blob: 7c6ef0e8a4fec36b0222bb6e921f66ef4add4e76 [file] [log] [blame]
/*
* Copyright (c) 2015-2019 The Khronos Group Inc.
* Copyright (c) 2015-2019 Valve Corporation
* Copyright (c) 2015-2019 LunarG, Inc.
* Copyright (c) 2015-2019 Google, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Courtney Goeltzenleuchter <courtney@LunarG.com>
* Author: Tony Barbour <tony@LunarG.com>
* Author: Dave Houlton <daveh@lunarg.com>
*/
#include "vkrenderframework.h"
#include "vk_format_utils.h"
#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
ErrorMonitor::ErrorMonitor() {
test_platform_thread_create_mutex(&mutex_);
test_platform_thread_lock_mutex(&mutex_);
Reset();
test_platform_thread_unlock_mutex(&mutex_);
}
ErrorMonitor::~ErrorMonitor() { test_platform_thread_delete_mutex(&mutex_); }
void ErrorMonitor::Reset() {
message_flags_ = 0;
bailout_ = NULL;
message_found_ = VK_FALSE;
failure_message_strings_.clear();
desired_message_strings_.clear();
ignore_message_strings_.clear();
allowed_message_strings_.clear();
other_messages_.clear();
}
void ErrorMonitor::SetDesiredFailureMsg(const VkFlags msgFlags, const std::string msg) {
SetDesiredFailureMsg(msgFlags, msg.c_str());
}
void ErrorMonitor::SetDesiredFailureMsg(const VkFlags msgFlags, const char *const msgString) {
test_platform_thread_lock_mutex(&mutex_);
desired_message_strings_.insert(msgString);
message_flags_ |= msgFlags;
test_platform_thread_unlock_mutex(&mutex_);
}
void ErrorMonitor::SetAllowedFailureMsg(const char *const msg) {
test_platform_thread_lock_mutex(&mutex_);
allowed_message_strings_.emplace_back(msg);
test_platform_thread_unlock_mutex(&mutex_);
}
void ErrorMonitor::SetUnexpectedError(const char *const msg) {
test_platform_thread_lock_mutex(&mutex_);
ignore_message_strings_.emplace_back(msg);
test_platform_thread_unlock_mutex(&mutex_);
}
VkBool32 ErrorMonitor::CheckForDesiredMsg(const char *const msgString) {
VkBool32 result = VK_FALSE;
test_platform_thread_lock_mutex(&mutex_);
if (bailout_ != nullptr) {
*bailout_ = true;
}
string errorString(msgString);
bool found_expected = false;
if (!IgnoreMessage(errorString)) {
for (auto desired_msg_it = desired_message_strings_.begin(); desired_msg_it != desired_message_strings_.end();
++desired_msg_it) {
if ((*desired_msg_it).length() == 0) {
// An empty desired_msg string "" indicates a positive test - not expecting an error.
// Return true to avoid calling layers/driver with this error.
// And don't erase the "" string, so it remains if another error is found.
result = VK_TRUE;
found_expected = true;
message_found_ = true;
failure_message_strings_.insert(errorString);
} else if (errorString.find(*desired_msg_it) != string::npos) {
found_expected = true;
failure_message_strings_.insert(errorString);
message_found_ = true;
result = VK_TRUE;
// Remove a maximum of one failure message from the set
// Multiset mutation is acceptable because `break` causes flow of control to exit the for loop
desired_message_strings_.erase(desired_msg_it);
break;
}
}
if (!found_expected && allowed_message_strings_.size()) {
for (auto allowed_msg_it = allowed_message_strings_.begin(); allowed_msg_it != allowed_message_strings_.end();
++allowed_msg_it) {
if (errorString.find(*allowed_msg_it) != string::npos) {
found_expected = true;
break;
}
}
}
if (!found_expected) {
printf("Unexpected: %s\n", msgString);
other_messages_.push_back(errorString);
}
}
test_platform_thread_unlock_mutex(&mutex_);
return result;
}
vector<string> ErrorMonitor::GetOtherFailureMsgs() const { return other_messages_; }
VkDebugReportFlagsEXT ErrorMonitor::GetMessageFlags() const { return message_flags_; }
bool ErrorMonitor::AnyDesiredMsgFound() const { return message_found_; }
bool ErrorMonitor::AllDesiredMsgsFound() const { return desired_message_strings_.empty(); }
void ErrorMonitor::SetError(const char *const errorString) {
message_found_ = true;
failure_message_strings_.insert(errorString);
}
void ErrorMonitor::SetBailout(bool *bailout) { bailout_ = bailout; }
void ErrorMonitor::DumpFailureMsgs() const {
vector<string> otherMsgs = GetOtherFailureMsgs();
if (otherMsgs.size()) {
cout << "Other error messages logged for this test were:" << endl;
for (auto iter = otherMsgs.begin(); iter != otherMsgs.end(); iter++) {
cout << " " << *iter << endl;
}
}
}
void ErrorMonitor::ExpectSuccess(VkDebugReportFlagsEXT const message_flag_mask) {
// Match ANY message matching specified type
SetDesiredFailureMsg(message_flag_mask, "");
message_flags_ = message_flag_mask; // override mask handling in SetDesired...
}
void ErrorMonitor::VerifyFound() {
// Not receiving expected message(s) is a failure. /Before/ throwing, dump any other messages
if (!AllDesiredMsgsFound()) {
DumpFailureMsgs();
for (const auto desired_msg : desired_message_strings_) {
ADD_FAILURE() << "Did not receive expected error '" << desired_msg << "'";
}
} else if (GetOtherFailureMsgs().size() > 0) {
// Fail test case for any unexpected errors
#if defined(ANDROID)
// This will get unexpected errors into the adb log
for (auto msg : other_messages_) {
__android_log_print(ANDROID_LOG_INFO, "VulkanLayerValidationTests", "[ UNEXPECTED_ERR ] '%s'", msg.c_str());
}
#else
ADD_FAILURE() << "Received unexpected error(s).";
#endif
}
Reset();
}
void ErrorMonitor::VerifyNotFound() {
// ExpectSuccess() configured us to match anything. Any error is a failure.
if (AnyDesiredMsgFound()) {
DumpFailureMsgs();
for (const auto msg : failure_message_strings_) {
ADD_FAILURE() << "Expected to succeed but got error: " << msg;
}
} else if (GetOtherFailureMsgs().size() > 0) {
// Fail test case for any unexpected errors
#if defined(ANDROID)
// This will get unexpected errors into the adb log
for (auto msg : other_messages_) {
__android_log_print(ANDROID_LOG_INFO, "VulkanLayerValidationTests", "[ UNEXPECTED_ERR ] '%s'", msg.c_str());
}
#else
ADD_FAILURE() << "Received unexpected error(s).";
#endif
}
Reset();
}
bool ErrorMonitor::IgnoreMessage(std::string const &msg) const {
if (ignore_message_strings_.empty()) {
return false;
}
return std::find_if(ignore_message_strings_.begin(), ignore_message_strings_.end(), [&msg](std::string const &str) {
return msg.find(str) != std::string::npos;
}) != ignore_message_strings_.end();
}
VkRenderFramework::VkRenderFramework()
: inst(VK_NULL_HANDLE),
m_device(NULL),
m_commandPool(VK_NULL_HANDLE),
m_commandBuffer(NULL),
m_renderPass(VK_NULL_HANDLE),
m_framebuffer(VK_NULL_HANDLE),
m_surface(VK_NULL_HANDLE),
m_swapchain(VK_NULL_HANDLE),
m_addRenderPassSelfDependency(false),
m_width(256.0), // default window width
m_height(256.0), // default window height
m_render_target_fmt(VK_FORMAT_R8G8B8A8_UNORM),
m_depth_stencil_fmt(VK_FORMAT_UNDEFINED),
m_clear_via_load_op(true),
m_depth_clear_color(1.0),
m_stencil_clear_color(0),
m_depthStencil(NULL),
m_CreateDebugReportCallback(VK_NULL_HANDLE),
m_DestroyDebugReportCallback(VK_NULL_HANDLE),
m_globalMsgCallback(VK_NULL_HANDLE),
m_devMsgCallback(VK_NULL_HANDLE) {
memset(&m_renderPassBeginInfo, 0, sizeof(m_renderPassBeginInfo));
m_renderPassBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
m_errorMonitor = new ErrorMonitor;
// clear the back buffer to dark grey
m_clear_color.float32[0] = 0.25f;
m_clear_color.float32[1] = 0.25f;
m_clear_color.float32[2] = 0.25f;
m_clear_color.float32[3] = 0.0f;
}
VkRenderFramework::~VkRenderFramework() { ShutdownFramework(); }
VkPhysicalDevice VkRenderFramework::gpu() {
EXPECT_NE((VkInstance)0, inst); // Invalid to request gpu before instance exists
return objs[0];
}
// Return true if layer name is found and spec+implementation values are >= requested values
bool VkRenderFramework::InstanceLayerSupported(const char *name, uint32_t spec, uint32_t implementation) {
uint32_t layer_count = 0;
std::vector<VkLayerProperties> layer_props;
VkResult res = vk::EnumerateInstanceLayerProperties(&layer_count, NULL);
if (VK_SUCCESS != res) return false;
if (0 == layer_count) return false;
layer_props.resize(layer_count);
res = vk::EnumerateInstanceLayerProperties(&layer_count, layer_props.data());
if (VK_SUCCESS != res) return false;
for (auto &it : layer_props) {
if (0 == strncmp(name, it.layerName, VK_MAX_EXTENSION_NAME_SIZE)) {
return ((it.specVersion >= spec) && (it.implementationVersion >= implementation));
}
}
return false;
}
// Enable device profile as last layer on stack overriding devsim if there, or return if not available
bool VkRenderFramework::EnableDeviceProfileLayer() {
if (InstanceLayerSupported("VK_LAYER_LUNARG_device_profile_api")) {
if (VkTestFramework::m_devsim_layer) {
assert(0 == strcmp(m_instance_layer_names.back(), "VK_LAYER_LUNARG_device_simulation"));
m_instance_layer_names.pop_back();
m_instance_layer_names.push_back("VK_LAYER_LUNARG_device_profile_api");
} else {
m_instance_layer_names.push_back("VK_LAYER_LUNARG_device_profile_api");
}
} else {
printf(" Did not find VK_LAYER_LUNARG_device_profile_api layer; skipped.\n");
return false;
}
return true;
}
// Return true if extension name is found and spec value is >= requested spec value
bool VkRenderFramework::InstanceExtensionSupported(const char *ext_name, uint32_t spec) {
uint32_t ext_count = 0;
std::vector<VkExtensionProperties> ext_props;
VkResult res = vk::EnumerateInstanceExtensionProperties(nullptr, &ext_count, nullptr);
if (VK_SUCCESS != res) return false;
if (0 == ext_count) return false;
ext_props.resize(ext_count);
res = vk::EnumerateInstanceExtensionProperties(nullptr, &ext_count, ext_props.data());
if (VK_SUCCESS != res) return false;
for (auto &it : ext_props) {
if (0 == strncmp(ext_name, it.extensionName, VK_MAX_EXTENSION_NAME_SIZE)) {
return (it.specVersion >= spec);
}
}
return false;
}
// Return true if instance exists and extension name is in the list
bool VkRenderFramework::InstanceExtensionEnabled(const char *ext_name) {
if (!inst) return false;
bool ext_found = false;
for (auto ext : m_instance_extension_names) {
if (!strcmp(ext, ext_name)) {
ext_found = true;
break;
}
}
return ext_found;
}
// Return true if extension name is found and spec value is >= requested spec value
bool VkRenderFramework::DeviceExtensionSupported(VkPhysicalDevice dev, const char *layer, const char *ext_name, uint32_t spec) {
if (!inst) {
EXPECT_NE((VkInstance)0, inst); // Complain, not cool without an instance
return false;
}
uint32_t ext_count = 0;
std::vector<VkExtensionProperties> ext_props;
VkResult res = vk::EnumerateDeviceExtensionProperties(dev, layer, &ext_count, nullptr);
if (VK_SUCCESS != res) return false;
if (0 == ext_count) return false;
ext_props.resize(ext_count);
res = vk::EnumerateDeviceExtensionProperties(dev, layer, &ext_count, ext_props.data());
if (VK_SUCCESS != res) return false;
for (auto &it : ext_props) {
if (0 == strncmp(ext_name, it.extensionName, VK_MAX_EXTENSION_NAME_SIZE)) {
return (it.specVersion >= spec);
}
}
return false;
}
// Return true if device is created and extension name is found in the list
bool VkRenderFramework::DeviceExtensionEnabled(const char *ext_name) {
if (NULL == m_device) return false;
bool ext_found = false;
for (auto ext : m_device_extension_names) {
if (!strcmp(ext, ext_name)) {
ext_found = true;
break;
}
}
return ext_found;
}
// WARNING: The DevSim layer can override the properties that are tested here, making the result of
// this function dubious when DevSim is active.
bool VkRenderFramework::DeviceIsMockICD() {
VkPhysicalDeviceProperties props = vk_testing::PhysicalDevice(gpu()).properties();
if ((props.vendorID == 0xba5eba11) && (props.deviceID == 0xf005ba11) && (0 == strcmp("Vulkan Mock Device", props.deviceName))) {
return true;
}
return false;
}
// Some tests may need to be skipped if the devsim layer is in use.
bool VkRenderFramework::DeviceSimulation() { return m_devsim_layer; }
void VkRenderFramework::InitFramework(PFN_vkDebugReportCallbackEXT dbgFunction, void *userData, void *instance_pnext) {
// Only enable device profile layer by default if devsim is not enabled
if (!VkTestFramework::m_devsim_layer && InstanceLayerSupported("VK_LAYER_LUNARG_device_profile_api")) {
m_instance_layer_names.push_back("VK_LAYER_LUNARG_device_profile_api");
}
// Assert not already initialized
ASSERT_EQ((VkInstance)0, inst);
// Remove any unsupported layer names from list
for (auto layer = m_instance_layer_names.begin(); layer != m_instance_layer_names.end();) {
if (!InstanceLayerSupported(*layer)) {
ADD_FAILURE() << "InitFramework(): Requested layer " << *layer << " was not found. Disabled.";
layer = m_instance_layer_names.erase(layer);
} else {
++layer;
}
}
// Remove any unsupported instance extension names from list
for (auto ext = m_instance_extension_names.begin(); ext != m_instance_extension_names.end();) {
if (!InstanceExtensionSupported(*ext)) {
ADD_FAILURE() << "InitFramework(): Requested extension " << *ext << " was not found. Disabled.";
ext = m_instance_extension_names.erase(ext);
} else {
++ext;
}
}
VkInstanceCreateInfo instInfo = {};
instInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
instInfo.pNext = instance_pnext;
instInfo.pApplicationInfo = &app_info;
instInfo.enabledLayerCount = m_instance_layer_names.size();
instInfo.ppEnabledLayerNames = m_instance_layer_names.data();
instInfo.enabledExtensionCount = m_instance_extension_names.size();
instInfo.ppEnabledExtensionNames = m_instance_extension_names.data();
VkDebugReportCallbackCreateInfoEXT dbgCreateInfo;
if (dbgFunction) {
// Enable create time debug messages
memset(&dbgCreateInfo, 0, sizeof(dbgCreateInfo));
dbgCreateInfo.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT;
dbgCreateInfo.flags =
VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT | VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT;
dbgCreateInfo.pfnCallback = dbgFunction;
dbgCreateInfo.pUserData = userData;
dbgCreateInfo.pNext = instInfo.pNext;
instInfo.pNext = &dbgCreateInfo;
}
VkResult err;
err = vk::CreateInstance(&instInfo, NULL, &this->inst);
ASSERT_VK_SUCCESS(err);
err = vk::EnumeratePhysicalDevices(inst, &this->gpu_count, NULL);
ASSERT_LE(this->gpu_count, ARRAY_SIZE(objs)) << "Too many gpus";
ASSERT_VK_SUCCESS(err);
err = vk::EnumeratePhysicalDevices(inst, &this->gpu_count, objs);
ASSERT_VK_SUCCESS(err);
ASSERT_GE(this->gpu_count, (uint32_t)1) << "No GPU available";
if (dbgFunction) {
m_CreateDebugReportCallback =
(PFN_vkCreateDebugReportCallbackEXT)vk::GetInstanceProcAddr(this->inst, "vkCreateDebugReportCallbackEXT");
ASSERT_NE(m_CreateDebugReportCallback, (PFN_vkCreateDebugReportCallbackEXT)NULL)
<< "Did not get function pointer for CreateDebugReportCallback";
if (m_CreateDebugReportCallback) {
dbgCreateInfo.pNext = nullptr; // clean up from usage in CreateInstance above
err = m_CreateDebugReportCallback(this->inst, &dbgCreateInfo, NULL, &m_globalMsgCallback);
ASSERT_VK_SUCCESS(err);
m_DestroyDebugReportCallback =
(PFN_vkDestroyDebugReportCallbackEXT)vk::GetInstanceProcAddr(this->inst, "vkDestroyDebugReportCallbackEXT");
ASSERT_NE(m_DestroyDebugReportCallback, (PFN_vkDestroyDebugReportCallbackEXT)NULL)
<< "Did not get function pointer for DestroyDebugReportCallback";
m_DebugReportMessage = (PFN_vkDebugReportMessageEXT)vk::GetInstanceProcAddr(this->inst, "vkDebugReportMessageEXT");
ASSERT_NE(m_DebugReportMessage, (PFN_vkDebugReportMessageEXT)NULL)
<< "Did not get function pointer for DebugReportMessage";
}
}
}
void VkRenderFramework::ShutdownFramework() {
// Nothing to shut down without a VkInstance
if (!this->inst) return;
delete m_commandBuffer;
m_commandBuffer = nullptr;
delete m_commandPool;
m_commandPool = nullptr;
if (m_framebuffer) vk::DestroyFramebuffer(device(), m_framebuffer, NULL);
m_framebuffer = VK_NULL_HANDLE;
if (m_renderPass) vk::DestroyRenderPass(device(), m_renderPass, NULL);
m_renderPass = VK_NULL_HANDLE;
if (m_globalMsgCallback) m_DestroyDebugReportCallback(this->inst, m_globalMsgCallback, NULL);
m_globalMsgCallback = VK_NULL_HANDLE;
if (m_devMsgCallback) m_DestroyDebugReportCallback(this->inst, m_devMsgCallback, NULL);
m_devMsgCallback = VK_NULL_HANDLE;
m_renderTargets.clear();
delete m_depthStencil;
m_depthStencil = nullptr;
// reset the driver
delete m_device;
m_device = nullptr;
if (this->inst) vk::DestroyInstance(this->inst, NULL);
delete m_errorMonitor;
this->inst = (VkInstance)0; // In case we want to re-initialize
}
ErrorMonitor *VkRenderFramework::Monitor() { return m_errorMonitor; }
void VkRenderFramework::GetPhysicalDeviceFeatures(VkPhysicalDeviceFeatures *features) {
if (NULL == m_device) {
VkDeviceObj *temp_device = new VkDeviceObj(0, objs[0], m_device_extension_names);
*features = temp_device->phy().features();
delete (temp_device);
} else {
*features = m_device->phy().features();
}
}
void VkRenderFramework::GetPhysicalDeviceProperties(VkPhysicalDeviceProperties *props) {
*props = vk_testing::PhysicalDevice(gpu()).properties();
}
void VkRenderFramework::InitState(VkPhysicalDeviceFeatures *features, void *create_device_pnext,
const VkCommandPoolCreateFlags flags) {
// Remove any unsupported device extension names from list
for (auto ext = m_device_extension_names.begin(); ext != m_device_extension_names.end();) {
if (!DeviceExtensionSupported(objs[0], nullptr, *ext)) {
bool found = false;
for (auto layer = m_instance_layer_names.begin(); layer != m_instance_layer_names.end(); ++layer) {
if (DeviceExtensionSupported(objs[0], *layer, *ext)) {
found = true;
break;
}
}
if (!found) {
ADD_FAILURE() << "InitState(): The requested device extension " << *ext << " was not found. Disabled.";
ext = m_device_extension_names.erase(ext);
} else {
++ext;
}
} else {
++ext;
}
}
m_device = new VkDeviceObj(0, objs[0], m_device_extension_names, features, create_device_pnext);
m_device->SetDeviceQueue();
m_depthStencil = new VkDepthStencilObj(m_device);
m_render_target_fmt = VkTestFramework::GetFormat(inst, m_device);
m_lineWidth = 1.0f;
m_depthBiasConstantFactor = 0.0f;
m_depthBiasClamp = 0.0f;
m_depthBiasSlopeFactor = 0.0f;
m_blendConstants[0] = 1.0f;
m_blendConstants[1] = 1.0f;
m_blendConstants[2] = 1.0f;
m_blendConstants[3] = 1.0f;
m_minDepthBounds = 0.f;
m_maxDepthBounds = 1.f;
m_compareMask = 0xff;
m_writeMask = 0xff;
m_reference = 0;
m_commandPool = new VkCommandPoolObj(m_device, m_device->graphics_queue_node_index_, flags);
m_commandBuffer = new VkCommandBufferObj(m_device, m_commandPool);
}
void VkRenderFramework::InitViewport(float width, float height) {
VkViewport viewport;
VkRect2D scissor;
viewport.x = 0;
viewport.y = 0;
viewport.width = 1.f * width;
viewport.height = 1.f * height;
viewport.minDepth = 0.f;
viewport.maxDepth = 1.f;
m_viewports.push_back(viewport);
scissor.extent.width = (int32_t)width;
scissor.extent.height = (int32_t)height;
scissor.offset.x = 0;
scissor.offset.y = 0;
m_scissors.push_back(scissor);
m_width = width;
m_height = height;
}
void VkRenderFramework::InitViewport() { InitViewport(m_width, m_height); }
bool VkRenderFramework::InitSurface() { return InitSurface(m_width, m_height); }
#ifdef VK_USE_PLATFORM_WIN32_KHR
LRESULT CALLBACK WindowProc(HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam) {
return DefWindowProc(hwnd, uMsg, wParam, lParam);
}
#endif // VK_USE_PLATFORM_WIN32_KHR
bool VkRenderFramework::InitSurface(float width, float height) {
#if defined(VK_USE_PLATFORM_WIN32_KHR)
HINSTANCE window_instance = GetModuleHandle(nullptr);
const char class_name[] = "test";
WNDCLASS wc = {};
wc.lpfnWndProc = WindowProc;
wc.hInstance = window_instance;
wc.lpszClassName = class_name;
RegisterClass(&wc);
HWND window = CreateWindowEx(0, class_name, 0, 0, 0, 0, (int)m_width, (int)m_height, NULL, NULL, window_instance, NULL);
ShowWindow(window, SW_HIDE);
VkWin32SurfaceCreateInfoKHR surface_create_info = {};
surface_create_info.sType = VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR;
surface_create_info.hinstance = window_instance;
surface_create_info.hwnd = window;
VkResult err = vk::CreateWin32SurfaceKHR(instance(), &surface_create_info, nullptr, &m_surface);
if (err != VK_SUCCESS) return false;
#endif
#if defined(VK_USE_PLATFORM_ANDROID_KHR) && defined(VALIDATION_APK)
VkAndroidSurfaceCreateInfoKHR surface_create_info = {};
surface_create_info.sType = VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR;
surface_create_info.window = VkTestFramework::window;
VkResult err = vk::CreateAndroidSurfaceKHR(instance(), &surface_create_info, nullptr, &m_surface);
if (err != VK_SUCCESS) return false;
#endif
#if defined(VK_USE_PLATFORM_XLIB_KHR)
Display *dpy = XOpenDisplay(NULL);
if (dpy) {
int s = DefaultScreen(dpy);
Window window = XCreateSimpleWindow(dpy, RootWindow(dpy, s), 0, 0, (int)m_width, (int)m_height, 1, BlackPixel(dpy, s),
WhitePixel(dpy, s));
VkXlibSurfaceCreateInfoKHR surface_create_info = {};
surface_create_info.sType = VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR;
surface_create_info.dpy = dpy;
surface_create_info.window = window;
VkResult err = vk::CreateXlibSurfaceKHR(instance(), &surface_create_info, nullptr, &m_surface);
if (err != VK_SUCCESS) return false;
}
#endif
#if defined(VK_USE_PLATFORM_XCB_KHR)
if (m_surface == VK_NULL_HANDLE) {
xcb_connection_t *connection = xcb_connect(NULL, NULL);
if (connection) {
xcb_window_t window = xcb_generate_id(connection);
VkXcbSurfaceCreateInfoKHR surface_create_info = {};
surface_create_info.sType = VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR;
surface_create_info.connection = connection;
surface_create_info.window = window;
VkResult err = vk::CreateXcbSurfaceKHR(instance(), &surface_create_info, nullptr, &m_surface);
if (err != VK_SUCCESS) return false;
}
}
#endif
return (m_surface == VK_NULL_HANDLE) ? false : true;
}
bool VkRenderFramework::InitSwapchain(VkImageUsageFlags imageUsage, VkSurfaceTransformFlagBitsKHR preTransform) {
if (InitSurface()) {
return InitSwapchain(m_surface, imageUsage, preTransform);
}
return false;
}
bool VkRenderFramework::InitSwapchain(VkSurfaceKHR &surface, VkImageUsageFlags imageUsage,
VkSurfaceTransformFlagBitsKHR preTransform) {
for (size_t i = 0; i < m_device->queue_props.size(); ++i) {
VkBool32 presentSupport = false;
vk::GetPhysicalDeviceSurfaceSupportKHR(m_device->phy().handle(), i, surface, &presentSupport);
}
VkSurfaceCapabilitiesKHR capabilities;
vk::GetPhysicalDeviceSurfaceCapabilitiesKHR(m_device->phy().handle(), surface, &capabilities);
uint32_t format_count;
vk::GetPhysicalDeviceSurfaceFormatsKHR(m_device->phy().handle(), surface, &format_count, nullptr);
std::vector<VkSurfaceFormatKHR> formats;
if (format_count != 0) {
formats.resize(format_count);
vk::GetPhysicalDeviceSurfaceFormatsKHR(m_device->phy().handle(), surface, &format_count, formats.data());
}
uint32_t present_mode_count;
vk::GetPhysicalDeviceSurfacePresentModesKHR(m_device->phy().handle(), surface, &present_mode_count, nullptr);
std::vector<VkPresentModeKHR> present_modes;
if (present_mode_count != 0) {
present_modes.resize(present_mode_count);
vk::GetPhysicalDeviceSurfacePresentModesKHR(m_device->phy().handle(), surface, &present_mode_count, present_modes.data());
}
VkSwapchainCreateInfoKHR swapchain_create_info = {};
swapchain_create_info.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
swapchain_create_info.pNext = 0;
swapchain_create_info.surface = surface;
swapchain_create_info.minImageCount = capabilities.minImageCount;
swapchain_create_info.imageFormat = formats[0].format;
swapchain_create_info.imageColorSpace = formats[0].colorSpace;
swapchain_create_info.imageExtent = {capabilities.minImageExtent.width, capabilities.minImageExtent.height};
swapchain_create_info.imageArrayLayers = 1;
swapchain_create_info.imageUsage = imageUsage;
swapchain_create_info.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
swapchain_create_info.preTransform = preTransform;
#ifdef VK_USE_PLATFORM_ANDROID_KHR
swapchain_create_info.compositeAlpha = VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR;
#else
swapchain_create_info.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
#endif
swapchain_create_info.presentMode = present_modes[0];
swapchain_create_info.clipped = VK_FALSE;
swapchain_create_info.oldSwapchain = 0;
VkResult err = vk::CreateSwapchainKHR(device(), &swapchain_create_info, nullptr, &m_swapchain);
if (err != VK_SUCCESS) {
return false;
}
uint32_t imageCount = 0;
vk::GetSwapchainImagesKHR(device(), m_swapchain, &imageCount, nullptr);
std::vector<VkImage> swapchainImages;
swapchainImages.resize(imageCount);
vk::GetSwapchainImagesKHR(device(), m_swapchain, &imageCount, swapchainImages.data());
return true;
}
void VkRenderFramework::DestroySwapchain() {
if (m_swapchain != VK_NULL_HANDLE) {
vk::DestroySwapchainKHR(device(), m_swapchain, nullptr);
m_swapchain = VK_NULL_HANDLE;
}
if (m_surface != VK_NULL_HANDLE) {
vk::DestroySurfaceKHR(instance(), m_surface, nullptr);
m_surface = VK_NULL_HANDLE;
}
}
void VkRenderFramework::InitRenderTarget() { InitRenderTarget(1); }
void VkRenderFramework::InitRenderTarget(uint32_t targets) { InitRenderTarget(targets, NULL); }
void VkRenderFramework::InitRenderTarget(VkImageView *dsBinding) { InitRenderTarget(1, dsBinding); }
void VkRenderFramework::InitRenderTarget(uint32_t targets, VkImageView *dsBinding) {
std::vector<VkAttachmentDescription> attachments;
std::vector<VkAttachmentReference> color_references;
std::vector<VkImageView> bindings;
attachments.reserve(targets + 1); // +1 for dsBinding
color_references.reserve(targets);
bindings.reserve(targets + 1); // +1 for dsBinding
VkAttachmentDescription att = {};
att.format = m_render_target_fmt;
att.samples = VK_SAMPLE_COUNT_1_BIT;
att.loadOp = (m_clear_via_load_op) ? VK_ATTACHMENT_LOAD_OP_CLEAR : VK_ATTACHMENT_LOAD_OP_LOAD;
att.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
att.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
att.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
att.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
att.finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkAttachmentReference ref = {};
ref.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
m_renderPassClearValues.clear();
VkClearValue clear = {};
clear.color = m_clear_color;
for (uint32_t i = 0; i < targets; i++) {
attachments.push_back(att);
ref.attachment = i;
color_references.push_back(ref);
m_renderPassClearValues.push_back(clear);
std::unique_ptr<VkImageObj> img(new VkImageObj(m_device));
VkFormatProperties props;
vk::GetPhysicalDeviceFormatProperties(m_device->phy().handle(), m_render_target_fmt, &props);
if (props.linearTilingFeatures & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT) {
img->Init((uint32_t)m_width, (uint32_t)m_height, 1, m_render_target_fmt,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT,
VK_IMAGE_TILING_LINEAR);
} else if (props.optimalTilingFeatures & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT) {
img->Init((uint32_t)m_width, (uint32_t)m_height, 1, m_render_target_fmt,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT,
VK_IMAGE_TILING_OPTIMAL);
} else {
FAIL() << "Neither Linear nor Optimal allowed for render target";
}
bindings.push_back(img->targetView(m_render_target_fmt));
m_renderTargets.push_back(std::move(img));
}
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.flags = 0;
subpass.inputAttachmentCount = 0;
subpass.pInputAttachments = NULL;
subpass.colorAttachmentCount = targets;
subpass.pColorAttachments = color_references.data();
subpass.pResolveAttachments = NULL;
VkAttachmentReference ds_reference;
if (dsBinding) {
att.format = m_depth_stencil_fmt;
att.loadOp = (m_clear_via_load_op) ? VK_ATTACHMENT_LOAD_OP_CLEAR : VK_ATTACHMENT_LOAD_OP_LOAD;
;
att.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
att.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
att.stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE;
att.initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
att.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
attachments.push_back(att);
clear.depthStencil.depth = m_depth_clear_color;
clear.depthStencil.stencil = m_stencil_clear_color;
m_renderPassClearValues.push_back(clear);
bindings.push_back(*dsBinding);
ds_reference.attachment = targets;
ds_reference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
subpass.pDepthStencilAttachment = &ds_reference;
} else {
subpass.pDepthStencilAttachment = NULL;
}
subpass.preserveAttachmentCount = 0;
subpass.pPreserveAttachments = NULL;
VkRenderPassCreateInfo rp_info = {};
rp_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
rp_info.attachmentCount = attachments.size();
rp_info.pAttachments = attachments.data();
rp_info.subpassCount = 1;
rp_info.pSubpasses = &subpass;
VkSubpassDependency subpass_dep = {};
if (m_addRenderPassSelfDependency) {
// Add a subpass self-dependency to subpass 0 of default renderPass
subpass_dep.srcSubpass = 0;
subpass_dep.dstSubpass = 0;
// Just using all framebuffer-space pipeline stages in order to get a reasonably large
// set of bits that can be used for both src & dst
subpass_dep.srcStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
subpass_dep.dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
// Add all of the gfx mem access bits that correlate to the fb-space pipeline stages
subpass_dep.srcAccessMask = VK_ACCESS_UNIFORM_READ_BIT | VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | VK_ACCESS_SHADER_READ_BIT |
VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
subpass_dep.dstAccessMask = VK_ACCESS_UNIFORM_READ_BIT | VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | VK_ACCESS_SHADER_READ_BIT |
VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
// Must include dep_by_region bit when src & dst both include framebuffer-space stages
subpass_dep.dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
rp_info.dependencyCount = 1;
rp_info.pDependencies = &subpass_dep;
}
vk::CreateRenderPass(device(), &rp_info, NULL, &m_renderPass);
renderPass_info_ = rp_info; // Save away a copy for tests that need access to the render pass state
// Create Framebuffer and RenderPass with color attachments and any
// depth/stencil attachment
VkFramebufferCreateInfo fb_info = {};
fb_info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fb_info.pNext = NULL;
fb_info.renderPass = m_renderPass;
fb_info.attachmentCount = bindings.size();
fb_info.pAttachments = bindings.data();
fb_info.width = (uint32_t)m_width;
fb_info.height = (uint32_t)m_height;
fb_info.layers = 1;
vk::CreateFramebuffer(device(), &fb_info, NULL, &m_framebuffer);
m_renderPassBeginInfo.renderPass = m_renderPass;
m_renderPassBeginInfo.framebuffer = m_framebuffer;
m_renderPassBeginInfo.renderArea.extent.width = (int32_t)m_width;
m_renderPassBeginInfo.renderArea.extent.height = (int32_t)m_height;
m_renderPassBeginInfo.clearValueCount = m_renderPassClearValues.size();
m_renderPassBeginInfo.pClearValues = m_renderPassClearValues.data();
}
void VkRenderFramework::DestroyRenderTarget() {
vk::DestroyRenderPass(device(), m_renderPass, nullptr);
m_renderPass = VK_NULL_HANDLE;
vk::DestroyFramebuffer(device(), m_framebuffer, nullptr);
m_framebuffer = VK_NULL_HANDLE;
}
VkDeviceObj::VkDeviceObj(uint32_t id, VkPhysicalDevice obj) : vk_testing::Device(obj), id(id) {
init();
props = phy().properties();
queue_props = phy().queue_properties();
}
VkDeviceObj::VkDeviceObj(uint32_t id, VkPhysicalDevice obj, std::vector<const char *> &extension_names,
VkPhysicalDeviceFeatures *features, void *create_device_pnext)
: vk_testing::Device(obj), id(id) {
init(extension_names, features, create_device_pnext);
props = phy().properties();
queue_props = phy().queue_properties();
}
uint32_t VkDeviceObj::QueueFamilyMatching(VkQueueFlags with, VkQueueFlags without, bool all_bits) {
// Find a queue family with and without desired capabilities
for (uint32_t i = 0; i < queue_props.size(); i++) {
auto flags = queue_props[i].queueFlags;
bool matches = all_bits ? (flags & with) == with : (flags & with) != 0;
if (matches && ((flags & without) == 0) && (queue_props[i].queueCount > 0)) {
return i;
}
}
return UINT32_MAX;
}
void VkDeviceObj::SetDeviceQueue() {
ASSERT_NE(true, graphics_queues().empty());
m_queue = graphics_queues()[0]->handle();
}
VkQueueObj *VkDeviceObj::GetDefaultQueue() {
if (graphics_queues().empty()) return nullptr;
return graphics_queues()[0];
}
VkQueueObj *VkDeviceObj::GetDefaultComputeQueue() {
if (compute_queues().empty()) return nullptr;
return compute_queues()[0];
}
VkDescriptorSetLayoutObj::VkDescriptorSetLayoutObj(const VkDeviceObj *device,
const std::vector<VkDescriptorSetLayoutBinding> &descriptor_set_bindings,
VkDescriptorSetLayoutCreateFlags flags, void *pNext) {
VkDescriptorSetLayoutCreateInfo dsl_ci = {};
dsl_ci.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
dsl_ci.pNext = pNext;
dsl_ci.flags = flags;
dsl_ci.bindingCount = static_cast<uint32_t>(descriptor_set_bindings.size());
dsl_ci.pBindings = descriptor_set_bindings.data();
init(*device, dsl_ci);
}
VkDescriptorSetObj::VkDescriptorSetObj(VkDeviceObj *device) : m_device(device), m_nextSlot(0) {}
VkDescriptorSetObj::~VkDescriptorSetObj() {
if (m_set) {
delete m_set;
}
}
int VkDescriptorSetObj::AppendDummy() {
/* request a descriptor but do not update it */
VkDescriptorSetLayoutBinding binding = {};
binding.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
binding.descriptorCount = 1;
binding.binding = m_layout_bindings.size();
binding.stageFlags = VK_SHADER_STAGE_ALL;
binding.pImmutableSamplers = NULL;
m_layout_bindings.push_back(binding);
m_type_counts[VK_DESCRIPTOR_TYPE_STORAGE_BUFFER] += binding.descriptorCount;
return m_nextSlot++;
}
int VkDescriptorSetObj::AppendBuffer(VkDescriptorType type, VkConstantBufferObj &constantBuffer) {
assert(type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER || type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER || type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC);
VkDescriptorSetLayoutBinding binding = {};
binding.descriptorType = type;
binding.descriptorCount = 1;
binding.binding = m_layout_bindings.size();
binding.stageFlags = VK_SHADER_STAGE_ALL;
binding.pImmutableSamplers = NULL;
m_layout_bindings.push_back(binding);
m_type_counts[type] += binding.descriptorCount;
m_writes.push_back(vk_testing::Device::write_descriptor_set(vk_testing::DescriptorSet(), m_nextSlot, 0, type, 1,
&constantBuffer.m_descriptorBufferInfo));
return m_nextSlot++;
}
int VkDescriptorSetObj::AppendSamplerTexture(VkSamplerObj *sampler, VkTextureObj *texture) {
VkDescriptorSetLayoutBinding binding = {};
binding.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
binding.descriptorCount = 1;
binding.binding = m_layout_bindings.size();
binding.stageFlags = VK_SHADER_STAGE_ALL;
binding.pImmutableSamplers = NULL;
m_layout_bindings.push_back(binding);
m_type_counts[VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER] += binding.descriptorCount;
VkDescriptorImageInfo tmp = texture->DescriptorImageInfo();
tmp.sampler = sampler->handle();
m_imageSamplerDescriptors.push_back(tmp);
m_writes.push_back(vk_testing::Device::write_descriptor_set(vk_testing::DescriptorSet(), m_nextSlot, 0,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &tmp));
return m_nextSlot++;
}
VkPipelineLayout VkDescriptorSetObj::GetPipelineLayout() const { return m_pipeline_layout.handle(); }
VkDescriptorSet VkDescriptorSetObj::GetDescriptorSetHandle() const {
if (m_set)
return m_set->handle();
else
return VK_NULL_HANDLE;
}
void VkDescriptorSetObj::CreateVKDescriptorSet(VkCommandBufferObj *commandBuffer) {
if (m_type_counts.size()) {
// create VkDescriptorPool
VkDescriptorPoolSize poolSize;
vector<VkDescriptorPoolSize> sizes;
for (auto it = m_type_counts.begin(); it != m_type_counts.end(); ++it) {
poolSize.descriptorCount = it->second;
poolSize.type = it->first;
sizes.push_back(poolSize);
}
VkDescriptorPoolCreateInfo pool = {};
pool.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
pool.poolSizeCount = sizes.size();
pool.maxSets = 1;
pool.pPoolSizes = sizes.data();
init(*m_device, pool);
}
// create VkDescriptorSetLayout
VkDescriptorSetLayoutCreateInfo layout = {};
layout.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
layout.bindingCount = m_layout_bindings.size();
layout.pBindings = m_layout_bindings.data();
m_layout.init(*m_device, layout);
vector<const vk_testing::DescriptorSetLayout *> layouts;
layouts.push_back(&m_layout);
// create VkPipelineLayout
VkPipelineLayoutCreateInfo pipeline_layout = {};
pipeline_layout.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipeline_layout.setLayoutCount = layouts.size();
pipeline_layout.pSetLayouts = NULL;
m_pipeline_layout.init(*m_device, pipeline_layout, layouts);
if (m_type_counts.size()) {
// create VkDescriptorSet
m_set = alloc_sets(*m_device, m_layout);
// build the update array
size_t imageSamplerCount = 0;
for (std::vector<VkWriteDescriptorSet>::iterator it = m_writes.begin(); it != m_writes.end(); it++) {
it->dstSet = m_set->handle();
if (it->descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
it->pImageInfo = &m_imageSamplerDescriptors[imageSamplerCount++];
}
// do the updates
m_device->update_descriptor_sets(m_writes);
}
}
VkRenderpassObj::VkRenderpassObj(VkDeviceObj *dev) {
// Create a renderPass with a single color attachment
VkAttachmentReference attach = {};
attach.layout = VK_IMAGE_LAYOUT_GENERAL;
VkSubpassDescription subpass = {};
subpass.pColorAttachments = &attach;
subpass.colorAttachmentCount = 1;
VkRenderPassCreateInfo rpci = {};
rpci.subpassCount = 1;
rpci.pSubpasses = &subpass;
rpci.attachmentCount = 1;
VkAttachmentDescription attach_desc = {};
attach_desc.format = VK_FORMAT_B8G8R8A8_UNORM;
attach_desc.samples = VK_SAMPLE_COUNT_1_BIT;
attach_desc.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attach_desc.finalLayout = VK_IMAGE_LAYOUT_GENERAL;
rpci.pAttachments = &attach_desc;
rpci.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
device = dev->device();
vk::CreateRenderPass(device, &rpci, NULL, &m_renderpass);
}
VkRenderpassObj::~VkRenderpassObj() { vk::DestroyRenderPass(device, m_renderpass, NULL); }
VkImageObj::VkImageObj(VkDeviceObj *dev) {
m_device = dev;
m_descriptorImageInfo.imageView = VK_NULL_HANDLE;
m_descriptorImageInfo.imageLayout = VK_IMAGE_LAYOUT_GENERAL;
}
// clang-format off
void VkImageObj::ImageMemoryBarrier(VkCommandBufferObj *cmd_buf, VkImageAspectFlags aspect,
VkFlags output_mask /*=
VK_ACCESS_HOST_WRITE_BIT |
VK_ACCESS_SHADER_WRITE_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
VK_MEMORY_OUTPUT_COPY_BIT*/,
VkFlags input_mask /*=
VK_ACCESS_HOST_READ_BIT |
VK_ACCESS_INDIRECT_COMMAND_READ_BIT |
VK_ACCESS_INDEX_READ_BIT |
VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT |
VK_ACCESS_UNIFORM_READ_BIT |
VK_ACCESS_SHADER_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
VK_MEMORY_INPUT_COPY_BIT*/, VkImageLayout image_layout,
VkPipelineStageFlags src_stages, VkPipelineStageFlags dest_stages,
uint32_t srcQueueFamilyIndex, uint32_t dstQueueFamilyIndex) {
// clang-format on
// TODO: Mali device crashing with VK_REMAINING_MIP_LEVELS
const VkImageSubresourceRange subresourceRange =
subresource_range(aspect, 0, /*VK_REMAINING_MIP_LEVELS*/ 1, 0, 1 /*VK_REMAINING_ARRAY_LAYERS*/);
VkImageMemoryBarrier barrier;
barrier = image_memory_barrier(output_mask, input_mask, Layout(), image_layout, subresourceRange, srcQueueFamilyIndex,
dstQueueFamilyIndex);
VkImageMemoryBarrier *pmemory_barrier = &barrier;
// write barrier to the command buffer
vk::CmdPipelineBarrier(cmd_buf->handle(), src_stages, dest_stages, VK_DEPENDENCY_BY_REGION_BIT, 0, NULL, 0, NULL, 1,
pmemory_barrier);
}
void VkImageObj::SetLayout(VkCommandBufferObj *cmd_buf, VkImageAspectFlags aspect, VkImageLayout image_layout) {
VkFlags src_mask, dst_mask;
const VkFlags all_cache_outputs = VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_TRANSFER_WRITE_BIT;
const VkFlags all_cache_inputs = VK_ACCESS_HOST_READ_BIT | VK_ACCESS_INDIRECT_COMMAND_READ_BIT | VK_ACCESS_INDEX_READ_BIT |
VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | VK_ACCESS_UNIFORM_READ_BIT | VK_ACCESS_SHADER_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
VK_ACCESS_MEMORY_READ_BIT;
if (image_layout == m_descriptorImageInfo.imageLayout) {
return;
}
switch (image_layout) {
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
if (m_descriptorImageInfo.imageLayout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL)
src_mask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
else
src_mask = VK_ACCESS_TRANSFER_WRITE_BIT;
dst_mask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_TRANSFER_READ_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
if (m_descriptorImageInfo.imageLayout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL)
src_mask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
else if (m_descriptorImageInfo.imageLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
src_mask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT;
else
src_mask = VK_ACCESS_TRANSFER_WRITE_BIT;
dst_mask = VK_ACCESS_TRANSFER_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
if (m_descriptorImageInfo.imageLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL)
src_mask = VK_ACCESS_TRANSFER_WRITE_BIT;
else
src_mask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT;
dst_mask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_MEMORY_READ_BIT;
break;
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
if (m_descriptorImageInfo.imageLayout == VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL)
src_mask = VK_ACCESS_TRANSFER_READ_BIT;
else
src_mask = 0;
dst_mask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
dst_mask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
src_mask = all_cache_outputs;
break;
default:
src_mask = all_cache_outputs;
dst_mask = all_cache_inputs;
break;
}
if (m_descriptorImageInfo.imageLayout == VK_IMAGE_LAYOUT_UNDEFINED) src_mask = 0;
ImageMemoryBarrier(cmd_buf, aspect, src_mask, dst_mask, image_layout);
m_descriptorImageInfo.imageLayout = image_layout;
}
void VkImageObj::SetLayout(VkImageAspectFlags aspect, VkImageLayout image_layout) {
if (image_layout == m_descriptorImageInfo.imageLayout) {
return;
}
VkCommandPoolObj pool(m_device, m_device->graphics_queue_node_index_);
VkCommandBufferObj cmd_buf(m_device, &pool);
/* Build command buffer to set image layout in the driver */
cmd_buf.begin();
SetLayout(&cmd_buf, aspect, image_layout);
cmd_buf.end();
cmd_buf.QueueCommandBuffer();
}
bool VkImageObj::IsCompatible(const VkImageUsageFlags usages, const VkFormatFeatureFlags features) {
VkFormatFeatureFlags all_feature_flags =
VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT | VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT | VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT |
VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT | VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT |
VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT | VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT |
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT | VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT |
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_FORMAT_FEATURE_BLIT_SRC_BIT | VK_FORMAT_FEATURE_BLIT_DST_BIT |
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT;
if (m_device->IsEnabledExtension(VK_IMG_FILTER_CUBIC_EXTENSION_NAME)) {
all_feature_flags |= VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_IMG;
}
if (m_device->IsEnabledExtension(VK_KHR_MAINTENANCE1_EXTENSION_NAME)) {
all_feature_flags |= VK_FORMAT_FEATURE_TRANSFER_SRC_BIT_KHR | VK_FORMAT_FEATURE_TRANSFER_DST_BIT_KHR;
}
if (m_device->IsEnabledExtension(VK_EXT_SAMPLER_FILTER_MINMAX_EXTENSION_NAME)) {
all_feature_flags |= VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT_EXT;
}
if (m_device->IsEnabledExtension(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME)) {
all_feature_flags |= VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT_KHR |
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT_KHR |
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT_KHR |
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT_KHR |
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABLE_BIT_KHR |
VK_FORMAT_FEATURE_DISJOINT_BIT_KHR | VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT_KHR;
}
if ((features & all_feature_flags) == 0) return false; // whole format unsupported
if ((usages & VK_IMAGE_USAGE_SAMPLED_BIT) && !(features & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT)) return false;
if ((usages & VK_IMAGE_USAGE_STORAGE_BIT) && !(features & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT)) return false;
if ((usages & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) && !(features & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT)) return false;
if ((usages & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) && !(features & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT))
return false;
if (m_device->IsEnabledExtension(VK_KHR_MAINTENANCE1_EXTENSION_NAME)) {
// WORKAROUND: for DevSim not reporting extended enums, and possibly some drivers too
const auto all_nontransfer_feature_flags =
all_feature_flags ^ (VK_FORMAT_FEATURE_TRANSFER_SRC_BIT_KHR | VK_FORMAT_FEATURE_TRANSFER_DST_BIT_KHR);
const bool transfer_probably_supported_anyway = (features & all_nontransfer_feature_flags) > 0;
if (!transfer_probably_supported_anyway) {
if ((usages & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) && !(features & VK_FORMAT_FEATURE_TRANSFER_SRC_BIT_KHR)) return false;
if ((usages & VK_IMAGE_USAGE_TRANSFER_DST_BIT) && !(features & VK_FORMAT_FEATURE_TRANSFER_DST_BIT_KHR)) return false;
}
}
return true;
}
void VkImageObj::InitNoLayout(uint32_t const width, uint32_t const height, uint32_t const mipLevels, VkFormat const format,
VkFlags const usage, VkImageTiling const requested_tiling, VkMemoryPropertyFlags const reqs,
const std::vector<uint32_t> *queue_families, bool memory) {
VkFormatProperties image_fmt;
VkImageTiling tiling = VK_IMAGE_TILING_OPTIMAL;
vk::GetPhysicalDeviceFormatProperties(m_device->phy().handle(), format, &image_fmt);
if (requested_tiling == VK_IMAGE_TILING_LINEAR) {
if (IsCompatible(usage, image_fmt.linearTilingFeatures)) {
tiling = VK_IMAGE_TILING_LINEAR;
} else if (IsCompatible(usage, image_fmt.optimalTilingFeatures)) {
tiling = VK_IMAGE_TILING_OPTIMAL;
} else {
FAIL() << "VkImageObj::init() error: unsupported tiling configuration. Usage: " << std::hex << std::showbase << usage
<< ", supported linear features: " << image_fmt.linearTilingFeatures;
}
} else if (IsCompatible(usage, image_fmt.optimalTilingFeatures)) {
tiling = VK_IMAGE_TILING_OPTIMAL;
} else if (IsCompatible(usage, image_fmt.linearTilingFeatures)) {
tiling = VK_IMAGE_TILING_LINEAR;
} else {
FAIL() << "VkImageObj::init() error: unsupported tiling configuration. Usage: " << std::hex << std::showbase << usage
<< ", supported optimal features: " << image_fmt.optimalTilingFeatures;
}
VkImageCreateInfo imageCreateInfo = vk_testing::Image::create_info();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.extent.width = width;
imageCreateInfo.extent.height = height;
imageCreateInfo.mipLevels = mipLevels;
imageCreateInfo.tiling = tiling;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
// Automatically set sharing mode etc. based on queue family information
if (queue_families && (queue_families->size() > 1)) {
imageCreateInfo.sharingMode = VK_SHARING_MODE_CONCURRENT;
imageCreateInfo.queueFamilyIndexCount = static_cast<uint32_t>(queue_families->size());
imageCreateInfo.pQueueFamilyIndices = queue_families->data();
}
Layout(imageCreateInfo.initialLayout);
imageCreateInfo.usage = usage;
if (memory)
vk_testing::Image::init(*m_device, imageCreateInfo, reqs);
else
vk_testing::Image::init_no_mem(*m_device, imageCreateInfo);
}
void VkImageObj::Init(uint32_t const width, uint32_t const height, uint32_t const mipLevels, VkFormat const format,
VkFlags const usage, VkImageTiling const requested_tiling, VkMemoryPropertyFlags const reqs,
const std::vector<uint32_t> *queue_families, bool memory) {
InitNoLayout(width, height, mipLevels, format, usage, requested_tiling, reqs, queue_families, memory);
if (!initialized() || !memory) return; // We don't have a valid handle from early stage init, and thus SetLayout will fail
VkImageLayout newLayout;
if (usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
else if (usage & VK_IMAGE_USAGE_SAMPLED_BIT)
newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
else
newLayout = m_descriptorImageInfo.imageLayout;
VkImageAspectFlags image_aspect = 0;
if (FormatIsDepthAndStencil(format)) {
image_aspect = VK_IMAGE_ASPECT_STENCIL_BIT | VK_IMAGE_ASPECT_DEPTH_BIT;
} else if (FormatIsDepthOnly(format)) {
image_aspect = VK_IMAGE_ASPECT_DEPTH_BIT;
} else if (FormatIsStencilOnly(format)) {
image_aspect = VK_IMAGE_ASPECT_STENCIL_BIT;
} else { // color
image_aspect = VK_IMAGE_ASPECT_COLOR_BIT;
}
SetLayout(image_aspect, newLayout);
}
void VkImageObj::init(const VkImageCreateInfo *create_info) {
VkFormatProperties image_fmt;
vk::GetPhysicalDeviceFormatProperties(m_device->phy().handle(), create_info->format, &image_fmt);
switch (create_info->tiling) {
case VK_IMAGE_TILING_OPTIMAL:
if (!IsCompatible(create_info->usage, image_fmt.optimalTilingFeatures)) {
FAIL() << "VkImageObj::init() error: unsupported tiling configuration. Usage: " << std::hex << std::showbase
<< create_info->usage << ", supported optimal features: " << image_fmt.optimalTilingFeatures;
}
break;
case VK_IMAGE_TILING_LINEAR:
if (!IsCompatible(create_info->usage, image_fmt.linearTilingFeatures)) {
FAIL() << "VkImageObj::init() error: unsupported tiling configuration. Usage: " << std::hex << std::showbase
<< create_info->usage << ", supported linear features: " << image_fmt.linearTilingFeatures;
}
break;
default:
break;
}
Layout(create_info->initialLayout);
vk_testing::Image::init(*m_device, *create_info, 0);
VkImageAspectFlags image_aspect = 0;
if (FormatIsDepthAndStencil(create_info->format)) {
image_aspect = VK_IMAGE_ASPECT_STENCIL_BIT | VK_IMAGE_ASPECT_DEPTH_BIT;
} else if (FormatIsDepthOnly(create_info->format)) {
image_aspect = VK_IMAGE_ASPECT_DEPTH_BIT;
} else if (FormatIsStencilOnly(create_info->format)) {
image_aspect = VK_IMAGE_ASPECT_STENCIL_BIT;
} else { // color
image_aspect = VK_IMAGE_ASPECT_COLOR_BIT;
}
SetLayout(image_aspect, VK_IMAGE_LAYOUT_GENERAL);
}
VkResult VkImageObj::CopyImage(VkImageObj &src_image) {
VkImageLayout src_image_layout, dest_image_layout;
VkCommandPoolObj pool(m_device, m_device->graphics_queue_node_index_);
VkCommandBufferObj cmd_buf(m_device, &pool);
/* Build command buffer to copy staging texture to usable texture */
cmd_buf.begin();
/* TODO: Can we determine image aspect from image object? */
src_image_layout = src_image.Layout();
src_image.SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
dest_image_layout = (this->Layout() == VK_IMAGE_LAYOUT_UNDEFINED) ? VK_IMAGE_LAYOUT_GENERAL : this->Layout();
this->SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
VkImageCopy copy_region = {};
copy_region.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copy_region.srcSubresource.baseArrayLayer = 0;
copy_region.srcSubresource.mipLevel = 0;
copy_region.srcSubresource.layerCount = 1;
copy_region.srcOffset.x = 0;
copy_region.srcOffset.y = 0;
copy_region.srcOffset.z = 0;
copy_region.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copy_region.dstSubresource.baseArrayLayer = 0;
copy_region.dstSubresource.mipLevel = 0;
copy_region.dstSubresource.layerCount = 1;
copy_region.dstOffset.x = 0;
copy_region.dstOffset.y = 0;
copy_region.dstOffset.z = 0;
copy_region.extent = src_image.extent();
vk::CmdCopyImage(cmd_buf.handle(), src_image.handle(), src_image.Layout(), handle(), Layout(), 1, &copy_region);
src_image.SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, src_image_layout);
this->SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, dest_image_layout);
cmd_buf.end();
cmd_buf.QueueCommandBuffer();
return VK_SUCCESS;
}
// Same as CopyImage, but in the opposite direction
VkResult VkImageObj::CopyImageOut(VkImageObj &dst_image) {
VkImageLayout src_image_layout, dest_image_layout;
VkCommandPoolObj pool(m_device, m_device->graphics_queue_node_index_);
VkCommandBufferObj cmd_buf(m_device, &pool);
cmd_buf.begin();
src_image_layout = this->Layout();
this->SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
dest_image_layout = (dst_image.Layout() == VK_IMAGE_LAYOUT_UNDEFINED) ? VK_IMAGE_LAYOUT_GENERAL : dst_image.Layout();
dst_image.SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
VkImageCopy copy_region = {};
copy_region.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copy_region.srcSubresource.baseArrayLayer = 0;
copy_region.srcSubresource.mipLevel = 0;
copy_region.srcSubresource.layerCount = 1;
copy_region.srcOffset.x = 0;
copy_region.srcOffset.y = 0;
copy_region.srcOffset.z = 0;
copy_region.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copy_region.dstSubresource.baseArrayLayer = 0;
copy_region.dstSubresource.mipLevel = 0;
copy_region.dstSubresource.layerCount = 1;
copy_region.dstOffset.x = 0;
copy_region.dstOffset.y = 0;
copy_region.dstOffset.z = 0;
copy_region.extent = dst_image.extent();
vk::CmdCopyImage(cmd_buf.handle(), handle(), Layout(), dst_image.handle(), dst_image.Layout(), 1, &copy_region);
this->SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, src_image_layout);
dst_image.SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, dest_image_layout);
cmd_buf.end();
cmd_buf.QueueCommandBuffer();
return VK_SUCCESS;
}
// Return 16x16 pixel block
std::array<std::array<uint32_t, 16>, 16> VkImageObj::Read() {
VkImageObj stagingImage(m_device);
VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
stagingImage.Init(16, 16, 1, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT,
VK_IMAGE_TILING_LINEAR, reqs);
stagingImage.SetLayout(VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_GENERAL);
VkSubresourceLayout layout = stagingImage.subresource_layout(subresource(VK_IMAGE_ASPECT_COLOR_BIT, 0, 0));
CopyImageOut(stagingImage);
void *data = stagingImage.MapMemory();
std::array<std::array<uint32_t, 16>, 16> m = {};
if (data) {
for (uint32_t y = 0; y < stagingImage.extent().height; y++) {
uint32_t *row = (uint32_t *)((char *)data + layout.rowPitch * y);
for (uint32_t x = 0; x < stagingImage.extent().width; x++) m[y][x] = row[x];
}
}
stagingImage.UnmapMemory();
return m;
}
VkTextureObj::VkTextureObj(VkDeviceObj *device, uint32_t *colors) : VkImageObj(device) {
m_device = device;
const VkFormat tex_format = VK_FORMAT_B8G8R8A8_UNORM;
uint32_t tex_colors[2] = {0xffff0000, 0xff00ff00};
void *data;
uint32_t x, y;
VkImageObj stagingImage(device);
VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
stagingImage.Init(16, 16, 1, tex_format, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT,
VK_IMAGE_TILING_LINEAR, reqs);
VkSubresourceLayout layout = stagingImage.subresource_layout(subresource(VK_IMAGE_ASPECT_COLOR_BIT, 0, 0));
if (colors == NULL) colors = tex_colors;
VkImageViewCreateInfo view = {};
view.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view.pNext = NULL;
view.image = VK_NULL_HANDLE;
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
view.format = tex_format;
view.components.r = VK_COMPONENT_SWIZZLE_R;
view.components.g = VK_COMPONENT_SWIZZLE_G;
view.components.b = VK_COMPONENT_SWIZZLE_B;
view.components.a = VK_COMPONENT_SWIZZLE_A;
view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
view.subresourceRange.baseMipLevel = 0;
view.subresourceRange.levelCount = 1;
view.subresourceRange.baseArrayLayer = 0;
view.subresourceRange.layerCount = 1;
/* create image */
Init(16, 16, 1, tex_format, VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT, VK_IMAGE_TILING_OPTIMAL);
stagingImage.SetLayout(VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_GENERAL);
/* create image view */
view.image = handle();
m_textureView.init(*m_device, view);
m_descriptorImageInfo.imageView = m_textureView.handle();
data = stagingImage.MapMemory();
for (y = 0; y < extent().height; y++) {
uint32_t *row = (uint32_t *)((char *)data + layout.rowPitch * y);
for (x = 0; x < extent().width; x++) row[x] = colors[(x & 1) ^ (y & 1)];
}
stagingImage.UnmapMemory();
stagingImage.SetLayout(VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
VkImageObj::CopyImage(stagingImage);
}
VkSamplerObj::VkSamplerObj(VkDeviceObj *device) {
m_device = device;
VkSamplerCreateInfo samplerCreateInfo;
memset(&samplerCreateInfo, 0, sizeof(samplerCreateInfo));
samplerCreateInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
samplerCreateInfo.magFilter = VK_FILTER_NEAREST;
samplerCreateInfo.minFilter = VK_FILTER_NEAREST;
samplerCreateInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST;
samplerCreateInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerCreateInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerCreateInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerCreateInfo.mipLodBias = 0.0;
samplerCreateInfo.anisotropyEnable = VK_FALSE;
samplerCreateInfo.maxAnisotropy = 1;
samplerCreateInfo.compareOp = VK_COMPARE_OP_NEVER;
samplerCreateInfo.minLod = 0.0;
samplerCreateInfo.maxLod = 0.0;
samplerCreateInfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
samplerCreateInfo.unnormalizedCoordinates = VK_FALSE;
init(*m_device, samplerCreateInfo);
}
/*
* Basic ConstantBuffer constructor. Then use create methods to fill in the
* details.
*/
VkConstantBufferObj::VkConstantBufferObj(VkDeviceObj *device, VkBufferUsageFlags usage) {
m_device = device;
memset(&m_descriptorBufferInfo, 0, sizeof(m_descriptorBufferInfo));
// Special case for usages outside of original limits of framework
if ((VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT) != usage) {
init_no_mem(*m_device, create_info(0, usage));
}
}
VkConstantBufferObj::VkConstantBufferObj(VkDeviceObj *device, VkDeviceSize allocationSize, const void *data,
VkBufferUsageFlags usage) {
m_device = device;
memset(&m_descriptorBufferInfo, 0, sizeof(m_descriptorBufferInfo));
VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
if ((VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT) == usage) {
init_as_src_and_dst(*m_device, allocationSize, reqs);
} else {
init(*m_device, create_info(allocationSize, usage), reqs);
}
void *pData = memory().map();
memcpy(pData, data, static_cast<size_t>(allocationSize));
memory().unmap();
/*
* Constant buffers are going to be used as vertex input buffers
* or as shader uniform buffers. So, we'll create the shaderbuffer
* descriptor here so it's ready if needed.
*/
this->m_descriptorBufferInfo.buffer = handle();
this->m_descriptorBufferInfo.offset = 0;
this->m_descriptorBufferInfo.range = allocationSize;
}
VkPipelineShaderStageCreateInfo const &VkShaderObj::GetStageCreateInfo() const { return m_stage_info; }
VkShaderObj::VkShaderObj(VkDeviceObj *device, const char *shader_code, VkShaderStageFlagBits stage, VkRenderFramework *framework,
char const *name, bool debug, VkSpecializationInfo *specInfo, uint32_t spirv_minor_version) {
m_device = device;
m_stage_info.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
m_stage_info.pNext = nullptr;
m_stage_info.flags = 0;
m_stage_info.stage = stage;
m_stage_info.module = VK_NULL_HANDLE;
m_stage_info.pName = name;
m_stage_info.pSpecializationInfo = specInfo;
std::vector<unsigned int> spv;
framework->GLSLtoSPV(&device->props.limits, stage, shader_code, spv, debug, spirv_minor_version);
VkShaderModuleCreateInfo moduleCreateInfo = {};
moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
moduleCreateInfo.codeSize = spv.size() * sizeof(unsigned int);
moduleCreateInfo.pCode = spv.data();
init(*m_device, moduleCreateInfo);
m_stage_info.module = handle();
}
VkShaderObj::VkShaderObj(VkDeviceObj *device, const std::string spv_source, VkShaderStageFlagBits stage,
VkRenderFramework *framework, char const *name, VkSpecializationInfo *specInfo) {
m_device = device;
m_stage_info.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
m_stage_info.pNext = nullptr;
m_stage_info.flags = 0;
m_stage_info.stage = stage;
m_stage_info.module = VK_NULL_HANDLE;
m_stage_info.pName = name;
m_stage_info.pSpecializationInfo = specInfo;
std::vector<unsigned int> spv;
framework->ASMtoSPV(SPV_ENV_VULKAN_1_0, 0, spv_source.data(), spv);
VkShaderModuleCreateInfo moduleCreateInfo = {};
moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
moduleCreateInfo.codeSize = spv.size() * sizeof(unsigned int);
moduleCreateInfo.pCode = spv.data();
init(*m_device, moduleCreateInfo);
m_stage_info.module = handle();
}
VkPipelineLayoutObj::VkPipelineLayoutObj(VkDeviceObj *device,
const std::vector<const VkDescriptorSetLayoutObj *> &descriptor_layouts,
const std::vector<VkPushConstantRange> &push_constant_ranges) {
VkPipelineLayoutCreateInfo pl_ci = {};
pl_ci.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pl_ci.pushConstantRangeCount = static_cast<uint32_t>(push_constant_ranges.size());
pl_ci.pPushConstantRanges = push_constant_ranges.data();
auto descriptor_layouts_unwrapped = MakeTestbindingHandles<const vk_testing::DescriptorSetLayout>(descriptor_layouts);
init(*device, pl_ci, descriptor_layouts_unwrapped);
}
void VkPipelineLayoutObj::Reset() { *this = VkPipelineLayoutObj(); }
VkPipelineObj::VkPipelineObj(VkDeviceObj *device) {
m_device = device;
m_vi_state.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
m_vi_state.pNext = nullptr;
m_vi_state.flags = 0;
m_vi_state.vertexBindingDescriptionCount = 0;
m_vi_state.pVertexBindingDescriptions = nullptr;
m_vi_state.vertexAttributeDescriptionCount = 0;
m_vi_state.pVertexAttributeDescriptions = nullptr;
m_ia_state.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
m_ia_state.pNext = nullptr;
m_ia_state.flags = 0;
m_ia_state.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
m_ia_state.primitiveRestartEnable = VK_FALSE;
m_te_state = nullptr;
m_vp_state.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
m_vp_state.pNext = VK_NULL_HANDLE;
m_vp_state.flags = 0;
m_vp_state.viewportCount = 1;
m_vp_state.scissorCount = 1;
m_vp_state.pViewports = nullptr;
m_vp_state.pScissors = nullptr;
m_rs_state.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
m_rs_state.pNext = &m_line_state;
m_rs_state.flags = 0;
m_rs_state.depthClampEnable = VK_FALSE;
m_rs_state.rasterizerDiscardEnable = VK_FALSE;
m_rs_state.polygonMode = VK_POLYGON_MODE_FILL;
m_rs_state.cullMode = VK_CULL_MODE_BACK_BIT;
m_rs_state.frontFace = VK_FRONT_FACE_CLOCKWISE;
m_rs_state.depthBiasEnable = VK_FALSE;
m_rs_state.depthBiasConstantFactor = 0.0f;
m_rs_state.depthBiasClamp = 0.0f;
m_rs_state.depthBiasSlopeFactor = 0.0f;
m_rs_state.lineWidth = 1.0f;
m_line_state.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT;
m_line_state.pNext = nullptr;
m_line_state.lineRasterizationMode = VK_LINE_RASTERIZATION_MODE_DEFAULT_EXT;
m_line_state.stippledLineEnable = VK_FALSE;
m_line_state.lineStippleFactor = 0;
m_line_state.lineStipplePattern = 0;
m_ms_state.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
m_ms_state.pNext = nullptr;
m_ms_state.flags = 0;
m_ms_state.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
m_ms_state.sampleShadingEnable = VK_FALSE;
m_ms_state.minSampleShading = 0.0f;
m_ms_state.pSampleMask = nullptr;
m_ms_state.alphaToCoverageEnable = VK_FALSE;
m_ms_state.alphaToOneEnable = VK_FALSE;
m_ds_state = nullptr;
memset(&m_cb_state, 0, sizeof(m_cb_state));
m_cb_state.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
m_cb_state.blendConstants[0] = 1.0f;
m_cb_state.blendConstants[1] = 1.0f;
m_cb_state.blendConstants[2] = 1.0f;
m_cb_state.blendConstants[3] = 1.0f;
memset(&m_pd_state, 0, sizeof(m_pd_state));
}
void VkPipelineObj::AddShader(VkShaderObj *shader) { m_shaderStages.push_back(shader->GetStageCreateInfo()); }
void VkPipelineObj::AddShader(VkPipelineShaderStageCreateInfo const &createInfo) { m_shaderStages.push_back(createInfo); }
void VkPipelineObj::AddVertexInputAttribs(VkVertexInputAttributeDescription *vi_attrib, uint32_t count) {
m_vi_state.pVertexAttributeDescriptions = vi_attrib;
m_vi_state.vertexAttributeDescriptionCount = count;
}
void VkPipelineObj::AddVertexInputBindings(VkVertexInputBindingDescription *vi_binding, uint32_t count) {
m_vi_state.pVertexBindingDescriptions = vi_binding;
m_vi_state.vertexBindingDescriptionCount = count;
}
void VkPipelineObj::AddColorAttachment(uint32_t binding, const VkPipelineColorBlendAttachmentState &att) {
if (binding + 1 > m_colorAttachments.size()) {
m_colorAttachments.resize(binding + 1);
}
m_colorAttachments[binding] = att;
}
void VkPipelineObj::SetDepthStencil(const VkPipelineDepthStencilStateCreateInfo *ds_state) { m_ds_state = ds_state; }
void VkPipelineObj::SetViewport(const vector<VkViewport> viewports) {
m_viewports = viewports;
// If we explicitly set a null viewport, pass it through to create info
// but preserve viewportCount because it musn't change
if (m_viewports.size() == 0) {
m_vp_state.pViewports = nullptr;
}
}
void VkPipelineObj::SetScissor(const vector<VkRect2D> scissors) {
m_scissors = scissors;
// If we explicitly set a null scissor, pass it through to create info
// but preserve scissorCount because it musn't change
if (m_scissors.size() == 0) {
m_vp_state.pScissors = nullptr;
}
}
void VkPipelineObj::MakeDynamic(VkDynamicState state) {
/* Only add a state once */
for (auto it = m_dynamic_state_enables.begin(); it != m_dynamic_state_enables.end(); it++) {
if ((*it) == state) return;
}
m_dynamic_state_enables.push_back(state);
}
void VkPipelineObj::SetMSAA(const VkPipelineMultisampleStateCreateInfo *ms_state) { m_ms_state = *ms_state; }
void VkPipelineObj::SetInputAssembly(const VkPipelineInputAssemblyStateCreateInfo *ia_state) { m_ia_state = *ia_state; }
void VkPipelineObj::SetRasterization(const VkPipelineRasterizationStateCreateInfo *rs_state) {
m_rs_state = *rs_state;
m_rs_state.pNext = &m_line_state;
}
void VkPipelineObj::SetTessellation(const VkPipelineTessellationStateCreateInfo *te_state) { m_te_state = te_state; }
void VkPipelineObj::SetLineState(const VkPipelineRasterizationLineStateCreateInfoEXT *line_state) { m_line_state = *line_state; }
void VkPipelineObj::InitGraphicsPipelineCreateInfo(VkGraphicsPipelineCreateInfo *gp_ci) {
gp_ci->stageCount = m_shaderStages.size();
gp_ci->pStages = m_shaderStages.size() ? m_shaderStages.data() : nullptr;
m_vi_state.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
gp_ci->pVertexInputState = &m_vi_state;
m_ia_state.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
gp_ci->pInputAssemblyState = &m_ia_state;
gp_ci->sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
gp_ci->pNext = NULL;
gp_ci->flags = 0;
m_cb_state.attachmentCount = m_colorAttachments.size();
m_cb_state.pAttachments = m_colorAttachments.data();
if (m_viewports.size() > 0) {
m_vp_state.viewportCount = m_viewports.size();
m_vp_state.pViewports = m_viewports.data();
} else {
MakeDynamic(VK_DYNAMIC_STATE_VIEWPORT);
}
if (m_scissors.size() > 0) {
m_vp_state.scissorCount = m_scissors.size();
m_vp_state.pScissors = m_scissors.data();
} else {
MakeDynamic(VK_DYNAMIC_STATE_SCISSOR);
}
memset(&m_pd_state, 0, sizeof(m_pd_state));
if (m_dynamic_state_enables.size() > 0) {
m_pd_state.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
m_pd_state.dynamicStateCount = m_dynamic_state_enables.size();
m_pd_state.pDynamicStates = m_dynamic_state_enables.data();
gp_ci->pDynamicState = &m_pd_state;
}
gp_ci->subpass = 0;
gp_ci->pViewportState = &m_vp_state;
gp_ci->pRasterizationState = &m_rs_state;
gp_ci->pMultisampleState = &m_ms_state;
gp_ci->pDepthStencilState = m_ds_state;
gp_ci->pColorBlendState = &m_cb_state;
gp_ci->pTessellationState = m_te_state;
}
VkResult VkPipelineObj::CreateVKPipeline(VkPipelineLayout layout, VkRenderPass render_pass, VkGraphicsPipelineCreateInfo *gp_ci) {
VkGraphicsPipelineCreateInfo info = {};
// if not given a CreateInfo, create and initialize a local one.
if (gp_ci == nullptr) {
gp_ci = &info;
InitGraphicsPipelineCreateInfo(gp_ci);
}
gp_ci->layout = layout;
gp_ci->renderPass = render_pass;
return init_try(*m_device, *gp_ci);
}
VkCommandBufferObj::VkCommandBufferObj(VkDeviceObj *device, VkCommandPoolObj *pool, VkCommandBufferLevel level, VkQueueObj *queue) {
m_device = device;
if (queue) {
m_queue = queue;
} else {
m_queue = m_device->GetDefaultQueue();
}
assert(m_queue);
auto create_info = vk_testing::CommandBuffer::create_info(pool->handle());
create_info.level = level;
init(*device, create_info);
}
void VkCommandBufferObj::PipelineBarrier(VkPipelineStageFlags src_stages, VkPipelineStageFlags dest_stages,
VkDependencyFlags dependencyFlags, uint32_t memoryBarrierCount,
const VkMemoryBarrier *pMemoryBarriers, uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers) {
vk::CmdPipelineBarrier(handle(), src_stages, dest_stages, dependencyFlags, memoryBarrierCount, pMemoryBarriers,
bufferMemoryBarrierCount, pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers);
}
void VkCommandBufferObj::ClearAllBuffers(const vector<std::unique_ptr<VkImageObj>> &color_objs, VkClearColorValue clear_color,
VkDepthStencilObj *depth_stencil_obj, float depth_clear_value,
uint32_t stencil_clear_value) {
// whatever we want to do, we do it to the whole buffer
VkImageSubresourceRange subrange = {};
// srRange.aspectMask to be set later
subrange.baseMipLevel = 0;
// TODO: Mali device crashing with VK_REMAINING_MIP_LEVELS
subrange.levelCount = 1; // VK_REMAINING_MIP_LEVELS;
subrange.baseArrayLayer = 0;
// TODO: Mesa crashing with VK_REMAINING_ARRAY_LAYERS
subrange.layerCount = 1; // VK_REMAINING_ARRAY_LAYERS;
const VkImageLayout clear_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
for (const auto &color_obj : color_objs) {
subrange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
color_obj->Layout(VK_IMAGE_LAYOUT_UNDEFINED);
color_obj->SetLayout(this, subrange.aspectMask, clear_layout);
ClearColorImage(color_obj->image(), clear_layout, &clear_color, 1, &subrange);
}
if (depth_stencil_obj && depth_stencil_obj->Initialized()) {
subrange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
if (FormatIsDepthOnly(depth_stencil_obj->format())) subrange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
if (FormatIsStencilOnly(depth_stencil_obj->format())) subrange.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
depth_stencil_obj->Layout(VK_IMAGE_LAYOUT_UNDEFINED);
depth_stencil_obj->SetLayout(this, subrange.aspectMask, clear_layout);
VkClearDepthStencilValue clear_value = {depth_clear_value, stencil_clear_value};
ClearDepthStencilImage(depth_stencil_obj->handle(), clear_layout, &clear_value, 1, &subrange);
}
}
void VkCommandBufferObj::FillBuffer(VkBuffer buffer, VkDeviceSize offset, VkDeviceSize fill_size, uint32_t data) {
vk::CmdFillBuffer(handle(), buffer, offset, fill_size, data);
}
void VkCommandBufferObj::UpdateBuffer(VkBuffer buffer, VkDeviceSize dstOffset, VkDeviceSize dataSize, const void *pData) {
vk::CmdUpdateBuffer(handle(), buffer, dstOffset, dataSize, pData);
}
void VkCommandBufferObj::CopyImage(VkImage srcImage, VkImageLayout srcImageLayout, VkImage dstImage, VkImageLayout dstImageLayout,
uint32_t regionCount, const VkImageCopy *pRegions) {
vk::CmdCopyImage(handle(), srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions);
}
void VkCommandBufferObj::ResolveImage(VkImage srcImage, VkImageLayout srcImageLayout, VkImage dstImage,
VkImageLayout dstImageLayout, uint32_t regionCount, const VkImageResolve *pRegions) {
vk::CmdResolveImage(handle(), srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions);
}
void VkCommandBufferObj::ClearColorImage(VkImage image, VkImageLayout imageLayout, const VkClearColorValue *pColor,
uint32_t rangeCount, const VkImageSubresourceRange *pRanges) {
vk::CmdClearColorImage(handle(), image, imageLayout, pColor, rangeCount, pRanges);
}
void VkCommandBufferObj::ClearDepthStencilImage(VkImage image, VkImageLayout imageLayout, const VkClearDepthStencilValue *pColor,
uint32_t rangeCount, const VkImageSubresourceRange *pRanges) {
vk::CmdClearDepthStencilImage(handle(), image, imageLayout, pColor, rangeCount, pRanges);
}
void VkCommandBufferObj::BuildAccelerationStructure(VkAccelerationStructureObj *as, VkBuffer scratchBuffer) {
BuildAccelerationStructure(as, scratchBuffer, VK_NULL_HANDLE);
}
void VkCommandBufferObj::BuildAccelerationStructure(VkAccelerationStructureObj *as, VkBuffer scratchBuffer, VkBuffer instanceData) {
PFN_vkCmdBuildAccelerationStructureNV vkCmdBuildAccelerationStructureNV =
(PFN_vkCmdBuildAccelerationStructureNV)vk::GetDeviceProcAddr(as->dev(), "vkCmdBuildAccelerationStructureNV");
assert(vkCmdBuildAccelerationStructureNV != nullptr);
vkCmdBuildAccelerationStructureNV(handle(), &as->info(), instanceData, 0, VK_FALSE, as->handle(), VK_NULL_HANDLE, scratchBuffer,
0);
}
void VkCommandBufferObj::PrepareAttachments(const vector<std::unique_ptr<VkImageObj>> &color_atts,
VkDepthStencilObj *depth_stencil_att) {
for (const auto &color_att : color_atts) {
color_att->SetLayout(this, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
}
if (depth_stencil_att && depth_stencil_att->Initialized()) {
VkImageAspectFlags aspect = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
if (FormatIsDepthOnly(depth_stencil_att->Format())) aspect = VK_IMAGE_ASPECT_DEPTH_BIT;
if (FormatIsStencilOnly(depth_stencil_att->Format())) aspect = VK_IMAGE_ASPECT_STENCIL_BIT;
depth_stencil_att->SetLayout(this, aspect, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
}
}
void VkCommandBufferObj::BeginRenderPass(const VkRenderPassBeginInfo &info) {
vk::CmdBeginRenderPass(handle(), &info, VK_SUBPASS_CONTENTS_INLINE);
}
void VkCommandBufferObj::EndRenderPass() { vk::CmdEndRenderPass(handle()); }
void VkCommandBufferObj::SetViewport(uint32_t firstViewport, uint32_t viewportCount, const VkViewport *pViewports) {
vk::CmdSetViewport(handle(), firstViewport, viewportCount, pViewports);
}
void VkCommandBufferObj::SetStencilReference(VkStencilFaceFlags faceMask, uint32_t reference) {
vk::CmdSetStencilReference(handle(), faceMask, reference);
}
void VkCommandBufferObj::DrawIndexed(uint32_t indexCount, uint32_t instanceCount, uint32_t firstIndex, int32_t vertexOffset,
uint32_t firstInstance) {
vk::CmdDrawIndexed(handle(), indexCount, instanceCount, firstIndex, vertexOffset, firstInstance);
}
void VkCommandBufferObj::Draw(uint32_t vertexCount, uint32_t instanceCount, uint32_t firstVertex, uint32_t firstInstance) {
vk::CmdDraw(handle(), vertexCount, instanceCount, firstVertex, firstInstance);
}
void VkCommandBufferObj::QueueCommandBuffer(bool checkSuccess) {
VkFenceObj nullFence;
QueueCommandBuffer(nullFence, checkSuccess);
}
void VkCommandBufferObj::QueueCommandBuffer(const VkFenceObj &fence, bool checkSuccess) {
VkResult err = VK_SUCCESS;
err = m_queue->submit(*this, fence, checkSuccess);
if (checkSuccess) {
ASSERT_VK_SUCCESS(err);
}
err = m_queue->wait();
if (checkSuccess) {
ASSERT_VK_SUCCESS(err);
}
// TODO: Determine if we really want this serialization here
// Wait for work to finish before cleaning up.
vk::DeviceWaitIdle(m_device->device());
}
void VkCommandBufferObj::BindDescriptorSet(VkDescriptorSetObj &descriptorSet) {
VkDescriptorSet set_obj = descriptorSet.GetDescriptorSetHandle();
// bind pipeline, vertex buffer (descriptor set) and WVP (dynamic buffer view)
if (set_obj) {
vk::CmdBindDescriptorSets(handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, descriptorSet.GetPipelineLayout(), 0, 1, &set_obj, 0,
NULL);
}
}
void VkCommandBufferObj::BindIndexBuffer(VkBufferObj *indexBuffer, VkDeviceSize offset, VkIndexType indexType) {
vk::CmdBindIndexBuffer(handle(), indexBuffer->handle(), offset, indexType);
}
void VkCommandBufferObj::BindVertexBuffer(VkConstantBufferObj *vertexBuffer, VkDeviceSize offset, uint32_t binding) {
vk::CmdBindVertexBuffers(handle(), binding, 1, &vertexBuffer->handle(), &offset);
}
VkCommandPoolObj::VkCommandPoolObj(VkDeviceObj *device, uint32_t queue_family_index, VkCommandPoolCreateFlags flags) {
init(*device, vk_testing::CommandPool::create_info(queue_family_index, flags));
}
bool VkDepthStencilObj::Initialized() { return m_initialized; }
VkDepthStencilObj::VkDepthStencilObj(VkDeviceObj *device) : VkImageObj(device) { m_initialized = false; }
VkImageView *VkDepthStencilObj::BindInfo() { return &m_attachmentBindInfo; }
VkFormat VkDepthStencilObj::Format() const { return this->m_depth_stencil_fmt; }
void VkDepthStencilObj::Init(VkDeviceObj *device, int32_t width, int32_t height, VkFormat format, VkImageUsageFlags usage) {
VkImageViewCreateInfo view_info = {};
m_device = device;
m_initialized = true;
m_depth_stencil_fmt = format;
/* create image */
VkImageObj::Init(width, height, 1, m_depth_stencil_fmt, usage, VK_IMAGE_TILING_OPTIMAL);
VkImageAspectFlags aspect = VK_IMAGE_ASPECT_STENCIL_BIT | VK_IMAGE_ASPECT_DEPTH_BIT;
if (FormatIsDepthOnly(format))
aspect = VK_IMAGE_ASPECT_DEPTH_BIT;
else if (FormatIsStencilOnly(format))
aspect = VK_IMAGE_ASPECT_STENCIL_BIT;
SetLayout(aspect, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
view_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view_info.pNext = NULL;
view_info.image = VK_NULL_HANDLE;
view_info.subresourceRange.aspectMask = aspect;
view_info.subresourceRange.baseMipLevel = 0;
view_info.subresourceRange.levelCount = 1;
view_info.subresourceRange.baseArrayLayer = 0;
view_info.subresourceRange.layerCount = 1;
view_info.flags = 0;
view_info.format = m_depth_stencil_fmt;
view_info.image = handle();
view_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
m_imageView.init(*m_device, view_info);
m_attachmentBindInfo = m_imageView.handle();
}