blob: c0d3146be1e84c7473f2f9657fdf66ce8130d682 [file] [log] [blame]
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/code-generator.h"
#include "src/assembler-inl.h"
#include "src/callable.h"
#include "src/compilation-info.h"
#include "src/compiler/code-generator-impl.h"
#include "src/compiler/gap-resolver.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/osr.h"
#include "src/s390/macro-assembler-s390.h"
namespace v8 {
namespace internal {
namespace compiler {
#define __ tasm()->
#define kScratchReg ip
// Adds S390-specific methods to convert InstructionOperands.
class S390OperandConverter final : public InstructionOperandConverter {
public:
S390OperandConverter(CodeGenerator* gen, Instruction* instr)
: InstructionOperandConverter(gen, instr) {}
size_t OutputCount() { return instr_->OutputCount(); }
bool Is64BitOperand(int index) {
return LocationOperand::cast(instr_->InputAt(index))->representation() ==
MachineRepresentation::kWord64;
}
bool Is32BitOperand(int index) {
return LocationOperand::cast(instr_->InputAt(index))->representation() ==
MachineRepresentation::kWord32;
}
bool CompareLogical() const {
switch (instr_->flags_condition()) {
case kUnsignedLessThan:
case kUnsignedGreaterThanOrEqual:
case kUnsignedLessThanOrEqual:
case kUnsignedGreaterThan:
return true;
default:
return false;
}
UNREACHABLE();
}
Operand InputImmediate(size_t index) {
Constant constant = ToConstant(instr_->InputAt(index));
switch (constant.type()) {
case Constant::kInt32:
return Operand(constant.ToInt32());
case Constant::kFloat32:
return Operand::EmbeddedNumber(constant.ToFloat32());
case Constant::kFloat64:
return Operand::EmbeddedNumber(constant.ToFloat64().value());
case Constant::kInt64:
#if V8_TARGET_ARCH_S390X
return Operand(constant.ToInt64());
#endif
case Constant::kExternalReference:
case Constant::kHeapObject:
case Constant::kRpoNumber:
break;
}
UNREACHABLE();
}
MemOperand MemoryOperand(AddressingMode* mode, size_t* first_index) {
const size_t index = *first_index;
if (mode) *mode = AddressingModeField::decode(instr_->opcode());
switch (AddressingModeField::decode(instr_->opcode())) {
case kMode_None:
break;
case kMode_MR:
*first_index += 1;
return MemOperand(InputRegister(index + 0), 0);
case kMode_MRI:
*first_index += 2;
return MemOperand(InputRegister(index + 0), InputInt32(index + 1));
case kMode_MRR:
*first_index += 2;
return MemOperand(InputRegister(index + 0), InputRegister(index + 1));
case kMode_MRRI:
*first_index += 3;
return MemOperand(InputRegister(index + 0), InputRegister(index + 1),
InputInt32(index + 2));
}
UNREACHABLE();
}
MemOperand MemoryOperand(AddressingMode* mode = nullptr,
size_t first_index = 0) {
return MemoryOperand(mode, &first_index);
}
MemOperand ToMemOperand(InstructionOperand* op) const {
DCHECK_NOT_NULL(op);
DCHECK(op->IsStackSlot() || op->IsFPStackSlot());
return SlotToMemOperand(AllocatedOperand::cast(op)->index());
}
MemOperand SlotToMemOperand(int slot) const {
FrameOffset offset = frame_access_state()->GetFrameOffset(slot);
return MemOperand(offset.from_stack_pointer() ? sp : fp, offset.offset());
}
MemOperand InputStackSlot(size_t index) {
InstructionOperand* op = instr_->InputAt(index);
return SlotToMemOperand(AllocatedOperand::cast(op)->index());
}
MemOperand InputStackSlot32(size_t index) {
#if V8_TARGET_ARCH_S390X && !V8_TARGET_LITTLE_ENDIAN
// We want to read the 32-bits directly from memory
MemOperand mem = InputStackSlot(index);
return MemOperand(mem.rb(), mem.rx(), mem.offset() + 4);
#else
return InputStackSlot(index);
#endif
}
};
static inline bool HasRegisterOutput(Instruction* instr, int index = 0) {
return instr->OutputCount() > 0 && instr->OutputAt(index)->IsRegister();
}
static inline bool HasFPRegisterInput(Instruction* instr, int index) {
return instr->InputAt(index)->IsFPRegister();
}
static inline bool HasRegisterInput(Instruction* instr, int index) {
return instr->InputAt(index)->IsRegister() ||
HasFPRegisterInput(instr, index);
}
static inline bool HasImmediateInput(Instruction* instr, size_t index) {
return instr->InputAt(index)->IsImmediate();
}
static inline bool HasFPStackSlotInput(Instruction* instr, size_t index) {
return instr->InputAt(index)->IsFPStackSlot();
}
static inline bool HasStackSlotInput(Instruction* instr, size_t index) {
return instr->InputAt(index)->IsStackSlot() ||
HasFPStackSlotInput(instr, index);
}
namespace {
class OutOfLineRecordWrite final : public OutOfLineCode {
public:
OutOfLineRecordWrite(CodeGenerator* gen, Register object, Register offset,
Register value, Register scratch0, Register scratch1,
RecordWriteMode mode)
: OutOfLineCode(gen),
object_(object),
offset_(offset),
offset_immediate_(0),
value_(value),
scratch0_(scratch0),
scratch1_(scratch1),
mode_(mode),
must_save_lr_(!gen->frame_access_state()->has_frame()),
zone_(gen->zone()) {}
OutOfLineRecordWrite(CodeGenerator* gen, Register object, int32_t offset,
Register value, Register scratch0, Register scratch1,
RecordWriteMode mode)
: OutOfLineCode(gen),
object_(object),
offset_(no_reg),
offset_immediate_(offset),
value_(value),
scratch0_(scratch0),
scratch1_(scratch1),
mode_(mode),
must_save_lr_(!gen->frame_access_state()->has_frame()),
zone_(gen->zone()) {}
void SaveRegisters(RegList registers) {
DCHECK_LT(0, NumRegs(registers));
RegList regs = 0;
for (int i = 0; i < Register::kNumRegisters; ++i) {
if ((registers >> i) & 1u) {
regs |= Register::from_code(i).bit();
}
}
__ MultiPush(regs | r14.bit());
}
void RestoreRegisters(RegList registers) {
DCHECK_LT(0, NumRegs(registers));
RegList regs = 0;
for (int i = 0; i < Register::kNumRegisters; ++i) {
if ((registers >> i) & 1u) {
regs |= Register::from_code(i).bit();
}
}
__ MultiPop(regs | r14.bit());
}
void Generate() final {
if (mode_ > RecordWriteMode::kValueIsPointer) {
__ JumpIfSmi(value_, exit());
}
__ CheckPageFlag(value_, scratch0_,
MemoryChunk::kPointersToHereAreInterestingMask, eq,
exit());
if (offset_ == no_reg) {
__ AddP(scratch1_, object_, Operand(offset_immediate_));
} else {
DCHECK_EQ(0, offset_immediate_);
__ AddP(scratch1_, object_, offset_);
}
RememberedSetAction const remembered_set_action =
mode_ > RecordWriteMode::kValueIsMap ? EMIT_REMEMBERED_SET
: OMIT_REMEMBERED_SET;
SaveFPRegsMode const save_fp_mode =
frame()->DidAllocateDoubleRegisters() ? kSaveFPRegs : kDontSaveFPRegs;
if (must_save_lr_) {
// We need to save and restore r14 if the frame was elided.
__ Push(r14);
}
__ CallRecordWriteStub(object_, scratch1_, remembered_set_action,
save_fp_mode);
if (must_save_lr_) {
// We need to save and restore r14 if the frame was elided.
__ Pop(r14);
}
}
private:
Register const object_;
Register const offset_;
int32_t const offset_immediate_; // Valid if offset_ == no_reg.
Register const value_;
Register const scratch0_;
Register const scratch1_;
RecordWriteMode const mode_;
bool must_save_lr_;
Zone* zone_;
};
Condition FlagsConditionToCondition(FlagsCondition condition, ArchOpcode op) {
switch (condition) {
case kEqual:
return eq;
case kNotEqual:
return ne;
case kUnsignedLessThan:
// unsigned number never less than 0
if (op == kS390_LoadAndTestWord32 || op == kS390_LoadAndTestWord64)
return CC_NOP;
// fall through
case kSignedLessThan:
return lt;
case kUnsignedGreaterThanOrEqual:
// unsigned number always greater than or equal 0
if (op == kS390_LoadAndTestWord32 || op == kS390_LoadAndTestWord64)
return CC_ALWAYS;
// fall through
case kSignedGreaterThanOrEqual:
return ge;
case kUnsignedLessThanOrEqual:
// unsigned number never less than 0
if (op == kS390_LoadAndTestWord32 || op == kS390_LoadAndTestWord64)
return CC_EQ;
// fall through
case kSignedLessThanOrEqual:
return le;
case kUnsignedGreaterThan:
// unsigned number always greater than or equal 0
if (op == kS390_LoadAndTestWord32 || op == kS390_LoadAndTestWord64)
return ne;
// fall through
case kSignedGreaterThan:
return gt;
case kOverflow:
// Overflow checked for AddP/SubP only.
switch (op) {
case kS390_Add32:
case kS390_Add64:
case kS390_Sub32:
case kS390_Sub64:
case kS390_Abs64:
case kS390_Abs32:
case kS390_Mul32:
return overflow;
default:
break;
}
break;
case kNotOverflow:
switch (op) {
case kS390_Add32:
case kS390_Add64:
case kS390_Sub32:
case kS390_Sub64:
case kS390_Abs64:
case kS390_Abs32:
case kS390_Mul32:
return nooverflow;
default:
break;
}
break;
default:
break;
}
UNREACHABLE();
}
#define GET_MEMOPERAND32(ret, fi) \
([&](int& ret) { \
AddressingMode mode = AddressingModeField::decode(instr->opcode()); \
MemOperand mem(r0); \
if (mode != kMode_None) { \
size_t first_index = (fi); \
mem = i.MemoryOperand(&mode, &first_index); \
ret = first_index; \
} else { \
mem = i.InputStackSlot32(fi); \
} \
return mem; \
})(ret)
#define GET_MEMOPERAND(ret, fi) \
([&](int& ret) { \
AddressingMode mode = AddressingModeField::decode(instr->opcode()); \
MemOperand mem(r0); \
if (mode != kMode_None) { \
size_t first_index = (fi); \
mem = i.MemoryOperand(&mode, &first_index); \
ret = first_index; \
} else { \
mem = i.InputStackSlot(fi); \
} \
return mem; \
})(ret)
#define RRInstr(instr) \
[&]() { \
DCHECK(i.OutputRegister() == i.InputRegister(0)); \
__ instr(i.OutputRegister(), i.InputRegister(1)); \
return 2; \
}
#define RIInstr(instr) \
[&]() { \
DCHECK(i.OutputRegister() == i.InputRegister(0)); \
__ instr(i.OutputRegister(), i.InputImmediate(1)); \
return 2; \
}
#define RMInstr(instr, GETMEM) \
[&]() { \
DCHECK(i.OutputRegister() == i.InputRegister(0)); \
int ret = 2; \
__ instr(i.OutputRegister(), GETMEM(ret, 1)); \
return ret; \
}
#define RM32Instr(instr) RMInstr(instr, GET_MEMOPERAND32)
#define RM64Instr(instr) RMInstr(instr, GET_MEMOPERAND)
#define RRRInstr(instr) \
[&]() { \
__ instr(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1)); \
return 2; \
}
#define RRIInstr(instr) \
[&]() { \
__ instr(i.OutputRegister(), i.InputRegister(0), i.InputImmediate(1)); \
return 2; \
}
#define RRMInstr(instr, GETMEM) \
[&]() { \
int ret = 2; \
__ instr(i.OutputRegister(), i.InputRegister(0), GETMEM(ret, 1)); \
return ret; \
}
#define RRM32Instr(instr) RRMInstr(instr, GET_MEMOPERAND32)
#define RRM64Instr(instr) RRMInstr(instr, GET_MEMOPERAND)
#define DDInstr(instr) \
[&]() { \
DCHECK(i.OutputDoubleRegister() == i.InputDoubleRegister(0)); \
__ instr(i.OutputDoubleRegister(), i.InputDoubleRegister(1)); \
return 2; \
}
#define DMInstr(instr) \
[&]() { \
DCHECK(i.OutputDoubleRegister() == i.InputDoubleRegister(0)); \
int ret = 2; \
__ instr(i.OutputDoubleRegister(), GET_MEMOPERAND(ret, 1)); \
return ret; \
}
#define DMTInstr(instr) \
[&]() { \
DCHECK(i.OutputDoubleRegister() == i.InputDoubleRegister(0)); \
int ret = 2; \
__ instr(i.OutputDoubleRegister(), GET_MEMOPERAND(ret, 1), \
kScratchDoubleReg); \
return ret; \
}
#define R_MInstr(instr) \
[&]() { \
int ret = 2; \
__ instr(i.OutputRegister(), GET_MEMOPERAND(ret, 0)); \
return ret; \
}
#define R_DInstr(instr) \
[&]() { \
__ instr(i.OutputRegister(), i.InputDoubleRegister(0)); \
return 2; \
}
#define D_DInstr(instr) \
[&]() { \
__ instr(i.OutputDoubleRegister(), i.InputDoubleRegister(0)); \
return 2; \
}
#define D_MInstr(instr) \
[&]() { \
int ret = 2; \
__ instr(i.OutputDoubleRegister(), GET_MEMOPERAND(ret, 0)); \
return ret; \
}
#define D_MTInstr(instr) \
[&]() { \
int ret = 2; \
__ instr(i.OutputDoubleRegister(), GET_MEMOPERAND(ret, 0), \
kScratchDoubleReg); \
return ret; \
}
static int nullInstr() {
UNREACHABLE();
}
template <int numOfOperand, class RType, class MType, class IType>
static inline int AssembleOp(Instruction* instr, RType r, MType m, IType i) {
AddressingMode mode = AddressingModeField::decode(instr->opcode());
if (mode != kMode_None || HasStackSlotInput(instr, numOfOperand - 1)) {
return m();
} else if (HasRegisterInput(instr, numOfOperand - 1)) {
return r();
} else if (HasImmediateInput(instr, numOfOperand - 1)) {
return i();
} else {
UNREACHABLE();
}
}
template <class _RR, class _RM, class _RI>
static inline int AssembleBinOp(Instruction* instr, _RR _rr, _RM _rm, _RI _ri) {
return AssembleOp<2>(instr, _rr, _rm, _ri);
}
template <class _R, class _M, class _I>
static inline int AssembleUnaryOp(Instruction* instr, _R _r, _M _m, _I _i) {
return AssembleOp<1>(instr, _r, _m, _i);
}
#define ASSEMBLE_BIN_OP(_rr, _rm, _ri) AssembleBinOp(instr, _rr, _rm, _ri)
#define ASSEMBLE_UNARY_OP(_r, _m, _i) AssembleUnaryOp(instr, _r, _m, _i)
#ifdef V8_TARGET_ARCH_S390X
#define CHECK_AND_ZERO_EXT_OUTPUT(num) \
([&](int index) { \
DCHECK(HasImmediateInput(instr, (index))); \
int doZeroExt = i.InputInt32(index); \
if (doZeroExt) __ LoadlW(i.OutputRegister(), i.OutputRegister()); \
})(num)
#define ASSEMBLE_BIN32_OP(_rr, _rm, _ri) \
{ CHECK_AND_ZERO_EXT_OUTPUT(AssembleBinOp(instr, _rr, _rm, _ri)); }
#else
#define ASSEMBLE_BIN32_OP ASSEMBLE_BIN_OP
#define CHECK_AND_ZERO_EXT_OUTPUT(num)
#endif
} // namespace
#define ASSEMBLE_FLOAT_UNOP(asm_instr) \
do { \
__ asm_instr(i.OutputDoubleRegister(), i.InputDoubleRegister(0)); \
} while (0)
#define ASSEMBLE_FLOAT_BINOP(asm_instr) \
do { \
__ asm_instr(i.OutputDoubleRegister(), i.InputDoubleRegister(0), \
i.InputDoubleRegister(1)); \
} while (0)
#define ASSEMBLE_COMPARE(cmp_instr, cmpl_instr) \
do { \
AddressingMode mode = AddressingModeField::decode(instr->opcode()); \
if (mode != kMode_None) { \
size_t first_index = 1; \
MemOperand operand = i.MemoryOperand(&mode, &first_index); \
if (i.CompareLogical()) { \
__ cmpl_instr(i.InputRegister(0), operand); \
} else { \
__ cmp_instr(i.InputRegister(0), operand); \
} \
} else if (HasRegisterInput(instr, 1)) { \
if (i.CompareLogical()) { \
__ cmpl_instr(i.InputRegister(0), i.InputRegister(1)); \
} else { \
__ cmp_instr(i.InputRegister(0), i.InputRegister(1)); \
} \
} else if (HasImmediateInput(instr, 1)) { \
if (i.CompareLogical()) { \
__ cmpl_instr(i.InputRegister(0), i.InputImmediate(1)); \
} else { \
__ cmp_instr(i.InputRegister(0), i.InputImmediate(1)); \
} \
} else { \
DCHECK(HasStackSlotInput(instr, 1)); \
if (i.CompareLogical()) { \
__ cmpl_instr(i.InputRegister(0), i.InputStackSlot(1)); \
} else { \
__ cmp_instr(i.InputRegister(0), i.InputStackSlot(1)); \
} \
} \
} while (0)
#define ASSEMBLE_COMPARE32(cmp_instr, cmpl_instr) \
do { \
AddressingMode mode = AddressingModeField::decode(instr->opcode()); \
if (mode != kMode_None) { \
size_t first_index = 1; \
MemOperand operand = i.MemoryOperand(&mode, &first_index); \
if (i.CompareLogical()) { \
__ cmpl_instr(i.InputRegister(0), operand); \
} else { \
__ cmp_instr(i.InputRegister(0), operand); \
} \
} else if (HasRegisterInput(instr, 1)) { \
if (i.CompareLogical()) { \
__ cmpl_instr(i.InputRegister(0), i.InputRegister(1)); \
} else { \
__ cmp_instr(i.InputRegister(0), i.InputRegister(1)); \
} \
} else if (HasImmediateInput(instr, 1)) { \
if (i.CompareLogical()) { \
__ cmpl_instr(i.InputRegister(0), i.InputImmediate(1)); \
} else { \
__ cmp_instr(i.InputRegister(0), i.InputImmediate(1)); \
} \
} else { \
DCHECK(HasStackSlotInput(instr, 1)); \
if (i.CompareLogical()) { \
__ cmpl_instr(i.InputRegister(0), i.InputStackSlot32(1)); \
} else { \
__ cmp_instr(i.InputRegister(0), i.InputStackSlot32(1)); \
} \
} \
} while (0)
#define ASSEMBLE_FLOAT_COMPARE(cmp_rr_instr, cmp_rm_instr, load_instr) \
do { \
AddressingMode mode = AddressingModeField::decode(instr->opcode()); \
if (mode != kMode_None) { \
size_t first_index = 1; \
MemOperand operand = i.MemoryOperand(&mode, &first_index); \
__ cmp_rm_instr(i.InputDoubleRegister(0), operand); \
} else if (HasFPRegisterInput(instr, 1)) { \
__ cmp_rr_instr(i.InputDoubleRegister(0), i.InputDoubleRegister(1)); \
} else { \
USE(HasFPStackSlotInput); \
DCHECK(HasFPStackSlotInput(instr, 1)); \
MemOperand operand = i.InputStackSlot(1); \
if (operand.offset() >= 0) { \
__ cmp_rm_instr(i.InputDoubleRegister(0), operand); \
} else { \
__ load_instr(kScratchDoubleReg, operand); \
__ cmp_rr_instr(i.InputDoubleRegister(0), kScratchDoubleReg); \
} \
} \
} while (0)
// Divide instruction dr will implicity use register pair
// r0 & r1 below.
// R0:R1 = R1 / divisor - R0 remainder
// Copy remainder to output reg
#define ASSEMBLE_MODULO(div_instr, shift_instr) \
do { \
__ LoadRR(r0, i.InputRegister(0)); \
__ shift_instr(r0, Operand(32)); \
__ div_instr(r0, i.InputRegister(1)); \
__ LoadlW(i.OutputRegister(), r0); \
} while (0)
#define ASSEMBLE_FLOAT_MODULO() \
do { \
FrameScope scope(tasm(), StackFrame::MANUAL); \
__ PrepareCallCFunction(0, 2, kScratchReg); \
__ MovToFloatParameters(i.InputDoubleRegister(0), \
i.InputDoubleRegister(1)); \
__ CallCFunction( \
ExternalReference::mod_two_doubles_operation(__ isolate()), 0, 2); \
__ MovFromFloatResult(i.OutputDoubleRegister()); \
} while (0)
#define ASSEMBLE_IEEE754_UNOP(name) \
do { \
/* TODO(bmeurer): We should really get rid of this special instruction, */ \
/* and generate a CallAddress instruction instead. */ \
FrameScope scope(tasm(), StackFrame::MANUAL); \
__ PrepareCallCFunction(0, 1, kScratchReg); \
__ MovToFloatParameter(i.InputDoubleRegister(0)); \
__ CallCFunction( \
ExternalReference::ieee754_##name##_function(__ isolate()), 0, 1); \
/* Move the result in the double result register. */ \
__ MovFromFloatResult(i.OutputDoubleRegister()); \
} while (0)
#define ASSEMBLE_IEEE754_BINOP(name) \
do { \
/* TODO(bmeurer): We should really get rid of this special instruction, */ \
/* and generate a CallAddress instruction instead. */ \
FrameScope scope(tasm(), StackFrame::MANUAL); \
__ PrepareCallCFunction(0, 2, kScratchReg); \
__ MovToFloatParameters(i.InputDoubleRegister(0), \
i.InputDoubleRegister(1)); \
__ CallCFunction( \
ExternalReference::ieee754_##name##_function(__ isolate()), 0, 2); \
/* Move the result in the double result register. */ \
__ MovFromFloatResult(i.OutputDoubleRegister()); \
} while (0)
#define ASSEMBLE_DOUBLE_MAX() \
do { \
DoubleRegister left_reg = i.InputDoubleRegister(0); \
DoubleRegister right_reg = i.InputDoubleRegister(1); \
DoubleRegister result_reg = i.OutputDoubleRegister(); \
Label check_nan_left, check_zero, return_left, return_right, done; \
__ cdbr(left_reg, right_reg); \
__ bunordered(&check_nan_left, Label::kNear); \
__ beq(&check_zero); \
__ bge(&return_left, Label::kNear); \
__ b(&return_right, Label::kNear); \
\
__ bind(&check_zero); \
__ lzdr(kDoubleRegZero); \
__ cdbr(left_reg, kDoubleRegZero); \
/* left == right != 0. */ \
__ bne(&return_left, Label::kNear); \
/* At this point, both left and right are either 0 or -0. */ \
/* N.B. The following works because +0 + -0 == +0 */ \
/* For max we want logical-and of sign bit: (L + R) */ \
__ ldr(result_reg, left_reg); \
__ adbr(result_reg, right_reg); \
__ b(&done, Label::kNear); \
\
__ bind(&check_nan_left); \
__ cdbr(left_reg, left_reg); \
/* left == NaN. */ \
__ bunordered(&return_left, Label::kNear); \
\
__ bind(&return_right); \
if (right_reg != result_reg) { \
__ ldr(result_reg, right_reg); \
} \
__ b(&done, Label::kNear); \
\
__ bind(&return_left); \
if (left_reg != result_reg) { \
__ ldr(result_reg, left_reg); \
} \
__ bind(&done); \
} while (0)
#define ASSEMBLE_DOUBLE_MIN() \
do { \
DoubleRegister left_reg = i.InputDoubleRegister(0); \
DoubleRegister right_reg = i.InputDoubleRegister(1); \
DoubleRegister result_reg = i.OutputDoubleRegister(); \
Label check_nan_left, check_zero, return_left, return_right, done; \
__ cdbr(left_reg, right_reg); \
__ bunordered(&check_nan_left, Label::kNear); \
__ beq(&check_zero); \
__ ble(&return_left, Label::kNear); \
__ b(&return_right, Label::kNear); \
\
__ bind(&check_zero); \
__ lzdr(kDoubleRegZero); \
__ cdbr(left_reg, kDoubleRegZero); \
/* left == right != 0. */ \
__ bne(&return_left, Label::kNear); \
/* At this point, both left and right are either 0 or -0. */ \
/* N.B. The following works because +0 + -0 == +0 */ \
/* For min we want logical-or of sign bit: -(-L + -R) */ \
__ lcdbr(left_reg, left_reg); \
__ ldr(result_reg, left_reg); \
if (left_reg == right_reg) { \
__ adbr(result_reg, right_reg); \
} else { \
__ sdbr(result_reg, right_reg); \
} \
__ lcdbr(result_reg, result_reg); \
__ b(&done, Label::kNear); \
\
__ bind(&check_nan_left); \
__ cdbr(left_reg, left_reg); \
/* left == NaN. */ \
__ bunordered(&return_left, Label::kNear); \
\
__ bind(&return_right); \
if (right_reg != result_reg) { \
__ ldr(result_reg, right_reg); \
} \
__ b(&done, Label::kNear); \
\
__ bind(&return_left); \
if (left_reg != result_reg) { \
__ ldr(result_reg, left_reg); \
} \
__ bind(&done); \
} while (0)
#define ASSEMBLE_FLOAT_MAX() \
do { \
DoubleRegister left_reg = i.InputDoubleRegister(0); \
DoubleRegister right_reg = i.InputDoubleRegister(1); \
DoubleRegister result_reg = i.OutputDoubleRegister(); \
Label check_nan_left, check_zero, return_left, return_right, done; \
__ cebr(left_reg, right_reg); \
__ bunordered(&check_nan_left, Label::kNear); \
__ beq(&check_zero); \
__ bge(&return_left, Label::kNear); \
__ b(&return_right, Label::kNear); \
\
__ bind(&check_zero); \
__ lzdr(kDoubleRegZero); \
__ cebr(left_reg, kDoubleRegZero); \
/* left == right != 0. */ \
__ bne(&return_left, Label::kNear); \
/* At this point, both left and right are either 0 or -0. */ \
/* N.B. The following works because +0 + -0 == +0 */ \
/* For max we want logical-and of sign bit: (L + R) */ \
__ ldr(result_reg, left_reg); \
__ aebr(result_reg, right_reg); \
__ b(&done, Label::kNear); \
\
__ bind(&check_nan_left); \
__ cebr(left_reg, left_reg); \
/* left == NaN. */ \
__ bunordered(&return_left, Label::kNear); \
\
__ bind(&return_right); \
if (right_reg != result_reg) { \
__ ldr(result_reg, right_reg); \
} \
__ b(&done, Label::kNear); \
\
__ bind(&return_left); \
if (left_reg != result_reg) { \
__ ldr(result_reg, left_reg); \
} \
__ bind(&done); \
} while (0)
#define ASSEMBLE_FLOAT_MIN() \
do { \
DoubleRegister left_reg = i.InputDoubleRegister(0); \
DoubleRegister right_reg = i.InputDoubleRegister(1); \
DoubleRegister result_reg = i.OutputDoubleRegister(); \
Label check_nan_left, check_zero, return_left, return_right, done; \
__ cebr(left_reg, right_reg); \
__ bunordered(&check_nan_left, Label::kNear); \
__ beq(&check_zero); \
__ ble(&return_left, Label::kNear); \
__ b(&return_right, Label::kNear); \
\
__ bind(&check_zero); \
__ lzdr(kDoubleRegZero); \
__ cebr(left_reg, kDoubleRegZero); \
/* left == right != 0. */ \
__ bne(&return_left, Label::kNear); \
/* At this point, both left and right are either 0 or -0. */ \
/* N.B. The following works because +0 + -0 == +0 */ \
/* For min we want logical-or of sign bit: -(-L + -R) */ \
__ lcebr(left_reg, left_reg); \
__ ldr(result_reg, left_reg); \
if (left_reg == right_reg) { \
__ aebr(result_reg, right_reg); \
} else { \
__ sebr(result_reg, right_reg); \
} \
__ lcebr(result_reg, result_reg); \
__ b(&done, Label::kNear); \
\
__ bind(&check_nan_left); \
__ cebr(left_reg, left_reg); \
/* left == NaN. */ \
__ bunordered(&return_left, Label::kNear); \
\
__ bind(&return_right); \
if (right_reg != result_reg) { \
__ ldr(result_reg, right_reg); \
} \
__ b(&done, Label::kNear); \
\
__ bind(&return_left); \
if (left_reg != result_reg) { \
__ ldr(result_reg, left_reg); \
} \
__ bind(&done); \
} while (0)
//
// Only MRI mode for these instructions available
#define ASSEMBLE_LOAD_FLOAT(asm_instr) \
do { \
DoubleRegister result = i.OutputDoubleRegister(); \
AddressingMode mode = kMode_None; \
MemOperand operand = i.MemoryOperand(&mode); \
__ asm_instr(result, operand); \
} while (0)
#define ASSEMBLE_LOAD_INTEGER(asm_instr) \
do { \
Register result = i.OutputRegister(); \
AddressingMode mode = kMode_None; \
MemOperand operand = i.MemoryOperand(&mode); \
__ asm_instr(result, operand); \
} while (0)
#define ASSEMBLE_LOADANDTEST64(asm_instr_rr, asm_instr_rm) \
{ \
AddressingMode mode = AddressingModeField::decode(instr->opcode()); \
Register dst = HasRegisterOutput(instr) ? i.OutputRegister() : r0; \
if (mode != kMode_None) { \
size_t first_index = 0; \
MemOperand operand = i.MemoryOperand(&mode, &first_index); \
__ asm_instr_rm(dst, operand); \
} else if (HasRegisterInput(instr, 0)) { \
__ asm_instr_rr(dst, i.InputRegister(0)); \
} else { \
DCHECK(HasStackSlotInput(instr, 0)); \
__ asm_instr_rm(dst, i.InputStackSlot(0)); \
} \
}
#define ASSEMBLE_LOADANDTEST32(asm_instr_rr, asm_instr_rm) \
{ \
AddressingMode mode = AddressingModeField::decode(instr->opcode()); \
Register dst = HasRegisterOutput(instr) ? i.OutputRegister() : r0; \
if (mode != kMode_None) { \
size_t first_index = 0; \
MemOperand operand = i.MemoryOperand(&mode, &first_index); \
__ asm_instr_rm(dst, operand); \
} else if (HasRegisterInput(instr, 0)) { \
__ asm_instr_rr(dst, i.InputRegister(0)); \
} else { \
DCHECK(HasStackSlotInput(instr, 0)); \
__ asm_instr_rm(dst, i.InputStackSlot32(0)); \
} \
}
#define ASSEMBLE_STORE_FLOAT32() \
do { \
size_t index = 0; \
AddressingMode mode = kMode_None; \
MemOperand operand = i.MemoryOperand(&mode, &index); \
DoubleRegister value = i.InputDoubleRegister(index); \
__ StoreFloat32(value, operand); \
} while (0)
#define ASSEMBLE_STORE_DOUBLE() \
do { \
size_t index = 0; \
AddressingMode mode = kMode_None; \
MemOperand operand = i.MemoryOperand(&mode, &index); \
DoubleRegister value = i.InputDoubleRegister(index); \
__ StoreDouble(value, operand); \
} while (0)
#define ASSEMBLE_STORE_INTEGER(asm_instr) \
do { \
size_t index = 0; \
AddressingMode mode = kMode_None; \
MemOperand operand = i.MemoryOperand(&mode, &index); \
Register value = i.InputRegister(index); \
__ asm_instr(value, operand); \
} while (0)
void CodeGenerator::AssembleDeconstructFrame() {
__ LeaveFrame(StackFrame::MANUAL);
}
void CodeGenerator::AssemblePrepareTailCall() {
if (frame_access_state()->has_frame()) {
__ RestoreFrameStateForTailCall();
}
frame_access_state()->SetFrameAccessToSP();
}
void CodeGenerator::AssemblePopArgumentsAdaptorFrame(Register args_reg,
Register scratch1,
Register scratch2,
Register scratch3) {
DCHECK(!AreAliased(args_reg, scratch1, scratch2, scratch3));
Label done;
// Check if current frame is an arguments adaptor frame.
__ LoadP(scratch1, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ CmpP(scratch1,
Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
__ bne(&done);
// Load arguments count from current arguments adaptor frame (note, it
// does not include receiver).
Register caller_args_count_reg = scratch1;
__ LoadP(caller_args_count_reg,
MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ SmiUntag(caller_args_count_reg);
ParameterCount callee_args_count(args_reg);
__ PrepareForTailCall(callee_args_count, caller_args_count_reg, scratch2,
scratch3);
__ bind(&done);
}
namespace {
void FlushPendingPushRegisters(TurboAssembler* tasm,
FrameAccessState* frame_access_state,
ZoneVector<Register>* pending_pushes) {
switch (pending_pushes->size()) {
case 0:
break;
case 1:
tasm->Push((*pending_pushes)[0]);
break;
case 2:
tasm->Push((*pending_pushes)[0], (*pending_pushes)[1]);
break;
case 3:
tasm->Push((*pending_pushes)[0], (*pending_pushes)[1],
(*pending_pushes)[2]);
break;
default:
UNREACHABLE();
break;
}
frame_access_state->IncreaseSPDelta(pending_pushes->size());
pending_pushes->clear();
}
void AdjustStackPointerForTailCall(
TurboAssembler* tasm, FrameAccessState* state, int new_slot_above_sp,
ZoneVector<Register>* pending_pushes = nullptr,
bool allow_shrinkage = true) {
int current_sp_offset = state->GetSPToFPSlotCount() +
StandardFrameConstants::kFixedSlotCountAboveFp;
int stack_slot_delta = new_slot_above_sp - current_sp_offset;
if (stack_slot_delta > 0) {
if (pending_pushes != nullptr) {
FlushPendingPushRegisters(tasm, state, pending_pushes);
}
tasm->AddP(sp, sp, Operand(-stack_slot_delta * kPointerSize));
state->IncreaseSPDelta(stack_slot_delta);
} else if (allow_shrinkage && stack_slot_delta < 0) {
if (pending_pushes != nullptr) {
FlushPendingPushRegisters(tasm, state, pending_pushes);
}
tasm->AddP(sp, sp, Operand(-stack_slot_delta * kPointerSize));
state->IncreaseSPDelta(stack_slot_delta);
}
}
} // namespace
void CodeGenerator::AssembleTailCallBeforeGap(Instruction* instr,
int first_unused_stack_slot) {
ZoneVector<MoveOperands*> pushes(zone());
GetPushCompatibleMoves(instr, kRegisterPush, &pushes);
if (!pushes.empty() &&
(LocationOperand::cast(pushes.back()->destination()).index() + 1 ==
first_unused_stack_slot)) {
S390OperandConverter g(this, instr);
ZoneVector<Register> pending_pushes(zone());
for (auto move : pushes) {
LocationOperand destination_location(
LocationOperand::cast(move->destination()));
InstructionOperand source(move->source());
AdjustStackPointerForTailCall(
tasm(), frame_access_state(),
destination_location.index() - pending_pushes.size(),
&pending_pushes);
// Pushes of non-register data types are not supported.
DCHECK(source.IsRegister());
LocationOperand source_location(LocationOperand::cast(source));
pending_pushes.push_back(source_location.GetRegister());
// TODO(arm): We can push more than 3 registers at once. Add support in
// the macro-assembler for pushing a list of registers.
if (pending_pushes.size() == 3) {
FlushPendingPushRegisters(tasm(), frame_access_state(),
&pending_pushes);
}
move->Eliminate();
}
FlushPendingPushRegisters(tasm(), frame_access_state(), &pending_pushes);
}
AdjustStackPointerForTailCall(tasm(), frame_access_state(),
first_unused_stack_slot, nullptr, false);
}
void CodeGenerator::AssembleTailCallAfterGap(Instruction* instr,
int first_unused_stack_slot) {
AdjustStackPointerForTailCall(tasm(), frame_access_state(),
first_unused_stack_slot);
}
// Check if the code object is marked for deoptimization. If it is, then it
// jumps to the CompileLazyDeoptimizedCode builtin. In order to do this we need
// to:
// 1. load the address of the current instruction;
// 2. read from memory the word that contains that bit, which can be found in
// the flags in the referenced {CodeDataContainer} object;
// 3. test kMarkedForDeoptimizationBit in those flags; and
// 4. if it is not zero then it jumps to the builtin.
void CodeGenerator::BailoutIfDeoptimized() {
Label current;
__ larl(r1, &current);
int pc_offset = __ pc_offset();
__ bind(&current);
int offset = Code::kCodeDataContainerOffset - (Code::kHeaderSize + pc_offset);
__ LoadP(ip, MemOperand(r1, offset));
__ LoadW(ip,
FieldMemOperand(ip, CodeDataContainer::kKindSpecificFlagsOffset));
__ TestBit(ip, Code::kMarkedForDeoptimizationBit);
Handle<Code> code = isolate()->builtins()->builtin_handle(
Builtins::kCompileLazyDeoptimizedCode);
__ Jump(code, RelocInfo::CODE_TARGET, ne);
}
// Assembles an instruction after register allocation, producing machine code.
CodeGenerator::CodeGenResult CodeGenerator::AssembleArchInstruction(
Instruction* instr) {
S390OperandConverter i(this, instr);
ArchOpcode opcode = ArchOpcodeField::decode(instr->opcode());
switch (opcode) {
case kArchComment: {
Address comment_string = i.InputExternalReference(0).address();
__ RecordComment(reinterpret_cast<const char*>(comment_string));
break;
}
case kArchCallCodeObject: {
if (HasRegisterInput(instr, 0)) {
__ AddP(ip, i.InputRegister(0),
Operand(Code::kHeaderSize - kHeapObjectTag));
__ Call(ip);
} else {
__ Call(i.InputCode(0), RelocInfo::CODE_TARGET);
}
RecordCallPosition(instr);
frame_access_state()->ClearSPDelta();
break;
}
case kArchCallWasmFunction: {
// We must not share code targets for calls to builtins for wasm code, as
// they might need to be patched individually.
RelocInfo::Mode rmode = RelocInfo::JS_TO_WASM_CALL;
if (info()->IsWasm()) {
rmode = RelocInfo::WASM_CALL;
}
if (instr->InputAt(0)->IsImmediate()) {
#ifdef V8_TARGET_ARCH_S390X
Address wasm_code = reinterpret_cast<Address>(
i.ToConstant(instr->InputAt(0)).ToInt64());
#else
Address wasm_code = reinterpret_cast<Address>(
i.ToConstant(instr->InputAt(0)).ToInt32());
#endif
__ Call(wasm_code, rmode);
} else {
__ Call(i.InputRegister(0));
}
RecordCallPosition(instr);
frame_access_state()->ClearSPDelta();
break;
}
case kArchTailCallCodeObjectFromJSFunction:
case kArchTailCallCodeObject: {
if (opcode == kArchTailCallCodeObjectFromJSFunction) {
AssemblePopArgumentsAdaptorFrame(kJavaScriptCallArgCountRegister,
i.TempRegister(0), i.TempRegister(1),
i.TempRegister(2));
}
if (HasRegisterInput(instr, 0)) {
__ AddP(ip, i.InputRegister(0),
Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(ip);
} else {
// We cannot use the constant pool to load the target since
// we've already restored the caller's frame.
ConstantPoolUnavailableScope constant_pool_unavailable(tasm());
__ Jump(i.InputCode(0), RelocInfo::CODE_TARGET);
}
frame_access_state()->ClearSPDelta();
frame_access_state()->SetFrameAccessToDefault();
break;
}
case kArchTailCallWasm: {
// We must not share code targets for calls to builtins for wasm code, as
// they might need to be patched individually.
RelocInfo::Mode rmode = RelocInfo::JS_TO_WASM_CALL;
if (info()->IsWasm()) {
rmode = RelocInfo::WASM_CALL;
}
if (instr->InputAt(0)->IsImmediate()) {
Address wasm_code = reinterpret_cast<Address>(
i.ToConstant(instr->InputAt(0)).ToInt32());
__ Jump(wasm_code, rmode);
} else {
__ Jump(i.InputRegister(0));
}
frame_access_state()->ClearSPDelta();
frame_access_state()->SetFrameAccessToDefault();
break;
}
case kArchTailCallAddress: {
CHECK(!instr->InputAt(0)->IsImmediate());
__ Jump(i.InputRegister(0));
frame_access_state()->ClearSPDelta();
frame_access_state()->SetFrameAccessToDefault();
break;
}
case kArchCallJSFunction: {
Register func = i.InputRegister(0);
if (FLAG_debug_code) {
// Check the function's context matches the context argument.
__ LoadP(kScratchReg,
FieldMemOperand(func, JSFunction::kContextOffset));
__ CmpP(cp, kScratchReg);
__ Assert(eq, AbortReason::kWrongFunctionContext);
}
__ LoadP(ip, FieldMemOperand(func, JSFunction::kCodeOffset));
__ AddP(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Call(ip);
RecordCallPosition(instr);
frame_access_state()->ClearSPDelta();
break;
}
case kArchPrepareCallCFunction: {
int const num_parameters = MiscField::decode(instr->opcode());
__ PrepareCallCFunction(num_parameters, kScratchReg);
// Frame alignment requires using FP-relative frame addressing.
frame_access_state()->SetFrameAccessToFP();
break;
}
case kArchSaveCallerRegisters: {
fp_mode_ =
static_cast<SaveFPRegsMode>(MiscField::decode(instr->opcode()));
DCHECK(fp_mode_ == kDontSaveFPRegs || fp_mode_ == kSaveFPRegs);
// kReturnRegister0 should have been saved before entering the stub.
int bytes = __ PushCallerSaved(fp_mode_, kReturnRegister0);
DCHECK_EQ(0, bytes % kPointerSize);
DCHECK_EQ(0, frame_access_state()->sp_delta());
frame_access_state()->IncreaseSPDelta(bytes / kPointerSize);
DCHECK(!caller_registers_saved_);
caller_registers_saved_ = true;
break;
}
case kArchRestoreCallerRegisters: {
DCHECK(fp_mode_ ==
static_cast<SaveFPRegsMode>(MiscField::decode(instr->opcode())));
DCHECK(fp_mode_ == kDontSaveFPRegs || fp_mode_ == kSaveFPRegs);
// Don't overwrite the returned value.
int bytes = __ PopCallerSaved(fp_mode_, kReturnRegister0);
frame_access_state()->IncreaseSPDelta(-(bytes / kPointerSize));
DCHECK_EQ(0, frame_access_state()->sp_delta());
DCHECK(caller_registers_saved_);
caller_registers_saved_ = false;
break;
}
case kArchPrepareTailCall:
AssemblePrepareTailCall();
break;
case kArchCallCFunction: {
int const num_parameters = MiscField::decode(instr->opcode());
if (instr->InputAt(0)->IsImmediate()) {
ExternalReference ref = i.InputExternalReference(0);
__ CallCFunction(ref, num_parameters);
} else {
Register func = i.InputRegister(0);
__ CallCFunction(func, num_parameters);
}
frame_access_state()->SetFrameAccessToDefault();
// Ideally, we should decrement SP delta to match the change of stack
// pointer in CallCFunction. However, for certain architectures (e.g.
// ARM), there may be more strict alignment requirement, causing old SP
// to be saved on the stack. In those cases, we can not calculate the SP
// delta statically.
frame_access_state()->ClearSPDelta();
if (caller_registers_saved_) {
// Need to re-sync SP delta introduced in kArchSaveCallerRegisters.
// Here, we assume the sequence to be:
// kArchSaveCallerRegisters;
// kArchCallCFunction;
// kArchRestoreCallerRegisters;
int bytes =
__ RequiredStackSizeForCallerSaved(fp_mode_, kReturnRegister0);
frame_access_state()->IncreaseSPDelta(bytes / kPointerSize);
}
break;
}
case kArchJmp:
AssembleArchJump(i.InputRpo(0));
break;
case kArchLookupSwitch:
AssembleArchLookupSwitch(instr);
break;
case kArchTableSwitch:
AssembleArchTableSwitch(instr);
break;
case kArchDebugAbort:
DCHECK(i.InputRegister(0) == r3);
if (!frame_access_state()->has_frame()) {
// We don't actually want to generate a pile of code for this, so just
// claim there is a stack frame, without generating one.
FrameScope scope(tasm(), StackFrame::NONE);
__ Call(isolate()->builtins()->builtin_handle(Builtins::kAbortJS),
RelocInfo::CODE_TARGET);
} else {
__ Call(isolate()->builtins()->builtin_handle(Builtins::kAbortJS),
RelocInfo::CODE_TARGET);
}
__ stop("kArchDebugAbort");
break;
case kArchDebugBreak:
__ stop("kArchDebugBreak");
break;
case kArchNop:
case kArchThrowTerminator:
// don't emit code for nops.
break;
case kArchDeoptimize: {
int deopt_state_id =
BuildTranslation(instr, -1, 0, OutputFrameStateCombine::Ignore());
CodeGenResult result =
AssembleDeoptimizerCall(deopt_state_id, current_source_position_);
if (result != kSuccess) return result;
break;
}
case kArchRet:
AssembleReturn(instr->InputAt(0));
break;
case kArchStackPointer:
__ LoadRR(i.OutputRegister(), sp);
break;
case kArchFramePointer:
__ LoadRR(i.OutputRegister(), fp);
break;
case kArchParentFramePointer:
if (frame_access_state()->has_frame()) {
__ LoadP(i.OutputRegister(), MemOperand(fp, 0));
} else {
__ LoadRR(i.OutputRegister(), fp);
}
break;
case kArchTruncateDoubleToI:
// TODO(mbrandy): move slow call to stub out of line.
__ TruncateDoubleToIDelayed(zone(), i.OutputRegister(),
i.InputDoubleRegister(0));
break;
case kArchStoreWithWriteBarrier: {
RecordWriteMode mode =
static_cast<RecordWriteMode>(MiscField::decode(instr->opcode()));
Register object = i.InputRegister(0);
Register value = i.InputRegister(2);
Register scratch0 = i.TempRegister(0);
Register scratch1 = i.TempRegister(1);
OutOfLineRecordWrite* ool;
AddressingMode addressing_mode =
AddressingModeField::decode(instr->opcode());
if (addressing_mode == kMode_MRI) {
int32_t offset = i.InputInt32(1);
ool = new (zone()) OutOfLineRecordWrite(this, object, offset, value,
scratch0, scratch1, mode);
__ StoreP(value, MemOperand(object, offset));
} else {
DCHECK_EQ(kMode_MRR, addressing_mode);
Register offset(i.InputRegister(1));
ool = new (zone()) OutOfLineRecordWrite(this, object, offset, value,
scratch0, scratch1, mode);
__ StoreP(value, MemOperand(object, offset));
}
__ CheckPageFlag(object, scratch0,
MemoryChunk::kPointersFromHereAreInterestingMask, ne,
ool->entry());
__ bind(ool->exit());
break;
}
case kArchStackSlot: {
FrameOffset offset =
frame_access_state()->GetFrameOffset(i.InputInt32(0));
__ AddP(i.OutputRegister(), offset.from_stack_pointer() ? sp : fp,
Operand(offset.offset()));
break;
}
case kS390_Abs32:
// TODO(john.yan): zero-ext
__ lpr(i.OutputRegister(0), i.InputRegister(0));
break;
case kS390_Abs64:
__ lpgr(i.OutputRegister(0), i.InputRegister(0));
break;
case kS390_And32:
// zero-ext
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
ASSEMBLE_BIN32_OP(RRRInstr(nrk), RM32Instr(And), RIInstr(nilf));
} else {
ASSEMBLE_BIN32_OP(RRInstr(nr), RM32Instr(And), RIInstr(nilf));
}
break;
case kS390_And64:
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
ASSEMBLE_BIN_OP(RRRInstr(ngrk), RM64Instr(ng), nullInstr);
} else {
ASSEMBLE_BIN_OP(RRInstr(ngr), RM64Instr(ng), nullInstr);
}
break;
case kS390_Or32:
// zero-ext
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
ASSEMBLE_BIN32_OP(RRRInstr(ork), RM32Instr(Or), RIInstr(oilf));
} else {
ASSEMBLE_BIN32_OP(RRInstr(or_z), RM32Instr(Or), RIInstr(oilf));
}
break;
case kS390_Or64:
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
ASSEMBLE_BIN_OP(RRRInstr(ogrk), RM64Instr(og), nullInstr);
} else {
ASSEMBLE_BIN_OP(RRInstr(ogr), RM64Instr(og), nullInstr);
}
break;
case kS390_Xor32:
// zero-ext
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
ASSEMBLE_BIN32_OP(RRRInstr(xrk), RM32Instr(Xor), RIInstr(xilf));
} else {
ASSEMBLE_BIN32_OP(RRInstr(xr), RM32Instr(Xor), RIInstr(xilf));
}
break;
case kS390_Xor64:
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
ASSEMBLE_BIN_OP(RRRInstr(xgrk), RM64Instr(xg), nullInstr);
} else {
ASSEMBLE_BIN_OP(RRInstr(xgr), RM64Instr(xg), nullInstr);
}
break;
case kS390_ShiftLeft32:
// zero-ext
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
ASSEMBLE_BIN32_OP(RRRInstr(ShiftLeft), nullInstr, RRIInstr(ShiftLeft));
} else {
ASSEMBLE_BIN32_OP(RRInstr(sll), nullInstr, RIInstr(sll));
}
break;
case kS390_ShiftLeft64:
ASSEMBLE_BIN_OP(RRRInstr(sllg), nullInstr, RRIInstr(sllg));
break;
case kS390_ShiftRight32:
// zero-ext
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
ASSEMBLE_BIN32_OP(RRRInstr(srlk), nullInstr, RRIInstr(srlk));
} else {
ASSEMBLE_BIN32_OP(RRInstr(srl), nullInstr, RIInstr(srl));
}
break;
case kS390_ShiftRight64:
ASSEMBLE_BIN_OP(RRRInstr(srlg), nullInstr, RRIInstr(srlg));
break;
case kS390_ShiftRightArith32:
// zero-ext
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
ASSEMBLE_BIN32_OP(RRRInstr(srak), nullInstr, RRIInstr(srak));
} else {
ASSEMBLE_BIN32_OP(RRInstr(sra), nullInstr, RIInstr(sra));
}
break;
case kS390_ShiftRightArith64:
ASSEMBLE_BIN_OP(RRRInstr(srag), nullInstr, RRIInstr(srag));
break;
#if !V8_TARGET_ARCH_S390X
case kS390_AddPair:
// i.InputRegister(0) ... left low word.
// i.InputRegister(1) ... left high word.
// i.InputRegister(2) ... right low word.
// i.InputRegister(3) ... right high word.
__ AddLogical32(i.OutputRegister(0), i.InputRegister(0),
i.InputRegister(2));
__ AddLogicalWithCarry32(i.OutputRegister(1), i.InputRegister(1),
i.InputRegister(3));
break;
case kS390_SubPair:
// i.InputRegister(0) ... left low word.
// i.InputRegister(1) ... left high word.
// i.InputRegister(2) ... right low word.
// i.InputRegister(3) ... right high word.
__ SubLogical32(i.OutputRegister(0), i.InputRegister(0),
i.InputRegister(2));
__ SubLogicalWithBorrow32(i.OutputRegister(1), i.InputRegister(1),
i.InputRegister(3));
break;
case kS390_MulPair:
// i.InputRegister(0) ... left low word.
// i.InputRegister(1) ... left high word.
// i.InputRegister(2) ... right low word.
// i.InputRegister(3) ... right high word.
__ sllg(r0, i.InputRegister(1), Operand(32));
__ sllg(r1, i.InputRegister(3), Operand(32));
__ lr(r0, i.InputRegister(0));
__ lr(r1, i.InputRegister(2));
__ msgr(r1, r0);
__ lr(i.OutputRegister(0), r1);
__ srag(i.OutputRegister(1), r1, Operand(32));
break;
case kS390_ShiftLeftPair: {
Register second_output =
instr->OutputCount() >= 2 ? i.OutputRegister(1) : i.TempRegister(0);
if (instr->InputAt(2)->IsImmediate()) {
__ ShiftLeftPair(i.OutputRegister(0), second_output, i.InputRegister(0),
i.InputRegister(1), i.InputInt32(2));
} else {
__ ShiftLeftPair(i.OutputRegister(0), second_output, i.InputRegister(0),
i.InputRegister(1), kScratchReg, i.InputRegister(2));
}
break;
}
case kS390_ShiftRightPair: {
Register second_output =
instr->OutputCount() >= 2 ? i.OutputRegister(1) : i.TempRegister(0);
if (instr->InputAt(2)->IsImmediate()) {
__ ShiftRightPair(i.OutputRegister(0), second_output,
i.InputRegister(0), i.InputRegister(1),
i.InputInt32(2));
} else {
__ ShiftRightPair(i.OutputRegister(0), second_output,
i.InputRegister(0), i.InputRegister(1), kScratchReg,
i.InputRegister(2));
}
break;
}
case kS390_ShiftRightArithPair: {
Register second_output =
instr->OutputCount() >= 2 ? i.OutputRegister(1) : i.TempRegister(0);
if (instr->InputAt(2)->IsImmediate()) {
__ ShiftRightArithPair(i.OutputRegister(0), second_output,
i.InputRegister(0), i.InputRegister(1),
i.InputInt32(2));
} else {
__ ShiftRightArithPair(i.OutputRegister(0), second_output,
i.InputRegister(0), i.InputRegister(1),
kScratchReg, i.InputRegister(2));
}
break;
}
#endif
case kS390_RotRight32: {
// zero-ext
if (HasRegisterInput(instr, 1)) {
__ LoadComplementRR(kScratchReg, i.InputRegister(1));
__ rll(i.OutputRegister(), i.InputRegister(0), kScratchReg);
} else {
__ rll(i.OutputRegister(), i.InputRegister(0),
Operand(32 - i.InputInt32(1)));
}
CHECK_AND_ZERO_EXT_OUTPUT(2);
break;
}
case kS390_RotRight64:
if (HasRegisterInput(instr, 1)) {
__ lcgr(kScratchReg, i.InputRegister(1));
__ rllg(i.OutputRegister(), i.InputRegister(0), kScratchReg);
} else {
DCHECK(HasImmediateInput(instr, 1));
__ rllg(i.OutputRegister(), i.InputRegister(0),
Operand(64 - i.InputInt32(1)));
}
break;
// TODO(john.yan): clean up kS390_RotLeftAnd...
case kS390_RotLeftAndClear64:
if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
int shiftAmount = i.InputInt32(1);
int endBit = 63 - shiftAmount;
int startBit = 63 - i.InputInt32(2);
__ risbg(i.OutputRegister(), i.InputRegister(0), Operand(startBit),
Operand(endBit), Operand(shiftAmount), true);
} else {
int shiftAmount = i.InputInt32(1);
int clearBit = 63 - i.InputInt32(2);
__ rllg(i.OutputRegister(), i.InputRegister(0), Operand(shiftAmount));
__ sllg(i.OutputRegister(), i.OutputRegister(), Operand(clearBit));
__ srlg(i.OutputRegister(), i.OutputRegister(),
Operand(clearBit + shiftAmount));
__ sllg(i.OutputRegister(), i.OutputRegister(), Operand(shiftAmount));
}
break;
case kS390_RotLeftAndClearLeft64:
if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
int shiftAmount = i.InputInt32(1);
int endBit = 63;
int startBit = 63 - i.InputInt32(2);
__ risbg(i.OutputRegister(), i.InputRegister(0), Operand(startBit),
Operand(endBit), Operand(shiftAmount), true);
} else {
int shiftAmount = i.InputInt32(1);
int clearBit = 63 - i.InputInt32(2);
__ rllg(i.OutputRegister(), i.InputRegister(0), Operand(shiftAmount));
__ sllg(i.OutputRegister(), i.OutputRegister(), Operand(clearBit));
__ srlg(i.OutputRegister(), i.OutputRegister(), Operand(clearBit));
}
break;
case kS390_RotLeftAndClearRight64:
if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
int shiftAmount = i.InputInt32(1);
int endBit = 63 - i.InputInt32(2);
int startBit = 0;
__ risbg(i.OutputRegister(), i.InputRegister(0), Operand(startBit),
Operand(endBit), Operand(shiftAmount), true);
} else {
int shiftAmount = i.InputInt32(1);
int clearBit = i.InputInt32(2);
__ rllg(i.OutputRegister(), i.InputRegister(0), Operand(shiftAmount));
__ srlg(i.OutputRegister(), i.OutputRegister(), Operand(clearBit));
__ sllg(i.OutputRegister(), i.OutputRegister(), Operand(clearBit));
}
break;
case kS390_Add32: {
// zero-ext
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
ASSEMBLE_BIN32_OP(RRRInstr(ark), RM32Instr(Add32), RRIInstr(Add32));
} else {
ASSEMBLE_BIN32_OP(RRInstr(ar), RM32Instr(Add32), RIInstr(Add32));
}
break;
}
case kS390_Add64:
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
ASSEMBLE_BIN_OP(RRRInstr(agrk), RM64Instr(ag), RRIInstr(AddP));
} else {
ASSEMBLE_BIN_OP(RRInstr(agr), RM64Instr(ag), RIInstr(agfi));
}
break;
case kS390_AddFloat:
ASSEMBLE_BIN_OP(DDInstr(aebr), DMTInstr(AddFloat32), nullInstr);
break;
case kS390_AddDouble:
ASSEMBLE_BIN_OP(DDInstr(adbr), DMTInstr(AddFloat64), nullInstr);
break;
case kS390_Sub32:
// zero-ext
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
ASSEMBLE_BIN32_OP(RRRInstr(srk), RM32Instr(Sub32), RRIInstr(Sub32));
} else {
ASSEMBLE_BIN32_OP(RRInstr(sr), RM32Instr(Sub32), RIInstr(Sub32));
}
break;
case kS390_Sub64:
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
ASSEMBLE_BIN_OP(RRRInstr(sgrk), RM64Instr(sg), RRIInstr(SubP));
} else {
ASSEMBLE_BIN_OP(RRInstr(sgr), RM64Instr(sg), RIInstr(SubP));
}
break;
case kS390_SubFloat:
ASSEMBLE_BIN_OP(DDInstr(sebr), DMTInstr(SubFloat32), nullInstr);
break;
case kS390_SubDouble:
ASSEMBLE_BIN_OP(DDInstr(sdbr), DMTInstr(SubFloat64), nullInstr);
break;
case kS390_Mul32:
// zero-ext
if (CpuFeatures::IsSupported(MISC_INSTR_EXT2)) {
ASSEMBLE_BIN32_OP(RRRInstr(msrkc), RM32Instr(msc), RIInstr(Mul32));
} else {
ASSEMBLE_BIN32_OP(RRInstr(Mul32), RM32Instr(Mul32), RIInstr(Mul32));
}
break;
case kS390_Mul32WithOverflow:
// zero-ext
ASSEMBLE_BIN32_OP(RRRInstr(Mul32WithOverflowIfCCUnequal),
RRM32Instr(Mul32WithOverflowIfCCUnequal),
RRIInstr(Mul32WithOverflowIfCCUnequal));
break;
case kS390_Mul64:
ASSEMBLE_BIN_OP(RRInstr(Mul64), RM64Instr(Mul64), RIInstr(Mul64));
break;
case kS390_MulHigh32:
// zero-ext
ASSEMBLE_BIN_OP(RRRInstr(MulHigh32), RRM32Instr(MulHigh32),
RRIInstr(MulHigh32));
break;
case kS390_MulHighU32:
// zero-ext
ASSEMBLE_BIN_OP(RRRInstr(MulHighU32), RRM32Instr(MulHighU32),
RRIInstr(MulHighU32));
break;
case kS390_MulFloat:
ASSEMBLE_BIN_OP(DDInstr(meebr), DMTInstr(MulFloat32), nullInstr);
break;
case kS390_MulDouble:
ASSEMBLE_BIN_OP(DDInstr(mdbr), DMTInstr(MulFloat64), nullInstr);
break;
case kS390_Div64:
ASSEMBLE_BIN_OP(RRRInstr(Div64), RRM64Instr(Div64), nullInstr);
break;
case kS390_Div32: {
// zero-ext
ASSEMBLE_BIN_OP(RRRInstr(Div32), RRM32Instr(Div32), nullInstr);
break;
}
case kS390_DivU64:
ASSEMBLE_BIN_OP(RRRInstr(DivU64), RRM64Instr(DivU64), nullInstr);
break;
case kS390_DivU32: {
// zero-ext
ASSEMBLE_BIN_OP(RRRInstr(DivU32), RRM32Instr(DivU32), nullInstr);
break;
}
case kS390_DivFloat:
ASSEMBLE_BIN_OP(DDInstr(debr), DMTInstr(DivFloat32), nullInstr);
break;
case kS390_DivDouble:
ASSEMBLE_BIN_OP(DDInstr(ddbr), DMTInstr(DivFloat64), nullInstr);
break;
case kS390_Mod32:
// zero-ext
ASSEMBLE_BIN_OP(RRRInstr(Mod32), RRM32Instr(Mod32), nullInstr);
break;
case kS390_ModU32:
// zero-ext
ASSEMBLE_BIN_OP(RRRInstr(ModU32), RRM32Instr(ModU32), nullInstr);
break;
case kS390_Mod64:
ASSEMBLE_BIN_OP(RRRInstr(Mod64), RRM64Instr(Mod64), nullInstr);
break;
case kS390_ModU64:
ASSEMBLE_BIN_OP(RRRInstr(ModU64), RRM64Instr(ModU64), nullInstr);
break;
case kS390_AbsFloat:
__ lpebr(i.OutputDoubleRegister(), i.InputDoubleRegister(0));
break;
case kS390_SqrtFloat:
ASSEMBLE_UNARY_OP(D_DInstr(sqebr), nullInstr, nullInstr);
break;
case kS390_SqrtDouble:
ASSEMBLE_UNARY_OP(D_DInstr(sqdbr), nullInstr, nullInstr);
break;
case kS390_FloorFloat:
__ fiebra(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
v8::internal::Assembler::FIDBRA_ROUND_TOWARD_NEG_INF);
break;
case kS390_CeilFloat:
__ fiebra(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
v8::internal::Assembler::FIDBRA_ROUND_TOWARD_POS_INF);
break;
case kS390_TruncateFloat:
__ fiebra(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
v8::internal::Assembler::FIDBRA_ROUND_TOWARD_0);
break;
// Double operations
case kS390_ModDouble:
ASSEMBLE_FLOAT_MODULO();
break;
case kIeee754Float64Acos:
ASSEMBLE_IEEE754_UNOP(acos);
break;
case kIeee754Float64Acosh:
ASSEMBLE_IEEE754_UNOP(acosh);
break;
case kIeee754Float64Asin:
ASSEMBLE_IEEE754_UNOP(asin);
break;
case kIeee754Float64Asinh:
ASSEMBLE_IEEE754_UNOP(asinh);
break;
case kIeee754Float64Atanh:
ASSEMBLE_IEEE754_UNOP(atanh);
break;
case kIeee754Float64Atan:
ASSEMBLE_IEEE754_UNOP(atan);
break;
case kIeee754Float64Atan2:
ASSEMBLE_IEEE754_BINOP(atan2);
break;
case kIeee754Float64Tan:
ASSEMBLE_IEEE754_UNOP(tan);
break;
case kIeee754Float64Tanh:
ASSEMBLE_IEEE754_UNOP(tanh);
break;
case kIeee754Float64Cbrt:
ASSEMBLE_IEEE754_UNOP(cbrt);
break;
case kIeee754Float64Sin:
ASSEMBLE_IEEE754_UNOP(sin);
break;
case kIeee754Float64Sinh:
ASSEMBLE_IEEE754_UNOP(sinh);
break;
case kIeee754Float64Cos:
ASSEMBLE_IEEE754_UNOP(cos);
break;
case kIeee754Float64Cosh:
ASSEMBLE_IEEE754_UNOP(cosh);
break;
case kIeee754Float64Exp:
ASSEMBLE_IEEE754_UNOP(exp);
break;
case kIeee754Float64Expm1:
ASSEMBLE_IEEE754_UNOP(expm1);
break;
case kIeee754Float64Log:
ASSEMBLE_IEEE754_UNOP(log);
break;
case kIeee754Float64Log1p:
ASSEMBLE_IEEE754_UNOP(log1p);
break;
case kIeee754Float64Log2:
ASSEMBLE_IEEE754_UNOP(log2);
break;
case kIeee754Float64Log10:
ASSEMBLE_IEEE754_UNOP(log10);
break;
case kIeee754Float64Pow: {
__ CallStubDelayed(new (zone())
MathPowStub(nullptr, MathPowStub::DOUBLE));
__ Move(d1, d3);
break;
}
case kS390_Neg32:
__ lcr(i.OutputRegister(), i.InputRegister(0));
CHECK_AND_ZERO_EXT_OUTPUT(1);
break;
case kS390_Neg64:
__ lcgr(i.OutputRegister(), i.InputRegister(0));
break;
case kS390_MaxFloat:
ASSEMBLE_FLOAT_MAX();
break;
case kS390_MaxDouble:
ASSEMBLE_DOUBLE_MAX();
break;
case kS390_MinFloat:
ASSEMBLE_FLOAT_MIN();
break;
case kS390_MinDouble:
ASSEMBLE_DOUBLE_MIN();
break;
case kS390_AbsDouble:
__ lpdbr(i.OutputDoubleRegister(), i.InputDoubleRegister(0));
break;
case kS390_FloorDouble:
__ fidbra(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
v8::internal::Assembler::FIDBRA_ROUND_TOWARD_NEG_INF);
break;
case kS390_CeilDouble:
__ fidbra(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
v8::internal::Assembler::FIDBRA_ROUND_TOWARD_POS_INF);
break;
case kS390_TruncateDouble:
__ fidbra(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
v8::internal::Assembler::FIDBRA_ROUND_TOWARD_0);
break;
case kS390_RoundDouble:
__ fidbra(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
v8::internal::Assembler::FIDBRA_ROUND_TO_NEAREST_AWAY_FROM_0);
break;
case kS390_NegFloat:
ASSEMBLE_UNARY_OP(D_DInstr(lcebr), nullInstr, nullInstr);
break;
case kS390_NegDouble:
ASSEMBLE_UNARY_OP(D_DInstr(lcdbr), nullInstr, nullInstr);
break;
case kS390_Cntlz32: {
__ llgfr(i.OutputRegister(), i.InputRegister(0));
__ flogr(r0, i.OutputRegister());
__ Add32(i.OutputRegister(), r0, Operand(-32));
// No need to zero-ext b/c llgfr is done already
break;
}
#if V8_TARGET_ARCH_S390X
case kS390_Cntlz64: {
__ flogr(r0, i.InputRegister(0));
__ LoadRR(i.OutputRegister(), r0);
break;
}
#endif
case kS390_Popcnt32:
__ Popcnt32(i.OutputRegister(), i.InputRegister(0));
break;
#if V8_TARGET_ARCH_S390X
case kS390_Popcnt64:
__ Popcnt64(i.OutputRegister(), i.InputRegister(0));
break;
#endif
case kS390_Cmp32:
ASSEMBLE_COMPARE32(Cmp32, CmpLogical32);
break;
#if V8_TARGET_ARCH_S390X
case kS390_Cmp64:
ASSEMBLE_COMPARE(CmpP, CmpLogicalP);
break;
#endif
case kS390_CmpFloat:
ASSEMBLE_FLOAT_COMPARE(cebr, ceb, ley);
// __ cebr(i.InputDoubleRegister(0), i.InputDoubleRegister(1));
break;
case kS390_CmpDouble:
ASSEMBLE_FLOAT_COMPARE(cdbr, cdb, ldy);
// __ cdbr(i.InputDoubleRegister(0), i.InputDoubleRegister(1));
break;
case kS390_Tst32:
if (HasRegisterInput(instr, 1)) {
__ And(r0, i.InputRegister(0), i.InputRegister(1));
} else {
// detect tmlh/tmhl/tmhh case
Operand opnd = i.InputImmediate(1);
if (is_uint16(opnd.immediate())) {
__ tmll(i.InputRegister(0), opnd);
} else {
__ lr(r0, i.InputRegister(0));
__ nilf(r0, opnd);
}
}
break;
case kS390_Tst64:
if (HasRegisterInput(instr, 1)) {
__ AndP(r0, i.InputRegister(0), i.InputRegister(1));
} else {
Operand opnd = i.InputImmediate(1);
if (is_uint16(opnd.immediate())) {
__ tmll(i.InputRegister(0), opnd);
} else {
__ AndP(r0, i.InputRegister(0), opnd);
}
}
break;
case kS390_Float64SilenceNaN: {
DoubleRegister value = i.InputDoubleRegister(0);
DoubleRegister result = i.OutputDoubleRegister();
__ CanonicalizeNaN(result, value);
break;
}
case kS390_StackClaim: {
int num_slots = i.InputInt32(0);
__ lay(sp, MemOperand(sp, -num_slots * kPointerSize));
frame_access_state()->IncreaseSPDelta(num_slots);
break;
}
case kS390_Push:
if (instr->InputAt(0)->IsFPRegister()) {
LocationOperand* op = LocationOperand::cast(instr->InputAt(0));
if (op->representation() == MachineRepresentation::kFloat64) {
__ lay(sp, MemOperand(sp, -kDoubleSize));
__ StoreDouble(i.InputDoubleRegister(0), MemOperand(sp));
frame_access_state()->IncreaseSPDelta(kDoubleSize / kPointerSize);
} else {
DCHECK_EQ(MachineRepresentation::kFloat32, op->representation());
__ lay(sp, MemOperand(sp, -kPointerSize));
__ StoreFloat32(i.InputDoubleRegister(0), MemOperand(sp));
frame_access_state()->IncreaseSPDelta(1);
}
} else {
__ Push(i.InputRegister(0));
frame_access_state()->IncreaseSPDelta(1);
}
break;
case kS390_PushFrame: {
int num_slots = i.InputInt32(1);
__ lay(sp, MemOperand(sp, -num_slots * kPointerSize));
if (instr->InputAt(0)->IsFPRegister()) {
LocationOperand* op = LocationOperand::cast(instr->InputAt(0));
if (op->representation() == MachineRepresentation::kFloat64) {
__ StoreDouble(i.InputDoubleRegister(0), MemOperand(sp));
} else {
DCHECK_EQ(MachineRepresentation::kFloat32, op->representation());
__ StoreFloat32(i.InputDoubleRegister(0), MemOperand(sp));
}
} else {
__ StoreP(i.InputRegister(0),
MemOperand(sp));
}
break;
}
case kS390_StoreToStackSlot: {
int slot = i.InputInt32(1);
if (instr->InputAt(0)->IsFPRegister()) {
LocationOperand* op = LocationOperand::cast(instr->InputAt(0));
if (op->representation() == MachineRepresentation::kFloat64) {
__ StoreDouble(i.InputDoubleRegister(0),
MemOperand(sp, slot * kPointerSize));
} else {
DCHECK_EQ(MachineRepresentation::kFloat32, op->representation());
__ StoreFloat32(i.InputDoubleRegister(0),
MemOperand(sp, slot * kPointerSize));
}
} else {
__ StoreP(i.InputRegister(0), MemOperand(sp, slot * kPointerSize));
}
break;
}
case kS390_ExtendSignWord8:
__ lbr(i.OutputRegister(), i.InputRegister(0));
CHECK_AND_ZERO_EXT_OUTPUT(1);
break;
case kS390_ExtendSignWord16:
__ lhr(i.OutputRegister(), i.InputRegister(0));
CHECK_AND_ZERO_EXT_OUTPUT(1);
break;
case kS390_ExtendSignWord32:
__ lgfr(i.OutputRegister(), i.InputRegister(0));
break;
case kS390_Uint32ToUint64:
// Zero extend
__ llgfr(i.OutputRegister(), i.InputRegister(0));
break;
case kS390_Int64ToInt32:
// sign extend
__ lgfr(i.OutputRegister(), i.InputRegister(0));
break;
// Convert Fixed to Floating Point
case kS390_Int64ToFloat32:
__ ConvertInt64ToFloat(i.OutputDoubleRegister(), i.InputRegister(0));
break;
case kS390_Int64ToDouble:
__ ConvertInt64ToDouble(i.OutputDoubleRegister(), i.InputRegister(0));
break;
case kS390_Uint64ToFloat32:
__ ConvertUnsignedInt64ToFloat(i.OutputDoubleRegister(),
i.InputRegister(0));
break;
case kS390_Uint64ToDouble:
__ ConvertUnsignedInt64ToDouble(i.OutputDoubleRegister(),
i.InputRegister(0));
break;
case kS390_Int32ToFloat32:
__ ConvertIntToFloat(i.OutputDoubleRegister(), i.InputRegister(0));
break;
case kS390_Int32ToDouble:
__ ConvertIntToDouble(i.OutputDoubleRegister(), i.InputRegister(0));
break;
case kS390_Uint32ToFloat32:
__ ConvertUnsignedIntToFloat(i.OutputDoubleRegister(),
i.InputRegister(0));
break;
case kS390_Uint32ToDouble:
__ ConvertUnsignedIntToDouble(i.OutputDoubleRegister(),
i.InputRegister(0));
break;
case kS390_DoubleToInt32: {
Label done;
__ ConvertDoubleToInt32(i.OutputRegister(0), i.InputDoubleRegister(0),
kRoundToNearest);
__ b(Condition(0xE), &done, Label::kNear); // normal case
__ lghi(i.OutputRegister(0), Operand::Zero());
__ bind(&done);
break;
}
case kS390_DoubleToUint32: {
Label done;
__ ConvertDoubleToUnsignedInt32(i.OutputRegister(0),
i.InputDoubleRegister(0));
__ b(Condition(0xE), &done, Label::kNear); // normal case
__ lghi(i.OutputRegister(0), Operand::Zero());
__ bind(&done);
break;
}
case kS390_DoubleToInt64: {
Label done;
if (i.OutputCount() > 1) {
__ lghi(i.OutputRegister(1), Operand(1));
}
__ ConvertDoubleToInt64(i.OutputRegister(0), i.InputDoubleRegister(0));
__ b(Condition(0xE), &done, Label::kNear); // normal case
if (i.OutputCount() > 1) {
__ lghi(i.OutputRegister(1), Operand::Zero());
} else {
__ lghi(i.OutputRegister(0), Operand::Zero());
}
__ bind(&done);
break;
}
case kS390_DoubleToUint64: {
Label done;
if (i.OutputCount() > 1) {
__ lghi(i.OutputRegister(1), Operand(1));
}
__ ConvertDoubleToUnsignedInt64(i.OutputRegister(0),
i.InputDoubleRegister(0));
__ b(Condition(0xE), &done, Label::kNear); // normal case
if (i.OutputCount() > 1) {
__ lghi(i.OutputRegister(1), Operand::Zero());
} else {
__ lghi(i.OutputRegister(0), Operand::Zero());
}
__ bind(&done);
break;
}
case kS390_Float32ToInt32: {
Label done;
__ ConvertFloat32ToInt32(i.OutputRegister(0), i.InputDoubleRegister(0),
kRoundToZero);
__ b(Condition(0xE), &done, Label::kNear); // normal case
__ lghi(i.OutputRegister(0), Operand::Zero());
__ bind(&done);
break;
}
case kS390_Float32ToUint32: {
Label done;
__ ConvertFloat32ToUnsignedInt32(i.OutputRegister(0),
i.InputDoubleRegister(0));
__ b(Condition(0xE), &done, Label::kNear); // normal case
__ lghi(i.OutputRegister(0), Operand::Zero());
__ bind(&done);
break;
}
case kS390_Float32ToUint64: {
Label done;
if (i.OutputCount() > 1) {
__ lghi(i.OutputRegister(1), Operand(1));
}
__ ConvertFloat32ToUnsignedInt64(i.OutputRegister(0),
i.InputDoubleRegister(0));
__ b(Condition(0xE), &done, Label::kNear); // normal case
if (i.OutputCount() > 1) {
__ lghi(i.OutputRegister(1), Operand::Zero());
} else {
__ lghi(i.OutputRegister(0), Operand::Zero());
}
__ bind(&done);
break;
}
case kS390_Float32ToInt64: {
Label done;
if (i.OutputCount() > 1) {
__ lghi(i.OutputRegister(1), Operand(1));
}
__ ConvertFloat32ToInt64(i.OutputRegister(0), i.InputDoubleRegister(0));
__ b(Condition(0xE), &done, Label::kNear); // normal case
if (i.OutputCount() > 1) {
__ lghi(i.OutputRegister(1), Operand::Zero());
} else {
__ lghi(i.OutputRegister(0), Operand::Zero());
}
__ bind(&done);
break;
}
case kS390_DoubleToFloat32:
ASSEMBLE_UNARY_OP(D_DInstr(ledbr), nullInstr, nullInstr);
break;
case kS390_Float32ToDouble:
ASSEMBLE_UNARY_OP(D_DInstr(ldebr), D_MTInstr(LoadFloat32ToDouble),
nullInstr);
break;
case kS390_DoubleExtractLowWord32:
__ lgdr(i.OutputRegister(), i.InputDoubleRegister(0));
__ llgfr(i.OutputRegister(), i.OutputRegister());
break;
case kS390_DoubleExtractHighWord32:
__ lgdr(i.OutputRegister(), i.InputDoubleRegister(0));
__ srlg(i.OutputRegister(), i.OutputRegister(), Operand(32));
break;
case kS390_DoubleInsertLowWord32:
__ lgdr(kScratchReg, i.InputDoubleRegister(0));
__ lr(kScratchReg, i.InputRegister(1));
__ ldgr(i.OutputDoubleRegister(), kScratchReg);
break;
case kS390_DoubleInsertHighWord32:
__ sllg(kScratchReg, i.InputRegister(1), Operand(32));
__ lgdr(r0, i.InputDoubleRegister(0));
__ lr(kScratchReg, r0);
__ ldgr(i.OutputDoubleRegister(), kScratchReg);
break;
case kS390_DoubleConstruct:
__ sllg(kScratchReg, i.InputRegister(0), Operand(32));
__ lr(kScratchReg, i.InputRegister(1));
// Bitwise convert from GPR to FPR
__ ldgr(i.OutputDoubleRegister(), kScratchReg);
break;
case kS390_LoadWordS8:
ASSEMBLE_LOAD_INTEGER(LoadB);
break;
case kS390_BitcastFloat32ToInt32:
ASSEMBLE_UNARY_OP(R_DInstr(MovFloatToInt), R_MInstr(LoadlW), nullInstr);
break;
case kS390_BitcastInt32ToFloat32:
__ MovIntToFloat(i.OutputDoubleRegister(), i.InputRegister(0));
break;
#if V8_TARGET_ARCH_S390X
case kS390_BitcastDoubleToInt64:
__ MovDoubleToInt64(i.OutputRegister(), i.InputDoubleRegister(0));
break;
case kS390_BitcastInt64ToDouble:
__ MovInt64ToDouble(i.OutputDoubleRegister(), i.InputRegister(0));
break;
#endif
case kS390_LoadWordU8:
ASSEMBLE_LOAD_INTEGER(LoadlB);
break;
case kS390_LoadWordU16:
ASSEMBLE_LOAD_INTEGER(LoadLogicalHalfWordP);
break;
case kS390_LoadWordS16:
ASSEMBLE_LOAD_INTEGER(LoadHalfWordP);
break;
case kS390_LoadWordU32:
ASSEMBLE_LOAD_INTEGER(LoadlW);
break;
case kS390_LoadWordS32:
ASSEMBLE_LOAD_INTEGER(LoadW);
break;
case kS390_LoadReverse16:
ASSEMBLE_LOAD_INTEGER(lrvh);
break;
case kS390_LoadReverse32:
ASSEMBLE_LOAD_INTEGER(lrv);
break;
case kS390_LoadReverse64:
ASSEMBLE_LOAD_INTEGER(lrvg);
break;
case kS390_LoadReverse16RR:
__ lrvr(i.OutputRegister(), i.InputRegister(0));
__ rll(i.OutputRegister(), i.OutputRegister(), Operand(16));
break;
case kS390_LoadReverse32RR:
__ lrvr(i.OutputRegister(), i.InputRegister(0));
break;
case kS390_LoadReverse64RR:
__ lrvgr(i.OutputRegister(), i.InputRegister(0));
break;
case kS390_LoadWord64:
ASSEMBLE_LOAD_INTEGER(lg);
break;
case kS390_LoadAndTestWord32: {
ASSEMBLE_LOADANDTEST32(ltr, lt_z);
break;
}
case kS390_LoadAndTestWord64: {
ASSEMBLE_LOADANDTEST64(ltgr, ltg);
break;
}
case kS390_LoadFloat32:
ASSEMBLE_LOAD_FLOAT(LoadFloat32);
break;
case kS390_LoadDouble:
ASSEMBLE_LOAD_FLOAT(LoadDouble);
break;
case kS390_StoreWord8:
ASSEMBLE_STORE_INTEGER(StoreByte);
break;
case kS390_StoreWord16:
ASSEMBLE_STORE_INTEGER(StoreHalfWord);
break;
case kS390_StoreWord32:
ASSEMBLE_STORE_INTEGER(StoreW);
break;
#if V8_TARGET_ARCH_S390X
case kS390_StoreWord64:
ASSEMBLE_STORE_INTEGER(StoreP);
break;
#endif
case kS390_StoreReverse16:
ASSEMBLE_STORE_INTEGER(strvh);
break;
case kS390_StoreReverse32:
ASSEMBLE_STORE_INTEGER(strv);
break;
case kS390_StoreReverse64:
ASSEMBLE_STORE_INTEGER(strvg);
break;
case kS390_StoreFloat32:
ASSEMBLE_STORE_FLOAT32();
break;
case kS390_StoreDouble:
ASSEMBLE_STORE_DOUBLE();
break;
case kS390_Lay:
__ lay(i.OutputRegister(), i.MemoryOperand());
break;
case kAtomicLoadInt8:
__ LoadB(i.OutputRegister(), i.MemoryOperand());
break;
case kAtomicLoadUint8:
__ LoadlB(i.OutputRegister(), i.MemoryOperand());
break;
case kAtomicLoadInt16:
__ LoadHalfWordP(i.OutputRegister(), i.MemoryOperand());
break;
case kAtomicLoadUint16:
__ LoadLogicalHalfWordP(i.OutputRegister(), i.MemoryOperand());
break;
case kAtomicLoadWord32:
__ LoadlW(i.OutputRegister(), i.MemoryOperand());
break;
case kAtomicStoreWord8:
__ StoreByte(i.InputRegister(0), i.MemoryOperand(nullptr, 1));
break;
case kAtomicStoreWord16:
__ StoreHalfWord(i.InputRegister(0), i.MemoryOperand(nullptr, 1));
break;
case kAtomicStoreWord32:
__ StoreW(i.InputRegister(0), i.MemoryOperand(nullptr, 1));
break;
// 0x aa bb cc dd
// index = 3..2..1..0
#define ATOMIC_EXCHANGE(start, end, shift_amount, offset) \
{ \
Label do_cs; \
__ LoadlW(output, MemOperand(r1)); \
__ bind(&do_cs); \
__ llgfr(r0, output); \
__ risbg(r0, value, Operand(start), Operand(end), Operand(shift_amount), \
false); \
__ csy(output, r0, MemOperand(r1, offset)); \
__ bne(&do_cs, Label::kNear); \
__ srl(output, Operand(shift_amount)); \
}
#ifdef V8_TARGET_BIG_ENDIAN
#define ATOMIC_EXCHANGE_BYTE(i) \
{ \
constexpr int idx = (i); \
static_assert(idx <= 3 && idx >= 0, "idx is out of range!"); \
constexpr int start = 32 + 8 * idx; \
constexpr int end = start + 7; \
constexpr int shift_amount = (3 - idx) * 8; \
ATOMIC_EXCHANGE(start, end, shift_amount, -idx); \
}
#define ATOMIC_EXCHANGE_HALFWORD(i) \
{ \
constexpr int idx = (i); \
static_assert(idx <= 1 && idx >= 0, "idx is out of range!"); \
constexpr int start = 32 + 16 * idx; \
constexpr int end = start + 15; \
constexpr int shift_amount = (1 - idx) * 16; \
ATOMIC_EXCHANGE(start, end, shift_amount, -idx * 2); \
}
#else
#define ATOMIC_EXCHANGE_BYTE(i) \
{ \
constexpr int idx = (i); \
static_assert(idx <= 3 && idx >= 0, "idx is out of range!"); \
constexpr int start = 32 + 8 * (3 - idx); \
constexpr int end = start + 7; \
constexpr int shift_amount = idx * 8; \
ATOMIC_EXCHANGE(start, end, shift_amount, -idx); \
}
#define ATOMIC_EXCHANGE_HALFWORD(i) \
{ \
constexpr int idx = (i); \
static_assert(idx <= 1 && idx >= 0, "idx is out of range!"); \
constexpr int start = 32 + 16 * (1 - idx); \
constexpr int end = start + 15; \
constexpr int shift_amount = idx * 16; \
ATOMIC_EXCHANGE(start, end, shift_amount, -idx * 2); \
}
#endif
case kAtomicExchangeInt8:
case kAtomicExchangeUint8: {
Register base = i.InputRegister(0);
Register index = i.InputRegister(1);
Register value = i.InputRegister(2);
Register output = i.OutputRegister();
Label three, two, one, done;
__ la(r1, MemOperand(base, index));
__ tmll(r1, Operand(3));
__ b(Condition(1), &three);
__ b(Condition(2), &two);
__ b(Condition(4), &one);
// end with 0b00
ATOMIC_EXCHANGE_BYTE(0);
__ b(&done);
// ending with 0b01
__ bind(&one);
ATOMIC_EXCHANGE_BYTE(1);
__ b(&done);
// ending with 0b10
__ bind(&two);
ATOMIC_EXCHANGE_BYTE(2);
__ b(&done);
// ending with 0b11
__ bind(&three);
ATOMIC_EXCHANGE_BYTE(3);
__ bind(&done);
if (opcode == kAtomicExchangeInt8) {
__ lbr(output, output);
} else {
__ llcr(output, output);
}
break;
}
case kAtomicExchangeInt16:
case kAtomicExchangeUint16: {
Register base = i.InputRegister(0);
Register index = i.InputRegister(1);
Register value = i.InputRegister(2);
Register output = i.OutputRegister();
Label two, unaligned, done;
__ la(r1, MemOperand(base, index));
__ tmll(r1, Operand(3));
__ b(Condition(2), &two);
// end with 0b00
ATOMIC_EXCHANGE_HALFWORD(0);
__ b(&done);
// ending with 0b10
__ bind(&two);
ATOMIC_EXCHANGE_HALFWORD(1);
__ bind(&done);
if (opcode == kAtomicExchangeInt8) {
__ lhr(output, output);
} else {
__ llhr(output, output);
}
break;
}
case kAtomicExchangeWord32: {
Register base = i.InputRegister(0);
Register index = i.InputRegister(1);
Register value = i.InputRegister(2);
Register output = i.OutputRegister();
Label do_cs;
__ lay(r1, MemOperand(base, index));
__ LoadlW(output, MemOperand(r1));
__ bind(&do_cs);
__ cs(output, value, MemOperand(r1));
__ bne(&do_cs, Label::kNear);
break;
}
default:
UNREACHABLE();
break;
}
return kSuccess;
} // NOLINT(readability/fn_size)
// Assembles branches after an instruction.
void CodeGenerator::AssembleArchBranch(Instruction* instr, BranchInfo* branch) {
S390OperandConverter i(this, instr);
Label* tlabel = branch->true_label;
Label* flabel = branch->false_label;
ArchOpcode op = instr->arch_opcode();
FlagsCondition condition = branch->condition;
Condition cond = FlagsConditionToCondition(condition, op);
if (op == kS390_CmpFloat || op == kS390_CmpDouble) {
// check for unordered if necessary
// Branching to flabel/tlabel according to what's expected by tests
if (cond == le || cond == eq || cond == lt) {
__ bunordered(flabel);
} else if (cond == gt || cond == ne || cond == ge) {
__ bunordered(tlabel);
}
}
__ b(cond, tlabel);
if (!branch->fallthru) __ b(flabel); // no fallthru to flabel.
}
void CodeGenerator::AssembleArchDeoptBranch(Instruction* instr,
BranchInfo* branch) {
AssembleArchBranch(instr, branch);
}
void CodeGenerator::AssembleArchJump(RpoNumber target) {
if (!IsNextInAssemblyOrder(target)) __ b(GetLabel(target));
}
void CodeGenerator::AssembleArchTrap(Instruction* instr,
FlagsCondition condition) {
class OutOfLineTrap final : public OutOfLineCode {
public:
OutOfLineTrap(CodeGenerator* gen, bool frame_elided, Instruction* instr)
: OutOfLineCode(gen),
frame_elided_(frame_elided),
instr_(instr),
gen_(gen) {}
void Generate() final {
S390OperandConverter i(gen_, instr_);
Builtins::Name trap_id =
static_cast<Builtins::Name>(i.InputInt32(instr_->InputCount() - 1));
bool old_has_frame = __ has_frame();
if (frame_elided_) {
__ set_has_frame(true);
__ EnterFrame(StackFrame::WASM_COMPILED);
}
GenerateCallToTrap(trap_id);
if (frame_elided_) {
__ set_has_frame(old_has_frame);
}
}
private:
void GenerateCallToTrap(Builtins::Name trap_id) {
if (trap_id == Builtins::builtin_count) {
// We cannot test calls to the runtime in cctest/test-run-wasm.
// Therefore we emit a call to C here instead of a call to the runtime.
// We use the context register as the scratch register, because we do
// not have a context here.
__ PrepareCallCFunction(0, 0, cp);
__ CallCFunction(ExternalReference::wasm_call_trap_callback_for_testing(
__ isolate()),
0);
__ LeaveFrame(StackFrame::WASM_COMPILED);
CallDescriptor* descriptor = gen_->linkage()->GetIncomingDescriptor();
int pop_count = static_cast<int>(descriptor->StackParameterCount());
__ Drop(pop_count);
__ Ret();
} else {
gen_->AssembleSourcePosition(instr_);
__ Call(__ isolate()->builtins()->builtin_handle(trap_id),
RelocInfo::CODE_TARGET);
ReferenceMap* reference_map =
new (gen_->zone()) ReferenceMap(gen_->zone());
gen_->RecordSafepoint(reference_map, Safepoint::kSimple, 0,
Safepoint::kNoLazyDeopt);
if (FLAG_debug_code) {
__ stop(GetAbortReason(AbortReason::kUnexpectedReturnFromWasmTrap));
}
}
}
bool frame_elided_;
Instruction* instr_;
CodeGenerator* gen_;
};
bool frame_elided = !frame_access_state()->has_frame();
auto ool = new (zone()) OutOfLineTrap(this, frame_elided, instr);
Label* tlabel = ool->entry();
Label end;
ArchOpcode op = instr->arch_opcode();
Condition cond = FlagsConditionToCondition(condition, op);
if (op == kS390_CmpFloat || op == kS390_CmpDouble) {
// check for unordered if necessary
if (cond == le || cond == eq || cond == lt) {
__ bunordered(&end);
} else if (cond == gt || cond == ne || cond == ge) {
__ bunordered(tlabel);
}
}
__ b(cond, tlabel);
__ bind(&end);
}
// Assembles boolean materializations after an instruction.
void CodeGenerator::AssembleArchBoolean(Instruction* instr,
FlagsCondition condition) {
S390OperandConverter i(this, instr);
ArchOpcode op = instr->arch_opcode();
bool check_unordered = (op == kS390_CmpDouble || op == kS390_CmpFloat);
// Overflow checked for add/sub only.
DCHECK((condition != kOverflow && condition != kNotOverflow) ||
(op == kS390_Add32 || op == kS390_Add64 || op == kS390_Sub32 ||
op == kS390_Sub64 || op == kS390_Mul32));
// Materialize a full 32-bit 1 or 0 value. The result register is always the
// last output of the instruction.
DCHECK_NE(0u, instr->OutputCount());
Register reg = i.OutputRegister(instr->OutputCount() - 1);
Condition cond = FlagsConditionToCondition(condition, op);
Label done;
if (check_unordered) {
__ LoadImmP(reg, (cond == eq || cond == le || cond == lt) ? Operand::Zero()
: Operand(1));
__ bunordered(&done);
}
// TODO(john.yan): use load imm high on condition here
__ LoadImmP(reg, Operand::Zero());
__ LoadImmP(kScratchReg, Operand(1));
// locr is sufficient since reg's upper 32 is guarrantee to be 0
__ locr(cond, reg, kScratchReg);
__ bind(&done);
}
void CodeGenerator::AssembleArchLookupSwitch(Instruction* instr) {
S390OperandConverter i(this, instr);
Register input = i.InputRegister(0);
for (size_t index = 2; index < instr->InputCount(); index += 2) {
__ Cmp32(input, Operand(i.InputInt32(index + 0)));
__ beq(GetLabel(i.InputRpo(index + 1)));
}
AssembleArchJump(i.InputRpo(1));
}
void CodeGenerator::AssembleArchTableSwitch(Instruction* instr) {
S390OperandConverter i(this, instr);
Register input = i.InputRegister(0);
int32_t const case_count = static_cast<int32_t>(instr->InputCount() - 2);
Label** cases = zone()->NewArray<Label*>(case_count);
for (int32_t index = 0; index < case_count; ++index) {
cases[index] = GetLabel(i.InputRpo(index + 2));
}
Label* const table = AddJumpTable(cases, case_count);
__ CmpLogicalP(input, Operand(case_count));
__ bge(GetLabel(i.InputRpo(1)));
__ larl(kScratchReg, table);
__ ShiftLeftP(r1, input, Operand(kPointerSizeLog2));
__ LoadP(kScratchReg, MemOperand(kScratchReg, r1));
__ Jump(kScratchReg);
}
void CodeGenerator::FinishFrame(Frame* frame) {
CallDescriptor* descriptor = linkage()->GetIncomingDescriptor();
const RegList double_saves = descriptor->CalleeSavedFPRegisters();
// Save callee-saved Double registers.
if (double_saves != 0) {
frame->AlignSavedCalleeRegisterSlots();
DCHECK_EQ(kNumCalleeSavedDoubles,
base::bits::CountPopulation(double_saves));
frame->AllocateSavedCalleeRegisterSlots(kNumCalleeSavedDoubles *
(kDoubleSize / kPointerSize));
}
// Save callee-saved registers.
const RegList saves = descriptor->CalleeSavedRegisters();
if (saves != 0) {
// register save area does not include the fp or constant pool pointer.
const int num_saves = kNumCalleeSaved - 1;
DCHECK(num_saves == base::bits::CountPopulation(saves));
frame->AllocateSavedCalleeRegisterSlots(num_saves);
}
}
void CodeGenerator::AssembleConstructFrame() {
CallDescriptor* descriptor = linkage()->GetIncomingDescriptor();
if (frame_access_state()->has_frame()) {
if (descriptor->IsCFunctionCall()) {
__ Push(r14, fp);
__ LoadRR(fp, sp);
} else if (descriptor->IsJSFunctionCall()) {
__ Prologue(ip);
if (descriptor->PushArgumentCount()) {
__ Push(kJavaScriptCallArgCountRegister);
}
} else {
StackFrame::Type type = info()->GetOutputStackFrameType();
// TODO(mbrandy): Detect cases where ip is the entrypoint (for
// efficient intialization of the constant pool pointer register).
__ StubPrologue(type);
}
}
int shrink_slots =
frame()->GetTotalFrameSlotCount() - descriptor->CalculateFixedFrameSize();
if (info()->is_osr()) {
// TurboFan OSR-compiled functions cannot be entered directly.
__ Abort(AbortReason::kShouldNotDirectlyEnterOsrFunction);
// Unoptimized code jumps directly to this entrypoint while the unoptimized
// frame is still on the stack. Optimized code uses OSR values directly from
// the unoptimized frame. Thus, all that needs to be done is to allocate the
// remaining stack slots.
if (FLAG_code_comments) __ RecordComment("-- OSR entrypoint --");
osr_pc_offset_ = __ pc_offset();
shrink_slots -= osr_helper()->UnoptimizedFrameSlots();
}
const RegList double_saves = descriptor->CalleeSavedFPRegisters();
if (shrink_slots > 0) {
__ lay(sp, MemOperand(sp, -shrink_slots * kPointerSize));
}
// Save callee-saved Double registers.
if (double_saves != 0) {
__ MultiPushDoubles(double_saves);
DCHECK_EQ(kNumCalleeSavedDoubles,
base::bits::CountPopulation(double_saves));
}
// Save callee-saved registers.
const RegList saves = descriptor->CalleeSavedRegisters();
if (saves != 0) {
__ MultiPush(saves);
// register save area does not include the fp or constant pool pointer.
}
}
void CodeGenerator::AssembleReturn(InstructionOperand* pop) {
CallDescriptor* descriptor = linkage()->GetIncomingDescriptor();
int pop_count = static_cast<int>(descriptor->StackParameterCount());
// Restore registers.
const RegList saves = descriptor->CalleeSavedRegisters();
if (saves != 0) {
__ MultiPop(saves);
}
// Restore double registers.
const RegList double_saves = descriptor->CalleeSavedFPRegisters();
if (double_saves != 0) {
__ MultiPopDoubles(double_saves);
}
S390OperandConverter g(this, nullptr);
if (descriptor->IsCFunctionCall()) {
AssembleDeconstructFrame();
} else if (frame_access_state()->has_frame()) {
// Canonicalize JSFunction return sites for now unless they have an variable
// number of stack slot pops
if (pop->IsImmediate() && g.ToConstant(pop).ToInt32() == 0) {
if (return_label_.is_bound()) {
__ b(&return_label_);
return;
} else {
__ bind(&return_label_);
AssembleDeconstructFrame();
}
} else {
AssembleDeconstructFrame();
}
}
if (pop->IsImmediate()) {
DCHECK_EQ(Constant::kInt32, g.ToConstant(pop).type());
pop_count += g.ToConstant(pop).ToInt32();
} else {
__ Drop(g.ToRegister(pop));
}
__ Drop(pop_count);
__ Ret();
}
void CodeGenerator::FinishCode() {}
void CodeGenerator::AssembleMove(InstructionOperand* source,
InstructionOperand* destination) {
S390OperandConverter g(this, nullptr);
// Dispatch on the source and destination operand kinds. Not all
// combinations are possible.
if (source->IsRegister()) {
DCHECK(destination->IsRegister() || destination->IsStackSlot());
Register src = g.ToRegister(source);
if (destination->IsRegister()) {
__ Move(g.ToRegister(destination), src);
} else {
__ StoreP(src, g.ToMemOperand(destination));
}
} else if (source->IsStackSlot()) {
DCHECK(destination->IsRegister() || destination->IsStackSlot());
MemOperand src = g.ToMemOperand(source);
if (destination->IsRegister()) {
__ LoadP(g.ToRegister(destination), src);
} else {
Register temp = kScratchReg;
__ LoadP(temp, src, r0);
__ StoreP(temp, g.ToMemOperand(destination));
}
} else if (source->IsConstant()) {
Constant src = g.ToConstant(source);
if (destination->IsRegister() || destination->IsStackSlot()) {
Register dst =
destination->IsRegister() ? g.ToRegister(destination) : kScratchReg;
switch (src.type()) {
case Constant::kInt32:
#if V8_TARGET_ARCH_S390X
if (RelocInfo::IsWasmSizeReference(src.rmode())) {
#else
if (RelocInfo::IsWasmReference(src.rmode())) {
#endif
__ mov(dst, Operand(src.ToInt32(), src.rmode()));
} else {
__ Load(dst, Operand(src.ToInt32()));
}
break;
case Constant::kInt64:
#if V8_TARGET_ARCH_S390X
if (RelocInfo::IsWasmPtrReference(src.rmode())) {
__ mov(dst, Operand(src.ToInt64(), src.rmode()));
} else {
DCHECK(!RelocInfo::IsWasmSizeReference(src.rmode()));
__ Load(dst, Operand(src.ToInt64()));
}
#else
__ mov(dst, Operand(src.ToInt64()));
#endif // V8_TARGET_ARCH_S390X
break;
case Constant::kFloat32:
__ mov(dst, Operand::EmbeddedNumber(src.ToFloat32()));
break;
case Constant::kFloat64:
__ mov(dst, Operand::EmbeddedNumber(src.ToFloat64().value()));
break;
case Constant::kExternalReference:
__ mov(dst, Operand(src.ToExternalReference()));
break;
case Constant::kHeapObject: {
Handle<HeapObject> src_object = src.ToHeapObject();
Heap::RootListIndex index;
if (IsMaterializableFromRoot(src_object, &index)) {
__ LoadRoot(dst, index);
} else {
__ Move(dst, src_object);
}
break;
}
case Constant::kRpoNumber:
UNREACHABLE(); // TODO(dcarney): loading RPO constants on S390.
break;
}
if (destination->IsStackSlot()) {
__ StoreP(dst, g.ToMemOperand(destination), r0);
}
} else {
DoubleRegister dst = destination->IsFPRegister()
? g.ToDoubleRegister(destination)
: kScratchDoubleReg;
double value = (src.type() == Constant::kFloat32)
? src.ToFloat32()
: src.ToFloat64().value();
if (src.type() == Constant::kFloat32) {
__ LoadFloat32Literal(dst, src.ToFloat32(), kScratchReg);
} else {
__ LoadDoubleLiteral(dst, value, kScratchReg);
}
if (destination->IsFloatStackSlot()) {
__ StoreFloat32(dst, g.ToMemOperand(destination));
} else if (destination->IsDoubleStackSlot()) {
__ StoreDouble(dst, g.ToMemOperand(destination));
}
}
} else if (source->IsFPRegister()) {
DoubleRegister src = g.ToDoubleRegister(source);
if (destination->IsFPRegister()) {
DoubleRegister dst = g.ToDoubleRegister(destination);
__ Move(dst, src);
} else {
DCHECK(destination->IsFPStackSlot());
LocationOperand* op = LocationOperand::cast(source);
if (op->representation() == MachineRepresentation::kFloat64) {
__ StoreDouble(src, g.ToMemOperand(destination));
} else {
__ StoreFloat32(src, g.ToMemOperand(destination));
}
}
} else if (source->IsFPStackSlot()) {
DCHECK(destination->IsFPRegister() || destination->IsFPStackSlot());
MemOperand src = g.ToMemOperand(source);
if (destination->IsFPRegister()) {
LocationOperand* op = LocationOperand::cast(source);
if (op->representation() == MachineRepresentation::kFloat64) {
__ LoadDouble(g.ToDoubleRegister(destination), src);
} else {
__ LoadFloat32(g.ToDoubleRegister(destination), src);
}
} else {
LocationOperand* op = LocationOperand::cast(source);
DoubleRegister temp = kScratchDoubleReg;
if (op->representation() == MachineRepresentation::kFloat64) {
__ LoadDouble(temp, src);
__ StoreDouble(temp, g.ToMemOperand(destination));
} else {
__ LoadFloat32(temp, src);
__ StoreFloat32(temp, g.ToMemOperand(destination));
}
}
} else {
UNREACHABLE();
}
}
// Swaping contents in source and destination.
// source and destination could be:
// Register,
// FloatRegister,
// DoubleRegister,
// StackSlot,
// FloatStackSlot,
// or DoubleStackSlot
void CodeGenerator::AssembleSwap(InstructionOperand* source,
InstructionOperand* destination) {
S390OperandConverter g(this, nullptr);
if (source->IsRegister()) {
Register src = g.ToRegister(source);
if (destination->IsRegister()) {
__ SwapP(src, g.ToRegister(destination), kScratchReg);
} else {
DCHECK(destination->IsStackSlot());
__ SwapP(src, g.ToMemOperand(destination), kScratchReg);
}
} else if (source->IsStackSlot()) {
DCHECK(destination->IsStackSlot());
__ SwapP(g.ToMemOperand(source), g.ToMemOperand(destination), kScratchReg,
r0);
} else if (source->IsFloatRegister()) {
DoubleRegister src = g.ToDoubleRegister(source);
if (destination->IsFloatRegister()) {
__ SwapFloat32(src, g.ToDoubleRegister(destination), kScratchDoubleReg);
} else {
DCHECK(destination->IsFloatStackSlot());
__ SwapFloat32(src, g.ToMemOperand(destination), kScratchDoubleReg);
}
} else if (source->IsDoubleRegister()) {
DoubleRegister src = g.ToDoubleRegister(source);
if (destination->IsDoubleRegister()) {
__ SwapDouble(src, g.ToDoubleRegister(destination), kScratchDoubleReg);
} else {
DCHECK(destination->IsDoubleStackSlot());
__ SwapDouble(src, g.ToMemOperand(destination), kScratchDoubleReg);
}
} else if (source->IsFloatStackSlot()) {
DCHECK(destination->IsFloatStackSlot());
__ SwapFloat32(g.ToMemOperand(source), g.ToMemOperand(destination),
kScratchDoubleReg, d0);
} else if (source->IsDoubleStackSlot()) {
DCHECK(destination->IsDoubleStackSlot());
__ SwapDouble(g.ToMemOperand(source), g.ToMemOperand(destination),
kScratchDoubleReg, d0);
} else if (source->IsSimd128Register()) {
UNREACHABLE();
} else {
UNREACHABLE();
}
}
void CodeGenerator::AssembleJumpTable(Label** targets, size_t target_count) {
for (size_t index = 0; index < target_count; ++index) {
__ emit_label_addr(targets[index]);
}
}
#undef __
} // namespace compiler
} // namespace internal
} // namespace v8