blob: bcb3dd74afcacf8abbb20c9278de778896348819 [file] [log] [blame]
/*
* Copyright (C) 2008 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if ENABLE(JIT)
#include "JIT.h"
#include "CodeBlock.h"
#include "JITInlines.h"
#include "JITStubCall.h"
#include "JITStubs.h"
#include "JSArray.h"
#include "JSFunction.h"
#include "Interpreter.h"
#include "ResultType.h"
#include "SamplingTool.h"
#ifndef NDEBUG
#include <stdio.h>
#endif
using namespace std;
namespace JSC {
void JIT::emit_op_jless(Instruction* currentInstruction)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
emit_compareAndJump(op_jless, op1, op2, target, LessThan);
}
void JIT::emit_op_jlesseq(Instruction* currentInstruction)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
emit_compareAndJump(op_jlesseq, op1, op2, target, LessThanOrEqual);
}
void JIT::emit_op_jgreater(Instruction* currentInstruction)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
emit_compareAndJump(op_jgreater, op1, op2, target, GreaterThan);
}
void JIT::emit_op_jgreatereq(Instruction* currentInstruction)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
emit_compareAndJump(op_jgreatereq, op1, op2, target, GreaterThanOrEqual);
}
void JIT::emit_op_jnless(Instruction* currentInstruction)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
emit_compareAndJump(op_jnless, op1, op2, target, GreaterThanOrEqual);
}
void JIT::emit_op_jnlesseq(Instruction* currentInstruction)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
emit_compareAndJump(op_jnlesseq, op1, op2, target, GreaterThan);
}
void JIT::emit_op_jngreater(Instruction* currentInstruction)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
emit_compareAndJump(op_jngreater, op1, op2, target, LessThanOrEqual);
}
void JIT::emit_op_jngreatereq(Instruction* currentInstruction)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
emit_compareAndJump(op_jngreatereq, op1, op2, target, LessThan);
}
void JIT::emitSlow_op_jless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
emit_compareAndJumpSlow(op1, op2, target, DoubleLessThan, cti_op_jless, false, iter);
}
void JIT::emitSlow_op_jlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrEqual, cti_op_jlesseq, false, iter);
}
void JIT::emitSlow_op_jgreater(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThan, cti_op_jgreater, false, iter);
}
void JIT::emitSlow_op_jgreatereq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrEqual, cti_op_jgreatereq, false, iter);
}
void JIT::emitSlow_op_jnless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrEqualOrUnordered, cti_op_jless, true, iter);
}
void JIT::emitSlow_op_jnlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrUnordered, cti_op_jlesseq, true, iter);
}
void JIT::emitSlow_op_jngreater(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrEqualOrUnordered, cti_op_jgreater, true, iter);
}
void JIT::emitSlow_op_jngreatereq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrUnordered, cti_op_jgreatereq, true, iter);
}
#if USE(JSVALUE64)
void JIT::emit_op_negate(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned src = currentInstruction[2].u.operand;
emitGetVirtualRegister(src, regT0);
Jump srcNotInt = emitJumpIfNotImmediateInteger(regT0);
addSlowCase(branchTest32(Zero, regT0, TrustedImm32(0x7fffffff)));
neg32(regT0);
emitFastArithReTagImmediate(regT0, regT0);
Jump end = jump();
srcNotInt.link(this);
emitJumpSlowCaseIfNotImmediateNumber(regT0);
move(TrustedImm64((int64_t)0x8000000000000000ull), regT1);
xor64(regT1, regT0);
end.link(this);
emitPutVirtualRegister(dst);
}
void JIT::emitSlow_op_negate(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
linkSlowCase(iter); // 0x7fffffff check
linkSlowCase(iter); // double check
JITStubCall stubCall(this, cti_op_negate);
stubCall.addArgument(regT0);
stubCall.call(dst);
}
void JIT::emit_op_lshift(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
emitGetVirtualRegisters(op1, regT0, op2, regT2);
// FIXME: would we be better using 'emitJumpSlowCaseIfNotImmediateIntegers'? - we *probably* ought to be consistent.
emitJumpSlowCaseIfNotImmediateInteger(regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT2);
emitFastArithImmToInt(regT0);
emitFastArithImmToInt(regT2);
lshift32(regT2, regT0);
emitFastArithReTagImmediate(regT0, regT0);
emitPutVirtualRegister(result);
}
void JIT::emitSlow_op_lshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
UNUSED_PARAM(op1);
UNUSED_PARAM(op2);
linkSlowCase(iter);
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_lshift);
stubCall.addArgument(regT0);
stubCall.addArgument(regT2);
stubCall.call(result);
}
void JIT::emit_op_rshift(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
if (isOperandConstantImmediateInt(op2)) {
// isOperandConstantImmediateInt(op2) => 1 SlowCase
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
// Mask with 0x1f as per ecma-262 11.7.2 step 7.
rshift32(Imm32(getConstantOperandImmediateInt(op2) & 0x1f), regT0);
} else {
emitGetVirtualRegisters(op1, regT0, op2, regT2);
if (supportsFloatingPointTruncate()) {
Jump lhsIsInt = emitJumpIfImmediateInteger(regT0);
// supportsFloatingPoint() && USE(JSVALUE64) => 3 SlowCases
addSlowCase(emitJumpIfNotImmediateNumber(regT0));
add64(tagTypeNumberRegister, regT0);
move64ToDouble(regT0, fpRegT0);
addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0));
lhsIsInt.link(this);
emitJumpSlowCaseIfNotImmediateInteger(regT2);
} else {
// !supportsFloatingPoint() => 2 SlowCases
emitJumpSlowCaseIfNotImmediateInteger(regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT2);
}
emitFastArithImmToInt(regT2);
rshift32(regT2, regT0);
}
emitFastArithIntToImmNoCheck(regT0, regT0);
emitPutVirtualRegister(result);
}
void JIT::emitSlow_op_rshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
JITStubCall stubCall(this, cti_op_rshift);
if (isOperandConstantImmediateInt(op2)) {
linkSlowCase(iter);
stubCall.addArgument(regT0);
stubCall.addArgument(op2, regT2);
} else {
if (supportsFloatingPointTruncate()) {
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
// We're reloading op1 to regT0 as we can no longer guarantee that
// we have not munged the operand. It may have already been shifted
// correctly, but it still will not have been tagged.
stubCall.addArgument(op1, regT0);
stubCall.addArgument(regT2);
} else {
linkSlowCase(iter);
linkSlowCase(iter);
stubCall.addArgument(regT0);
stubCall.addArgument(regT2);
}
}
stubCall.call(result);
}
void JIT::emit_op_urshift(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
// Slow case of urshift makes assumptions about what registers hold the
// shift arguments, so any changes must be updated there as well.
if (isOperandConstantImmediateInt(op2)) {
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
emitFastArithImmToInt(regT0);
int shift = getConstantOperand(op2).asInt32();
if (shift)
urshift32(Imm32(shift & 0x1f), regT0);
// unsigned shift < 0 or shift = k*2^32 may result in (essentially)
// a toUint conversion, which can result in a value we can represent
// as an immediate int.
if (shift < 0 || !(shift & 31))
addSlowCase(branch32(LessThan, regT0, TrustedImm32(0)));
emitFastArithReTagImmediate(regT0, regT0);
emitPutVirtualRegister(dst, regT0);
return;
}
emitGetVirtualRegisters(op1, regT0, op2, regT1);
if (!isOperandConstantImmediateInt(op1))
emitJumpSlowCaseIfNotImmediateInteger(regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT1);
emitFastArithImmToInt(regT0);
emitFastArithImmToInt(regT1);
urshift32(regT1, regT0);
addSlowCase(branch32(LessThan, regT0, TrustedImm32(0)));
emitFastArithReTagImmediate(regT0, regT0);
emitPutVirtualRegister(dst, regT0);
}
void JIT::emitSlow_op_urshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
if (isOperandConstantImmediateInt(op2)) {
int shift = getConstantOperand(op2).asInt32();
// op1 = regT0
linkSlowCase(iter); // int32 check
if (supportsFloatingPointTruncate()) {
JumpList failures;
failures.append(emitJumpIfNotImmediateNumber(regT0)); // op1 is not a double
add64(tagTypeNumberRegister, regT0);
move64ToDouble(regT0, fpRegT0);
failures.append(branchTruncateDoubleToInt32(fpRegT0, regT0));
if (shift)
urshift32(Imm32(shift & 0x1f), regT0);
if (shift < 0 || !(shift & 31))
failures.append(branch32(LessThan, regT0, TrustedImm32(0)));
emitFastArithReTagImmediate(regT0, regT0);
emitPutVirtualRegister(dst, regT0);
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_rshift));
failures.link(this);
}
if (shift < 0 || !(shift & 31))
linkSlowCase(iter); // failed to box in hot path
} else {
// op1 = regT0
// op2 = regT1
if (!isOperandConstantImmediateInt(op1)) {
linkSlowCase(iter); // int32 check -- op1 is not an int
if (supportsFloatingPointTruncate()) {
JumpList failures;
failures.append(emitJumpIfNotImmediateNumber(regT0)); // op1 is not a double
add64(tagTypeNumberRegister, regT0);
move64ToDouble(regT0, fpRegT0);
failures.append(branchTruncateDoubleToInt32(fpRegT0, regT0));
failures.append(emitJumpIfNotImmediateInteger(regT1)); // op2 is not an int
emitFastArithImmToInt(regT1);
urshift32(regT1, regT0);
failures.append(branch32(LessThan, regT0, TrustedImm32(0)));
emitFastArithReTagImmediate(regT0, regT0);
emitPutVirtualRegister(dst, regT0);
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_rshift));
failures.link(this);
}
}
linkSlowCase(iter); // int32 check - op2 is not an int
linkSlowCase(iter); // Can't represent unsigned result as an immediate
}
JITStubCall stubCall(this, cti_op_urshift);
stubCall.addArgument(op1, regT0);
stubCall.addArgument(op2, regT1);
stubCall.call(dst);
}
void JIT::emit_compareAndJump(OpcodeID, unsigned op1, unsigned op2, unsigned target, RelationalCondition condition)
{
// We generate inline code for the following cases in the fast path:
// - int immediate to constant int immediate
// - constant int immediate to int immediate
// - int immediate to int immediate
if (isOperandConstantImmediateChar(op1)) {
emitGetVirtualRegister(op2, regT0);
addSlowCase(emitJumpIfNotJSCell(regT0));
JumpList failures;
emitLoadCharacterString(regT0, regT0, failures);
addSlowCase(failures);
addJump(branch32(commute(condition), regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target);
return;
}
if (isOperandConstantImmediateChar(op2)) {
emitGetVirtualRegister(op1, regT0);
addSlowCase(emitJumpIfNotJSCell(regT0));
JumpList failures;
emitLoadCharacterString(regT0, regT0, failures);
addSlowCase(failures);
addJump(branch32(condition, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target);
return;
}
if (isOperandConstantImmediateInt(op2)) {
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
int32_t op2imm = getConstantOperandImmediateInt(op2);
addJump(branch32(condition, regT0, Imm32(op2imm)), target);
} else if (isOperandConstantImmediateInt(op1)) {
emitGetVirtualRegister(op2, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT1);
int32_t op1imm = getConstantOperandImmediateInt(op1);
addJump(branch32(commute(condition), regT1, Imm32(op1imm)), target);
} else {
emitGetVirtualRegisters(op1, regT0, op2, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT1);
addJump(branch32(condition, regT0, regT1), target);
}
}
void JIT::emit_compareAndJumpSlow(unsigned op1, unsigned op2, unsigned target, DoubleCondition condition, int (JIT_STUB *stub)(STUB_ARGS_DECLARATION), bool invert, Vector<SlowCaseEntry>::iterator& iter)
{
COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jlesseq), OPCODE_LENGTH_op_jlesseq_equals_op_jless);
COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jnless), OPCODE_LENGTH_op_jnless_equals_op_jless);
COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jnlesseq), OPCODE_LENGTH_op_jnlesseq_equals_op_jless);
COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jgreater), OPCODE_LENGTH_op_jgreater_equals_op_jless);
COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jgreatereq), OPCODE_LENGTH_op_jgreatereq_equals_op_jless);
COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jngreater), OPCODE_LENGTH_op_jngreater_equals_op_jless);
COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jngreatereq), OPCODE_LENGTH_op_jngreatereq_equals_op_jless);
// We generate inline code for the following cases in the slow path:
// - floating-point number to constant int immediate
// - constant int immediate to floating-point number
// - floating-point number to floating-point number.
if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) {
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
JITStubCall stubCall(this, stub);
stubCall.addArgument(op1, regT0);
stubCall.addArgument(op2, regT1);
stubCall.call();
emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target);
return;
}
if (isOperandConstantImmediateInt(op2)) {
linkSlowCase(iter);
if (supportsFloatingPoint()) {
Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
add64(tagTypeNumberRegister, regT0);
move64ToDouble(regT0, fpRegT0);
int32_t op2imm = getConstantOperand(op2).asInt32();
move(Imm32(op2imm), regT1);
convertInt32ToDouble(regT1, fpRegT1);
emitJumpSlowToHot(branchDouble(condition, fpRegT0, fpRegT1), target);
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jless));
fail1.link(this);
}
JITStubCall stubCall(this, stub);
stubCall.addArgument(regT0);
stubCall.addArgument(op2, regT2);
stubCall.call();
emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target);
} else if (isOperandConstantImmediateInt(op1)) {
linkSlowCase(iter);
if (supportsFloatingPoint()) {
Jump fail1 = emitJumpIfNotImmediateNumber(regT1);
add64(tagTypeNumberRegister, regT1);
move64ToDouble(regT1, fpRegT1);
int32_t op1imm = getConstantOperand(op1).asInt32();
move(Imm32(op1imm), regT0);
convertInt32ToDouble(regT0, fpRegT0);
emitJumpSlowToHot(branchDouble(condition, fpRegT0, fpRegT1), target);
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jless));
fail1.link(this);
}
JITStubCall stubCall(this, stub);
stubCall.addArgument(op1, regT2);
stubCall.addArgument(regT1);
stubCall.call();
emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target);
} else {
linkSlowCase(iter);
if (supportsFloatingPoint()) {
Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
Jump fail2 = emitJumpIfNotImmediateNumber(regT1);
Jump fail3 = emitJumpIfImmediateInteger(regT1);
add64(tagTypeNumberRegister, regT0);
add64(tagTypeNumberRegister, regT1);
move64ToDouble(regT0, fpRegT0);
move64ToDouble(regT1, fpRegT1);
emitJumpSlowToHot(branchDouble(condition, fpRegT0, fpRegT1), target);
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jless));
fail1.link(this);
fail2.link(this);
fail3.link(this);
}
linkSlowCase(iter);
JITStubCall stubCall(this, stub);
stubCall.addArgument(regT0);
stubCall.addArgument(regT1);
stubCall.call();
emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target);
}
}
void JIT::emit_op_bitand(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
if (isOperandConstantImmediateInt(op1)) {
emitGetVirtualRegister(op2, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
int32_t imm = getConstantOperandImmediateInt(op1);
and64(Imm32(imm), regT0);
if (imm >= 0)
emitFastArithIntToImmNoCheck(regT0, regT0);
} else if (isOperandConstantImmediateInt(op2)) {
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
int32_t imm = getConstantOperandImmediateInt(op2);
and64(Imm32(imm), regT0);
if (imm >= 0)
emitFastArithIntToImmNoCheck(regT0, regT0);
} else {
emitGetVirtualRegisters(op1, regT0, op2, regT1);
and64(regT1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
}
emitPutVirtualRegister(result);
}
void JIT::emitSlow_op_bitand(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
linkSlowCase(iter);
if (isOperandConstantImmediateInt(op1)) {
JITStubCall stubCall(this, cti_op_bitand);
stubCall.addArgument(op1, regT2);
stubCall.addArgument(regT0);
stubCall.call(result);
} else if (isOperandConstantImmediateInt(op2)) {
JITStubCall stubCall(this, cti_op_bitand);
stubCall.addArgument(regT0);
stubCall.addArgument(op2, regT2);
stubCall.call(result);
} else {
JITStubCall stubCall(this, cti_op_bitand);
stubCall.addArgument(op1, regT2);
stubCall.addArgument(regT1);
stubCall.call(result);
}
}
void JIT::emit_op_post_inc(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
unsigned srcDst = currentInstruction[2].u.operand;
emitGetVirtualRegister(srcDst, regT0);
move(regT0, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
addSlowCase(branchAdd32(Overflow, TrustedImm32(1), regT1));
emitFastArithIntToImmNoCheck(regT1, regT1);
emitPutVirtualRegister(srcDst, regT1);
emitPutVirtualRegister(result);
}
void JIT::emitSlow_op_post_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned result = currentInstruction[1].u.operand;
unsigned srcDst = currentInstruction[2].u.operand;
linkSlowCase(iter);
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_post_inc);
stubCall.addArgument(regT0);
stubCall.addArgument(Imm32(srcDst));
stubCall.call(result);
}
void JIT::emit_op_post_dec(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
unsigned srcDst = currentInstruction[2].u.operand;
emitGetVirtualRegister(srcDst, regT0);
move(regT0, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
addSlowCase(branchSub32(Overflow, TrustedImm32(1), regT1));
emitFastArithIntToImmNoCheck(regT1, regT1);
emitPutVirtualRegister(srcDst, regT1);
emitPutVirtualRegister(result);
}
void JIT::emitSlow_op_post_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned result = currentInstruction[1].u.operand;
unsigned srcDst = currentInstruction[2].u.operand;
linkSlowCase(iter);
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_post_dec);
stubCall.addArgument(regT0);
stubCall.addArgument(Imm32(srcDst));
stubCall.call(result);
}
void JIT::emit_op_pre_inc(Instruction* currentInstruction)
{
unsigned srcDst = currentInstruction[1].u.operand;
emitGetVirtualRegister(srcDst, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
addSlowCase(branchAdd32(Overflow, TrustedImm32(1), regT0));
emitFastArithIntToImmNoCheck(regT0, regT0);
emitPutVirtualRegister(srcDst);
}
void JIT::emitSlow_op_pre_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned srcDst = currentInstruction[1].u.operand;
Jump notImm = getSlowCase(iter);
linkSlowCase(iter);
emitGetVirtualRegister(srcDst, regT0);
notImm.link(this);
JITStubCall stubCall(this, cti_op_pre_inc);
stubCall.addArgument(regT0);
stubCall.call(srcDst);
}
void JIT::emit_op_pre_dec(Instruction* currentInstruction)
{
unsigned srcDst = currentInstruction[1].u.operand;
emitGetVirtualRegister(srcDst, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
addSlowCase(branchSub32(Overflow, TrustedImm32(1), regT0));
emitFastArithIntToImmNoCheck(regT0, regT0);
emitPutVirtualRegister(srcDst);
}
void JIT::emitSlow_op_pre_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned srcDst = currentInstruction[1].u.operand;
Jump notImm = getSlowCase(iter);
linkSlowCase(iter);
emitGetVirtualRegister(srcDst, regT0);
notImm.link(this);
JITStubCall stubCall(this, cti_op_pre_dec);
stubCall.addArgument(regT0);
stubCall.call(srcDst);
}
/* ------------------------------ BEGIN: OP_MOD ------------------------------ */
#if CPU(X86) || CPU(X86_64)
void JIT::emit_op_mod(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
// Make sure registers are correct for x86 IDIV instructions.
ASSERT(regT0 == X86Registers::eax);
ASSERT(regT1 == X86Registers::edx);
ASSERT(regT2 == X86Registers::ecx);
emitGetVirtualRegisters(op1, regT3, op2, regT2);
emitJumpSlowCaseIfNotImmediateInteger(regT3);
emitJumpSlowCaseIfNotImmediateInteger(regT2);
move(regT3, regT0);
addSlowCase(branchTest32(Zero, regT2));
Jump denominatorNotNeg1 = branch32(NotEqual, regT2, TrustedImm32(-1));
addSlowCase(branch32(Equal, regT0, TrustedImm32(-2147483647-1)));
denominatorNotNeg1.link(this);
m_assembler.cdq();
m_assembler.idivl_r(regT2);
Jump numeratorPositive = branch32(GreaterThanOrEqual, regT3, TrustedImm32(0));
addSlowCase(branchTest32(Zero, regT1));
numeratorPositive.link(this);
emitFastArithReTagImmediate(regT1, regT0);
emitPutVirtualRegister(result);
}
void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned result = currentInstruction[1].u.operand;
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_mod);
stubCall.addArgument(regT3);
stubCall.addArgument(regT2);
stubCall.call(result);
}
#else // CPU(X86) || CPU(X86_64)
void JIT::emit_op_mod(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
JITStubCall stubCall(this, cti_op_mod);
stubCall.addArgument(op1, regT2);
stubCall.addArgument(op2, regT2);
stubCall.call(result);
}
void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
ASSERT_NOT_REACHED();
}
#endif // CPU(X86) || CPU(X86_64)
/* ------------------------------ END: OP_MOD ------------------------------ */
/* ------------------------------ BEGIN: USE(JSVALUE64) (OP_ADD, OP_SUB, OP_MUL) ------------------------------ */
void JIT::compileBinaryArithOp(OpcodeID opcodeID, unsigned, unsigned op1, unsigned op2, OperandTypes)
{
emitGetVirtualRegisters(op1, regT0, op2, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT1);
#if ENABLE(VALUE_PROFILER)
RareCaseProfile* profile = m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset);
#endif
if (opcodeID == op_add)
addSlowCase(branchAdd32(Overflow, regT1, regT0));
else if (opcodeID == op_sub)
addSlowCase(branchSub32(Overflow, regT1, regT0));
else {
ASSERT(opcodeID == op_mul);
#if ENABLE(VALUE_PROFILER)
if (shouldEmitProfiling()) {
// We want to be able to measure if this is taking the slow case just
// because of negative zero. If this produces positive zero, then we
// don't want the slow case to be taken because that will throw off
// speculative compilation.
move(regT0, regT2);
addSlowCase(branchMul32(Overflow, regT1, regT2));
JumpList done;
done.append(branchTest32(NonZero, regT2));
Jump negativeZero = branch32(LessThan, regT0, TrustedImm32(0));
done.append(branch32(GreaterThanOrEqual, regT1, TrustedImm32(0)));
negativeZero.link(this);
// We only get here if we have a genuine negative zero. Record this,
// so that the speculative JIT knows that we failed speculation
// because of a negative zero.
add32(TrustedImm32(1), AbsoluteAddress(&profile->m_counter));
addSlowCase(jump());
done.link(this);
move(regT2, regT0);
} else {
addSlowCase(branchMul32(Overflow, regT1, regT0));
addSlowCase(branchTest32(Zero, regT0));
}
#else
addSlowCase(branchMul32(Overflow, regT1, regT0));
addSlowCase(branchTest32(Zero, regT0));
#endif
}
emitFastArithIntToImmNoCheck(regT0, regT0);
}
void JIT::compileBinaryArithOpSlowCase(OpcodeID opcodeID, Vector<SlowCaseEntry>::iterator& iter, unsigned result, unsigned op1, unsigned op2, OperandTypes types, bool op1HasImmediateIntFastCase, bool op2HasImmediateIntFastCase)
{
// We assume that subtracting TagTypeNumber is equivalent to adding DoubleEncodeOffset.
COMPILE_ASSERT(((TagTypeNumber + DoubleEncodeOffset) == 0), TagTypeNumber_PLUS_DoubleEncodeOffset_EQUALS_0);
Jump notImm1;
Jump notImm2;
if (op1HasImmediateIntFastCase) {
notImm2 = getSlowCase(iter);
} else if (op2HasImmediateIntFastCase) {
notImm1 = getSlowCase(iter);
} else {
notImm1 = getSlowCase(iter);
notImm2 = getSlowCase(iter);
}
linkSlowCase(iter); // Integer overflow case - we could handle this in JIT code, but this is likely rare.
if (opcodeID == op_mul && !op1HasImmediateIntFastCase && !op2HasImmediateIntFastCase) // op_mul has an extra slow case to handle 0 * negative number.
linkSlowCase(iter);
emitGetVirtualRegister(op1, regT0);
Label stubFunctionCall(this);
JITStubCall stubCall(this, opcodeID == op_add ? cti_op_add : opcodeID == op_sub ? cti_op_sub : cti_op_mul);
if (op1HasImmediateIntFastCase || op2HasImmediateIntFastCase) {
emitGetVirtualRegister(op1, regT0);
emitGetVirtualRegister(op2, regT1);
}
stubCall.addArgument(regT0);
stubCall.addArgument(regT1);
stubCall.call(result);
Jump end = jump();
if (op1HasImmediateIntFastCase) {
notImm2.link(this);
if (!types.second().definitelyIsNumber())
emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this);
emitGetVirtualRegister(op1, regT1);
convertInt32ToDouble(regT1, fpRegT1);
add64(tagTypeNumberRegister, regT0);
move64ToDouble(regT0, fpRegT2);
} else if (op2HasImmediateIntFastCase) {
notImm1.link(this);
if (!types.first().definitelyIsNumber())
emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this);
emitGetVirtualRegister(op2, regT1);
convertInt32ToDouble(regT1, fpRegT1);
add64(tagTypeNumberRegister, regT0);
move64ToDouble(regT0, fpRegT2);
} else {
// if we get here, eax is not an int32, edx not yet checked.
notImm1.link(this);
if (!types.first().definitelyIsNumber())
emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this);
if (!types.second().definitelyIsNumber())
emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this);
add64(tagTypeNumberRegister, regT0);
move64ToDouble(regT0, fpRegT1);
Jump op2isDouble = emitJumpIfNotImmediateInteger(regT1);
convertInt32ToDouble(regT1, fpRegT2);
Jump op2wasInteger = jump();
// if we get here, eax IS an int32, edx is not.
notImm2.link(this);
if (!types.second().definitelyIsNumber())
emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this);
convertInt32ToDouble(regT0, fpRegT1);
op2isDouble.link(this);
add64(tagTypeNumberRegister, regT1);
move64ToDouble(regT1, fpRegT2);
op2wasInteger.link(this);
}
if (opcodeID == op_add)
addDouble(fpRegT2, fpRegT1);
else if (opcodeID == op_sub)
subDouble(fpRegT2, fpRegT1);
else if (opcodeID == op_mul)
mulDouble(fpRegT2, fpRegT1);
else {
ASSERT(opcodeID == op_div);
divDouble(fpRegT2, fpRegT1);
}
moveDoubleTo64(fpRegT1, regT0);
sub64(tagTypeNumberRegister, regT0);
emitPutVirtualRegister(result, regT0);
end.link(this);
}
void JIT::emit_op_add(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) {
addSlowCase();
JITStubCall stubCall(this, cti_op_add);
stubCall.addArgument(op1, regT2);
stubCall.addArgument(op2, regT2);
stubCall.call(result);
return;
}
if (isOperandConstantImmediateInt(op1)) {
emitGetVirtualRegister(op2, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
addSlowCase(branchAdd32(Overflow, regT0, Imm32(getConstantOperandImmediateInt(op1)), regT1));
emitFastArithIntToImmNoCheck(regT1, regT0);
} else if (isOperandConstantImmediateInt(op2)) {
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
addSlowCase(branchAdd32(Overflow, regT0, Imm32(getConstantOperandImmediateInt(op2)), regT1));
emitFastArithIntToImmNoCheck(regT1, regT0);
} else
compileBinaryArithOp(op_add, result, op1, op2, types);
emitPutVirtualRegister(result);
}
void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) {
linkDummySlowCase(iter);
return;
}
bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1);
bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2);
compileBinaryArithOpSlowCase(op_add, iter, result, op1, op2, types, op1HasImmediateIntFastCase, op2HasImmediateIntFastCase);
}
void JIT::emit_op_mul(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
// For now, only plant a fast int case if the constant operand is greater than zero.
int32_t value;
if (isOperandConstantImmediateInt(op1) && ((value = getConstantOperandImmediateInt(op1)) > 0)) {
#if ENABLE(VALUE_PROFILER)
// Add a special fast case profile because the DFG JIT will expect one.
m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset);
#endif
emitGetVirtualRegister(op2, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT1));
emitFastArithReTagImmediate(regT1, regT0);
} else if (isOperandConstantImmediateInt(op2) && ((value = getConstantOperandImmediateInt(op2)) > 0)) {
#if ENABLE(VALUE_PROFILER)
// Add a special fast case profile because the DFG JIT will expect one.
m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset);
#endif
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT1));
emitFastArithReTagImmediate(regT1, regT0);
} else
compileBinaryArithOp(op_mul, result, op1, op2, types);
emitPutVirtualRegister(result);
}
void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1) && getConstantOperandImmediateInt(op1) > 0;
bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2) && getConstantOperandImmediateInt(op2) > 0;
compileBinaryArithOpSlowCase(op_mul, iter, result, op1, op2, types, op1HasImmediateIntFastCase, op2HasImmediateIntFastCase);
}
void JIT::emit_op_div(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
if (isOperandConstantImmediateDouble(op1)) {
emitGetVirtualRegister(op1, regT0);
add64(tagTypeNumberRegister, regT0);
move64ToDouble(regT0, fpRegT0);
} else if (isOperandConstantImmediateInt(op1)) {
emitLoadInt32ToDouble(op1, fpRegT0);
} else {
emitGetVirtualRegister(op1, regT0);
if (!types.first().definitelyIsNumber())
emitJumpSlowCaseIfNotImmediateNumber(regT0);
Jump notInt = emitJumpIfNotImmediateInteger(regT0);
convertInt32ToDouble(regT0, fpRegT0);
Jump skipDoubleLoad = jump();
notInt.link(this);
add64(tagTypeNumberRegister, regT0);
move64ToDouble(regT0, fpRegT0);
skipDoubleLoad.link(this);
}
if (isOperandConstantImmediateDouble(op2)) {
emitGetVirtualRegister(op2, regT1);
add64(tagTypeNumberRegister, regT1);
move64ToDouble(regT1, fpRegT1);
} else if (isOperandConstantImmediateInt(op2)) {
emitLoadInt32ToDouble(op2, fpRegT1);
} else {
emitGetVirtualRegister(op2, regT1);
if (!types.second().definitelyIsNumber())
emitJumpSlowCaseIfNotImmediateNumber(regT1);
Jump notInt = emitJumpIfNotImmediateInteger(regT1);
convertInt32ToDouble(regT1, fpRegT1);
Jump skipDoubleLoad = jump();
notInt.link(this);
add64(tagTypeNumberRegister, regT1);
move64ToDouble(regT1, fpRegT1);
skipDoubleLoad.link(this);
}
divDouble(fpRegT1, fpRegT0);
#if ENABLE(VALUE_PROFILER)
// Is the result actually an integer? The DFG JIT would really like to know. If it's
// not an integer, we increment a count. If this together with the slow case counter
// are below threshold then the DFG JIT will compile this division with a specualtion
// that the remainder is zero.
// As well, there are cases where a double result here would cause an important field
// in the heap to sometimes have doubles in it, resulting in double predictions getting
// propagated to a use site where it might cause damage (such as the index to an array
// access). So if we are DFG compiling anything in the program, we want this code to
// ensure that it produces integers whenever possible.
JumpList notInteger;
branchConvertDoubleToInt32(fpRegT0, regT0, notInteger, fpRegT1);
// If we've got an integer, we might as well make that the result of the division.
emitFastArithReTagImmediate(regT0, regT0);
Jump isInteger = jump();
notInteger.link(this);
moveDoubleTo64(fpRegT0, regT0);
Jump doubleZero = branchTest64(Zero, regT0);
add32(TrustedImm32(1), AbsoluteAddress(&m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset)->m_counter));
sub64(tagTypeNumberRegister, regT0);
Jump trueDouble = jump();
doubleZero.link(this);
move(tagTypeNumberRegister, regT0);
trueDouble.link(this);
isInteger.link(this);
#else
// Double result.
moveDoubleTo64(fpRegT0, regT0);
sub64(tagTypeNumberRegister, regT0);
#endif
emitPutVirtualRegister(dst, regT0);
}
void JIT::emitSlow_op_div(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
if (types.first().definitelyIsNumber() && types.second().definitelyIsNumber()) {
#ifndef NDEBUG
breakpoint();
#endif
return;
}
if (!isOperandConstantImmediateDouble(op1) && !isOperandConstantImmediateInt(op1)) {
if (!types.first().definitelyIsNumber())
linkSlowCase(iter);
}
if (!isOperandConstantImmediateDouble(op2) && !isOperandConstantImmediateInt(op2)) {
if (!types.second().definitelyIsNumber())
linkSlowCase(iter);
}
// There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0.
JITStubCall stubCall(this, cti_op_div);
stubCall.addArgument(op1, regT2);
stubCall.addArgument(op2, regT2);
stubCall.call(result);
}
void JIT::emit_op_sub(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
compileBinaryArithOp(op_sub, result, op1, op2, types);
emitPutVirtualRegister(result);
}
void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
compileBinaryArithOpSlowCase(op_sub, iter, result, op1, op2, types, false, false);
}
/* ------------------------------ END: OP_ADD, OP_SUB, OP_MUL ------------------------------ */
#endif // USE(JSVALUE64)
} // namespace JSC
#endif // ENABLE(JIT)