blob: a238cf29d46250f6454a6f66a280d1b7657ec296 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/code-generator.h"
#include "src/arm/macro-assembler-arm.h"
#include "src/assembler-inl.h"
#include "src/boxed-float.h"
#include "src/compilation-info.h"
#include "src/compiler/code-generator-impl.h"
#include "src/compiler/gap-resolver.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/osr.h"
#include "src/double.h"
#include "src/heap/heap-inl.h"
namespace v8 {
namespace internal {
namespace compiler {
#define __ tasm()->
#define kScratchReg r9
// Adds Arm-specific methods to convert InstructionOperands.
class ArmOperandConverter final : public InstructionOperandConverter {
public:
ArmOperandConverter(CodeGenerator* gen, Instruction* instr)
: InstructionOperandConverter(gen, instr) {}
SBit OutputSBit() const {
switch (instr_->flags_mode()) {
case kFlags_branch:
case kFlags_deoptimize:
case kFlags_set:
case kFlags_trap:
return SetCC;
case kFlags_none:
return LeaveCC;
}
UNREACHABLE();
}
Operand InputImmediate(size_t index) {
Constant constant = ToConstant(instr_->InputAt(index));
switch (constant.type()) {
case Constant::kInt32:
return Operand(constant.ToInt32());
case Constant::kFloat32:
return Operand::EmbeddedNumber(constant.ToFloat32());
case Constant::kFloat64:
return Operand::EmbeddedNumber(constant.ToFloat64().value());
case Constant::kInt64:
case Constant::kExternalReference:
case Constant::kHeapObject:
case Constant::kRpoNumber:
break;
}
UNREACHABLE();
}
Operand InputOperand2(size_t first_index) {
const size_t index = first_index;
switch (AddressingModeField::decode(instr_->opcode())) {
case kMode_None:
case kMode_Offset_RI:
case kMode_Offset_RR:
break;
case kMode_Operand2_I:
return InputImmediate(index + 0);
case kMode_Operand2_R:
return Operand(InputRegister(index + 0));
case kMode_Operand2_R_ASR_I:
return Operand(InputRegister(index + 0), ASR, InputInt5(index + 1));
case kMode_Operand2_R_ASR_R:
return Operand(InputRegister(index + 0), ASR, InputRegister(index + 1));
case kMode_Operand2_R_LSL_I:
return Operand(InputRegister(index + 0), LSL, InputInt5(index + 1));
case kMode_Operand2_R_LSL_R:
return Operand(InputRegister(index + 0), LSL, InputRegister(index + 1));
case kMode_Operand2_R_LSR_I:
return Operand(InputRegister(index + 0), LSR, InputInt5(index + 1));
case kMode_Operand2_R_LSR_R:
return Operand(InputRegister(index + 0), LSR, InputRegister(index + 1));
case kMode_Operand2_R_ROR_I:
return Operand(InputRegister(index + 0), ROR, InputInt5(index + 1));
case kMode_Operand2_R_ROR_R:
return Operand(InputRegister(index + 0), ROR, InputRegister(index + 1));
}
UNREACHABLE();
}
MemOperand InputOffset(size_t* first_index) {
const size_t index = *first_index;
switch (AddressingModeField::decode(instr_->opcode())) {
case kMode_None:
case kMode_Operand2_I:
case kMode_Operand2_R:
case kMode_Operand2_R_ASR_I:
case kMode_Operand2_R_ASR_R:
case kMode_Operand2_R_LSL_R:
case kMode_Operand2_R_LSR_I:
case kMode_Operand2_R_LSR_R:
case kMode_Operand2_R_ROR_I:
case kMode_Operand2_R_ROR_R:
break;
case kMode_Operand2_R_LSL_I:
*first_index += 3;
return MemOperand(InputRegister(index + 0), InputRegister(index + 1),
LSL, InputInt32(index + 2));
case kMode_Offset_RI:
*first_index += 2;
return MemOperand(InputRegister(index + 0), InputInt32(index + 1));
case kMode_Offset_RR:
*first_index += 2;
return MemOperand(InputRegister(index + 0), InputRegister(index + 1));
}
UNREACHABLE();
}
MemOperand InputOffset(size_t first_index = 0) {
return InputOffset(&first_index);
}
MemOperand ToMemOperand(InstructionOperand* op) const {
DCHECK_NOT_NULL(op);
DCHECK(op->IsStackSlot() || op->IsFPStackSlot());
return SlotToMemOperand(AllocatedOperand::cast(op)->index());
}
MemOperand SlotToMemOperand(int slot) const {
FrameOffset offset = frame_access_state()->GetFrameOffset(slot);
return MemOperand(offset.from_stack_pointer() ? sp : fp, offset.offset());
}
NeonMemOperand NeonInputOperand(size_t first_index) {
const size_t index = first_index;
switch (AddressingModeField::decode(instr_->opcode())) {
case kMode_Offset_RR:
return NeonMemOperand(InputRegister(index + 0),
InputRegister(index + 1));
case kMode_Operand2_R:
return NeonMemOperand(InputRegister(index + 0));
default:
break;
}
UNREACHABLE();
}
};
namespace {
class OutOfLineRecordWrite final : public OutOfLineCode {
public:
OutOfLineRecordWrite(CodeGenerator* gen, Register object, Register index,
Register value, Register scratch0, Register scratch1,
RecordWriteMode mode,
UnwindingInfoWriter* unwinding_info_writer)
: OutOfLineCode(gen),
object_(object),
index_(index),
index_immediate_(0),
value_(value),
scratch0_(scratch0),
scratch1_(scratch1),
mode_(mode),
must_save_lr_(!gen->frame_access_state()->has_frame()),
unwinding_info_writer_(unwinding_info_writer),
zone_(gen->zone()) {}
OutOfLineRecordWrite(CodeGenerator* gen, Register object, int32_t index,
Register value, Register scratch0, Register scratch1,
RecordWriteMode mode,
UnwindingInfoWriter* unwinding_info_writer)
: OutOfLineCode(gen),
object_(object),
index_(no_reg),
index_immediate_(index),
value_(value),
scratch0_(scratch0),
scratch1_(scratch1),
mode_(mode),
must_save_lr_(!gen->frame_access_state()->has_frame()),
unwinding_info_writer_(unwinding_info_writer),
zone_(gen->zone()) {}
void Generate() final {
if (mode_ > RecordWriteMode::kValueIsPointer) {
__ JumpIfSmi(value_, exit());
}
__ CheckPageFlag(value_, scratch0_,
MemoryChunk::kPointersToHereAreInterestingMask, eq,
exit());
if (index_ == no_reg) {
__ add(scratch1_, object_, Operand(index_immediate_));
} else {
DCHECK_EQ(0, index_immediate_);
__ add(scratch1_, object_, Operand(index_));
}
RememberedSetAction const remembered_set_action =
mode_ > RecordWriteMode::kValueIsMap ? EMIT_REMEMBERED_SET
: OMIT_REMEMBERED_SET;
SaveFPRegsMode const save_fp_mode =
frame()->DidAllocateDoubleRegisters() ? kSaveFPRegs : kDontSaveFPRegs;
if (must_save_lr_) {
// We need to save and restore lr if the frame was elided.
__ Push(lr);
unwinding_info_writer_->MarkLinkRegisterOnTopOfStack(__ pc_offset());
}
__ CallRecordWriteStub(object_, scratch1_, remembered_set_action,
save_fp_mode);
if (must_save_lr_) {
__ Pop(lr);
unwinding_info_writer_->MarkPopLinkRegisterFromTopOfStack(__ pc_offset());
}
}
private:
Register const object_;
Register const index_;
int32_t const index_immediate_; // Valid if index_==no_reg.
Register const value_;
Register const scratch0_;
Register const scratch1_;
RecordWriteMode const mode_;
bool must_save_lr_;
UnwindingInfoWriter* const unwinding_info_writer_;
Zone* zone_;
};
template <typename T>
class OutOfLineFloatMin final : public OutOfLineCode {
public:
OutOfLineFloatMin(CodeGenerator* gen, T result, T left, T right)
: OutOfLineCode(gen), result_(result), left_(left), right_(right) {}
void Generate() final { __ FloatMinOutOfLine(result_, left_, right_); }
private:
T const result_;
T const left_;
T const right_;
};
typedef OutOfLineFloatMin<SwVfpRegister> OutOfLineFloat32Min;
typedef OutOfLineFloatMin<DwVfpRegister> OutOfLineFloat64Min;
template <typename T>
class OutOfLineFloatMax final : public OutOfLineCode {
public:
OutOfLineFloatMax(CodeGenerator* gen, T result, T left, T right)
: OutOfLineCode(gen), result_(result), left_(left), right_(right) {}
void Generate() final { __ FloatMaxOutOfLine(result_, left_, right_); }
private:
T const result_;
T const left_;
T const right_;
};
typedef OutOfLineFloatMax<SwVfpRegister> OutOfLineFloat32Max;
typedef OutOfLineFloatMax<DwVfpRegister> OutOfLineFloat64Max;
Condition FlagsConditionToCondition(FlagsCondition condition) {
switch (condition) {
case kEqual:
return eq;
case kNotEqual:
return ne;
case kSignedLessThan:
return lt;
case kSignedGreaterThanOrEqual:
return ge;
case kSignedLessThanOrEqual:
return le;
case kSignedGreaterThan:
return gt;
case kUnsignedLessThan:
return lo;
case kUnsignedGreaterThanOrEqual:
return hs;
case kUnsignedLessThanOrEqual:
return ls;
case kUnsignedGreaterThan:
return hi;
case kFloatLessThanOrUnordered:
return lt;
case kFloatGreaterThanOrEqual:
return ge;
case kFloatLessThanOrEqual:
return ls;
case kFloatGreaterThanOrUnordered:
return hi;
case kFloatLessThan:
return lo;
case kFloatGreaterThanOrEqualOrUnordered:
return hs;
case kFloatLessThanOrEqualOrUnordered:
return le;
case kFloatGreaterThan:
return gt;
case kOverflow:
return vs;
case kNotOverflow:
return vc;
case kPositiveOrZero:
return pl;
case kNegative:
return mi;
default:
break;
}
UNREACHABLE();
}
} // namespace
#define ASSEMBLE_ATOMIC_LOAD_INTEGER(asm_instr) \
do { \
__ asm_instr(i.OutputRegister(), \
MemOperand(i.InputRegister(0), i.InputRegister(1))); \
__ dmb(ISH); \
} while (0)
#define ASSEMBLE_ATOMIC_STORE_INTEGER(asm_instr) \
do { \
__ dmb(ISH); \
__ asm_instr(i.InputRegister(2), \
MemOperand(i.InputRegister(0), i.InputRegister(1))); \
__ dmb(ISH); \
} while (0)
#define ASSEMBLE_ATOMIC_EXCHANGE_INTEGER(load_instr, store_instr) \
do { \
Label exchange; \
__ add(i.TempRegister(1), i.InputRegister(0), i.InputRegister(1)); \
__ dmb(ISH); \
__ bind(&exchange); \
__ load_instr(i.OutputRegister(0), i.TempRegister(1)); \
__ store_instr(i.TempRegister(0), i.InputRegister(2), i.TempRegister(1)); \
__ teq(i.TempRegister(0), Operand(0)); \
__ b(ne, &exchange); \
__ dmb(ISH); \
} while (0)
#define ASSEMBLE_ATOMIC_COMPARE_EXCHANGE_INTEGER(load_instr, store_instr, \
cmp_reg) \
do { \
Label compareExchange; \
Label exit; \
__ dmb(ISH); \
__ bind(&compareExchange); \
__ load_instr(i.OutputRegister(0), i.TempRegister(1)); \
__ teq(cmp_reg, Operand(i.OutputRegister(0))); \
__ b(ne, &exit); \
__ store_instr(i.TempRegister(0), i.InputRegister(3), i.TempRegister(1)); \
__ teq(i.TempRegister(0), Operand(0)); \
__ b(ne, &compareExchange); \
__ bind(&exit); \
__ dmb(ISH); \
} while (0)
#define ASSEMBLE_ATOMIC_BINOP(load_instr, store_instr, bin_instr) \
do { \
Label binop; \
__ add(i.TempRegister(1), i.InputRegister(0), i.InputRegister(1)); \
__ dmb(ISH); \
__ bind(&binop); \
__ load_instr(i.OutputRegister(0), i.TempRegister(1)); \
__ bin_instr(i.TempRegister(0), i.OutputRegister(0), \
Operand(i.InputRegister(2))); \
__ store_instr(i.TempRegister(2), i.TempRegister(0), i.TempRegister(1)); \
__ teq(i.TempRegister(2), Operand(0)); \
__ b(ne, &binop); \
__ dmb(ISH); \
} while (0)
#define ASSEMBLE_IEEE754_BINOP(name) \
do { \
/* TODO(bmeurer): We should really get rid of this special instruction, */ \
/* and generate a CallAddress instruction instead. */ \
FrameScope scope(tasm(), StackFrame::MANUAL); \
__ PrepareCallCFunction(0, 2); \
__ MovToFloatParameters(i.InputDoubleRegister(0), \
i.InputDoubleRegister(1)); \
__ CallCFunction( \
ExternalReference::ieee754_##name##_function(__ isolate()), 0, 2); \
/* Move the result in the double result register. */ \
__ MovFromFloatResult(i.OutputDoubleRegister()); \
DCHECK_EQ(LeaveCC, i.OutputSBit()); \
} while (0)
#define ASSEMBLE_IEEE754_UNOP(name) \
do { \
/* TODO(bmeurer): We should really get rid of this special instruction, */ \
/* and generate a CallAddress instruction instead. */ \
FrameScope scope(tasm(), StackFrame::MANUAL); \
__ PrepareCallCFunction(0, 1); \
__ MovToFloatParameter(i.InputDoubleRegister(0)); \
__ CallCFunction( \
ExternalReference::ieee754_##name##_function(__ isolate()), 0, 1); \
/* Move the result in the double result register. */ \
__ MovFromFloatResult(i.OutputDoubleRegister()); \
DCHECK_EQ(LeaveCC, i.OutputSBit()); \
} while (0)
#define ASSEMBLE_NEON_NARROWING_OP(dt) \
do { \
Simd128Register dst = i.OutputSimd128Register(), \
src0 = i.InputSimd128Register(0), \
src1 = i.InputSimd128Register(1); \
if (dst == src0 && dst == src1) { \
__ vqmovn(dt, dst.low(), src0); \
__ vmov(dst.high(), dst.low()); \
} else if (dst == src0) { \
__ vqmovn(dt, dst.low(), src0); \
__ vqmovn(dt, dst.high(), src1); \
} else { \
__ vqmovn(dt, dst.high(), src1); \
__ vqmovn(dt, dst.low(), src0); \
} \
} while (0)
#define ASSEMBLE_NEON_PAIRWISE_OP(op, size) \
do { \
Simd128Register dst = i.OutputSimd128Register(), \
src0 = i.InputSimd128Register(0), \
src1 = i.InputSimd128Register(1); \
if (dst == src0) { \
__ op(size, dst.low(), src0.low(), src0.high()); \
if (dst == src1) { \
__ vmov(dst.high(), dst.low()); \
} else { \
__ op(size, dst.high(), src1.low(), src1.high()); \
} \
} else { \
__ op(size, dst.high(), src1.low(), src1.high()); \
__ op(size, dst.low(), src0.low(), src0.high()); \
} \
} while (0)
void CodeGenerator::AssembleDeconstructFrame() {
__ LeaveFrame(StackFrame::MANUAL);
unwinding_info_writer_.MarkFrameDeconstructed(__ pc_offset());
}
void CodeGenerator::AssemblePrepareTailCall() {
if (frame_access_state()->has_frame()) {
__ ldr(lr, MemOperand(fp, StandardFrameConstants::kCallerPCOffset));
__ ldr(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
}
frame_access_state()->SetFrameAccessToSP();
}
void CodeGenerator::AssemblePopArgumentsAdaptorFrame(Register args_reg,
Register scratch1,
Register scratch2,
Register scratch3) {
DCHECK(!AreAliased(args_reg, scratch1, scratch2, scratch3));
Label done;
// Check if current frame is an arguments adaptor frame.
__ ldr(scratch1, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ cmp(scratch1,
Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
__ b(ne, &done);
// Load arguments count from current arguments adaptor frame (note, it
// does not include receiver).
Register caller_args_count_reg = scratch1;
__ ldr(caller_args_count_reg,
MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ SmiUntag(caller_args_count_reg);
ParameterCount callee_args_count(args_reg);
__ PrepareForTailCall(callee_args_count, caller_args_count_reg, scratch2,
scratch3);
__ bind(&done);
}
namespace {
void FlushPendingPushRegisters(TurboAssembler* tasm,
FrameAccessState* frame_access_state,
ZoneVector<Register>* pending_pushes) {
switch (pending_pushes->size()) {
case 0:
break;
case 1:
tasm->push((*pending_pushes)[0]);
break;
case 2:
tasm->Push((*pending_pushes)[0], (*pending_pushes)[1]);
break;
case 3:
tasm->Push((*pending_pushes)[0], (*pending_pushes)[1],
(*pending_pushes)[2]);
break;
default:
UNREACHABLE();
break;
}
frame_access_state->IncreaseSPDelta(pending_pushes->size());
pending_pushes->clear();
}
void AdjustStackPointerForTailCall(
TurboAssembler* tasm, FrameAccessState* state, int new_slot_above_sp,
ZoneVector<Register>* pending_pushes = nullptr,
bool allow_shrinkage = true) {
int current_sp_offset = state->GetSPToFPSlotCount() +
StandardFrameConstants::kFixedSlotCountAboveFp;
int stack_slot_delta = new_slot_above_sp - current_sp_offset;
if (stack_slot_delta > 0) {
if (pending_pushes != nullptr) {
FlushPendingPushRegisters(tasm, state, pending_pushes);
}
tasm->sub(sp, sp, Operand(stack_slot_delta * kPointerSize));
state->IncreaseSPDelta(stack_slot_delta);
} else if (allow_shrinkage && stack_slot_delta < 0) {
if (pending_pushes != nullptr) {
FlushPendingPushRegisters(tasm, state, pending_pushes);
}
tasm->add(sp, sp, Operand(-stack_slot_delta * kPointerSize));
state->IncreaseSPDelta(stack_slot_delta);
}
}
} // namespace
void CodeGenerator::AssembleTailCallBeforeGap(Instruction* instr,
int first_unused_stack_slot) {
ZoneVector<MoveOperands*> pushes(zone());
GetPushCompatibleMoves(instr, kRegisterPush, &pushes);
if (!pushes.empty() &&
(LocationOperand::cast(pushes.back()->destination()).index() + 1 ==
first_unused_stack_slot)) {
ArmOperandConverter g(this, instr);
ZoneVector<Register> pending_pushes(zone());
for (auto move : pushes) {
LocationOperand destination_location(
LocationOperand::cast(move->destination()));
InstructionOperand source(move->source());
AdjustStackPointerForTailCall(
tasm(), frame_access_state(),
destination_location.index() - pending_pushes.size(),
&pending_pushes);
// Pushes of non-register data types are not supported.
DCHECK(source.IsRegister());
LocationOperand source_location(LocationOperand::cast(source));
pending_pushes.push_back(source_location.GetRegister());
// TODO(arm): We can push more than 3 registers at once. Add support in
// the macro-assembler for pushing a list of registers.
if (pending_pushes.size() == 3) {
FlushPendingPushRegisters(tasm(), frame_access_state(),
&pending_pushes);
}
move->Eliminate();
}
FlushPendingPushRegisters(tasm(), frame_access_state(), &pending_pushes);
}
AdjustStackPointerForTailCall(tasm(), frame_access_state(),
first_unused_stack_slot, nullptr, false);
}
void CodeGenerator::AssembleTailCallAfterGap(Instruction* instr,
int first_unused_stack_slot) {
AdjustStackPointerForTailCall(tasm(), frame_access_state(),
first_unused_stack_slot);
}
// Check if the code object is marked for deoptimization. If it is, then it
// jumps to the CompileLazyDeoptimizedCode builtin. In order to do this we need
// to:
// 1. compute the offset of the {CodeDataContainer} from our current location
// and load it.
// 2. read from memory the word that contains that bit, which can be found in
// the flags in the referenced {CodeDataContainer} object;
// 3. test kMarkedForDeoptimizationBit in those flags; and
// 4. if it is not zero then it jumps to the builtin.
void CodeGenerator::BailoutIfDeoptimized() {
int pc_offset = __ pc_offset();
int offset = Code::kCodeDataContainerOffset -
(Code::kHeaderSize + pc_offset + TurboAssembler::kPcLoadDelta);
// We can use the register pc - 8 for the address of the current instruction.
__ ldr_pcrel(ip, offset);
__ ldr(ip, FieldMemOperand(ip, CodeDataContainer::kKindSpecificFlagsOffset));
__ tst(ip, Operand(1 << Code::kMarkedForDeoptimizationBit));
Handle<Code> code = isolate()->builtins()->builtin_handle(
Builtins::kCompileLazyDeoptimizedCode);
__ Jump(code, RelocInfo::CODE_TARGET, ne);
}
// Assembles an instruction after register allocation, producing machine code.
CodeGenerator::CodeGenResult CodeGenerator::AssembleArchInstruction(
Instruction* instr) {
ArmOperandConverter i(this, instr);
__ MaybeCheckConstPool();
InstructionCode opcode = instr->opcode();
ArchOpcode arch_opcode = ArchOpcodeField::decode(opcode);
switch (arch_opcode) {
case kArchCallCodeObject: {
// We must not share code targets for calls to builtins for wasm code, as
// they might need to be patched individually.
internal::Assembler::BlockCodeTargetSharingScope scope;
if (info()->IsWasm()) scope.Open(tasm());
if (instr->InputAt(0)->IsImmediate()) {
__ Call(i.InputCode(0), RelocInfo::CODE_TARGET);
} else {
__ add(ip, i.InputRegister(0),
Operand(Code::kHeaderSize - kHeapObjectTag));
__ Call(ip);
}
RecordCallPosition(instr);
DCHECK_EQ(LeaveCC, i.OutputSBit());
frame_access_state()->ClearSPDelta();
break;
}
case kArchCallWasmFunction: {
// We must not share code targets for calls to builtins for wasm code, as
// they might need to be patched individually.
internal::Assembler::BlockCodeTargetSharingScope scope;
RelocInfo::Mode rmode = RelocInfo::JS_TO_WASM_CALL;
if (info()->IsWasm()) {
scope.Open(tasm());
rmode = RelocInfo::WASM_CALL;
}
if (instr->InputAt(0)->IsImmediate()) {
Address wasm_code = reinterpret_cast<Address>(
i.ToConstant(instr->InputAt(0)).ToInt32());
__ Call(wasm_code, rmode);
} else {
__ Call(i.InputRegister(0));
}
RecordCallPosition(instr);
DCHECK_EQ(LeaveCC, i.OutputSBit());
frame_access_state()->ClearSPDelta();
break;
}
case kArchTailCallCodeObjectFromJSFunction:
case kArchTailCallCodeObject: {
// We must not share code targets for calls to builtins for wasm code, as
// they might need to be patched individually.
internal::Assembler::BlockCodeTargetSharingScope scope;
if (info()->IsWasm()) scope.Open(tasm());
if (arch_opcode == kArchTailCallCodeObjectFromJSFunction) {
AssemblePopArgumentsAdaptorFrame(kJavaScriptCallArgCountRegister,
i.TempRegister(0), i.TempRegister(1),
i.TempRegister(2));
}
if (instr->InputAt(0)->IsImmediate()) {
__ Jump(i.InputCode(0), RelocInfo::CODE_TARGET);
} else {
__ add(ip, i.InputRegister(0),
Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(ip);
}
DCHECK_EQ(LeaveCC, i.OutputSBit());
unwinding_info_writer_.MarkBlockWillExit();
frame_access_state()->ClearSPDelta();
frame_access_state()->SetFrameAccessToDefault();
break;
}
case kArchTailCallWasm: {
// We must not share code targets for calls to builtins for wasm code, as
// they might need to be patched individually.
internal::Assembler::BlockCodeTargetSharingScope scope;
RelocInfo::Mode rmode = RelocInfo::JS_TO_WASM_CALL;
if (info()->IsWasm()) {
scope.Open(tasm());
rmode = RelocInfo::WASM_CALL;
}
if (instr->InputAt(0)->IsImmediate()) {
Address wasm_code = reinterpret_cast<Address>(
i.ToConstant(instr->InputAt(0)).ToInt32());
__ Jump(wasm_code, rmode);
} else {
__ Jump(i.InputRegister(0));
}
DCHECK_EQ(LeaveCC, i.OutputSBit());
unwinding_info_writer_.MarkBlockWillExit();
frame_access_state()->ClearSPDelta();
frame_access_state()->SetFrameAccessToDefault();
break;
}
case kArchTailCallAddress: {
CHECK(!instr->InputAt(0)->IsImmediate());
__ Jump(i.InputRegister(0));
unwinding_info_writer_.MarkBlockWillExit();
frame_access_state()->ClearSPDelta();
frame_access_state()->SetFrameAccessToDefault();
break;
}
case kArchCallJSFunction: {
Register func = i.InputRegister(0);
if (FLAG_debug_code) {
// Check the function's context matches the context argument.
__ ldr(kScratchReg, FieldMemOperand(func, JSFunction::kContextOffset));
__ cmp(cp, kScratchReg);
__ Assert(eq, AbortReason::kWrongFunctionContext);
}
__ ldr(ip, FieldMemOperand(func, JSFunction::kCodeOffset));
__ add(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Call(ip);
RecordCallPosition(instr);
DCHECK_EQ(LeaveCC, i.OutputSBit());
frame_access_state()->ClearSPDelta();
break;
}
case kArchPrepareCallCFunction: {
int const num_parameters = MiscField::decode(instr->opcode());
__ PrepareCallCFunction(num_parameters);
// Frame alignment requires using FP-relative frame addressing.
frame_access_state()->SetFrameAccessToFP();
break;
}
case kArchSaveCallerRegisters: {
fp_mode_ =
static_cast<SaveFPRegsMode>(MiscField::decode(instr->opcode()));
DCHECK(fp_mode_ == kDontSaveFPRegs || fp_mode_ == kSaveFPRegs);
// kReturnRegister0 should have been saved before entering the stub.
int bytes = __ PushCallerSaved(fp_mode_, kReturnRegister0);
DCHECK_EQ(0, bytes % kPointerSize);
DCHECK_EQ(0, frame_access_state()->sp_delta());
frame_access_state()->IncreaseSPDelta(bytes / kPointerSize);
DCHECK(!caller_registers_saved_);
caller_registers_saved_ = true;
break;
}
case kArchRestoreCallerRegisters: {
DCHECK(fp_mode_ ==
static_cast<SaveFPRegsMode>(MiscField::decode(instr->opcode())));
DCHECK(fp_mode_ == kDontSaveFPRegs || fp_mode_ == kSaveFPRegs);
// Don't overwrite the returned value.
int bytes = __ PopCallerSaved(fp_mode_, kReturnRegister0);
frame_access_state()->IncreaseSPDelta(-(bytes / kPointerSize));
DCHECK_EQ(0, frame_access_state()->sp_delta());
DCHECK(caller_registers_saved_);
caller_registers_saved_ = false;
break;
}
case kArchPrepareTailCall:
AssemblePrepareTailCall();
break;
case kArchCallCFunction: {
int const num_parameters = MiscField::decode(instr->opcode());
if (instr->InputAt(0)->IsImmediate()) {
ExternalReference ref = i.InputExternalReference(0);
__ CallCFunction(ref, num_parameters);
} else {
Register func = i.InputRegister(0);
__ CallCFunction(func, num_parameters);
}
frame_access_state()->SetFrameAccessToDefault();
// Ideally, we should decrement SP delta to match the change of stack
// pointer in CallCFunction. However, for certain architectures (e.g.
// ARM), there may be more strict alignment requirement, causing old SP
// to be saved on the stack. In those cases, we can not calculate the SP
// delta statically.
frame_access_state()->ClearSPDelta();
if (caller_registers_saved_) {
// Need to re-sync SP delta introduced in kArchSaveCallerRegisters.
// Here, we assume the sequence to be:
// kArchSaveCallerRegisters;
// kArchCallCFunction;
// kArchRestoreCallerRegisters;
int bytes =
__ RequiredStackSizeForCallerSaved(fp_mode_, kReturnRegister0);
frame_access_state()->IncreaseSPDelta(bytes / kPointerSize);
}
break;
}
case kArchJmp:
AssembleArchJump(i.InputRpo(0));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArchLookupSwitch:
AssembleArchLookupSwitch(instr);
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArchTableSwitch:
AssembleArchTableSwitch(instr);
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArchDebugAbort:
DCHECK(i.InputRegister(0) == r1);
if (!frame_access_state()->has_frame()) {
// We don't actually want to generate a pile of code for this, so just
// claim there is a stack frame, without generating one.
FrameScope scope(tasm(), StackFrame::NONE);
__ Call(isolate()->builtins()->builtin_handle(Builtins::kAbortJS),
RelocInfo::CODE_TARGET);
} else {
__ Call(isolate()->builtins()->builtin_handle(Builtins::kAbortJS),
RelocInfo::CODE_TARGET);
}
__ stop("kArchDebugAbort");
break;
case kArchDebugBreak:
__ stop("kArchDebugBreak");
break;
case kArchComment: {
Address comment_string = i.InputExternalReference(0).address();
__ RecordComment(reinterpret_cast<const char*>(comment_string));
break;
}
case kArchNop:
case kArchThrowTerminator:
// don't emit code for nops.
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArchDeoptimize: {
int deopt_state_id =
BuildTranslation(instr, -1, 0, OutputFrameStateCombine::Ignore());
CodeGenResult result =
AssembleDeoptimizerCall(deopt_state_id, current_source_position_);
if (result != kSuccess) return result;
break;
}
case kArchRet:
AssembleReturn(instr->InputAt(0));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArchStackPointer:
__ mov(i.OutputRegister(), sp);
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArchFramePointer:
__ mov(i.OutputRegister(), fp);
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArchParentFramePointer:
if (frame_access_state()->has_frame()) {
__ ldr(i.OutputRegister(), MemOperand(fp, 0));
} else {
__ mov(i.OutputRegister(), fp);
}
break;
case kArchTruncateDoubleToI:
__ TruncateDoubleToIDelayed(zone(), i.OutputRegister(),
i.InputDoubleRegister(0));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArchStoreWithWriteBarrier: {
RecordWriteMode mode =
static_cast<RecordWriteMode>(MiscField::decode(instr->opcode()));
Register object = i.InputRegister(0);
Register value = i.InputRegister(2);
Register scratch0 = i.TempRegister(0);
Register scratch1 = i.TempRegister(1);
OutOfLineRecordWrite* ool;
AddressingMode addressing_mode =
AddressingModeField::decode(instr->opcode());
if (addressing_mode == kMode_Offset_RI) {
int32_t index = i.InputInt32(1);
ool = new (zone())
OutOfLineRecordWrite(this, object, index, value, scratch0, scratch1,
mode, &unwinding_info_writer_);
__ str(value, MemOperand(object, index));
} else {
DCHECK_EQ(kMode_Offset_RR, addressing_mode);
Register index(i.InputRegister(1));
ool = new (zone())
OutOfLineRecordWrite(this, object, index, value, scratch0, scratch1,
mode, &unwinding_info_writer_);
__ str(value, MemOperand(object, index));
}
__ CheckPageFlag(object, scratch0,
MemoryChunk::kPointersFromHereAreInterestingMask, ne,
ool->entry());
__ bind(ool->exit());
break;
}
case kArchStackSlot: {
FrameOffset offset =
frame_access_state()->GetFrameOffset(i.InputInt32(0));
Register base = offset.from_stack_pointer() ? sp : fp;
__ add(i.OutputRegister(0), base, Operand(offset.offset()));
break;
}
case kIeee754Float64Acos:
ASSEMBLE_IEEE754_UNOP(acos);
break;
case kIeee754Float64Acosh:
ASSEMBLE_IEEE754_UNOP(acosh);
break;
case kIeee754Float64Asin:
ASSEMBLE_IEEE754_UNOP(asin);
break;
case kIeee754Float64Asinh:
ASSEMBLE_IEEE754_UNOP(asinh);
break;
case kIeee754Float64Atan:
ASSEMBLE_IEEE754_UNOP(atan);
break;
case kIeee754Float64Atanh:
ASSEMBLE_IEEE754_UNOP(atanh);
break;
case kIeee754Float64Atan2:
ASSEMBLE_IEEE754_BINOP(atan2);
break;
case kIeee754Float64Cbrt:
ASSEMBLE_IEEE754_UNOP(cbrt);
break;
case kIeee754Float64Cos:
ASSEMBLE_IEEE754_UNOP(cos);
break;
case kIeee754Float64Cosh:
ASSEMBLE_IEEE754_UNOP(cosh);
break;
case kIeee754Float64Exp:
ASSEMBLE_IEEE754_UNOP(exp);
break;
case kIeee754Float64Expm1:
ASSEMBLE_IEEE754_UNOP(expm1);
break;
case kIeee754Float64Log:
ASSEMBLE_IEEE754_UNOP(log);
break;
case kIeee754Float64Log1p:
ASSEMBLE_IEEE754_UNOP(log1p);
break;
case kIeee754Float64Log2:
ASSEMBLE_IEEE754_UNOP(log2);
break;
case kIeee754Float64Log10:
ASSEMBLE_IEEE754_UNOP(log10);
break;
case kIeee754Float64Pow: {
__ CallStubDelayed(new (zone())
MathPowStub(nullptr, MathPowStub::DOUBLE));
__ vmov(d0, d2);
break;
}
case kIeee754Float64Sin:
ASSEMBLE_IEEE754_UNOP(sin);
break;
case kIeee754Float64Sinh:
ASSEMBLE_IEEE754_UNOP(sinh);
break;
case kIeee754Float64Tan:
ASSEMBLE_IEEE754_UNOP(tan);
break;
case kIeee754Float64Tanh:
ASSEMBLE_IEEE754_UNOP(tanh);
break;
case kArmAdd:
__ add(i.OutputRegister(), i.InputRegister(0), i.InputOperand2(1),
i.OutputSBit());
break;
case kArmAnd:
__ and_(i.OutputRegister(), i.InputRegister(0), i.InputOperand2(1),
i.OutputSBit());
break;
case kArmBic:
__ bic(i.OutputRegister(), i.InputRegister(0), i.InputOperand2(1),
i.OutputSBit());
break;
case kArmMul:
__ mul(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1),
i.OutputSBit());
break;
case kArmMla:
__ mla(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1),
i.InputRegister(2), i.OutputSBit());
break;
case kArmMls: {
CpuFeatureScope scope(tasm(), ARMv7);
__ mls(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1),
i.InputRegister(2));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
}
case kArmSmull:
__ smull(i.OutputRegister(0), i.OutputRegister(1), i.InputRegister(0),
i.InputRegister(1));
break;
case kArmSmmul:
__ smmul(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmSmmla:
__ smmla(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1),
i.InputRegister(2));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmUmull:
__ umull(i.OutputRegister(0), i.OutputRegister(1), i.InputRegister(0),
i.InputRegister(1), i.OutputSBit());
break;
case kArmSdiv: {
CpuFeatureScope scope(tasm(), SUDIV);
__ sdiv(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
}
case kArmUdiv: {
CpuFeatureScope scope(tasm(), SUDIV);
__ udiv(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
}
case kArmMov:
__ Move(i.OutputRegister(), i.InputOperand2(0), i.OutputSBit());
break;
case kArmMvn:
__ mvn(i.OutputRegister(), i.InputOperand2(0), i.OutputSBit());
break;
case kArmOrr:
__ orr(i.OutputRegister(), i.InputRegister(0), i.InputOperand2(1),
i.OutputSBit());
break;
case kArmEor:
__ eor(i.OutputRegister(), i.InputRegister(0), i.InputOperand2(1),
i.OutputSBit());
break;
case kArmSub:
__ sub(i.OutputRegister(), i.InputRegister(0), i.InputOperand2(1),
i.OutputSBit());
break;
case kArmRsb:
__ rsb(i.OutputRegister(), i.InputRegister(0), i.InputOperand2(1),
i.OutputSBit());
break;
case kArmBfc: {
CpuFeatureScope scope(tasm(), ARMv7);
__ bfc(i.OutputRegister(), i.InputInt8(1), i.InputInt8(2));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
}
case kArmUbfx: {
CpuFeatureScope scope(tasm(), ARMv7);
__ ubfx(i.OutputRegister(), i.InputRegister(0), i.InputInt8(1),
i.InputInt8(2));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
}
case kArmSbfx: {
CpuFeatureScope scope(tasm(), ARMv7);
__ sbfx(i.OutputRegister(), i.InputRegister(0), i.InputInt8(1),
i.InputInt8(2));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
}
case kArmSxtb:
__ sxtb(i.OutputRegister(), i.InputRegister(0), i.InputInt32(1));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmSxth:
__ sxth(i.OutputRegister(), i.InputRegister(0), i.InputInt32(1));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmSxtab:
__ sxtab(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1),
i.InputInt32(2));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmSxtah:
__ sxtah(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1),
i.InputInt32(2));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmUxtb:
__ uxtb(i.OutputRegister(), i.InputRegister(0), i.InputInt32(1));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmUxth:
__ uxth(i.OutputRegister(), i.InputRegister(0), i.InputInt32(1));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmUxtab:
__ uxtab(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1),
i.InputInt32(2));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmUxtah:
__ uxtah(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1),
i.InputInt32(2));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmRbit: {
CpuFeatureScope scope(tasm(), ARMv7);
__ rbit(i.OutputRegister(), i.InputRegister(0));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
}
case kArmClz:
__ clz(i.OutputRegister(), i.InputRegister(0));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmCmp:
__ cmp(i.InputRegister(0), i.InputOperand2(1));
DCHECK_EQ(SetCC, i.OutputSBit());
break;
case kArmCmn:
__ cmn(i.InputRegister(0), i.InputOperand2(1));
DCHECK_EQ(SetCC, i.OutputSBit());
break;
case kArmTst:
__ tst(i.InputRegister(0), i.InputOperand2(1));
DCHECK_EQ(SetCC, i.OutputSBit());
break;
case kArmTeq:
__ teq(i.InputRegister(0), i.InputOperand2(1));
DCHECK_EQ(SetCC, i.OutputSBit());
break;
case kArmAddPair:
// i.InputRegister(0) ... left low word.
// i.InputRegister(1) ... left high word.
// i.InputRegister(2) ... right low word.
// i.InputRegister(3) ... right high word.
__ add(i.OutputRegister(0), i.InputRegister(0), i.InputRegister(2),
SBit::SetCC);
__ adc(i.OutputRegister(1), i.InputRegister(1),
Operand(i.InputRegister(3)));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmSubPair:
// i.InputRegister(0) ... left low word.
// i.InputRegister(1) ... left high word.
// i.InputRegister(2) ... right low word.
// i.InputRegister(3) ... right high word.
__ sub(i.OutputRegister(0), i.InputRegister(0), i.InputRegister(2),
SBit::SetCC);
__ sbc(i.OutputRegister(1), i.InputRegister(1),
Operand(i.InputRegister(3)));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmMulPair:
// i.InputRegister(0) ... left low word.
// i.InputRegister(1) ... left high word.
// i.InputRegister(2) ... right low word.
// i.InputRegister(3) ... right high word.
__ umull(i.OutputRegister(0), i.OutputRegister(1), i.InputRegister(0),
i.InputRegister(2));
__ mla(i.OutputRegister(1), i.InputRegister(0), i.InputRegister(3),
i.OutputRegister(1));
__ mla(i.OutputRegister(1), i.InputRegister(2), i.InputRegister(1),
i.OutputRegister(1));
break;
case kArmLslPair: {
Register second_output =
instr->OutputCount() >= 2 ? i.OutputRegister(1) : i.TempRegister(0);
if (instr->InputAt(2)->IsImmediate()) {
__ LslPair(i.OutputRegister(0), second_output, i.InputRegister(0),
i.InputRegister(1), i.InputInt32(2));
} else {
__ LslPair(i.OutputRegister(0), second_output, i.InputRegister(0),
i.InputRegister(1), kScratchReg, i.InputRegister(2));
}
break;
}
case kArmLsrPair: {
Register second_output =
instr->OutputCount() >= 2 ? i.OutputRegister(1) : i.TempRegister(0);
if (instr->InputAt(2)->IsImmediate()) {
__ LsrPair(i.OutputRegister(0), second_output, i.InputRegister(0),
i.InputRegister(1), i.InputInt32(2));
} else {
__ LsrPair(i.OutputRegister(0), second_output, i.InputRegister(0),
i.InputRegister(1), kScratchReg, i.InputRegister(2));
}
break;
}
case kArmAsrPair: {
Register second_output =
instr->OutputCount() >= 2 ? i.OutputRegister(1) : i.TempRegister(0);
if (instr->InputAt(2)->IsImmediate()) {
__ AsrPair(i.OutputRegister(0), second_output, i.InputRegister(0),
i.InputRegister(1), i.InputInt32(2));
} else {
__ AsrPair(i.OutputRegister(0), second_output, i.InputRegister(0),
i.InputRegister(1), kScratchReg, i.InputRegister(2));
}
break;
}
case kArmVcmpF32:
if (instr->InputAt(1)->IsFPRegister()) {
__ VFPCompareAndSetFlags(i.InputFloatRegister(0),
i.InputFloatRegister(1));
} else {
DCHECK(instr->InputAt(1)->IsImmediate());
// 0.0 is the only immediate supported by vcmp instructions.
DCHECK_EQ(0.0f, i.InputFloat32(1));
__ VFPCompareAndSetFlags(i.InputFloatRegister(0), i.InputFloat32(1));
}
DCHECK_EQ(SetCC, i.OutputSBit());
break;
case kArmVaddF32:
__ vadd(i.OutputFloatRegister(), i.InputFloatRegister(0),
i.InputFloatRegister(1));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmVsubF32:
__ vsub(i.OutputFloatRegister(), i.InputFloatRegister(0),
i.InputFloatRegister(1));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmVmulF32:
__ vmul(i.OutputFloatRegister(), i.InputFloatRegister(0),
i.InputFloatRegister(1));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmVmlaF32:
__ vmla(i.OutputFloatRegister(), i.InputFloatRegister(1),
i.InputFloatRegister(2));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmVmlsF32:
__ vmls(i.OutputFloatRegister(), i.InputFloatRegister(1),
i.InputFloatRegister(2));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmVdivF32:
__ vdiv(i.OutputFloatRegister(), i.InputFloatRegister(0),
i.InputFloatRegister(1));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmVsqrtF32:
__ vsqrt(i.OutputFloatRegister(), i.InputFloatRegister(0));
break;
case kArmVabsF32:
__ vabs(i.OutputFloatRegister(), i.InputFloatRegister(0));
break;
case kArmVnegF32:
__ vneg(i.OutputFloatRegister(), i.InputFloatRegister(0));
break;
case kArmVcmpF64:
if (instr->InputAt(1)->IsFPRegister()) {
__ VFPCompareAndSetFlags(i.InputDoubleRegister(0),
i.InputDoubleRegister(1));
} else {
DCHECK(instr->InputAt(1)->IsImmediate());
// 0.0 is the only immediate supported by vcmp instructions.
DCHECK_EQ(0.0, i.InputDouble(1));
__ VFPCompareAndSetFlags(i.InputDoubleRegister(0), i.InputDouble(1));
}
DCHECK_EQ(SetCC, i.OutputSBit());
break;
case kArmVaddF64:
__ vadd(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
i.InputDoubleRegister(1));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmVsubF64:
__ vsub(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
i.InputDoubleRegister(1));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmVmulF64:
__ vmul(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
i.InputDoubleRegister(1));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmVmlaF64:
__ vmla(i.OutputDoubleRegister(), i.InputDoubleRegister(1),
i.InputDoubleRegister(2));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmVmlsF64:
__ vmls(i.OutputDoubleRegister(), i.InputDoubleRegister(1),
i.InputDoubleRegister(2));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmVdivF64:
__ vdiv(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
i.InputDoubleRegister(1));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmVmodF64: {
// TODO(bmeurer): We should really get rid of this special instruction,
// and generate a CallAddress instruction instead.
FrameScope scope(tasm(), StackFrame::MANUAL);
__ PrepareCallCFunction(0, 2);
__ MovToFloatParameters(i.InputDoubleRegister(0),
i.InputDoubleRegister(1));
__ CallCFunction(
ExternalReference::mod_two_doubles_operation(__ isolate()), 0, 2);
// Move the result in the double result register.
__ MovFromFloatResult(i.OutputDoubleRegister());
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
}
case kArmVsqrtF64:
__ vsqrt(i.OutputDoubleRegister(), i.InputDoubleRegister(0));
break;
case kArmVabsF64:
__ vabs(i.OutputDoubleRegister(), i.InputDoubleRegister(0));
break;
case kArmVnegF64:
__ vneg(i.OutputDoubleRegister(), i.InputDoubleRegister(0));
break;
case kArmVrintmF32: {
CpuFeatureScope scope(tasm(), ARMv8);
__ vrintm(i.OutputFloatRegister(), i.InputFloatRegister(0));
break;
}
case kArmVrintmF64: {
CpuFeatureScope scope(tasm(), ARMv8);
__ vrintm(i.OutputDoubleRegister(), i.InputDoubleRegister(0));
break;
}
case kArmVrintpF32: {
CpuFeatureScope scope(tasm(), ARMv8);
__ vrintp(i.OutputFloatRegister(), i.InputFloatRegister(0));
break;
}
case kArmVrintpF64: {
CpuFeatureScope scope(tasm(), ARMv8);
__ vrintp(i.OutputDoubleRegister(), i.InputDoubleRegister(0));
break;
}
case kArmVrintzF32: {
CpuFeatureScope scope(tasm(), ARMv8);
__ vrintz(i.OutputFloatRegister(), i.InputFloatRegister(0));
break;
}
case kArmVrintzF64: {
CpuFeatureScope scope(tasm(), ARMv8);
__ vrintz(i.OutputDoubleRegister(), i.InputDoubleRegister(0));
break;
}
case kArmVrintaF64: {
CpuFeatureScope scope(tasm(), ARMv8);
__ vrinta(i.OutputDoubleRegister(), i.InputDoubleRegister(0));
break;
}
case kArmVrintnF32: {
CpuFeatureScope scope(tasm(), ARMv8);
__ vrintn(i.OutputFloatRegister(), i.InputFloatRegister(0));
break;
}
case kArmVrintnF64: {
CpuFeatureScope scope(tasm(), ARMv8);
__ vrintn(i.OutputDoubleRegister(), i.InputDoubleRegister(0));
break;
}
case kArmVcvtF32F64: {
__ vcvt_f32_f64(i.OutputFloatRegister(), i.InputDoubleRegister(0));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
}
case kArmVcvtF64F32: {
__ vcvt_f64_f32(i.OutputDoubleRegister(), i.InputFloatRegister(0));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
}
case kArmVcvtF32S32: {
SwVfpRegister scratch = kScratchDoubleReg.low();
__ vmov(scratch, i.InputRegister(0));
__ vcvt_f32_s32(i.OutputFloatRegister(), scratch);
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
}
case kArmVcvtF32U32: {
SwVfpRegister scratch = kScratchDoubleReg.low();
__ vmov(scratch, i.InputRegister(0));
__ vcvt_f32_u32(i.OutputFloatRegister(), scratch);
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
}
case kArmVcvtF64S32: {
SwVfpRegister scratch = kScratchDoubleReg.low();
__ vmov(scratch, i.InputRegister(0));
__ vcvt_f64_s32(i.OutputDoubleRegister(), scratch);
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
}
case kArmVcvtF64U32: {
SwVfpRegister scratch = kScratchDoubleReg.low();
__ vmov(scratch, i.InputRegister(0));
__ vcvt_f64_u32(i.OutputDoubleRegister(), scratch);
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
}
case kArmVcvtS32F32: {
SwVfpRegister scratch = kScratchDoubleReg.low();
__ vcvt_s32_f32(scratch, i.InputFloatRegister(0));
__ vmov(i.OutputRegister(), scratch);
// Avoid INT32_MAX as an overflow indicator and use INT32_MIN instead,
// because INT32_MIN allows easier out-of-bounds detection.
__ cmn(i.OutputRegister(), Operand(1));
__ mov(i.OutputRegister(), Operand(INT32_MIN), SBit::LeaveCC, vs);
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
}
case kArmVcvtU32F32: {
SwVfpRegister scratch = kScratchDoubleReg.low();
__ vcvt_u32_f32(scratch, i.InputFloatRegister(0));
__ vmov(i.OutputRegister(), scratch);
// Avoid UINT32_MAX as an overflow indicator and use 0 instead,
// because 0 allows easier out-of-bounds detection.
__ cmn(i.OutputRegister(), Operand(1));
__ adc(i.OutputRegister(), i.OutputRegister(), Operand::Zero());
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
}
case kArmVcvtS32F64: {
SwVfpRegister scratch = kScratchDoubleReg.low();
__ vcvt_s32_f64(scratch, i.InputDoubleRegister(0));
__ vmov(i.OutputRegister(), scratch);
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
}
case kArmVcvtU32F64: {
SwVfpRegister scratch = kScratchDoubleReg.low();
__ vcvt_u32_f64(scratch, i.InputDoubleRegister(0));
__ vmov(i.OutputRegister(), scratch);
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
}
case kArmVmovU32F32:
__ vmov(i.OutputRegister(), i.InputFloatRegister(0));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmVmovF32U32:
__ vmov(i.OutputFloatRegister(), i.InputRegister(0));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmVmovLowU32F64:
__ VmovLow(i.OutputRegister(), i.InputDoubleRegister(0));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmVmovLowF64U32:
__ VmovLow(i.OutputDoubleRegister(), i.InputRegister(1));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmVmovHighU32F64:
__ VmovHigh(i.OutputRegister(), i.InputDoubleRegister(0));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmVmovHighF64U32:
__ VmovHigh(i.OutputDoubleRegister(), i.InputRegister(1));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmVmovF64U32U32:
__ vmov(i.OutputDoubleRegister(), i.InputRegister(0), i.InputRegister(1));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmVmovU32U32F64:
__ vmov(i.OutputRegister(0), i.OutputRegister(1),
i.InputDoubleRegister(0));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmLdrb:
__ ldrb(i.OutputRegister(), i.InputOffset());
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmLdrsb:
__ ldrsb(i.OutputRegister(), i.InputOffset());
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmStrb:
__ strb(i.InputRegister(0), i.InputOffset(1));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmLdrh:
__ ldrh(i.OutputRegister(), i.InputOffset());
break;
case kArmLdrsh:
__ ldrsh(i.OutputRegister(), i.InputOffset());
break;
case kArmStrh:
__ strh(i.InputRegister(0), i.InputOffset(1));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmLdr:
__ ldr(i.OutputRegister(), i.InputOffset());
break;
case kArmStr:
__ str(i.InputRegister(0), i.InputOffset(1));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmVldrF32: {
__ vldr(i.OutputFloatRegister(), i.InputOffset());
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
}
case kArmVstrF32:
__ vstr(i.InputFloatRegister(0), i.InputOffset(1));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmVld1F64: {
__ vld1(Neon8, NeonListOperand(i.OutputDoubleRegister()),
i.NeonInputOperand(0));
break;
}
case kArmVst1F64: {
__ vst1(Neon8, NeonListOperand(i.InputDoubleRegister(0)),
i.NeonInputOperand(1));
break;
}
case kArmVld1S128: {
__ vld1(Neon8, NeonListOperand(i.OutputSimd128Register()),
i.NeonInputOperand(0));
break;
}
case kArmVst1S128: {
__ vst1(Neon8, NeonListOperand(i.InputSimd128Register(0)),
i.NeonInputOperand(1));
break;
}
case kArmVldrF64:
__ vldr(i.OutputDoubleRegister(), i.InputOffset());
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmVstrF64:
__ vstr(i.InputDoubleRegister(0), i.InputOffset(1));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmFloat32Max: {
SwVfpRegister result = i.OutputFloatRegister();
SwVfpRegister left = i.InputFloatRegister(0);
SwVfpRegister right = i.InputFloatRegister(1);
if (left == right) {
__ Move(result, left);
} else {
auto ool = new (zone()) OutOfLineFloat32Max(this, result, left, right);
__ FloatMax(result, left, right, ool->entry());
__ bind(ool->exit());
}
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
}
case kArmFloat64Max: {
DwVfpRegister result = i.OutputDoubleRegister();
DwVfpRegister left = i.InputDoubleRegister(0);
DwVfpRegister right = i.InputDoubleRegister(1);
if (left == right) {
__ Move(result, left);
} else {
auto ool = new (zone()) OutOfLineFloat64Max(this, result, left, right);
__ FloatMax(result, left, right, ool->entry());
__ bind(ool->exit());
}
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
}
case kArmFloat32Min: {
SwVfpRegister result = i.OutputFloatRegister();
SwVfpRegister left = i.InputFloatRegister(0);
SwVfpRegister right = i.InputFloatRegister(1);
if (left == right) {
__ Move(result, left);
} else {
auto ool = new (zone()) OutOfLineFloat32Min(this, result, left, right);
__ FloatMin(result, left, right, ool->entry());
__ bind(ool->exit());
}
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
}
case kArmFloat64Min: {
DwVfpRegister result = i.OutputDoubleRegister();
DwVfpRegister left = i.InputDoubleRegister(0);
DwVfpRegister right = i.InputDoubleRegister(1);
if (left == right) {
__ Move(result, left);
} else {
auto ool = new (zone()) OutOfLineFloat64Min(this, result, left, right);
__ FloatMin(result, left, right, ool->entry());
__ bind(ool->exit());
}
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
}
case kArmFloat64SilenceNaN: {
DwVfpRegister value = i.InputDoubleRegister(0);
DwVfpRegister result = i.OutputDoubleRegister();
__ VFPCanonicalizeNaN(result, value);
break;
}
case kArmPush:
if (instr->InputAt(0)->IsFPRegister()) {
LocationOperand* op = LocationOperand::cast(instr->InputAt(0));
switch (op->representation()) {
case MachineRepresentation::kFloat32:
__ vpush(i.InputFloatRegister(0));
frame_access_state()->IncreaseSPDelta(1);
break;
case MachineRepresentation::kFloat64:
__ vpush(i.InputDoubleRegister(0));
frame_access_state()->IncreaseSPDelta(kDoubleSize / kPointerSize);
break;
case MachineRepresentation::kSimd128: {
__ vpush(i.InputSimd128Register(0));
frame_access_state()->IncreaseSPDelta(kSimd128Size / kPointerSize);
break;
}
default:
UNREACHABLE();
break;
}
} else {
__ push(i.InputRegister(0));
frame_access_state()->IncreaseSPDelta(1);
}
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
case kArmPoke: {
int const slot = MiscField::decode(instr->opcode());
__ str(i.InputRegister(0), MemOperand(sp, slot * kPointerSize));
DCHECK_EQ(LeaveCC, i.OutputSBit());
break;
}
case kArmPeek: {
// The incoming value is 0-based, but we need a 1-based value.
int reverse_slot = i.InputInt32(0) + 1;
int offset =
FrameSlotToFPOffset(frame()->GetTotalFrameSlotCount() - reverse_slot);
if (instr->OutputAt(0)->IsFPRegister()) {
LocationOperand* op = LocationOperand::cast(instr->OutputAt(0));
if (op->representation() == MachineRepresentation::kFloat64) {
__ vldr(i.OutputDoubleRegister(), MemOperand(fp, offset));
} else {
DCHECK_EQ(MachineRepresentation::kFloat32, op->representation());
__ vldr(i.OutputFloatRegister(), MemOperand(fp, offset));
}
} else {
__ ldr(i.OutputRegister(), MemOperand(fp, offset));
}
break;
}
case kArmF32x4Splat: {
int src_code = i.InputFloatRegister(0).code();
__ vdup(Neon32, i.OutputSimd128Register(),
DwVfpRegister::from_code(src_code / 2), src_code % 2);
break;
}
case kArmF32x4ExtractLane: {
__ ExtractLane(i.OutputFloatRegister(), i.InputSimd128Register(0),
i.InputInt8(1));
break;
}
case kArmF32x4ReplaceLane: {
__ ReplaceLane(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputFloatRegister(2), i.InputInt8(1));
break;
}
case kArmF32x4SConvertI32x4: {
__ vcvt_f32_s32(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kArmF32x4UConvertI32x4: {
__ vcvt_f32_u32(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kArmF32x4Abs: {
__ vabs(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kArmF32x4Neg: {
__ vneg(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kArmF32x4RecipApprox: {
__ vrecpe(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kArmF32x4RecipSqrtApprox: {
__ vrsqrte(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kArmF32x4Add: {
__ vadd(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmF32x4AddHoriz: {
Simd128Register dst = i.OutputSimd128Register(),
src0 = i.InputSimd128Register(0),
src1 = i.InputSimd128Register(1);
// Make sure we don't overwrite source data before it's used.
if (dst == src0) {
__ vpadd(dst.low(), src0.low(), src0.high());
if (dst == src1) {
__ vmov(dst.high(), dst.low());
} else {
__ vpadd(dst.high(), src1.low(), src1.high());
}
} else {
__ vpadd(dst.high(), src1.low(), src1.high());
__ vpadd(dst.low(), src0.low(), src0.high());
}
break;
}
case kArmF32x4Sub: {
__ vsub(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmF32x4Mul: {
__ vmul(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmF32x4Min: {
__ vmin(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmF32x4Max: {
__ vmax(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmF32x4Eq: {
__ vceq(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmF32x4Ne: {
Simd128Register dst = i.OutputSimd128Register();
__ vceq(dst, i.InputSimd128Register(0), i.InputSimd128Register(1));
__ vmvn(dst, dst);
break;
}
case kArmF32x4Lt: {
__ vcgt(i.OutputSimd128Register(), i.InputSimd128Register(1),
i.InputSimd128Register(0));
break;
}
case kArmF32x4Le: {
__ vcge(i.OutputSimd128Register(), i.InputSimd128Register(1),
i.InputSimd128Register(0));
break;
}
case kArmI32x4Splat: {
__ vdup(Neon32, i.OutputSimd128Register(), i.InputRegister(0));
break;
}
case kArmI32x4ExtractLane: {
__ ExtractLane(i.OutputRegister(), i.InputSimd128Register(0), NeonS32,
i.InputInt8(1));
break;
}
case kArmI32x4ReplaceLane: {
__ ReplaceLane(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputRegister(2), NeonS32, i.InputInt8(1));
break;
}
case kArmI32x4SConvertF32x4: {
__ vcvt_s32_f32(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kArmI32x4SConvertI16x8Low: {
__ vmovl(NeonS16, i.OutputSimd128Register(),
i.InputSimd128Register(0).low());
break;
}
case kArmI32x4SConvertI16x8High: {
__ vmovl(NeonS16, i.OutputSimd128Register(),
i.InputSimd128Register(0).high());
break;
}
case kArmI32x4Neg: {
__ vneg(Neon32, i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kArmI32x4Shl: {
__ vshl(NeonS32, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputInt5(1));
break;
}
case kArmI32x4ShrS: {
__ vshr(NeonS32, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputInt5(1));
break;
}
case kArmI32x4Add: {
__ vadd(Neon32, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI32x4AddHoriz:
ASSEMBLE_NEON_PAIRWISE_OP(vpadd, Neon32);
break;
case kArmI32x4Sub: {
__ vsub(Neon32, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI32x4Mul: {
__ vmul(Neon32, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI32x4MinS: {
__ vmin(NeonS32, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI32x4MaxS: {
__ vmax(NeonS32, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI32x4Eq: {
__ vceq(Neon32, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI32x4Ne: {
Simd128Register dst = i.OutputSimd128Register();
__ vceq(Neon32, dst, i.InputSimd128Register(0),
i.InputSimd128Register(1));
__ vmvn(dst, dst);
break;
}
case kArmI32x4GtS: {
__ vcgt(NeonS32, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI32x4GeS: {
__ vcge(NeonS32, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI32x4UConvertF32x4: {
__ vcvt_u32_f32(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kArmI32x4UConvertI16x8Low: {
__ vmovl(NeonU16, i.OutputSimd128Register(),
i.InputSimd128Register(0).low());
break;
}
case kArmI32x4UConvertI16x8High: {
__ vmovl(NeonU16, i.OutputSimd128Register(),
i.InputSimd128Register(0).high());
break;
}
case kArmI32x4ShrU: {
__ vshr(NeonU32, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputInt5(1));
break;
}
case kArmI32x4MinU: {
__ vmin(NeonU32, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI32x4MaxU: {
__ vmax(NeonU32, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI32x4GtU: {
__ vcgt(NeonU32, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI32x4GeU: {
__ vcge(NeonU32, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI16x8Splat: {
__ vdup(Neon16, i.OutputSimd128Register(), i.InputRegister(0));
break;
}
case kArmI16x8ExtractLane: {
__ ExtractLane(i.OutputRegister(), i.InputSimd128Register(0), NeonS16,
i.InputInt8(1));
break;
}
case kArmI16x8ReplaceLane: {
__ ReplaceLane(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputRegister(2), NeonS16, i.InputInt8(1));
break;
}
case kArmI16x8SConvertI8x16Low: {
__ vmovl(NeonS8, i.OutputSimd128Register(),
i.InputSimd128Register(0).low());
break;
}
case kArmI16x8SConvertI8x16High: {
__ vmovl(NeonS8, i.OutputSimd128Register(),
i.InputSimd128Register(0).high());
break;
}
case kArmI16x8Neg: {
__ vneg(Neon16, i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kArmI16x8Shl: {
__ vshl(NeonS16, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputInt4(1));
break;
}
case kArmI16x8ShrS: {
__ vshr(NeonS16, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputInt4(1));
break;
}
case kArmI16x8SConvertI32x4:
ASSEMBLE_NEON_NARROWING_OP(NeonS16);
break;
case kArmI16x8Add: {
__ vadd(Neon16, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI16x8AddSaturateS: {
__ vqadd(NeonS16, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI16x8AddHoriz:
ASSEMBLE_NEON_PAIRWISE_OP(vpadd, Neon16);
break;
case kArmI16x8Sub: {
__ vsub(Neon16, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI16x8SubSaturateS: {
__ vqsub(NeonS16, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI16x8Mul: {
__ vmul(Neon16, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI16x8MinS: {
__ vmin(NeonS16, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI16x8MaxS: {
__ vmax(NeonS16, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI16x8Eq: {
__ vceq(Neon16, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI16x8Ne: {
Simd128Register dst = i.OutputSimd128Register();
__ vceq(Neon16, dst, i.InputSimd128Register(0),
i.InputSimd128Register(1));
__ vmvn(dst, dst);
break;
}
case kArmI16x8GtS: {
__ vcgt(NeonS16, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI16x8GeS: {
__ vcge(NeonS16, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI16x8UConvertI8x16Low: {
__ vmovl(NeonU8, i.OutputSimd128Register(),
i.InputSimd128Register(0).low());
break;
}
case kArmI16x8UConvertI8x16High: {
__ vmovl(NeonU8, i.OutputSimd128Register(),
i.InputSimd128Register(0).high());
break;
}
case kArmI16x8ShrU: {
__ vshr(NeonU16, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputInt4(1));
break;
}
case kArmI16x8UConvertI32x4:
ASSEMBLE_NEON_NARROWING_OP(NeonU16);
break;
case kArmI16x8AddSaturateU: {
__ vqadd(NeonU16, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI16x8SubSaturateU: {
__ vqsub(NeonU16, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI16x8MinU: {
__ vmin(NeonU16, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI16x8MaxU: {
__ vmax(NeonU16, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI16x8GtU: {
__ vcgt(NeonU16, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI16x8GeU: {
__ vcge(NeonU16, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI8x16Splat: {
__ vdup(Neon8, i.OutputSimd128Register(), i.InputRegister(0));
break;
}
case kArmI8x16ExtractLane: {
__ ExtractLane(i.OutputRegister(), i.InputSimd128Register(0), NeonS8,
i.InputInt8(1));
break;
}
case kArmI8x16ReplaceLane: {
__ ReplaceLane(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputRegister(2), NeonS8, i.InputInt8(1));
break;
}
case kArmI8x16Neg: {
__ vneg(Neon8, i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kArmI8x16Shl: {
__ vshl(NeonS8, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputInt3(1));
break;
}
case kArmI8x16ShrS: {
__ vshr(NeonS8, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputInt3(1));
break;
}
case kArmI8x16SConvertI16x8:
ASSEMBLE_NEON_NARROWING_OP(NeonS8);
break;
case kArmI8x16Add: {
__ vadd(Neon8, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI8x16AddSaturateS: {
__ vqadd(NeonS8, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI8x16Sub: {
__ vsub(Neon8, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI8x16SubSaturateS: {
__ vqsub(NeonS8, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI8x16Mul: {
__ vmul(Neon8, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI8x16MinS: {
__ vmin(NeonS8, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI8x16MaxS: {
__ vmax(NeonS8, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI8x16Eq: {
__ vceq(Neon8, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI8x16Ne: {
Simd128Register dst = i.OutputSimd128Register();
__ vceq(Neon8, dst, i.InputSimd128Register(0), i.InputSimd128Register(1));
__ vmvn(dst, dst);
break;
}
case kArmI8x16GtS: {
__ vcgt(NeonS8, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI8x16GeS: {
__ vcge(NeonS8, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI8x16ShrU: {
__ vshr(NeonU8, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputInt3(1));
break;
}
case kArmI8x16UConvertI16x8:
ASSEMBLE_NEON_NARROWING_OP(NeonU8);
break;
case kArmI8x16AddSaturateU: {
__ vqadd(NeonU8, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI8x16SubSaturateU: {
__ vqsub(NeonU8, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI8x16MinU: {
__ vmin(NeonU8, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI8x16MaxU: {
__ vmax(NeonU8, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI8x16GtU: {
__ vcgt(NeonU8, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmI8x16GeU: {
__ vcge(NeonU8, i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmS128Zero: {
__ veor(i.OutputSimd128Register(), i.OutputSimd128Register(),
i.OutputSimd128Register());
break;
}
case kArmS128Dup: {
NeonSize size = static_cast<NeonSize>(i.InputInt32(1));
int lanes = kSimd128Size >> size;
int index = i.InputInt32(2);
DCHECK(index < lanes);
int d_lanes = lanes / 2;
int src_d_index = index & (d_lanes - 1);
int src_d_code = i.InputSimd128Register(0).low().code() + index / d_lanes;
__ vdup(size, i.OutputSimd128Register(),
DwVfpRegister::from_code(src_d_code), src_d_index);
break;
}
case kArmS128And: {
__ vand(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmS128Or: {
__ vorr(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmS128Xor: {
__ veor(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kArmS128Not: {
__ vmvn(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kArmS128Select: {
Simd128Register dst = i.OutputSimd128Register();
DCHECK(dst == i.InputSimd128Register(0));
__ vbsl(dst, i.InputSimd128Register(1), i.InputSimd128Register(2));
break;
}
case kArmS32x4ZipLeft: {
Simd128Register dst = i.OutputSimd128Register(),
src1 = i.InputSimd128Register(1);
DCHECK(dst == i.InputSimd128Register(0));
// src0 = [0, 1, 2, 3], src1 = [4, 5, 6, 7]
__ vmov(dst.high(), src1.low()); // dst = [0, 1, 4, 5]
__ vtrn(Neon32, dst.low(), dst.high()); // dst = [0, 4, 1, 5]
break;
}
case kArmS32x4ZipRight: {
Simd128Register dst = i.OutputSimd128Register(),
src1 = i.InputSimd128Register(1);
DCHECK(dst == i.InputSimd128Register(0));
// src0 = [4, 5, 6, 7], src1 = [0, 1, 2, 3] (flipped from ZipLeft).
__ vmov(dst.low(), src1.high()); // dst = [2, 3, 6, 7]
__ vtrn(Neon32, dst.low(), dst.high()); // dst = [2, 6, 3, 7]
break;
}
case kArmS32x4UnzipLeft: {
Simd128Register dst = i.OutputSimd128Register(),
src1 = i.InputSimd128Register(1);
DCHECK(dst == i.InputSimd128Register(0));
// src0 = [0, 1, 2, 3], src1 = [4, 5, 6, 7]
__ vmov(kScratchQuadReg, src1);
__ vuzp(Neon32, dst, kScratchQuadReg); // dst = [0, 2, 4, 6]
break;
}
case kArmS32x4UnzipRight: {
Simd128Register dst = i.OutputSimd128Register(),
src1 = i.InputSimd128Register(1);
DCHECK(dst == i.InputSimd128Register(0));
// src0 = [4, 5, 6, 7], src1 = [0, 1, 2, 3] (flipped from UnzipLeft).
__ vmov(kScratchQuadReg, src1);
__ vuzp(Neon32, kScratchQuadReg, dst); // dst = [1, 3, 5, 7]
break;
}
case kArmS32x4TransposeLeft: {
Simd128Register dst = i.OutputSimd128Register(),
src1 = i.InputSimd128Register(1);
DCHECK(dst == i.InputSimd128Register(0));
// src0 = [0, 1, 2, 3], src1 = [4, 5, 6, 7]
__ vmov(kScratchQuadReg, src1);
__ vtrn(Neon32, dst, kScratchQuadReg); // dst = [0, 4, 2, 6]
break;
}
case kArmS32x4Shuffle: {
Simd128Register dst = i.OutputSimd128Register(),
src0 = i.InputSimd128Register(0),
src1 = i.InputSimd128Register(1);
// Check for in-place shuffles.
// If dst == src0 == src1, then the shuffle is unary and we only use src0.
if (dst == src0) {
__ vmov(kScratchQuadReg, src0);
src0 = kScratchQuadReg;
} else if (dst == src1) {
__ vmov(kScratchQuadReg, src1);
src1 = kScratchQuadReg;
}
// Perform shuffle as a vmov per lane.
int dst_code = dst.code() * 4;
int src0_code = src0.code() * 4;
int src1_code = src1.code() * 4;
int32_t shuffle = i.InputInt32(2);
for (int i = 0; i < 4; i++) {
int lane = shuffle & 0x7;
int src_code = src0_code;
if (lane >= 4) {
src_code = src1_code;
lane &= 0x3;
}
__ VmovExtended(dst_code + i, src_code + lane);
shuffle >>= 8;
}
break;
}
case kArmS32x4TransposeRight: {
Simd128Register dst = i.OutputSimd128Register(),
src1 = i.InputSimd128Register(1);
DCHECK(dst == i.InputSimd128Register(0));
// src0 = [4, 5, 6, 7], src1 = [0, 1, 2, 3] (flipped from TransposeLeft).
__ vmov(kScratchQuadReg, src1);
__ vtrn(Neon32, kScratchQuadReg, dst); // dst = [1, 5, 3, 7]
break;
}
case kArmS16x8ZipLeft: {
Simd128Register dst = i.OutputSimd128Register(),
src1 = i.InputSimd128Register(1);
// src0 = [0, 1, 2, 3, ... 7], src1 = [8, 9, 10, 11, ... 15]
DCHECK(dst == i.InputSimd128Register(0));
__ vmov(dst.high(), src1.low()); // dst = [0, 1, 2, 3, 8, ... 11]
__ vzip(Neon16, dst.low(), dst.high()); // dst = [0, 8, 1, 9, ... 11]
break;
}
case kArmS16x8ZipRight: {
Simd128Register dst = i.OutputSimd128Register(),
src1 = i.InputSimd128Register(1);
DCHECK(dst == i.InputSimd128Register(0));
// src0 = [8, 9, 10, 11, ... 15], src1 = [0, 1, 2, 3, ... 7] (flipped).
__ vmov(dst.low(), src1.high());
__ vzip(Neon16, dst.low(), dst.high()); // dst = [4, 12, 5, 13, ... 15]
break;
}
case kArmS16x8UnzipLeft: {
Simd128Register dst = i.OutputSimd128Register(),
src1 = i.InputSimd128Register(1);
DCHECK(dst == i.InputSimd128Register(0));
// src0 = [0, 1, 2, 3, ... 7], src1 = [8, 9, 10, 11, ... 15]
__ vmov(kScratchQuadReg, src1);
__ vuzp(Neon16, dst, kScratchQuadReg); // dst = [0, 2, 4, 6, ... 14]
break;
}
case kArmS16x8UnzipRight: {
Simd128Register dst = i.OutputSimd128Register(),
src1 = i.InputSimd128Register(1);
DCHECK(dst == i.InputSimd128Register(0));
// src0 = [8, 9, 10, 11, ... 15], src1 = [0, 1, 2, 3, ... 7] (flipped).
__ vmov(kScratchQuadReg, src1);
__ vuzp(Neon16, kScratchQuadReg, dst); // dst = [1, 3, 5, 7, ... 15]
break;
}
case kArmS16x8TransposeLeft: {
Simd128Register dst = i.OutputSimd128Register(),
src1 = i.InputSimd128Register(1);
DCHECK(dst == i.InputSimd128Register(0));
// src0 = [0, 1, 2, 3, ... 7], src1 = [8, 9, 10, 11, ... 15]
__ vmov(kScratchQuadReg, src1);
__ vtrn(Neon16, dst, kScratchQuadReg); // dst = [0, 8, 2, 10, ... 14]
break;
}
case kArmS16x8TransposeRight: {
Simd128Register dst = i.OutputSimd128Register(),
src1 = i.InputSimd128Register(1);
DCHECK(dst == i.InputSimd128Register(0));
// src0 = [8, 9, 10, 11, ... 15], src1 = [0, 1, 2, 3, ... 7] (flipped).
__ vmov(kScratchQuadReg, src1);
__ vtrn(Neon16, kScratchQuadReg, dst); // dst = [1, 9, 3, 11, ... 15]
break;
}
case kArmS8x16ZipLeft: {
Simd128Register dst = i.OutputSimd128Register(),
src1 = i.InputSimd128Register(1);
DCHECK(dst == i.InputSimd128Register(0));
// src0 = [0, 1, 2, 3, ... 15], src1 = [16, 17, 18, 19, ... 31]
__ vmov(dst.high(), src1.low());
__ vzip(Neon8, dst.low(), dst.high()); // dst = [0, 16, 1, 17, ... 23]
break;
}
case kArmS8x16ZipRight: {
Simd128Register dst = i.OutputSimd128Register(),
src1 = i.InputSimd128Register(1);
DCHECK(dst == i.InputSimd128Register(0));
// src0 = [16, 17, 18, 19, ... 31], src1 = [0, 1, 2, 3, ... 15] (flipped).
__ vmov(dst.low(), src1.high());
__ vzip(Neon8, dst.low(), dst.high()); // dst = [8, 24, 9, 25, ... 31]
break;
}
case kArmS8x16UnzipLeft: {
Simd128Register dst = i.OutputSimd128Register(),
src1 = i.InputSimd128Register(1);
DCHECK(dst == i.InputSimd128Register(0));
// src0 = [0, 1, 2, 3, ... 15], src1 = [16, 17, 18, 19, ... 31]
__ vmov(kScratchQuadReg, src1);
__ vuzp(Neon8, dst, kScratchQuadReg); // dst = [0, 2, 4, 6, ... 30]
break;
}
case kArmS8x16UnzipRight: {
Simd128Register dst = i.OutputSimd128Register(),
src1 = i.InputSimd128Register(1);
DCHECK(dst == i.InputSimd128Register(0));
// src0 = [16, 17, 18, 19, ... 31], src1 = [0, 1, 2, 3, ... 15] (flipped).
__ vmov(kScratchQuadReg, src1);
__ vuzp(Neon8, kScratchQuadReg, dst); // dst = [1, 3, 5, 7, ... 31]
break;
}
case kArmS8x16TransposeLeft: {
Simd128Register dst = i.OutputSimd128Register(),
src1 = i.InputSimd128Register(1);
DCHECK(dst == i.InputSimd128Register(0));
// src0 = [0, 1, 2, 3, ... 15], src1 = [16, 17, 18, 19, ... 31]
__ vmov(kScratchQuadReg, src1);
__ vtrn(Neon8, dst, kScratchQuadReg); // dst = [0, 16, 2, 18, ... 30]
break;
}
case kArmS8x16TransposeRight: {
Simd128Register dst = i.OutputSimd128Register(),
src1 = i.InputSimd128Register(1);
DCHECK(dst == i.InputSimd128Register(0));
// src0 = [16, 17, 18, 19, ... 31], src1 = [0, 1, 2, 3, ... 15] (flipped).
__ vmov(kScratchQuadReg, src1);
__ vtrn(Neon8, kScratchQuadReg, dst); // dst = [1, 17, 3, 19, ... 31]
break;
}
case kArmS8x16Concat: {
__ vext(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1), i.InputInt4(2));
break;
}
case kArmS8x16Shuffle: {
Simd128Register dst = i.OutputSimd128Register(),
src0 = i.InputSimd128Register(0),
src1 = i.InputSimd128Register(1);
DwVfpRegister table_base = src0.low();
// If unary shuffle, table is src0 (2 d-registers), otherwise src0 and
// src1. They must be consecutive.
int table_size = src0 == src1 ? 2 : 4;
DCHECK_IMPLIES(src0 != src1, src0.code() + 1 == src1.code());
// The shuffle lane mask is a byte mask, materialize in kScratchQuadReg.
int scratch_s_base = kScratchQuadReg.code() * 4;
for (int j = 0; j < 4; j++) {
uint32_t four_lanes = i.InputUint32(2 + j);
// Ensure byte indices are in [0, 31] so masks are never NaNs.
four_lanes &= 0x1F1F1F1F;
__ vmov(SwVfpRegister::from_code(scratch_s_base + j),
Float32::FromBits(four_lanes));
}
NeonListOperand table(table_base, table_size);
if (dst != src0 && dst != src1) {
__ vtbl(dst.low(), table, kScratchQuadReg.low());
__ vtbl(dst.high(), table, kScratchQuadReg.high());
} else {
__ vtbl(kScratchQuadReg.low(), table, kScratchQuadReg.low());
__ vtbl(kScratchQuadReg.high(), table, kScratchQuadReg.high());
__ vmov(dst, kScratchQuadReg);
}
break;
}
case kArmS32x2Reverse: {
__ vrev64(Neon32, i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kArmS16x4Reverse: {
__ vrev64(Neon16, i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kArmS16x2Reverse: {
__ vrev32(Neon16, i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kArmS8x8Reverse: {
__ vrev64(Neon8, i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kArmS8x4Reverse: {
__ vrev32(Neon8, i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kArmS8x2Reverse: {
__ vrev16(Neon8, i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kArmS1x4AnyTrue: {
const QwNeonRegister& src = i.InputSimd128Register(0);
__ vpmax(NeonU32, kScratchDoubleReg, src.low(), src.high());
__ vpmax(NeonU32, kScratchDoubleReg, kScratchDoubleReg,
kScratchDoubleReg);
__ ExtractLane(i.OutputRegister(), kScratchDoubleReg, NeonS32, 0);
break;
}
case kArmS1x4AllTrue: {
const QwNeonRegister& src = i.InputSimd128Register(0);
__ vpmin(NeonU32, kScratchDoubleReg, src.low(), src.high());
__ vpmin(NeonU32, kScratchDoubleReg, kScratchDoubleReg,
kScratchDoubleReg);
__ ExtractLane(i.OutputRegister(), kScratchDoubleReg, NeonS32, 0);
break;
}
case kArmS1x8AnyTrue: {
const QwNeonRegister& src = i.InputSimd128Register(0);
__ vpmax(NeonU16, kScratchDoubleReg, src.low(), src.high());
__ vpmax(NeonU16, kScratchDoubleReg, kScratchDoubleReg,
kScratchDoubleReg);
__ vpmax(NeonU16, kScratchDoubleReg, kScratchDoubleReg,
kScratchDoubleReg);
__ ExtractLane(i.OutputRegister(), kScratchDoubleReg, NeonS16, 0);
break;
}
case kArmS1x8AllTrue: {
const QwNeonRegister& src = i.InputSimd128Register(0);
__ vpmin(NeonU16, kScratchDoubleReg, src.low(), src.high());
__ vpmin(NeonU16, kScratchDoubleReg, kScratchDoubleReg,
kScratchDoubleReg);
__ vpmin(NeonU16, kScratchDoubleReg, kScratchDoubleReg,
kScratchDoubleReg);
__ ExtractLane(i.OutputRegister(), kScratchDoubleReg, NeonS16, 0);
break;
}
case kArmS1x16AnyTrue: {
const QwNeonRegister& src = i.InputSimd128Register(0);
__ vpmax(NeonU8, kScratchDoubleReg, src.low(), src.high());
__ vpmax(NeonU8, kScratchDoubleReg, kScratchDoubleReg, kScratchDoubleReg);
// vtst to detect any bits in the bottom 32 bits of kScratchDoubleReg.
// This saves an instruction vs. the naive sequence of vpmax.
// kDoubleRegZero is not changed, since it is 0.
__ vtst(Neon32, kScratchQuadReg, kScratchQuadReg, kScratchQuadReg);
__ ExtractLane(i.OutputRegister(), kScratchDoubleReg, NeonS32, 0);
break;
}
case kArmS1x16AllTrue: {
const QwNeonRegister& src = i.InputSimd128Register(0);
__ vpmin(NeonU8, kScratchDoubleReg, src.low(), src.high());
__ vpmin(NeonU8, kScratchDoubleReg, kScratchDoubleReg, kScratchDoubleReg);
__ vpmin(NeonU8, kScratchDoubleReg, kScratchDoubleReg, kScratchDoubleReg);
__ vpmin(NeonU8, kScratchDoubleReg, kScratchDoubleReg, kScratchDoubleReg);
__ ExtractLane(i.OutputRegister(), kScratchDoubleReg, NeonS8, 0);
break;
}
case kAtomicLoadInt8:
ASSEMBLE_ATOMIC_LOAD_INTEGER(ldrsb);
break;
case kAtomicLoadUint8:
ASSEMBLE_ATOMIC_LOAD_INTEGER(ldrb);
break;
case kAtomicLoadInt16:
ASSEMBLE_ATOMIC_LOAD_INTEGER(ldrsh);
break;
case kAtomicLoadUint16:
ASSEMBLE_ATOMIC_LOAD_INTEGER(ldrh);
break;
case kAtomicLoadWord32:
ASSEMBLE_ATOMIC_LOAD_INTEGER(ldr);
break;
case kAtomicStoreWord8:
ASSEMBLE_ATOMIC_STORE_INTEGER(strb);
break;
case kAtomicStoreWord16:
ASSEMBLE_ATOMIC_STORE_INTEGER(strh);
break;
case kAtomicStoreWord32:
ASSEMBLE_ATOMIC_STORE_INTEGER(str);
break;
case kAtomicExchangeInt8:
ASSEMBLE_ATOMIC_EXCHANGE_INTEGER(ldrexb, strexb);
__ sxtb(i.OutputRegister(0), i.OutputRegister(0));
break;
case kAtomicExchangeUint8:
ASSEMBLE_ATOMIC_EXCHANGE_INTEGER(ldrexb, strexb);
break;
case kAtomicExchangeInt16:
ASSEMBLE_ATOMIC_EXCHANGE_INTEGER(ldrexh, strexh);
__ sxth(i.OutputRegister(0), i.OutputRegister(0));
break;
case kAtomicExchangeUint16:
ASSEMBLE_ATOMIC_EXCHANGE_INTEGER(ldrexh, strexh);
break;
case kAtomicExchangeWord32:
ASSEMBLE_ATOMIC_EXCHANGE_INTEGER(ldrex, strex);
break;
case kAtomicCompareExchangeInt8:
__ add(i.TempRegister(1), i.InputRegister(0), i.InputRegister(1));
__ uxtb(i.TempRegister(2), i.InputRegister(2));
ASSEMBLE_ATOMIC_COMPARE_EXCHANGE_INTEGER(ldrexb, strexb,
i.TempRegister(2));
__ sxtb(i.OutputRegister(0), i.OutputRegister(0));
break;
case kAtomicCompareExchangeUint8:
__ add(i.TempRegister(1), i.InputRegister(0), i.InputRegister(1));
__ uxtb(i.TempRegister(2), i.InputRegister(2));
ASSEMBLE_ATOMIC_COMPARE_EXCHANGE_INTEGER(ldrexb, strexb,
i.TempRegister(2));
break;
case kAtomicCompareExchangeInt16:
__ add(i.TempRegister(1), i.InputRegister(0), i.InputRegister(1));
__ uxth(i.TempRegister(2), i.InputRegister(2));
ASSEMBLE_ATOMIC_COMPARE_EXCHANGE_INTEGER(ldrexh, strexh,
i.TempRegister(2));
__ sxth(i.OutputRegister(0), i.OutputRegister(0));
break;
case kAtomicCompareExchangeUint16:
__ add(i.TempRegister(1), i.InputRegister(0), i.InputRegister(1));
__ uxth(i.TempRegister(2), i.InputRegister(2));
ASSEMBLE_ATOMIC_COMPARE_EXCHANGE_INTEGER(ldrexh, strexh,
i.TempRegister(2));
break;
case kAtomicCompareExchangeWord32:
__ add(i.TempRegister(1), i.InputRegister(0), i.InputRegister(1));
ASSEMBLE_ATOMIC_COMPARE_EXCHANGE_INTEGER(ldrex, strex,
i.InputRegister(2));
break;
#define ATOMIC_BINOP_CASE(op, inst) \
case kAtomic##op##Int8: \
ASSEMBLE_ATOMIC_BINOP(ldrexb, strexb, inst); \
__ sxtb(i.OutputRegister(0), i.OutputRegister(0)); \
break; \
case kAtomic##op##Uint8: \
ASSEMBLE_ATOMIC_BINOP(ldrexb, strexb, inst); \
break; \
case kAtomic##op##Int16: \
ASSEMBLE_ATOMIC_BINOP(ldrexh, strexh, inst); \
__ sxth(i.OutputRegister(0), i.OutputRegister(0)); \
break; \
case kAtomic##op##Uint16: \
ASSEMBLE_ATOMIC_BINOP(ldrexh, strexh, inst); \
break; \
case kAtomic##op##Word32: \
ASSEMBLE_ATOMIC_BINOP(ldrex, strex, inst); \
break;
ATOMIC_BINOP_CASE(Add, add)
ATOMIC_BINOP_CASE(Sub, sub)
ATOMIC_BINOP_CASE(And, and_)
ATOMIC_BINOP_CASE(Or, orr)
ATOMIC_BINOP_CASE(Xor, eor)
#undef ATOMIC_BINOP_CASE
#undef ASSEMBLE_ATOMIC_LOAD_INTEGER
#undef ASSEMBLE_ATOMIC_STORE_INTEGER
#undef ASSEMBLE_ATOMIC_EXCHANGE_INTEGER
#undef ASSEMBLE_ATOMIC_COMPARE_EXCHANGE_INTEGER
#undef ASSEMBLE_ATOMIC_BINOP
#undef ASSEMBLE_IEEE754_BINOP
#undef ASSEMBLE_IEEE754_UNOP
#undef ASSEMBLE_NEON_NARROWING_OP
#undef ASSEMBLE_NEON_PAIRWISE_OP
}
return kSuccess;
} // NOLINT(readability/fn_size)
// Assembles branches after an instruction.
void CodeGenerator::AssembleArchBranch(Instruction* instr, BranchInfo* branch) {
ArmOperandConverter i(this, instr);
Label* tlabel = branch->true_label;
Label* flabel = branch->false_label;
Condition cc = FlagsConditionToCondition(branch->condition);
__ b(cc, tlabel);
if (!branch->fallthru) __ b(flabel); // no fallthru to flabel.
}
void CodeGenerator::AssembleArchDeoptBranch(Instruction* instr,
BranchInfo* branch) {
AssembleArchBranch(instr, branch);
}
void CodeGenerator::AssembleArchJump(RpoNumber target) {
if (!IsNextInAssemblyOrder(target)) __ b(GetLabel(target));
}
void CodeGenerator::AssembleArchTrap(Instruction* instr,
FlagsCondition condition) {
class OutOfLineTrap final : public OutOfLineCode {
public:
OutOfLineTrap(CodeGenerator* gen, bool frame_elided, Instruction* instr)
: OutOfLineCode(gen),
frame_elided_(frame_elided),
instr_(instr),
gen_(gen) {}
void Generate() final {
ArmOperandConverter i(gen_, instr_);
Builtins::Name trap_id =
static_cast<Builtins::Name>(i.InputInt32(instr_->InputCount() - 1));
bool old_has_frame = __ has_frame();
if (frame_elided_) {
__ set_has_frame(true);
__ EnterFrame(StackFrame::WASM_COMPILED);
}
GenerateCallToTrap(trap_id);
if (frame_elided_) {
__ set_has_frame(old_has_frame);
}
}
private:
void GenerateCallToTrap(Builtins::Name trap_id) {
if (trap_id == Builtins::builtin_count) {
// We cannot test calls to the runtime in cctest/test-run-wasm.
// Therefore we emit a call to C here instead of a call to the runtime.
// We use the context register as the scratch register, because we do
// not have a context here.
__ PrepareCallCFunction(0, 0);
__ CallCFunction(ExternalReference::wasm_call_trap_callback_for_testing(
__ isolate()),
0);
__ LeaveFrame(StackFrame::WASM_COMPILED);
CallDescriptor* descriptor = gen_->linkage()->GetIncomingDescriptor();
int pop_count = static_cast<int>(descriptor->StackParameterCount());
__ Drop(pop_count);
__ Ret();
} else {
gen_->AssembleSourcePosition(instr_);
__ Call(__ isolate()->builtins()->builtin_handle(trap_id),
RelocInfo::CODE_TARGET);
ReferenceMap* reference_map =
new (gen_->zone()) ReferenceMap(gen_->zone());
gen_->RecordSafepoint(reference_map, Safepoint::kSimple, 0,
Safepoint::kNoLazyDeopt);
if (FLAG_debug_code) {
__ stop(GetAbortReason(AbortReason::kUnexpectedReturnFromWasmTrap));
}
}
}
bool frame_elided_;
Instruction* instr_;
CodeGenerator* gen_;
};
bool frame_elided = !frame_access_state()->has_frame();
auto ool = new (zone()) OutOfLineTrap(this, frame_elided, instr);
Label* tlabel = ool->entry();
Condition cc = FlagsConditionToCondition(condition);
__ b(cc, tlabel);
}
// Assembles boolean materializations after an instruction.
void CodeGenerator::AssembleArchBoolean(Instruction* instr,
FlagsCondition condition) {
ArmOperandConverter i(this, instr);
// Materialize a full 32-bit 1 or 0 value. The result register is always the
// last output of the instruction.
DCHECK_NE(0u, instr->OutputCount());
Register reg = i.OutputRegister(instr->OutputCount() - 1);
Condition cc = FlagsConditionToCondition(condition);
__ mov(reg, Operand(0));
__ mov(reg, Operand(1), LeaveCC, cc);
}
void CodeGenerator::AssembleArchLookupSwitch(Instruction* instr) {
ArmOperandConverter i(this, instr);
Register input = i.InputRegister(0);
for (size_t index = 2; index < instr->InputCount(); index += 2) {
__ cmp(input, Operand(i.InputInt32(index + 0)));
__ b(eq, GetLabel(i.InputRpo(index + 1)));
}
AssembleArchJump(i.InputRpo(1));
}
void CodeGenerator::AssembleArchTableSwitch(Instruction* instr) {
ArmOperandConverter i(this, instr);
Register input = i.InputRegister(0);
size_t const case_count = instr->InputCount() - 2;
// Ensure to emit the constant pool first if necessary.
__ CheckConstPool(true, true);
__ cmp(input, Operand(case_count));
__ BlockConstPoolFor(case_count + 2);
__ add(pc, pc, Operand(input, LSL, 2), LeaveCC, lo);
__ b(GetLabel(i.InputRpo(1)));
for (size_t index = 0; index < case_count; ++index) {
__ b(GetLabel(i.InputRpo(index + 2)));
}
}
void CodeGenerator::FinishFrame(Frame* frame) {
CallDescriptor* descriptor = linkage()->GetIncomingDescriptor();
const RegList saves_fp = descriptor->CalleeSavedFPRegisters();
if (saves_fp != 0) {
frame->AlignSavedCalleeRegisterSlots();
}
if (saves_fp != 0) {
// Save callee-saved FP registers.
STATIC_ASSERT(DwVfpRegister::kNumRegisters == 32);
uint32_t last = base::bits::CountLeadingZeros32(saves_fp) - 1;
uint32_t first = base::bits::CountTrailingZeros32(saves_fp);
DCHECK_EQ((last - first + 1), base::bits::CountPopulation(saves_fp));
frame->AllocateSavedCalleeRegisterSlots((last - first + 1) *
(kDoubleSize / kPointerSize));
}
const RegList saves = descriptor->CalleeSavedRegisters();
if (saves != 0) {
// Save callee-saved registers.
frame->AllocateSavedCalleeRegisterSlots(base::bits::CountPopulation(saves));
}
}
void CodeGenerator::AssembleConstructFrame() {
CallDescriptor* descriptor = linkage()->GetIncomingDescriptor();
if (frame_access_state()->has_frame()) {
if (descriptor->IsCFunctionCall()) {
__ Push(lr, fp);
__ mov(fp, sp);
} else if (descriptor->IsJSFunctionCall()) {
__ Prologue();
if (descriptor->PushArgumentCount()) {
__ Push(kJavaScriptCallArgCountRegister);
}
} else {
__ StubPrologue(info()->GetOutputStackFrameType());
}
unwinding_info_writer_.MarkFrameConstructed(__ pc_offset());
}
int shrink_slots =
frame()->GetTotalFrameSlotCount() - descriptor->CalculateFixedFrameSize();
if (info()->is_osr()) {
// TurboFan OSR-compiled functions cannot be entered directly.
__ Abort(AbortReason::kShouldNotDirectlyEnterOsrFunction);
// Unoptimized code jumps directly to this entrypoint while the unoptimized
// frame is still on the stack. Optimized code uses OSR values directly from
// the unoptimized frame. Thus, all that needs to be done is to allocate the
// remaining stack slots.
if (FLAG_code_comments) __ RecordComment("-- OSR entrypoint --");
osr_pc_offset_ = __ pc_offset();
shrink_slots -= osr_helper()->UnoptimizedFrameSlots();
}
const RegList saves = descriptor->CalleeSavedRegisters();
const RegList saves_fp = descriptor->CalleeSavedFPRegisters();
if (shrink_slots > 0) {
if (info()->IsWasm()) {
if (shrink_slots > 128) {
// For WebAssembly functions with big frames we have to do the stack
// overflow check before we construct the frame. Otherwise we may not
// have enough space on the stack to call the runtime for the stack
// overflow.
Label done;
// If the frame is bigger than the stack, we throw the stack overflow
// exception unconditionally. Thereby we can avoid the integer overflow
// check in the condition code.
if ((shrink_slots * kPointerSize) < (FLAG_stack_size * 1024)) {
UseScratchRegisterScope temps(tasm());
Register scratch = temps.Acquire();
__ Move(scratch,
Operand(ExternalReference::address_of_real_stack_limit(
__ isolate())));
__ ldr(scratch, MemOperand(scratch));
__ add(scratch, scratch, Operand(shrink_slots * kPointerSize));
__ cmp(sp, scratch);
__ b(cs, &done);
}
if (!frame_access_state()->has_frame()) {
__ set_has_frame(true);
// There is no need to leave the frame, we will not return from the
// runtime call.
__ EnterFrame(StackFrame::WASM_COMPILED);
}
__ Move(cp, Smi::kZero);
__ CallRuntimeDelayed(zone(), Runtime::kThrowWasmStackOverflow);
// We come from WebAssembly, there are no references for the GC.
ReferenceMap* reference_map = new (zone()) ReferenceMap(zone());
RecordSafepoint(reference_map, Safepoint::kSimple, 0,
Safepoint::kNoLazyDeopt);
if (FLAG_debug_code) {
__ stop(GetAbortReason(AbortReason::kUnexpectedReturnFromThrow));
}
__ bind(&done);
}
}
// Skip callee-saved and return slots, which are pushed below.
shrink_slots -= base::bits::CountPopulation(saves);
shrink_slots -= frame()->GetReturnSlotCount();
shrink_slots -= 2 * base::bits::CountPopulation(saves_fp);
if (shrink_slots > 0) {
__ sub(sp, sp, Operand(shrink_slots * kPointerSize));
}
}
if (saves_fp != 0) {
// Save callee-saved FP registers.
STATIC_ASSERT(DwVfpRegister::kNumRegisters == 32);
uint32_t last = base::bits::CountLeadingZeros32(saves_fp) - 1;
uint32_t first = base::bits::CountTrailingZeros32(saves_fp);
DCHECK_EQ((last - first + 1), base::bits::CountPopulation(saves_fp));
__ vstm(db_w, sp, DwVfpRegister::from_code(first),
DwVfpRegister::from_code(last));
}
if (saves != 0) {
// Save callee-saved registers.
__ stm(db_w, sp, saves);
}
const int returns = frame()->GetReturnSlotCount();
if (returns != 0) {
// Create space for returns.
__ sub(sp, sp, Operand(returns * kPointerSize));
}
}
void CodeGenerator::AssembleReturn(InstructionOperand* pop) {
CallDescriptor* descriptor = linkage()->GetIncomingDescriptor();
int pop_count = static_cast<int>(descriptor->StackParameterCount());
const int returns = frame()->GetReturnSlotCount();
if (returns != 0) {
// Free space of returns.
__ add(sp, sp, Operand(returns * kPointerSize));
}
// Restore registers.
const RegList saves = descriptor->CalleeSavedRegisters();
if (saves != 0) {
__ ldm(ia_w, sp, saves);
}
// Restore FP registers.
const RegList saves_fp = descriptor->CalleeSavedFPRegisters();
if (saves_fp != 0) {
STATIC_ASSERT(DwVfpRegister::kNumRegisters == 32);
uint32_t last = base::bits::CountLeadingZeros32(saves_fp) - 1;
uint32_t first = base::bits::CountTrailingZeros32(saves_fp);
__ vldm(ia_w, sp, DwVfpRegister::from_code(first),
DwVfpRegister::from_code(last));
}
unwinding_info_writer_.MarkBlockWillExit();
ArmOperandConverter g(this, nullptr);
if (descriptor->IsCFunctionCall()) {
AssembleDeconstructFrame();
} else if (frame_access_state()->has_frame()) {
// Canonicalize JSFunction return sites for now unless they have an variable
// number of stack slot pops.
if (pop->IsImmediate() && g.ToConstant(pop).ToInt32() == 0) {
if (return_label_.is_bound()) {
__ b(&return_label_);
return;
} else {
__ bind(&return_label_);
AssembleDeconstructFrame();
}
} else {
AssembleDeconstructFrame();
}
}
if (pop->IsImmediate()) {
DCHECK_EQ(Constant::kInt32, g.ToConstant(pop).type());
pop_count += g.ToConstant(pop).ToInt32();
} else {
__ Drop(g.ToRegister(pop));
}
__ Drop(pop_count);
__ Ret();
}
void CodeGenerator::FinishCode() { __ CheckConstPool(true, false); }
void CodeGenerator::AssembleMove(InstructionOperand* source,
InstructionOperand* destination) {
ArmOperandConverter g(this, nullptr);
// Dispatch on the source and destination operand kinds. Not all
// combinations are possible.
if (source->IsRegister()) {
DCHECK(destination->IsRegister() || destination->IsStackSlot());
Register src = g.ToRegister(source);
if (destination->IsRegister()) {
__ mov(g.ToRegister(destination), src);
} else {
__ str(src, g.ToMemOperand(destination));
}
} else if (source->IsStackSlot()) {
DCHECK(destination->IsRegister() || destination->IsStackSlot());
MemOperand src = g.ToMemOperand(source);
if (destination->IsRegister()) {
__ ldr(g.ToRegister(destination), src);
} else {
Register temp = kScratchReg;
__ ldr(temp, src);
__ str(temp, g.ToMemOperand(destination));
}
} else if (source->IsConstant()) {
Constant src = g.ToConstant(source);
if (destination->IsRegister() || destination->IsStackSlot()) {
Register dst =
destination->IsRegister() ? g.ToRegister(destination) : kScratchReg;
switch (src.type()) {
case Constant::kInt32:
if (RelocInfo::IsWasmReference(src.rmode())) {
__ mov(dst, Operand(src.ToInt32(), src.rmode()));
} else {
__ mov(dst, Operand(src.ToInt32()));
}
break;
case Constant::kInt64:
UNREACHABLE();
break;
case Constant::kFloat32:
__ mov(dst, Operand::EmbeddedNumber(src.ToFloat32()));
break;
case Constant::kFloat64:
__ mov(dst, Operand::EmbeddedNumber(src.ToFloat64().value()));
break;
case Constant::kExternalReference:
__ mov(dst, Operand(src.ToExternalReference()));
break;
case Constant::kHeapObject: {
Handle<HeapObject> src_object = src.ToHeapObject();
Heap::RootListIndex index;
if (IsMaterializableFromRoot(src_object, &index)) {
__ LoadRoot(dst, index);
} else {
__ Move(dst, src_object);
}
break;
}
case Constant::kRpoNumber:
UNREACHABLE(); // TODO(dcarney): loading RPO constants on arm.
break;
}
if (destination->IsStackSlot()) __ str(dst, g.ToMemOperand(destination));
} else if (src.type() == Constant::kFloat32) {
if (destination->IsFloatStackSlot()) {
MemOperand dst = g.ToMemOperand(destination);
Register temp = kScratchReg;
__ mov(temp, Operand(bit_cast<int32_t>(src.ToFloat32())));
__ str(temp, dst);
} else {
SwVfpRegister dst = g.ToFloatRegister(destination);
__ vmov(dst, Float32::FromBits(src.ToFloat32AsInt()));
}
} else {
DCHECK_EQ(Constant::kFloat64, src.type());
DwVfpRegister dst = destination->IsFPRegister()
? g.ToDoubleRegister(destination)
: kScratchDoubleReg;
__ vmov(dst, src.ToFloat64(), kScratchReg);
if (destination->IsDoubleStackSlot()) {
__ vstr(dst, g.ToMemOperand(destination));
}
}
} else if (source->IsFPRegister()) {
MachineRepresentation rep = LocationOperand::cast(source)->representation();
if (rep == MachineRepresentation::kFloat64) {
DwVfpRegister src = g.ToDoubleRegister(source);
if (destination->IsDoubleRegister()) {
DwVfpRegister dst = g.ToDoubleRegister(destination);
__ Move(dst, src);
} else {
DCHECK(destination->IsDoubleStackSlot());
__ vstr(src, g.ToMemOperand(destination));
}
} else if (rep == MachineRepresentation::kFloat32) {
// GapResolver may give us reg codes that don't map to actual s-registers.
// Generate code to work around those cases.
int src_code = LocationOperand::cast(source)->register_code();
if (destination->IsFloatRegister()) {
int dst_code = LocationOperand::cast(destination)->register_code();
__ VmovExtended(dst_code, src_code);
} else {
DCHECK(destination->IsFloatStackSlot());
__ VmovExtended(g.ToMemOperand(destination), src_code);
}
} else {
DCHECK_EQ(MachineRepresentation::kSimd128, rep);
QwNeonRegister src = g.ToSimd128Register(source);
if (destination->IsSimd128Register()) {
QwNeonRegister dst = g.ToSimd128Register(destination);
__ Move(dst, src);
} else {
DCHECK(destination->IsSimd128StackSlot());
MemOperand dst = g.ToMemOperand(destination);
__ add(kScratchReg, dst.rn(), Operand(dst.offset()));
__ vst1(Neon8, NeonListOperand(src.low(), 2),
NeonMemOperand(kScratchReg));
}
}
} else if (source->IsFPStackSlot()) {
MemOperand src = g.ToMemOperand(source);
MachineRepresentation rep =
LocationOperand::cast(destination)->representation();
if (destination->IsFPRegister()) {
if (rep == MachineRepresentation::kFloat64) {
__ vldr(g.ToDoubleRegister(destination), src);
} else if (rep == MachineRepresentation::kFloat32) {
// GapResolver may give us reg codes that don't map to actual
// s-registers. Generate code to work around those cases.
int dst_code = LocationOperand::cast(destination)->register_code();
__ VmovExtended(dst_code, src);
} else {
DCHECK_EQ(MachineRepresentation::kSimd128, rep);
QwNeonRegister dst = g.ToSimd128Register(destination);
__ add(kScratchReg, src.rn(), Operand(src.offset()));
__ vld1(Neon8, NeonListOperand(dst.low(), 2),
NeonMemOperand(kScratchReg));
}
} else {
DCHECK(destination->IsFPStackSlot());
if (rep == MachineRepresentation::kFloat64) {
DwVfpRegister temp = kScratchDoubleReg;
__ vldr(temp, src);
__ vstr(temp, g.ToMemOperand(destination));
} else if (rep == MachineRepresentation::kFloat32) {
SwVfpRegister temp = kScratchDoubleReg.low();
__ vldr(temp, src);
__ vstr(temp, g.ToMemOperand(destination));
} else {
DCHECK_EQ(MachineRepresentation::kSimd128, rep);
MemOperand dst = g.ToMemOperand(destination);
__ add(kScratchReg, src.rn(), Operand(src.offset()));
__ vld1(Neon8, NeonListOperand(kScratchQuadReg.low(), 2),
NeonMemOperand(kScratchReg));
__ add(kScratchReg, dst.rn(), Operand(dst.offset()));
__ vst1(Neon8, NeonListOperand(kScratchQuadReg.low(), 2),
NeonMemOperand(kScratchReg));
}
}
} else {
UNREACHABLE();
}
}
void CodeGenerator::AssembleSwap(InstructionOperand* source,
InstructionOperand* destination) {
ArmOperandConverter g(this, nullptr);
// Dispatch on the source and destination operand kinds. Not all
// combinations are possible.
if (source->IsRegister()) {
// Register-register.
Register temp = kScratchReg;
Register src = g.ToRegister(source);
if (destination->IsRegister()) {
Register dst = g.ToRegister(destination);
__ Move(temp, src);
__ Move(src, dst);
__ Move(dst, temp);
} else {
DCHECK(destination->IsStackSlot());
MemOperand dst = g.ToMemOperand(destination);
__ mov(temp, src);
__ ldr(src, dst);
__ str(temp, dst);
}
} else if (source->IsStackSlot()) {
DCHECK(destination->IsStackSlot());
Register temp_0 = kScratchReg;
SwVfpRegister temp_1 = kScratchDoubleReg.low();
MemOperand src = g.ToMemOperand(source);
MemOperand dst = g.ToMemOperand(destination);
__ ldr(temp_0, src);
__ vldr(temp_1, dst);
__ str(temp_0, dst);
__ vstr(temp_1, src);
} else if (source->IsFPRegister()) {
MachineRepresentation rep = LocationOperand::cast(source)->representation();
LowDwVfpRegister temp = kScratchDoubleReg;
if (rep == MachineRepresentation::kFloat64) {
DwVfpRegister src = g.ToDoubleRegister(source);
if (destination->IsFPRegister()) {
DwVfpRegister dst = g.ToDoubleRegister(destination);
__ Swap(src, dst);
} else {
DCHECK(destination->IsFPStackSlot());
MemOperand dst = g.ToMemOperand(destination);
__ Move(temp, src);
__ vldr(src, dst);
__ vstr(temp, dst);
}
} else if (rep == MachineRepresentation::kFloat32) {
int src_code = LocationOperand::cast(source)->register_code();
if (destination->IsFPRegister()) {
int dst_code = LocationOperand::cast(destination)->register_code();
__ VmovExtended(temp.low().code(), src_code);
__ VmovExtended(src_code, dst_code);
__ VmovExtended(dst_code, temp.low().code());
} else {
DCHECK(destination->IsFPStackSlot());
MemOperand dst = g.ToMemOperand(destination);
__ VmovExtended(temp.low().code(), src_code);
__ VmovExtended(src_code, dst);
__ vstr(temp.low(), dst);
}
} else {
DCHECK_EQ(MachineRepresentation::kSimd128, rep);
QwNeonRegister src = g.ToSimd128Register(source);
if (destination->IsFPRegister()) {
QwNeonRegister dst = g.ToSimd128Register(destination);
__ Swap(src, dst);
} else {
DCHECK(destination->IsFPStackSlot());
MemOperand dst = g.ToMemOperand(destination);
__ Move(kScratchQuadReg, src);
__ add(kScratchReg, dst.rn(), Operand(dst.offset()));
__ vld1(Neon8, NeonListOperand(src.low(), 2),
NeonMemOperand(kScratchReg));
__ vst1(Neon8, NeonListOperand(kScratchQuadReg.low(), 2),
NeonMemOperand(kScratchReg));
}
}
} else if (source->IsFPStackSlot()) {
DCHECK(destination->IsFPStackSlot());
Register temp_0 = kScratchReg;
LowDwVfpRegister temp_1 = kScratchDoubleReg;
MemOperand src0 = g.ToMemOperand(source);
MemOperand dst0 = g.ToMemOperand(destination);
MachineRepresentation rep = LocationOperand::cast(source)->representation();
if (rep == MachineRepresentation::kFloat64) {
MemOperand src1(src0.rn(), src0.offset() + kPointerSize);
MemOperand dst1(dst0.rn(), dst0.offset() + kPointerSize);
__ vldr(temp_1, dst0); // Save destination in temp_1.
__ ldr(temp_0, src0); // Then use temp_0 to copy source to destination.
__ str(temp_0, dst0);
__ ldr(temp_0, src1);
__ str(temp_0, dst1);
__ vstr(temp_1, src0);
} else if (rep == MachineRepresentation::kFloat32) {
__ vldr(temp_1.low(), dst0); // Save destination in temp_1.
__ ldr(temp_0, src0); // Then use temp_0 to copy source to destination.
__ str(temp_0, dst0);
__ vstr(temp_1.low(), src0);
} else {
DCHECK_EQ(MachineRepresentation::kSimd128, rep);
MemOperand src1(src0.rn(), src0.offset() + kDoubleSize);
MemOperand dst1(dst0.rn(), dst0.offset() + kDoubleSize);
__ vldr(kScratchQuadReg.low(), dst0);
__ vldr(kScratchQuadReg.high(), src0);
__ vstr(kScratchQuadReg.low(), src0);
__ vstr(kScratchQuadReg.high(), dst0);
__ vldr(kScratchQuadReg.low(), dst1);
__ vldr(kScratchQuadReg.high(), src1);
__ vstr(kScratchQuadReg.low(), src1);
__ vstr(kScratchQuadReg.high(), dst1);
}
} else {
// No other combinations are possible.
UNREACHABLE();
}
}
void CodeGenerator::AssembleJumpTable(Label** targets, size_t target_count) {
// On 32-bit ARM we emit the jump tables inline.
UNREACHABLE();
}
#undef __
#undef kScratchReg
} // namespace compiler
} // namespace internal
} // namespace v8