blob: 4c1842b53718cb16d4b84e8d4bad71f690e6aa31 [file] [log] [blame]
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <memory>
#include "src/codegen/assembler-inl.h"
#include "src/wasm/wasm-interpreter.h"
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/value-helper.h"
#include "test/cctest/wasm/wasm-run-utils.h"
#include "test/common/wasm/test-signatures.h"
#include "test/common/wasm/wasm-macro-gen.h"
namespace v8 {
namespace internal {
namespace wasm {
namespace test_run_wasm_interpreter {
TEST(Run_WasmInt8Const_i) {
WasmRunner<int32_t> r(ExecutionTier::kInterpreter);
const byte kExpectedValue = 109;
// return(kExpectedValue)
BUILD(r, WASM_I32V_2(kExpectedValue));
CHECK_EQ(kExpectedValue, r.Call());
}
TEST(Run_WasmIfElse) {
WasmRunner<int32_t, int32_t> r(ExecutionTier::kInterpreter);
BUILD(r, WASM_IF_ELSE_I(WASM_GET_LOCAL(0), WASM_I32V_1(9), WASM_I32V_1(10)));
CHECK_EQ(10, r.Call(0));
CHECK_EQ(9, r.Call(1));
}
TEST(Run_WasmIfReturn) {
WasmRunner<int32_t, int32_t> r(ExecutionTier::kInterpreter);
BUILD(r, WASM_IF(WASM_GET_LOCAL(0), WASM_RETURN1(WASM_I32V_2(77))),
WASM_I32V_2(65));
CHECK_EQ(65, r.Call(0));
CHECK_EQ(77, r.Call(1));
}
TEST(Run_WasmNopsN) {
const int kMaxNops = 10;
byte code[kMaxNops + 2];
for (int nops = 0; nops < kMaxNops; nops++) {
byte expected = static_cast<byte>(20 + nops);
memset(code, kExprNop, sizeof(code));
code[nops] = kExprI32Const;
code[nops + 1] = expected;
WasmRunner<int32_t> r(ExecutionTier::kInterpreter);
r.Build(code, code + nops + 2);
CHECK_EQ(expected, r.Call());
}
}
TEST(Run_WasmConstsN) {
const int kMaxConsts = 5;
byte code[kMaxConsts * 3];
int32_t expected = 0;
for (int count = 1; count < kMaxConsts; count++) {
for (int i = 0; i < count; i++) {
byte val = static_cast<byte>(count * 10 + i);
code[i * 3] = kExprI32Const;
code[i * 3 + 1] = val;
if (i == (count - 1)) {
code[i * 3 + 2] = kExprNop;
expected = val;
} else {
code[i * 3 + 2] = kExprDrop;
}
}
WasmRunner<int32_t> r(ExecutionTier::kInterpreter);
r.Build(code, code + (count * 3));
CHECK_EQ(expected, r.Call());
}
}
TEST(Run_WasmBlocksN) {
const int kMaxNops = 10;
const int kExtra = 5;
byte code[kMaxNops + kExtra];
for (int nops = 0; nops < kMaxNops; nops++) {
byte expected = static_cast<byte>(30 + nops);
memset(code, kExprNop, sizeof(code));
code[0] = kExprBlock;
code[1] = kLocalI32;
code[2 + nops] = kExprI32Const;
code[2 + nops + 1] = expected;
code[2 + nops + 2] = kExprEnd;
WasmRunner<int32_t> r(ExecutionTier::kInterpreter);
r.Build(code, code + nops + kExtra);
CHECK_EQ(expected, r.Call());
}
}
TEST(Run_WasmBlockBreakN) {
const int kMaxNops = 10;
const int kExtra = 6;
int run = 0;
byte code[kMaxNops + kExtra];
for (int nops = 0; nops < kMaxNops; nops++) {
// Place the break anywhere within the block.
for (int index = 0; index < nops; index++) {
memset(code, kExprNop, sizeof(code));
code[0] = kExprBlock;
code[1] = kLocalI32;
code[sizeof(code) - 1] = kExprEnd;
int expected = run++;
code[2 + index + 0] = kExprI32Const;
code[2 + index + 1] = static_cast<byte>(expected);
code[2 + index + 2] = kExprBr;
code[2 + index + 3] = 0;
WasmRunner<int32_t> r(ExecutionTier::kInterpreter);
r.Build(code, code + kMaxNops + kExtra);
CHECK_EQ(expected, r.Call());
}
}
}
TEST(Run_Wasm_nested_ifs_i) {
WasmRunner<int32_t, int32_t, int32_t> r(ExecutionTier::kInterpreter);
BUILD(
r,
WASM_IF_ELSE_I(
WASM_GET_LOCAL(0),
WASM_IF_ELSE_I(WASM_GET_LOCAL(1), WASM_I32V_1(11), WASM_I32V_1(12)),
WASM_IF_ELSE_I(WASM_GET_LOCAL(1), WASM_I32V_1(13), WASM_I32V_1(14))));
CHECK_EQ(11, r.Call(1, 1));
CHECK_EQ(12, r.Call(1, 0));
CHECK_EQ(13, r.Call(0, 1));
CHECK_EQ(14, r.Call(0, 0));
}
// Repeated from test-run-wasm.cc to avoid poluting header files.
template <typename T>
static T factorial(T v) {
T expected = 1;
for (T i = v; i > 1; i--) {
expected *= i;
}
return expected;
}
// Basic test of return call in interpreter. Good old factorial.
TEST(Run_Wasm_returnCallFactorial) {
EXPERIMENTAL_FLAG_SCOPE(return_call);
// Run in bounded amount of stack - 8kb.
FlagScope<int32_t> stack_size(&v8::internal::FLAG_stack_size, 8);
WasmRunner<uint32_t, int32_t> r(ExecutionTier::kInterpreter);
WasmFunctionCompiler& fact_aux_fn =
r.NewFunction<int32_t, int32_t, int32_t>("fact_aux");
BUILD(r, WASM_RETURN_CALL_FUNCTION(fact_aux_fn.function_index(),
WASM_GET_LOCAL(0), WASM_I32V(1)));
BUILD(fact_aux_fn,
WASM_IF_ELSE_I(
WASM_I32_EQ(WASM_I32V(1), WASM_GET_LOCAL(0)), WASM_GET_LOCAL(1),
WASM_RETURN_CALL_FUNCTION(
fact_aux_fn.function_index(),
WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V(1)),
WASM_I32_MUL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)))));
// Runs out of stack space without using return call.
uint32_t test_values[] = {1, 2, 5, 10, 20, 20000};
for (uint32_t v : test_values) {
uint32_t found = r.Call(v);
CHECK_EQ(factorial(v), found);
}
}
TEST(Run_Wasm_returnCallFactorial64) {
EXPERIMENTAL_FLAG_SCOPE(return_call);
int32_t test_values[] = {1, 2, 5, 10, 20};
WasmRunner<int64_t, int32_t> r(ExecutionTier::kInterpreter);
WasmFunctionCompiler& fact_aux_fn =
r.NewFunction<int64_t, int32_t, int64_t>("fact_aux");
BUILD(r, WASM_RETURN_CALL_FUNCTION(fact_aux_fn.function_index(),
WASM_GET_LOCAL(0), WASM_I64V(1)));
BUILD(fact_aux_fn,
WASM_IF_ELSE_L(
WASM_I32_EQ(WASM_I32V(1), WASM_GET_LOCAL(0)), WASM_GET_LOCAL(1),
WASM_RETURN_CALL_FUNCTION(
fact_aux_fn.function_index(),
WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V(1)),
WASM_I64_MUL(WASM_I64_SCONVERT_I32(WASM_GET_LOCAL(0)),
WASM_GET_LOCAL(1)))));
for (int32_t v : test_values) {
CHECK_EQ(factorial<int64_t>(v), r.Call(v));
}
}
TEST(Run_Wasm_returnCallIndirectFactorial) {
EXPERIMENTAL_FLAG_SCOPE(return_call);
TestSignatures sigs;
WasmRunner<uint32_t, uint32_t> r(ExecutionTier::kInterpreter);
WasmFunctionCompiler& fact_aux_fn = r.NewFunction(sigs.i_ii(), "fact_aux");
fact_aux_fn.SetSigIndex(0);
byte sig_index = r.builder().AddSignature(sigs.i_ii());
// Function table.
uint16_t indirect_function_table[] = {
static_cast<uint16_t>(fact_aux_fn.function_index())};
r.builder().AddIndirectFunctionTable(indirect_function_table,
arraysize(indirect_function_table));
BUILD(r, WASM_RETURN_CALL_INDIRECT(sig_index, WASM_I32V(0), WASM_GET_LOCAL(0),
WASM_I32V(1)));
BUILD(fact_aux_fn,
WASM_IF_ELSE_I(
WASM_I32_EQ(WASM_I32V(1), WASM_GET_LOCAL(0)), WASM_GET_LOCAL(1),
WASM_RETURN_CALL_INDIRECT(
sig_index, WASM_I32V(0),
WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V(1)),
WASM_I32_MUL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)))));
uint32_t test_values[] = {1, 2, 5, 10, 20};
for (uint32_t v : test_values) {
CHECK_EQ(factorial(v), r.Call(v));
}
}
// Make tests more robust by not hard-coding offsets of various operations.
// The {Find} method finds the offsets for the given bytecodes, returning
// the offsets in an array.
std::unique_ptr<int[]> Find(byte* code, size_t code_size, int n, ...) {
va_list vl;
va_start(vl, n);
std::unique_ptr<int[]> offsets(new int[n]);
for (int i = 0; i < n; i++) {
offsets[i] = -1;
}
int pos = 0;
WasmOpcode current = static_cast<WasmOpcode>(va_arg(vl, int));
for (size_t i = 0; i < code_size; i++) {
if (code[i] == current) {
offsets[pos++] = static_cast<int>(i);
if (pos == n) break;
current = static_cast<WasmOpcode>(va_arg(vl, int));
}
}
va_end(vl);
return offsets;
}
TEST(Breakpoint_I32Add) {
static const int kLocalsDeclSize = 1;
static const int kNumBreakpoints = 3;
byte code[] = {WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))};
std::unique_ptr<int[]> offsets =
Find(code, sizeof(code), kNumBreakpoints, kExprGetLocal, kExprGetLocal,
kExprI32Add);
WasmRunner<int32_t, uint32_t, uint32_t> r(ExecutionTier::kInterpreter);
r.Build(code, code + arraysize(code));
WasmInterpreter* interpreter = r.interpreter();
WasmInterpreter::Thread* thread = interpreter->GetThread(0);
for (int i = 0; i < kNumBreakpoints; i++) {
interpreter->SetBreakpoint(r.function(), kLocalsDeclSize + offsets[i],
true);
}
FOR_UINT32_INPUTS(a) {
for (uint32_t b = 11; b < 3000000000u; b += 1000000000u) {
thread->Reset();
WasmValue args[] = {WasmValue(a), WasmValue(b)};
thread->InitFrame(r.function(), args);
for (int i = 0; i < kNumBreakpoints; i++) {
thread->Run(); // run to next breakpoint
// Check the thread stopped at the right pc.
CHECK_EQ(WasmInterpreter::PAUSED, thread->state());
CHECK_EQ(static_cast<size_t>(kLocalsDeclSize + offsets[i]),
thread->GetBreakpointPc());
}
thread->Run(); // run to completion
// Check the thread finished with the right value.
CHECK_EQ(WasmInterpreter::FINISHED, thread->state());
uint32_t expected = (a) + (b);
CHECK_EQ(expected, thread->GetReturnValue().to<uint32_t>());
}
}
}
TEST(Step_I32Mul) {
static const int kTraceLength = 4;
byte code[] = {WASM_I32_MUL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))};
WasmRunner<int32_t, uint32_t, uint32_t> r(ExecutionTier::kInterpreter);
r.Build(code, code + arraysize(code));
WasmInterpreter* interpreter = r.interpreter();
WasmInterpreter::Thread* thread = interpreter->GetThread(0);
FOR_UINT32_INPUTS(a) {
for (uint32_t b = 33; b < 3000000000u; b += 1000000000u) {
thread->Reset();
WasmValue args[] = {WasmValue(a), WasmValue(b)};
thread->InitFrame(r.function(), args);
// Run instructions one by one.
for (int i = 0; i < kTraceLength - 1; i++) {
thread->Step();
// Check the thread stopped.
CHECK_EQ(WasmInterpreter::PAUSED, thread->state());
}
// Run last instruction.
thread->Step();
// Check the thread finished with the right value.
CHECK_EQ(WasmInterpreter::FINISHED, thread->state());
uint32_t expected = (a) * (b);
CHECK_EQ(expected, thread->GetReturnValue().to<uint32_t>());
}
}
}
TEST(Breakpoint_I32And_disable) {
static const int kLocalsDeclSize = 1;
static const int kNumBreakpoints = 1;
byte code[] = {WASM_I32_AND(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))};
std::unique_ptr<int[]> offsets =
Find(code, sizeof(code), kNumBreakpoints, kExprI32And);
WasmRunner<int32_t, uint32_t, uint32_t> r(ExecutionTier::kInterpreter);
r.Build(code, code + arraysize(code));
WasmInterpreter* interpreter = r.interpreter();
WasmInterpreter::Thread* thread = interpreter->GetThread(0);
FOR_UINT32_INPUTS(a) {
for (uint32_t b = 11; b < 3000000000u; b += 1000000000u) {
// Run with and without breakpoints.
for (int do_break = 0; do_break < 2; do_break++) {
interpreter->SetBreakpoint(r.function(), kLocalsDeclSize + offsets[0],
do_break);
thread->Reset();
WasmValue args[] = {WasmValue(a), WasmValue(b)};
thread->InitFrame(r.function(), args);
if (do_break) {
thread->Run(); // run to next breakpoint
// Check the thread stopped at the right pc.
CHECK_EQ(WasmInterpreter::PAUSED, thread->state());
CHECK_EQ(static_cast<size_t>(kLocalsDeclSize + offsets[0]),
thread->GetBreakpointPc());
}
thread->Run(); // run to completion
// Check the thread finished with the right value.
CHECK_EQ(WasmInterpreter::FINISHED, thread->state());
uint32_t expected = (a) & (b);
CHECK_EQ(expected, thread->GetReturnValue().to<uint32_t>());
}
}
}
}
TEST(MemoryGrow) {
{
WasmRunner<int32_t, uint32_t> r(ExecutionTier::kInterpreter);
r.builder().AddMemory(kWasmPageSize);
r.builder().SetMaxMemPages(10);
BUILD(r, WASM_GROW_MEMORY(WASM_GET_LOCAL(0)));
CHECK_EQ(1, r.Call(1));
}
{
WasmRunner<int32_t, uint32_t> r(ExecutionTier::kInterpreter);
r.builder().AddMemory(kWasmPageSize);
r.builder().SetMaxMemPages(10);
BUILD(r, WASM_GROW_MEMORY(WASM_GET_LOCAL(0)));
CHECK_EQ(-1, r.Call(11));
}
}
TEST(MemoryGrowPreservesData) {
int32_t index = 16;
int32_t value = 2335;
WasmRunner<int32_t, uint32_t> r(ExecutionTier::kInterpreter);
r.builder().AddMemory(kWasmPageSize);
BUILD(r, WASM_STORE_MEM(MachineType::Int32(), WASM_I32V(index),
WASM_I32V(value)),
WASM_GROW_MEMORY(WASM_GET_LOCAL(0)), WASM_DROP,
WASM_LOAD_MEM(MachineType::Int32(), WASM_I32V(index)));
CHECK_EQ(value, r.Call(1));
}
TEST(MemoryGrowInvalidSize) {
// Grow memory by an invalid amount without initial memory.
WasmRunner<int32_t, uint32_t> r(ExecutionTier::kInterpreter);
r.builder().AddMemory(kWasmPageSize);
BUILD(r, WASM_GROW_MEMORY(WASM_GET_LOCAL(0)));
CHECK_EQ(-1, r.Call(1048575));
}
TEST(ReferenceTypeLocals) {
{
WasmRunner<int32_t> r(ExecutionTier::kInterpreter);
BUILD(r, WASM_REF_IS_NULL(WASM_REF_NULL));
CHECK_EQ(1, r.Call());
}
{
WasmRunner<int32_t> r(ExecutionTier::kInterpreter);
r.AllocateLocal(kWasmAnyRef);
BUILD(r, WASM_REF_IS_NULL(WASM_GET_LOCAL(0)));
CHECK_EQ(1, r.Call());
}
{
WasmRunner<int32_t> r(ExecutionTier::kInterpreter);
r.AllocateLocal(kWasmAnyRef);
BUILD(r, WASM_REF_IS_NULL(WASM_TEE_LOCAL(0, WASM_REF_NULL)));
CHECK_EQ(1, r.Call());
}
// TODO(mstarzinger): Test and support global anyref variables.
}
TEST(TestPossibleNondeterminism) {
{
WasmRunner<int32_t, float> r(ExecutionTier::kInterpreter);
BUILD(r, WASM_I32_REINTERPRET_F32(WASM_GET_LOCAL(0)));
r.Call(1048575.5f);
CHECK(!r.possible_nondeterminism());
r.Call(std::numeric_limits<float>::quiet_NaN());
CHECK(!r.possible_nondeterminism());
}
{
WasmRunner<int64_t, double> r(ExecutionTier::kInterpreter);
BUILD(r, WASM_I64_REINTERPRET_F64(WASM_GET_LOCAL(0)));
r.Call(16.0);
CHECK(!r.possible_nondeterminism());
r.Call(std::numeric_limits<double>::quiet_NaN());
CHECK(!r.possible_nondeterminism());
}
{
WasmRunner<float, float> r(ExecutionTier::kInterpreter);
BUILD(r, WASM_F32_COPYSIGN(WASM_F32(42.0f), WASM_GET_LOCAL(0)));
r.Call(16.0f);
CHECK(!r.possible_nondeterminism());
r.Call(std::numeric_limits<double>::quiet_NaN());
CHECK(!r.possible_nondeterminism());
}
{
WasmRunner<double, double> r(ExecutionTier::kInterpreter);
BUILD(r, WASM_F64_COPYSIGN(WASM_F64(42.0), WASM_GET_LOCAL(0)));
r.Call(16.0);
CHECK(!r.possible_nondeterminism());
r.Call(std::numeric_limits<double>::quiet_NaN());
CHECK(!r.possible_nondeterminism());
}
{
int32_t index = 16;
WasmRunner<int32_t, float> r(ExecutionTier::kInterpreter);
r.builder().AddMemory(kWasmPageSize);
BUILD(r, WASM_STORE_MEM(MachineType::Float32(), WASM_I32V(index),
WASM_GET_LOCAL(0)),
WASM_I32V(index));
r.Call(1345.3456f);
CHECK(!r.possible_nondeterminism());
r.Call(std::numeric_limits<float>::quiet_NaN());
CHECK(!r.possible_nondeterminism());
}
{
int32_t index = 16;
WasmRunner<int32_t, double> r(ExecutionTier::kInterpreter);
r.builder().AddMemory(kWasmPageSize);
BUILD(r, WASM_STORE_MEM(MachineType::Float64(), WASM_I32V(index),
WASM_GET_LOCAL(0)),
WASM_I32V(index));
r.Call(1345.3456);
CHECK(!r.possible_nondeterminism());
r.Call(std::numeric_limits<double>::quiet_NaN());
CHECK(!r.possible_nondeterminism());
}
{
WasmRunner<float, float> r(ExecutionTier::kInterpreter);
BUILD(r, WASM_F32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0)));
r.Call(1048575.5f);
CHECK(!r.possible_nondeterminism());
r.Call(std::numeric_limits<float>::quiet_NaN());
CHECK(r.possible_nondeterminism());
}
{
WasmRunner<double, double> r(ExecutionTier::kInterpreter);
BUILD(r, WASM_F64_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0)));
r.Call(16.0);
CHECK(!r.possible_nondeterminism());
r.Call(std::numeric_limits<double>::quiet_NaN());
CHECK(r.possible_nondeterminism());
}
{
WasmRunner<int32_t, float> r(ExecutionTier::kInterpreter);
BUILD(r, WASM_F32_EQ(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0)));
r.Call(16.0);
CHECK(!r.possible_nondeterminism());
r.Call(std::numeric_limits<float>::quiet_NaN());
CHECK(!r.possible_nondeterminism());
}
{
WasmRunner<int32_t, double> r(ExecutionTier::kInterpreter);
BUILD(r, WASM_F64_EQ(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0)));
r.Call(16.0);
CHECK(!r.possible_nondeterminism());
r.Call(std::numeric_limits<double>::quiet_NaN());
CHECK(!r.possible_nondeterminism());
}
{
WasmRunner<float, float> r(ExecutionTier::kInterpreter);
BUILD(r, WASM_F32_MIN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0)));
r.Call(1048575.5f);
CHECK(!r.possible_nondeterminism());
r.Call(std::numeric_limits<float>::quiet_NaN());
CHECK(r.possible_nondeterminism());
}
{
WasmRunner<double, double> r(ExecutionTier::kInterpreter);
BUILD(r, WASM_F64_MAX(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0)));
r.Call(16.0);
CHECK(!r.possible_nondeterminism());
r.Call(std::numeric_limits<double>::quiet_NaN());
CHECK(r.possible_nondeterminism());
}
}
TEST(WasmInterpreterActivations) {
WasmRunner<void> r(ExecutionTier::kInterpreter);
Isolate* isolate = r.main_isolate();
BUILD(r, WASM_UNREACHABLE);
WasmInterpreter* interpreter = r.interpreter();
WasmInterpreter::Thread* thread = interpreter->GetThread(0);
CHECK_EQ(0, thread->NumActivations());
uint32_t act0 = thread->StartActivation();
CHECK_EQ(0, act0);
thread->InitFrame(r.function(), nullptr);
uint32_t act1 = thread->StartActivation();
CHECK_EQ(1, act1);
thread->InitFrame(r.function(), nullptr);
CHECK_EQ(2, thread->NumActivations());
CHECK_EQ(2, thread->GetFrameCount());
CHECK_EQ(WasmInterpreter::TRAPPED, thread->Run());
thread->RaiseException(isolate, handle(Smi::kZero, isolate));
CHECK_EQ(1, thread->GetFrameCount());
CHECK_EQ(2, thread->NumActivations());
thread->FinishActivation(act1);
isolate->clear_pending_exception();
CHECK_EQ(1, thread->GetFrameCount());
CHECK_EQ(1, thread->NumActivations());
CHECK_EQ(WasmInterpreter::TRAPPED, thread->Run());
thread->RaiseException(isolate, handle(Smi::kZero, isolate));
CHECK_EQ(0, thread->GetFrameCount());
CHECK_EQ(1, thread->NumActivations());
thread->FinishActivation(act0);
isolate->clear_pending_exception();
CHECK_EQ(0, thread->NumActivations());
}
TEST(InterpreterLoadWithoutMemory) {
WasmRunner<int32_t, int32_t> r(ExecutionTier::kInterpreter);
r.builder().AddMemory(0);
BUILD(r, WASM_LOAD_MEM(MachineType::Int32(), WASM_GET_LOCAL(0)));
CHECK_TRAP32(r.Call(0));
}
} // namespace test_run_wasm_interpreter
} // namespace wasm
} // namespace internal
} // namespace v8