE(c->map().instance_descriptors(), cc->map().instance_descriptors());
CHECK_NE(b->map().instance_descriptors(), cc->map().instance_descriptors());
// Check that the EnumLength is unset.
CHECK_EQ(a->map().EnumLength(), kInvalidEnumCacheSentinel);
CHECK_EQ(b->map().EnumLength(), kInvalidEnumCacheSentinel);
CHECK_EQ(c->map().EnumLength(), kInvalidEnumCacheSentinel);
CHECK_EQ(cc->map().EnumLength(), kInvalidEnumCacheSentinel);
// Check that the EnumCache is empty.
CHECK_EQ(a->map().instance_descriptors().enum_cache(),
*factory->empty_enum_cache());
CHECK_EQ(b->map().instance_descriptors().enum_cache(),
*factory->empty_enum_cache());
CHECK_EQ(c->map().instance_descriptors().enum_cache(),
*factory->empty_enum_cache());
CHECK_EQ(cc->map().instance_descriptors().enum_cache(),
*factory->empty_enum_cache());
// The EnumCache is shared on the DescriptorArray, creating it on {cc} has no
// effect on the other maps.
CompileRun("var s = 0; for (let key in cc) { s += cc[key] };");
{
CHECK_EQ(a->map().EnumLength(), kInvalidEnumCacheSentinel);
CHECK_EQ(b->map().EnumLength(), kInvalidEnumCacheSentinel);
CHECK_EQ(c->map().EnumLength(), kInvalidEnumCacheSentinel);
CHECK_EQ(cc->map().EnumLength(), 3);
CHECK_EQ(a->map().instance_descriptors().enum_cache(),
*factory->empty_enum_cache());
CHECK_EQ(b->map().instance_descriptors().enum_cache(),
*factory->empty_enum_cache());
CHECK_EQ(c->map().instance_descriptors().enum_cache(),
*factory->empty_enum_cache());
EnumCache enum_cache = cc->map().instance_descriptors().enum_cache();
CHECK_NE(enum_cache, *factory->empty_enum_cache());
CHECK_EQ(enum_cache.keys().length(), 3);
CHECK_EQ(enum_cache.indices().length(), 3);
}
// Initializing the EnumCache for the the topmost map {a} will not create the
// cache for the other maps.
CompileRun("var s = 0; for (let key in a) { s += a[key] };");
{
CHECK_EQ(a->map().EnumLength(), 1);
CHECK_EQ(b->map().EnumLength(), kInvalidEnumCacheSentinel);
CHECK_EQ(c->map().EnumLength(), kInvalidEnumCacheSentinel);
CHECK_EQ(cc->map().EnumLength(), 3);
// The enum cache is shared on the descriptor array of maps {a}, {b} and
// {c} only.
EnumCache enum_cache = a->map().instance_descriptors().enum_cache();
CHECK_NE(enum_cache, *factory->empty_enum_cache());
CHECK_NE(cc->map().instance_descriptors().enum_cache(),
*factory->empty_enum_cache());
CHECK_NE(cc->map().instance_descriptors().enum_cache(), enum_cache);
CHECK_EQ(a->map().instance_descriptors().enum_cache(), enum_cache);
CHECK_EQ(b->map().instance_descriptors().enum_cache(), enum_cache);
CHECK_EQ(c->map().instance_descriptors().enum_cache(), enum_cache);
CHECK_EQ(enum_cache.keys().length(), 1);
CHECK_EQ(enum_cache.indices().length(), 1);
}
// Creating the EnumCache for {c} will create a new EnumCache on the shared
// DescriptorArray.
Handle<EnumCache> previous_enum_cache(
a->map().instance_descriptors().enum_cache(), a->GetIsolate());
Handle<FixedArray> previous_keys(previous_enum_cache->keys(),
a->GetIsolate());
Handle<FixedArray> previous_indices(previous_enum_cache->indices(),
a->GetIsolate());
CompileRun("var s = 0; for (let key in c) { s += c[key] };");
{
CHECK_EQ(a->map().EnumLength(), 1);
CHECK_EQ(b->map().EnumLength(), kInvalidEnumCacheSentinel);
CHECK_EQ(c->map().EnumLength(), 3);
CHECK_EQ(cc->map().EnumLength(), 3);
EnumCache enum_cache = c->map().instance_descriptors().enum_cache();
CHECK_NE(enum_cache, *factory->empty_enum_cache());
// The keys and indices caches are updated.
CHECK_EQ(enum_cache, *previous_enum_cache);
CHECK_NE(enum_cache.keys(), *previous_keys);
CHECK_NE(enum_cache.indices(), *previous_indices);
CHECK_EQ(previous_keys->length(), 1);
CHECK_EQ(previous_indices->length(), 1);
CHECK_EQ(enum_cache.keys().length(), 3);
CHECK_EQ(enum_cache.indices().length(), 3);
// The enum cache is shared on the descriptor array of maps {a}, {b} and
// {c} only.
CHECK_NE(cc->map().instance_descriptors().enum_cache(),
*factory->empty_enum_cache());
CHECK_NE(cc->map().instance_descriptors().enum_cache(), enum_cache);
CHECK_NE(cc->map().instance_descriptors().enum_cache(),
*previous_enum_cache);
CHECK_EQ(a->map().instance_descriptors().enum_cache(), enum_cache);
CHECK_EQ(b->map().instance_descriptors().enum_cache(), enum_cache);
CHECK_EQ(c->map().instance_descriptors().enum_cache(), enum_cache);
}
// {b} can reuse the existing EnumCache, hence we only need to set the correct
// EnumLength on the map without modifying the cache itself.
previous_enum_cache =
handle(a->map().instance_descriptors().enum_cache(), a->GetIsolate());
previous_keys = handle(previous_enum_cache->keys(), a->GetIsolate());
previous_indices = handle(previous_enum_cache->indices(), a->GetIsolate());
CompileRun("var s = 0; for (let key in b) { s += b[key] };");
{
CHECK_EQ(a->map().EnumLength(), 1);
CHECK_EQ(b->map().EnumLength(), 2);
CHECK_EQ(c->map().EnumLength(), 3);
CHECK_EQ(cc->map().EnumLength(), 3);
EnumCache enum_cache = c->map().instance_descriptors().enum_cache();
CHECK_NE(enum_cache, *factory->empty_enum_cache());
// The keys and indices caches are not updated.
CHECK_EQ(enum_cache, *previous_enum_cache);
CHECK_EQ(enum_cache.keys(), *previous_keys);
CHECK_EQ(enum_cache.indices(), *previous_indices);
CHECK_EQ(enum_cache.keys().length(), 3);
CHECK_EQ(enum_cache.indices().length(), 3);
// The enum cache is shared on the descriptor array of maps {a}, {b} and
// {c} only.
CHECK_NE(cc->map().instance_descriptors().enum_cache(),
*factory->empty_enum_cache());
CHECK_NE(cc->map().instance_descriptors().enum_cache(), enum_cache);
CHECK_NE(cc->map().instance_descriptors().enum_cache(),
*previous_enum_cache);
CHECK_EQ(a->map().instance_descriptors().enum_cache(), enum_cache);
CHECK_EQ(b->map().instance_descriptors().enum_cache(), enum_cache);
CHECK_EQ(c->map().instance_descriptors().enum_cache(), enum_cache);
}
}
#define TEST_FUNCTION_KIND(Name) \
TEST(Name) { \
for (int i = 0; i < FunctionKind::kLastFunctionKind; i++) { \
FunctionKind kind = static_cast<FunctionKind>(i); \
CHECK_EQ(FunctionKind##Name(kind), Name(kind)); \
} \
}
bool FunctionKindIsArrowFunction(FunctionKind kind) {
switch (kind) {
case FunctionKind::kArrowFunction:
case FunctionKind::kAsyncArrowFunction:
return true;
default:
return false;
}
}
TEST_FUNCTION_KIND(IsArrowFunction)
bool FunctionKindIsAsyncGeneratorFunction(FunctionKind kind) {
switch (kind) {
case FunctionKind::kAsyncConciseGeneratorMethod:
case FunctionKind::kAsyncGeneratorFunction:
return true;
default:
return false;
}
}
TEST_FUNCTION_KIND(IsAsyncGeneratorFunction)
bool FunctionKindIsGeneratorFunction(FunctionKind kind) {
switch (kind) {
case FunctionKind::kConciseGeneratorMethod:
case FunctionKind::kAsyncConciseGeneratorMethod:
case FunctionKind::kGeneratorFunction:
case FunctionKind::kAsyncGeneratorFunction:
return true;
default:
return false;
}
}
TEST_FUNCTION_KIND(IsGeneratorFunction)
bool FunctionKindIsAsyncFunction(FunctionKind kind) {
switch (kind) {
case FunctionKind::kAsyncFunction:
case FunctionKind::kAsyncArrowFunction:
case FunctionKind::kAsyncConciseMethod:
case FunctionKind::kAsyncConciseGeneratorMethod:
case FunctionKind::kAsyncGeneratorFunction:
return true;
default:
return false;
}
}
TEST_FUNCTION_KIND(IsAsyncFunction)
bool FunctionKindIsConciseMethod(FunctionKind kind) {
switch (kind) {
case FunctionKind::kConciseMethod:
case FunctionKind::kConciseGeneratorMethod:
case FunctionKind::kAsyncConciseMethod:
case FunctionKind::kAsyncConciseGeneratorMethod:
case FunctionKind::kClassMembersInitializerFunction:
return true;
default:
return false;
}
}
TEST_FUNCTION_KIND(IsConciseMethod)
bool FunctionKindIsAccessorFunction(FunctionKind kind) {
switch (kind) {
case FunctionKind::kGetterFunction:
case FunctionKind::kSetterFunction:
return true;
default:
return false;
}
}
TEST_FUNCTION_KIND(IsAccessorFunction)
bool FunctionKindIsDefaultConstructor(FunctionKind kind) {
switch (kind) {
case FunctionKind::kDefaultBaseConstructor:
case FunctionKind::kDefaultDerivedConstructor:
return true;
default:
return false;
}
}
TEST_FUNCTION_KIND(IsDefaultConstructor)
bool FunctionKindIsBaseConstructor(FunctionKind kind) {
switch (kind) {
case FunctionKind::kBaseConstructor:
case FunctionKind::kDefaultBaseConstructor:
return true;
default:
return false;
}
}
TEST_FUNCTION_KIND(IsBaseConstructor)
bool FunctionKindIsDerivedConstructor(FunctionKind kind) {
switch (kind) {
case FunctionKind::kDefaultDerivedConstructor:
case FunctionKind::kDerivedConstructor:
return true;
default:
return false;
}
}
TEST_FUNCTION_KIND(IsDerivedConstructor)
bool FunctionKindIsClassConstructor(FunctionKind kind) {
switch (kind) {
case FunctionKind::kBaseConstructor:
case FunctionKind::kDefaultBaseConstructor:
case FunctionKind::kDefaultDerivedConstructor:
case FunctionKind::kDerivedConstructor:
return true;
default:
return false;
}
}
TEST_FUNCTION_KIND(IsClassConstructor)
bool FunctionKindIsConstructable(FunctionKind kind) {
switch (kind) {
case FunctionKind::kGetterFunction:
case FunctionKind::kSetterFunction:
case FunctionKind::kArrowFunction:
case FunctionKind::kAsyncArrowFunction:
case FunctionKind::kAsyncFunction:
case FunctionKind::kAsyncConciseMethod:
case FunctionKind::kAsyncConciseGeneratorMethod:
case FunctionKind::kAsyncGeneratorFunction:
case FunctionKind::kGeneratorFunction:
case FunctionKind::kConciseGeneratorMethod:
case FunctionKind::kConciseMethod:
case FunctionKind::kClassMembersInitializerFunction:
return false;
default:
return true;
}
}
TEST_FUNCTION_KIND(IsConstructable)
bool FunctionKindIsStrictFunctionWithoutPrototype(FunctionKind kind) {
return IsArrowFunction(kind) || IsConciseMethod(kind) ||
IsAccessorFunction(kind);
}
TEST_FUNCTION_KIND(IsStrictFunctionWithoutPrototype)
#undef TEST_FUNCTION_KIND
} // namespace internal
} // namespace v8