blob: 2fabaed1675097d4c6f5ac0c1619a7fd6209104f [file] [log] [blame]
/*
* Copyright (C) 2008, 2009, 2012 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if ENABLE(JIT)
#include "JIT.h"
// This probably does not belong here; adding here for now as a quick Windows build fix.
#if ENABLE(ASSEMBLER) && CPU(X86) && !OS(MAC_OS_X)
#include "MacroAssembler.h"
JSC::MacroAssemblerX86Common::SSE2CheckState JSC::MacroAssemblerX86Common::s_sse2CheckState = NotCheckedSSE2;
#endif
#include "CodeBlock.h"
#include <wtf/CryptographicallyRandomNumber.h>
#include "DFGNode.h" // for DFG_SUCCESS_STATS
#include "Interpreter.h"
#include "JITInlines.h"
#include "JITStubCall.h"
#include "JSArray.h"
#include "JSFunction.h"
#include "LinkBuffer.h"
#include "RepatchBuffer.h"
#include "ResultType.h"
#include "SamplingTool.h"
using namespace std;
namespace JSC {
void ctiPatchNearCallByReturnAddress(CodeBlock* codeblock, ReturnAddressPtr returnAddress, MacroAssemblerCodePtr newCalleeFunction)
{
RepatchBuffer repatchBuffer(codeblock);
repatchBuffer.relinkNearCallerToTrampoline(returnAddress, newCalleeFunction);
}
void ctiPatchCallByReturnAddress(CodeBlock* codeblock, ReturnAddressPtr returnAddress, MacroAssemblerCodePtr newCalleeFunction)
{
RepatchBuffer repatchBuffer(codeblock);
repatchBuffer.relinkCallerToTrampoline(returnAddress, newCalleeFunction);
}
void ctiPatchCallByReturnAddress(CodeBlock* codeblock, ReturnAddressPtr returnAddress, FunctionPtr newCalleeFunction)
{
RepatchBuffer repatchBuffer(codeblock);
repatchBuffer.relinkCallerToFunction(returnAddress, newCalleeFunction);
}
JIT::JIT(JSGlobalData* globalData, CodeBlock* codeBlock)
: m_interpreter(globalData->interpreter)
, m_globalData(globalData)
, m_codeBlock(codeBlock)
, m_labels(codeBlock ? codeBlock->numberOfInstructions() : 0)
, m_bytecodeOffset((unsigned)-1)
, m_propertyAccessInstructionIndex(UINT_MAX)
, m_byValInstructionIndex(UINT_MAX)
, m_globalResolveInfoIndex(UINT_MAX)
, m_callLinkInfoIndex(UINT_MAX)
#if USE(JSVALUE32_64)
, m_jumpTargetIndex(0)
, m_mappedBytecodeOffset((unsigned)-1)
, m_mappedVirtualRegisterIndex(JSStack::ReturnPC)
, m_mappedTag((RegisterID)-1)
, m_mappedPayload((RegisterID)-1)
#else
, m_lastResultBytecodeRegister(std::numeric_limits<int>::max())
, m_jumpTargetsPosition(0)
#endif
#if USE(OS_RANDOMNESS)
, m_randomGenerator(cryptographicallyRandomNumber())
#else
, m_randomGenerator(static_cast<unsigned>(randomNumber() * 0xFFFFFFF))
#endif
#if ENABLE(VALUE_PROFILER)
, m_canBeOptimized(false)
, m_shouldEmitProfiling(false)
#endif
{
}
#if ENABLE(DFG_JIT)
void JIT::emitOptimizationCheck(OptimizationCheckKind kind)
{
if (!canBeOptimized())
return;
Jump skipOptimize = branchAdd32(Signed, TrustedImm32(kind == LoopOptimizationCheck ? Options::executionCounterIncrementForLoop() : Options::executionCounterIncrementForReturn()), AbsoluteAddress(m_codeBlock->addressOfJITExecuteCounter()));
JITStubCall stubCall(this, cti_optimize);
stubCall.addArgument(TrustedImm32(m_bytecodeOffset));
if (kind == EnterOptimizationCheck)
ASSERT(!m_bytecodeOffset);
stubCall.call();
skipOptimize.link(this);
}
#endif
#if CPU(X86)
void JIT::emitTimeoutCheck()
{
Jump skipTimeout = branchSub32(NonZero, TrustedImm32(1), AbsoluteAddress(&m_globalData->m_timeoutCount));
JITStubCall stubCall(this, cti_timeout_check);
stubCall.addArgument(regT1, regT0); // save last result registers.
stubCall.call(regT0);
store32(regT0, &m_globalData->m_timeoutCount);
stubCall.getArgument(0, regT1, regT0); // reload last result registers.
skipTimeout.link(this);
}
#elif USE(JSVALUE32_64)
void JIT::emitTimeoutCheck()
{
Jump skipTimeout = branchSub32(NonZero, TrustedImm32(1), timeoutCheckRegister);
JITStubCall stubCall(this, cti_timeout_check);
stubCall.addArgument(regT1, regT0); // save last result registers.
stubCall.call(timeoutCheckRegister);
stubCall.getArgument(0, regT1, regT0); // reload last result registers.
skipTimeout.link(this);
}
#else
void JIT::emitTimeoutCheck()
{
Jump skipTimeout = branchSub32(NonZero, TrustedImm32(1), timeoutCheckRegister);
JITStubCall(this, cti_timeout_check).call(timeoutCheckRegister);
skipTimeout.link(this);
killLastResultRegister();
}
#endif
#define NEXT_OPCODE(name) \
m_bytecodeOffset += OPCODE_LENGTH(name); \
break;
#if USE(JSVALUE32_64)
#define DEFINE_BINARY_OP(name) \
case name: { \
JITStubCall stubCall(this, cti_##name); \
stubCall.addArgument(currentInstruction[2].u.operand); \
stubCall.addArgument(currentInstruction[3].u.operand); \
stubCall.call(currentInstruction[1].u.operand); \
NEXT_OPCODE(name); \
}
#define DEFINE_UNARY_OP(name) \
case name: { \
JITStubCall stubCall(this, cti_##name); \
stubCall.addArgument(currentInstruction[2].u.operand); \
stubCall.call(currentInstruction[1].u.operand); \
NEXT_OPCODE(name); \
}
#else // USE(JSVALUE32_64)
#define DEFINE_BINARY_OP(name) \
case name: { \
JITStubCall stubCall(this, cti_##name); \
stubCall.addArgument(currentInstruction[2].u.operand, regT2); \
stubCall.addArgument(currentInstruction[3].u.operand, regT2); \
stubCall.call(currentInstruction[1].u.operand); \
NEXT_OPCODE(name); \
}
#define DEFINE_UNARY_OP(name) \
case name: { \
JITStubCall stubCall(this, cti_##name); \
stubCall.addArgument(currentInstruction[2].u.operand, regT2); \
stubCall.call(currentInstruction[1].u.operand); \
NEXT_OPCODE(name); \
}
#endif // USE(JSVALUE32_64)
#define DEFINE_OP(name) \
case name: { \
emit_##name(currentInstruction); \
NEXT_OPCODE(name); \
}
#define DEFINE_SLOWCASE_OP(name) \
case name: { \
emitSlow_##name(currentInstruction, iter); \
NEXT_OPCODE(name); \
}
void JIT::privateCompileMainPass()
{
Instruction* instructionsBegin = m_codeBlock->instructions().begin();
unsigned instructionCount = m_codeBlock->instructions().size();
m_globalResolveInfoIndex = 0;
m_callLinkInfoIndex = 0;
for (m_bytecodeOffset = 0; m_bytecodeOffset < instructionCount; ) {
if (m_disassembler)
m_disassembler->setForBytecodeMainPath(m_bytecodeOffset, label());
Instruction* currentInstruction = instructionsBegin + m_bytecodeOffset;
ASSERT_WITH_MESSAGE(m_interpreter->isOpcode(currentInstruction->u.opcode), "privateCompileMainPass gone bad @ %d", m_bytecodeOffset);
#if ENABLE(OPCODE_SAMPLING)
if (m_bytecodeOffset > 0) // Avoid the overhead of sampling op_enter twice.
sampleInstruction(currentInstruction);
#endif
#if USE(JSVALUE64)
if (atJumpTarget())
killLastResultRegister();
#endif
m_labels[m_bytecodeOffset] = label();
#if ENABLE(JIT_VERBOSE)
dataLogF("Old JIT emitting code for bc#%u at offset 0x%lx.\n", m_bytecodeOffset, (long)debugOffset());
#endif
OpcodeID opcodeID = m_interpreter->getOpcodeID(currentInstruction->u.opcode);
if (m_compilation && opcodeID != op_call_put_result) {
add64(
TrustedImm32(1),
AbsoluteAddress(m_compilation->executionCounterFor(Profiler::OriginStack(Profiler::Origin(
m_compilation->bytecodes(), m_bytecodeOffset)))->address()));
}
switch (opcodeID) {
DEFINE_BINARY_OP(op_del_by_val)
DEFINE_BINARY_OP(op_in)
DEFINE_BINARY_OP(op_less)
DEFINE_BINARY_OP(op_lesseq)
DEFINE_BINARY_OP(op_greater)
DEFINE_BINARY_OP(op_greatereq)
DEFINE_UNARY_OP(op_is_function)
DEFINE_UNARY_OP(op_is_object)
DEFINE_UNARY_OP(op_typeof)
DEFINE_OP(op_add)
DEFINE_OP(op_bitand)
DEFINE_OP(op_bitor)
DEFINE_OP(op_bitxor)
DEFINE_OP(op_call)
DEFINE_OP(op_call_eval)
DEFINE_OP(op_call_varargs)
DEFINE_OP(op_catch)
DEFINE_OP(op_construct)
DEFINE_OP(op_get_callee)
DEFINE_OP(op_create_this)
DEFINE_OP(op_convert_this)
DEFINE_OP(op_init_lazy_reg)
DEFINE_OP(op_create_arguments)
DEFINE_OP(op_debug)
DEFINE_OP(op_del_by_id)
DEFINE_OP(op_div)
DEFINE_OP(op_end)
DEFINE_OP(op_enter)
DEFINE_OP(op_create_activation)
DEFINE_OP(op_eq)
DEFINE_OP(op_eq_null)
case op_get_by_id_out_of_line:
case op_get_array_length:
DEFINE_OP(op_get_by_id)
DEFINE_OP(op_get_arguments_length)
DEFINE_OP(op_get_by_val)
DEFINE_OP(op_get_argument_by_val)
DEFINE_OP(op_get_by_pname)
DEFINE_OP(op_get_pnames)
DEFINE_OP(op_check_has_instance)
DEFINE_OP(op_instanceof)
DEFINE_OP(op_is_undefined)
DEFINE_OP(op_is_boolean)
DEFINE_OP(op_is_number)
DEFINE_OP(op_is_string)
DEFINE_OP(op_jeq_null)
DEFINE_OP(op_jfalse)
DEFINE_OP(op_jmp)
DEFINE_OP(op_jmp_scopes)
DEFINE_OP(op_jneq_null)
DEFINE_OP(op_jneq_ptr)
DEFINE_OP(op_jless)
DEFINE_OP(op_jlesseq)
DEFINE_OP(op_jgreater)
DEFINE_OP(op_jgreatereq)
DEFINE_OP(op_jnless)
DEFINE_OP(op_jnlesseq)
DEFINE_OP(op_jngreater)
DEFINE_OP(op_jngreatereq)
DEFINE_OP(op_jtrue)
DEFINE_OP(op_loop)
DEFINE_OP(op_loop_hint)
DEFINE_OP(op_loop_if_less)
DEFINE_OP(op_loop_if_lesseq)
DEFINE_OP(op_loop_if_greater)
DEFINE_OP(op_loop_if_greatereq)
DEFINE_OP(op_loop_if_true)
DEFINE_OP(op_loop_if_false)
DEFINE_OP(op_lshift)
DEFINE_OP(op_mod)
DEFINE_OP(op_mov)
DEFINE_OP(op_mul)
DEFINE_OP(op_negate)
DEFINE_OP(op_neq)
DEFINE_OP(op_neq_null)
DEFINE_OP(op_new_array)
DEFINE_OP(op_new_array_with_size)
DEFINE_OP(op_new_array_buffer)
DEFINE_OP(op_new_func)
DEFINE_OP(op_new_func_exp)
DEFINE_OP(op_new_object)
DEFINE_OP(op_new_regexp)
DEFINE_OP(op_next_pname)
DEFINE_OP(op_not)
DEFINE_OP(op_nstricteq)
DEFINE_OP(op_pop_scope)
DEFINE_OP(op_post_dec)
DEFINE_OP(op_post_inc)
DEFINE_OP(op_pre_dec)
DEFINE_OP(op_pre_inc)
DEFINE_OP(op_profile_did_call)
DEFINE_OP(op_profile_will_call)
DEFINE_OP(op_push_name_scope)
DEFINE_OP(op_push_with_scope)
case op_put_by_id_out_of_line:
case op_put_by_id_transition_direct:
case op_put_by_id_transition_normal:
case op_put_by_id_transition_direct_out_of_line:
case op_put_by_id_transition_normal_out_of_line:
DEFINE_OP(op_put_by_id)
DEFINE_OP(op_put_by_index)
DEFINE_OP(op_put_by_val)
DEFINE_OP(op_put_getter_setter)
case op_init_global_const_nop:
NEXT_OPCODE(op_init_global_const_nop);
DEFINE_OP(op_init_global_const)
DEFINE_OP(op_init_global_const_check)
case op_resolve_global_property:
case op_resolve_global_var:
case op_resolve_scoped_var:
case op_resolve_scoped_var_on_top_scope:
case op_resolve_scoped_var_with_top_scope_check:
DEFINE_OP(op_resolve)
case op_resolve_base_to_global:
case op_resolve_base_to_global_dynamic:
case op_resolve_base_to_scope:
case op_resolve_base_to_scope_with_top_scope_check:
DEFINE_OP(op_resolve_base)
case op_put_to_base_variable:
DEFINE_OP(op_put_to_base)
DEFINE_OP(op_ensure_property_exists)
DEFINE_OP(op_resolve_with_base)
DEFINE_OP(op_resolve_with_this)
DEFINE_OP(op_ret)
DEFINE_OP(op_call_put_result)
DEFINE_OP(op_ret_object_or_this)
DEFINE_OP(op_rshift)
DEFINE_OP(op_urshift)
DEFINE_OP(op_strcat)
DEFINE_OP(op_stricteq)
DEFINE_OP(op_sub)
DEFINE_OP(op_switch_char)
DEFINE_OP(op_switch_imm)
DEFINE_OP(op_switch_string)
DEFINE_OP(op_tear_off_activation)
DEFINE_OP(op_tear_off_arguments)
DEFINE_OP(op_throw)
DEFINE_OP(op_throw_static_error)
DEFINE_OP(op_to_jsnumber)
DEFINE_OP(op_to_primitive)
case op_get_by_id_chain:
case op_get_by_id_generic:
case op_get_by_id_proto:
case op_get_by_id_self:
case op_get_by_id_getter_chain:
case op_get_by_id_getter_proto:
case op_get_by_id_getter_self:
case op_get_by_id_custom_chain:
case op_get_by_id_custom_proto:
case op_get_by_id_custom_self:
case op_get_string_length:
case op_put_by_id_generic:
case op_put_by_id_replace:
case op_put_by_id_transition:
ASSERT_NOT_REACHED();
}
}
ASSERT(m_callLinkInfoIndex == m_callStructureStubCompilationInfo.size());
#ifndef NDEBUG
// Reset this, in order to guard its use with ASSERTs.
m_bytecodeOffset = (unsigned)-1;
#endif
}
void JIT::privateCompileLinkPass()
{
unsigned jmpTableCount = m_jmpTable.size();
for (unsigned i = 0; i < jmpTableCount; ++i)
m_jmpTable[i].from.linkTo(m_labels[m_jmpTable[i].toBytecodeOffset], this);
m_jmpTable.clear();
}
void JIT::privateCompileSlowCases()
{
Instruction* instructionsBegin = m_codeBlock->instructions().begin();
m_propertyAccessInstructionIndex = 0;
m_byValInstructionIndex = 0;
m_globalResolveInfoIndex = 0;
m_callLinkInfoIndex = 0;
#if !ASSERT_DISABLED && ENABLE(VALUE_PROFILER)
// Use this to assert that slow-path code associates new profiling sites with existing
// ValueProfiles rather than creating new ones. This ensures that for a given instruction
// (say, get_by_id) we get combined statistics for both the fast-path executions of that
// instructions and the slow-path executions. Furthermore, if the slow-path code created
// new ValueProfiles then the ValueProfiles would no longer be sorted by bytecode offset,
// which would break the invariant necessary to use CodeBlock::valueProfileForBytecodeOffset().
unsigned numberOfValueProfiles = m_codeBlock->numberOfValueProfiles();
#endif
for (Vector<SlowCaseEntry>::iterator iter = m_slowCases.begin(); iter != m_slowCases.end();) {
#if USE(JSVALUE64)
killLastResultRegister();
#endif
m_bytecodeOffset = iter->to;
#ifndef NDEBUG
unsigned firstTo = m_bytecodeOffset;
#endif
Instruction* currentInstruction = instructionsBegin + m_bytecodeOffset;
#if ENABLE(VALUE_PROFILER)
RareCaseProfile* rareCaseProfile = 0;
if (shouldEmitProfiling())
rareCaseProfile = m_codeBlock->addRareCaseProfile(m_bytecodeOffset);
#endif
#if ENABLE(JIT_VERBOSE)
dataLogF("Old JIT emitting slow code for bc#%u at offset 0x%lx.\n", m_bytecodeOffset, (long)debugOffset());
#endif
if (m_disassembler)
m_disassembler->setForBytecodeSlowPath(m_bytecodeOffset, label());
switch (m_interpreter->getOpcodeID(currentInstruction->u.opcode)) {
DEFINE_SLOWCASE_OP(op_add)
DEFINE_SLOWCASE_OP(op_bitand)
DEFINE_SLOWCASE_OP(op_bitor)
DEFINE_SLOWCASE_OP(op_bitxor)
DEFINE_SLOWCASE_OP(op_call)
DEFINE_SLOWCASE_OP(op_call_eval)
DEFINE_SLOWCASE_OP(op_call_varargs)
DEFINE_SLOWCASE_OP(op_construct)
DEFINE_SLOWCASE_OP(op_convert_this)
DEFINE_SLOWCASE_OP(op_create_this)
DEFINE_SLOWCASE_OP(op_div)
DEFINE_SLOWCASE_OP(op_eq)
case op_get_by_id_out_of_line:
case op_get_array_length:
DEFINE_SLOWCASE_OP(op_get_by_id)
DEFINE_SLOWCASE_OP(op_get_arguments_length)
DEFINE_SLOWCASE_OP(op_get_by_val)
DEFINE_SLOWCASE_OP(op_get_argument_by_val)
DEFINE_SLOWCASE_OP(op_get_by_pname)
DEFINE_SLOWCASE_OP(op_check_has_instance)
DEFINE_SLOWCASE_OP(op_instanceof)
DEFINE_SLOWCASE_OP(op_jfalse)
DEFINE_SLOWCASE_OP(op_jless)
DEFINE_SLOWCASE_OP(op_jlesseq)
DEFINE_SLOWCASE_OP(op_jgreater)
DEFINE_SLOWCASE_OP(op_jgreatereq)
DEFINE_SLOWCASE_OP(op_jnless)
DEFINE_SLOWCASE_OP(op_jnlesseq)
DEFINE_SLOWCASE_OP(op_jngreater)
DEFINE_SLOWCASE_OP(op_jngreatereq)
DEFINE_SLOWCASE_OP(op_jtrue)
DEFINE_SLOWCASE_OP(op_loop_if_less)
DEFINE_SLOWCASE_OP(op_loop_if_lesseq)
DEFINE_SLOWCASE_OP(op_loop_if_greater)
DEFINE_SLOWCASE_OP(op_loop_if_greatereq)
DEFINE_SLOWCASE_OP(op_loop_if_true)
DEFINE_SLOWCASE_OP(op_loop_if_false)
DEFINE_SLOWCASE_OP(op_lshift)
DEFINE_SLOWCASE_OP(op_mod)
DEFINE_SLOWCASE_OP(op_mul)
DEFINE_SLOWCASE_OP(op_negate)
DEFINE_SLOWCASE_OP(op_neq)
DEFINE_SLOWCASE_OP(op_new_object)
DEFINE_SLOWCASE_OP(op_not)
DEFINE_SLOWCASE_OP(op_nstricteq)
DEFINE_SLOWCASE_OP(op_post_dec)
DEFINE_SLOWCASE_OP(op_post_inc)
DEFINE_SLOWCASE_OP(op_pre_dec)
DEFINE_SLOWCASE_OP(op_pre_inc)
case op_put_by_id_out_of_line:
case op_put_by_id_transition_direct:
case op_put_by_id_transition_normal:
case op_put_by_id_transition_direct_out_of_line:
case op_put_by_id_transition_normal_out_of_line:
DEFINE_SLOWCASE_OP(op_put_by_id)
DEFINE_SLOWCASE_OP(op_put_by_val)
DEFINE_SLOWCASE_OP(op_init_global_const_check);
DEFINE_SLOWCASE_OP(op_rshift)
DEFINE_SLOWCASE_OP(op_urshift)
DEFINE_SLOWCASE_OP(op_stricteq)
DEFINE_SLOWCASE_OP(op_sub)
DEFINE_SLOWCASE_OP(op_to_jsnumber)
DEFINE_SLOWCASE_OP(op_to_primitive)
case op_resolve_global_property:
case op_resolve_global_var:
case op_resolve_scoped_var:
case op_resolve_scoped_var_on_top_scope:
case op_resolve_scoped_var_with_top_scope_check:
DEFINE_SLOWCASE_OP(op_resolve)
case op_resolve_base_to_global:
case op_resolve_base_to_global_dynamic:
case op_resolve_base_to_scope:
case op_resolve_base_to_scope_with_top_scope_check:
DEFINE_SLOWCASE_OP(op_resolve_base)
DEFINE_SLOWCASE_OP(op_resolve_with_base)
DEFINE_SLOWCASE_OP(op_resolve_with_this)
case op_put_to_base_variable:
DEFINE_SLOWCASE_OP(op_put_to_base)
default:
ASSERT_NOT_REACHED();
}
ASSERT_WITH_MESSAGE(iter == m_slowCases.end() || firstTo != iter->to,"Not enough jumps linked in slow case codegen.");
ASSERT_WITH_MESSAGE(firstTo == (iter - 1)->to, "Too many jumps linked in slow case codegen.");
#if ENABLE(VALUE_PROFILER)
if (shouldEmitProfiling())
add32(TrustedImm32(1), AbsoluteAddress(&rareCaseProfile->m_counter));
#endif
emitJumpSlowToHot(jump(), 0);
}
ASSERT(m_propertyAccessInstructionIndex == m_propertyAccessCompilationInfo.size());
ASSERT(m_callLinkInfoIndex == m_callStructureStubCompilationInfo.size());
#if ENABLE(VALUE_PROFILER)
ASSERT(numberOfValueProfiles == m_codeBlock->numberOfValueProfiles());
#endif
#ifndef NDEBUG
// Reset this, in order to guard its use with ASSERTs.
m_bytecodeOffset = (unsigned)-1;
#endif
}
ALWAYS_INLINE void PropertyStubCompilationInfo::copyToStubInfo(StructureStubInfo& info, LinkBuffer &linkBuffer)
{
ASSERT(bytecodeIndex != std::numeric_limits<unsigned>::max());
info.bytecodeIndex = bytecodeIndex;
info.callReturnLocation = linkBuffer.locationOf(callReturnLocation);
info.hotPathBegin = linkBuffer.locationOf(hotPathBegin);
switch (m_type) {
case GetById: {
CodeLocationLabel hotPathBeginLocation = linkBuffer.locationOf(hotPathBegin);
info.patch.baseline.u.get.structureToCompare = MacroAssembler::differenceBetweenCodePtr(hotPathBeginLocation, linkBuffer.locationOf(getStructureToCompare));
info.patch.baseline.u.get.structureCheck = MacroAssembler::differenceBetweenCodePtr(hotPathBeginLocation, linkBuffer.locationOf(getStructureCheck));
info.patch.baseline.u.get.propertyStorageLoad = MacroAssembler::differenceBetweenCodePtr(hotPathBeginLocation, linkBuffer.locationOf(propertyStorageLoad));
#if USE(JSVALUE64)
info.patch.baseline.u.get.displacementLabel = MacroAssembler::differenceBetweenCodePtr(hotPathBeginLocation, linkBuffer.locationOf(getDisplacementLabel));
#else
info.patch.baseline.u.get.displacementLabel1 = MacroAssembler::differenceBetweenCodePtr(hotPathBeginLocation, linkBuffer.locationOf(getDisplacementLabel1));
info.patch.baseline.u.get.displacementLabel2 = MacroAssembler::differenceBetweenCodePtr(hotPathBeginLocation, linkBuffer.locationOf(getDisplacementLabel2));
#endif
info.patch.baseline.u.get.putResult = MacroAssembler::differenceBetweenCodePtr(hotPathBeginLocation, linkBuffer.locationOf(getPutResult));
info.patch.baseline.u.get.coldPathBegin = MacroAssembler::differenceBetweenCodePtr(linkBuffer.locationOf(getColdPathBegin), linkBuffer.locationOf(callReturnLocation));
break;
}
case PutById:
CodeLocationLabel hotPathBeginLocation = linkBuffer.locationOf(hotPathBegin);
info.patch.baseline.u.put.structureToCompare = MacroAssembler::differenceBetweenCodePtr(hotPathBeginLocation, linkBuffer.locationOf(putStructureToCompare));
info.patch.baseline.u.put.propertyStorageLoad = MacroAssembler::differenceBetweenCodePtr(hotPathBeginLocation, linkBuffer.locationOf(propertyStorageLoad));
#if USE(JSVALUE64)
info.patch.baseline.u.put.displacementLabel = MacroAssembler::differenceBetweenCodePtr(hotPathBeginLocation, linkBuffer.locationOf(putDisplacementLabel));
#else
info.patch.baseline.u.put.displacementLabel1 = MacroAssembler::differenceBetweenCodePtr(hotPathBeginLocation, linkBuffer.locationOf(putDisplacementLabel1));
info.patch.baseline.u.put.displacementLabel2 = MacroAssembler::differenceBetweenCodePtr(hotPathBeginLocation, linkBuffer.locationOf(putDisplacementLabel2));
#endif
break;
}
}
JITCode JIT::privateCompile(CodePtr* functionEntryArityCheck, JITCompilationEffort effort)
{
#if ENABLE(JIT_VERBOSE_OSR)
printf("Compiling JIT code!\n");
#endif
#if ENABLE(VALUE_PROFILER)
DFG::CapabilityLevel level = m_codeBlock->canCompileWithDFG();
switch (level) {
case DFG::CannotCompile:
m_canBeOptimized = false;
m_shouldEmitProfiling = false;
break;
case DFG::ShouldProfile:
m_canBeOptimized = false;
m_shouldEmitProfiling = true;
break;
case DFG::CanCompile:
m_canBeOptimized = true;
m_shouldEmitProfiling = true;
break;
default:
ASSERT_NOT_REACHED();
break;
}
#endif
if (Options::showDisassembly() || m_globalData->m_perBytecodeProfiler)
m_disassembler = adoptPtr(new JITDisassembler(m_codeBlock));
if (m_globalData->m_perBytecodeProfiler) {
m_compilation = m_globalData->m_perBytecodeProfiler->newCompilation(m_codeBlock, Profiler::Baseline);
m_compilation->addProfiledBytecodes(*m_globalData->m_perBytecodeProfiler, m_codeBlock);
}
if (m_disassembler)
m_disassembler->setStartOfCode(label());
// Just add a little bit of randomness to the codegen
if (m_randomGenerator.getUint32() & 1)
nop();
preserveReturnAddressAfterCall(regT2);
emitPutToCallFrameHeader(regT2, JSStack::ReturnPC);
emitPutImmediateToCallFrameHeader(m_codeBlock, JSStack::CodeBlock);
Label beginLabel(this);
sampleCodeBlock(m_codeBlock);
#if ENABLE(OPCODE_SAMPLING)
sampleInstruction(m_codeBlock->instructions().begin());
#endif
Jump stackCheck;
if (m_codeBlock->codeType() == FunctionCode) {
#if ENABLE(DFG_JIT)
#if DFG_ENABLE(SUCCESS_STATS)
static SamplingCounter counter("orignalJIT");
emitCount(counter);
#endif
#endif
#if ENABLE(VALUE_PROFILER)
ASSERT(m_bytecodeOffset == (unsigned)-1);
if (shouldEmitProfiling()) {
for (int argument = 0; argument < m_codeBlock->numParameters(); ++argument) {
// If this is a constructor, then we want to put in a dummy profiling site (to
// keep things consistent) but we don't actually want to record the dummy value.
if (m_codeBlock->m_isConstructor && !argument)
continue;
int offset = CallFrame::argumentOffsetIncludingThis(argument) * static_cast<int>(sizeof(Register));
#if USE(JSVALUE64)
load64(Address(callFrameRegister, offset), regT0);
#elif USE(JSVALUE32_64)
load32(Address(callFrameRegister, offset + OBJECT_OFFSETOF(JSValue, u.asBits.payload)), regT0);
load32(Address(callFrameRegister, offset + OBJECT_OFFSETOF(JSValue, u.asBits.tag)), regT1);
#endif
emitValueProfilingSite(m_codeBlock->valueProfileForArgument(argument));
}
}
#endif
addPtr(TrustedImm32(m_codeBlock->m_numCalleeRegisters * sizeof(Register)), callFrameRegister, regT1);
stackCheck = branchPtr(Below, AbsoluteAddress(m_globalData->interpreter->stack().addressOfEnd()), regT1);
}
Label functionBody = label();
#if ENABLE(VALUE_PROFILER)
if (canBeOptimized())
add32(TrustedImm32(1), AbsoluteAddress(&m_codeBlock->m_executionEntryCount));
#endif
privateCompileMainPass();
privateCompileLinkPass();
privateCompileSlowCases();
if (m_disassembler)
m_disassembler->setEndOfSlowPath(label());
Label arityCheck;
if (m_codeBlock->codeType() == FunctionCode) {
stackCheck.link(this);
m_bytecodeOffset = 0;
JITStubCall(this, cti_stack_check).call();
#ifndef NDEBUG
m_bytecodeOffset = (unsigned)-1; // Reset this, in order to guard its use with ASSERTs.
#endif
jump(functionBody);
arityCheck = label();
preserveReturnAddressAfterCall(regT2);
emitPutToCallFrameHeader(regT2, JSStack::ReturnPC);
emitPutImmediateToCallFrameHeader(m_codeBlock, JSStack::CodeBlock);
load32(payloadFor(JSStack::ArgumentCount), regT1);
branch32(AboveOrEqual, regT1, TrustedImm32(m_codeBlock->m_numParameters)).linkTo(beginLabel, this);
m_bytecodeOffset = 0;
JITStubCall(this, m_codeBlock->m_isConstructor ? cti_op_construct_arityCheck : cti_op_call_arityCheck).call(callFrameRegister);
#if !ASSERT_DISABLED
m_bytecodeOffset = (unsigned)-1; // Reset this, in order to guard its use with ASSERTs.
#endif
jump(beginLabel);
}
ASSERT(m_jmpTable.isEmpty());
if (m_disassembler)
m_disassembler->setEndOfCode(label());
LinkBuffer patchBuffer(*m_globalData, this, m_codeBlock, effort);
if (patchBuffer.didFailToAllocate())
return JITCode();
// Translate vPC offsets into addresses in JIT generated code, for switch tables.
for (unsigned i = 0; i < m_switches.size(); ++i) {
SwitchRecord record = m_switches[i];
unsigned bytecodeOffset = record.bytecodeOffset;
if (record.type != SwitchRecord::String) {
ASSERT(record.type == SwitchRecord::Immediate || record.type == SwitchRecord::Character);
ASSERT(record.jumpTable.simpleJumpTable->branchOffsets.size() == record.jumpTable.simpleJumpTable->ctiOffsets.size());
record.jumpTable.simpleJumpTable->ctiDefault = patchBuffer.locationOf(m_labels[bytecodeOffset + record.defaultOffset]);
for (unsigned j = 0; j < record.jumpTable.simpleJumpTable->branchOffsets.size(); ++j) {
unsigned offset = record.jumpTable.simpleJumpTable->branchOffsets[j];
record.jumpTable.simpleJumpTable->ctiOffsets[j] = offset ? patchBuffer.locationOf(m_labels[bytecodeOffset + offset]) : record.jumpTable.simpleJumpTable->ctiDefault;
}
} else {
ASSERT(record.type == SwitchRecord::String);
record.jumpTable.stringJumpTable->ctiDefault = patchBuffer.locationOf(m_labels[bytecodeOffset + record.defaultOffset]);
StringJumpTable::StringOffsetTable::iterator end = record.jumpTable.stringJumpTable->offsetTable.end();
for (StringJumpTable::StringOffsetTable::iterator it = record.jumpTable.stringJumpTable->offsetTable.begin(); it != end; ++it) {
unsigned offset = it->value.branchOffset;
it->value.ctiOffset = offset ? patchBuffer.locationOf(m_labels[bytecodeOffset + offset]) : record.jumpTable.stringJumpTable->ctiDefault;
}
}
}
for (size_t i = 0; i < m_codeBlock->numberOfExceptionHandlers(); ++i) {
HandlerInfo& handler = m_codeBlock->exceptionHandler(i);
handler.nativeCode = patchBuffer.locationOf(m_labels[handler.target]);
}
for (Vector<CallRecord>::iterator iter = m_calls.begin(); iter != m_calls.end(); ++iter) {
if (iter->to)
patchBuffer.link(iter->from, FunctionPtr(iter->to));
}
m_codeBlock->callReturnIndexVector().reserveCapacity(m_calls.size());
for (Vector<CallRecord>::iterator iter = m_calls.begin(); iter != m_calls.end(); ++iter)
m_codeBlock->callReturnIndexVector().append(CallReturnOffsetToBytecodeOffset(patchBuffer.returnAddressOffset(iter->from), iter->bytecodeOffset));
m_codeBlock->setNumberOfStructureStubInfos(m_propertyAccessCompilationInfo.size());
for (unsigned i = 0; i < m_propertyAccessCompilationInfo.size(); ++i)
m_propertyAccessCompilationInfo[i].copyToStubInfo(m_codeBlock->structureStubInfo(i), patchBuffer);
m_codeBlock->setNumberOfByValInfos(m_byValCompilationInfo.size());
for (unsigned i = 0; i < m_byValCompilationInfo.size(); ++i) {
CodeLocationJump badTypeJump = CodeLocationJump(patchBuffer.locationOf(m_byValCompilationInfo[i].badTypeJump));
CodeLocationLabel doneTarget = patchBuffer.locationOf(m_byValCompilationInfo[i].doneTarget);
CodeLocationLabel slowPathTarget = patchBuffer.locationOf(m_byValCompilationInfo[i].slowPathTarget);
CodeLocationCall returnAddress = patchBuffer.locationOf(m_byValCompilationInfo[i].returnAddress);
m_codeBlock->byValInfo(i) = ByValInfo(
m_byValCompilationInfo[i].bytecodeIndex,
badTypeJump,
m_byValCompilationInfo[i].arrayMode,
differenceBetweenCodePtr(badTypeJump, doneTarget),
differenceBetweenCodePtr(returnAddress, slowPathTarget));
}
m_codeBlock->setNumberOfCallLinkInfos(m_callStructureStubCompilationInfo.size());
for (unsigned i = 0; i < m_codeBlock->numberOfCallLinkInfos(); ++i) {
CallLinkInfo& info = m_codeBlock->callLinkInfo(i);
info.callType = m_callStructureStubCompilationInfo[i].callType;
info.codeOrigin = CodeOrigin(m_callStructureStubCompilationInfo[i].bytecodeIndex);
info.callReturnLocation = patchBuffer.locationOfNearCall(m_callStructureStubCompilationInfo[i].callReturnLocation);
info.hotPathBegin = patchBuffer.locationOf(m_callStructureStubCompilationInfo[i].hotPathBegin);
info.hotPathOther = patchBuffer.locationOfNearCall(m_callStructureStubCompilationInfo[i].hotPathOther);
info.calleeGPR = regT0;
}
#if ENABLE(DFG_JIT) || ENABLE(LLINT)
if (canBeOptimized()
#if ENABLE(LLINT)
|| true
#endif
) {
CompactJITCodeMap::Encoder jitCodeMapEncoder;
for (unsigned bytecodeOffset = 0; bytecodeOffset < m_labels.size(); ++bytecodeOffset) {
if (m_labels[bytecodeOffset].isSet())
jitCodeMapEncoder.append(bytecodeOffset, patchBuffer.offsetOf(m_labels[bytecodeOffset]));
}
m_codeBlock->setJITCodeMap(jitCodeMapEncoder.finish());
}
#endif
if (m_codeBlock->codeType() == FunctionCode && functionEntryArityCheck)
*functionEntryArityCheck = patchBuffer.locationOf(arityCheck);
if (Options::showDisassembly())
m_disassembler->dump(patchBuffer);
if (m_compilation)
m_disassembler->reportToProfiler(m_compilation.get(), patchBuffer);
CodeRef result = patchBuffer.finalizeCodeWithoutDisassembly();
m_globalData->machineCodeBytesPerBytecodeWordForBaselineJIT.add(
static_cast<double>(result.size()) /
static_cast<double>(m_codeBlock->instructions().size()));
m_codeBlock->shrinkToFit(CodeBlock::LateShrink);
#if ENABLE(JIT_VERBOSE)
dataLogF("JIT generated code for %p at [%p, %p).\n", m_codeBlock, result.executableMemory()->start(), result.executableMemory()->end());
#endif
return JITCode(result, JITCode::BaselineJIT);
}
void JIT::linkFor(JSFunction* callee, CodeBlock* callerCodeBlock, CodeBlock* calleeCodeBlock, JIT::CodePtr code, CallLinkInfo* callLinkInfo, JSGlobalData* globalData, CodeSpecializationKind kind)
{
RepatchBuffer repatchBuffer(callerCodeBlock);
ASSERT(!callLinkInfo->isLinked());
callLinkInfo->callee.set(*globalData, callLinkInfo->hotPathBegin, callerCodeBlock->ownerExecutable(), callee);
callLinkInfo->lastSeenCallee.set(*globalData, callerCodeBlock->ownerExecutable(), callee);
repatchBuffer.relink(callLinkInfo->hotPathOther, code);
if (calleeCodeBlock)
calleeCodeBlock->linkIncomingCall(callLinkInfo);
// Patch the slow patch so we do not continue to try to link.
if (kind == CodeForCall) {
repatchBuffer.relink(callLinkInfo->callReturnLocation, globalData->jitStubs->ctiVirtualCall());
return;
}
ASSERT(kind == CodeForConstruct);
repatchBuffer.relink(callLinkInfo->callReturnLocation, globalData->jitStubs->ctiVirtualConstruct());
}
} // namespace JSC
#endif // ENABLE(JIT)