blob: 960d0609125d9fe052e9a46f8786df9c8a8bd211 [file] [log] [blame]
/*
* Copyright (C) 2008 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if ENABLE(JIT)
#if USE(JSVALUE32_64)
#include "JIT.h"
#include "CodeBlock.h"
#include "JITInlines.h"
#include "JITStubCall.h"
#include "JITStubs.h"
#include "JSArray.h"
#include "JSFunction.h"
#include "Interpreter.h"
#include "ResultType.h"
#include "SamplingTool.h"
#ifndef NDEBUG
#include <stdio.h>
#endif
using namespace std;
namespace JSC {
void JIT::emit_op_negate(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned src = currentInstruction[2].u.operand;
emitLoad(src, regT1, regT0);
Jump srcNotInt = branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag));
addSlowCase(branchTest32(Zero, regT0, TrustedImm32(0x7fffffff)));
neg32(regT0);
emitStoreInt32(dst, regT0, (dst == src));
Jump end = jump();
srcNotInt.link(this);
addSlowCase(branch32(Above, regT1, TrustedImm32(JSValue::LowestTag)));
xor32(TrustedImm32(1 << 31), regT1);
store32(regT1, tagFor(dst));
if (dst != src)
store32(regT0, payloadFor(dst));
end.link(this);
}
void JIT::emitSlow_op_negate(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
linkSlowCase(iter); // 0x7fffffff check
linkSlowCase(iter); // double check
JITStubCall stubCall(this, cti_op_negate);
stubCall.addArgument(regT1, regT0);
stubCall.call(dst);
}
void JIT::emit_compareAndJump(OpcodeID opcode, unsigned op1, unsigned op2, unsigned target, RelationalCondition condition)
{
JumpList notInt32Op1;
JumpList notInt32Op2;
// Character less.
if (isOperandConstantImmediateChar(op1)) {
emitLoad(op2, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag)));
JumpList failures;
emitLoadCharacterString(regT0, regT0, failures);
addSlowCase(failures);
addJump(branch32(commute(condition), regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target);
return;
}
if (isOperandConstantImmediateChar(op2)) {
emitLoad(op1, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag)));
JumpList failures;
emitLoadCharacterString(regT0, regT0, failures);
addSlowCase(failures);
addJump(branch32(condition, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target);
return;
}
if (isOperandConstantImmediateInt(op1)) {
emitLoad(op2, regT3, regT2);
notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
addJump(branch32(commute(condition), regT2, Imm32(getConstantOperand(op1).asInt32())), target);
} else if (isOperandConstantImmediateInt(op2)) {
emitLoad(op1, regT1, regT0);
notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
addJump(branch32(condition, regT0, Imm32(getConstantOperand(op2).asInt32())), target);
} else {
emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
addJump(branch32(condition, regT0, regT2), target);
}
if (!supportsFloatingPoint()) {
addSlowCase(notInt32Op1);
addSlowCase(notInt32Op2);
return;
}
Jump end = jump();
// Double less.
emitBinaryDoubleOp(opcode, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantImmediateInt(op1), isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2));
end.link(this);
}
void JIT::emit_compareAndJumpSlow(unsigned op1, unsigned op2, unsigned target, DoubleCondition, int (JIT_STUB *stub)(STUB_ARGS_DECLARATION), bool invert, Vector<SlowCaseEntry>::iterator& iter)
{
if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) {
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
} else {
if (!supportsFloatingPoint()) {
if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // int32 check
} else {
if (!isOperandConstantImmediateInt(op1)) {
linkSlowCase(iter); // double check
linkSlowCase(iter); // int32 check
}
if (isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2))
linkSlowCase(iter); // double check
}
}
JITStubCall stubCall(this, stub);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call();
emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target);
}
// LeftShift (<<)
void JIT::emit_op_lshift(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
if (isOperandConstantImmediateInt(op2)) {
emitLoad(op1, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
lshift32(Imm32(getConstantOperand(op2).asInt32()), regT0);
emitStoreAndMapInt32(dst, regT1, regT0, dst == op1, OPCODE_LENGTH(op_lshift));
return;
}
emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
if (!isOperandConstantImmediateInt(op1))
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
lshift32(regT2, regT0);
emitStoreAndMapInt32(dst, regT1, regT0, dst == op1 || dst == op2, OPCODE_LENGTH(op_lshift));
}
void JIT::emitSlow_op_lshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // int32 check
JITStubCall stubCall(this, cti_op_lshift);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call(dst);
}
// RightShift (>>) and UnsignedRightShift (>>>) helper
void JIT::emitRightShift(Instruction* currentInstruction, bool isUnsigned)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
// Slow case of rshift makes assumptions about what registers hold the
// shift arguments, so any changes must be updated there as well.
if (isOperandConstantImmediateInt(op2)) {
emitLoad(op1, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
int shift = getConstantOperand(op2).asInt32() & 0x1f;
if (shift) {
if (isUnsigned)
urshift32(Imm32(shift), regT0);
else
rshift32(Imm32(shift), regT0);
} else if (isUnsigned) // signed right shift by zero is simply toInt conversion
addSlowCase(branch32(LessThan, regT0, TrustedImm32(0)));
emitStoreAndMapInt32(dst, regT1, regT0, dst == op1, OPCODE_LENGTH(op_rshift));
} else {
emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
if (!isOperandConstantImmediateInt(op1))
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
if (isUnsigned) {
urshift32(regT2, regT0);
addSlowCase(branch32(LessThan, regT0, TrustedImm32(0)));
} else
rshift32(regT2, regT0);
emitStoreAndMapInt32(dst, regT1, regT0, dst == op1, OPCODE_LENGTH(op_rshift));
}
}
void JIT::emitRightShiftSlowCase(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter, bool isUnsigned)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
if (isOperandConstantImmediateInt(op2)) {
int shift = getConstantOperand(op2).asInt32() & 0x1f;
// op1 = regT1:regT0
linkSlowCase(iter); // int32 check
if (supportsFloatingPointTruncate()) {
JumpList failures;
failures.append(branch32(AboveOrEqual, regT1, TrustedImm32(JSValue::LowestTag)));
emitLoadDouble(op1, fpRegT0);
failures.append(branchTruncateDoubleToInt32(fpRegT0, regT0));
if (shift) {
if (isUnsigned)
urshift32(Imm32(shift), regT0);
else
rshift32(Imm32(shift), regT0);
} else if (isUnsigned) // signed right shift by zero is simply toInt conversion
failures.append(branch32(LessThan, regT0, TrustedImm32(0)));
move(TrustedImm32(JSValue::Int32Tag), regT1);
emitStoreInt32(dst, regT0, false);
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_rshift));
failures.link(this);
}
if (isUnsigned && !shift)
linkSlowCase(iter); // failed to box in hot path
} else {
// op1 = regT1:regT0
// op2 = regT3:regT2
if (!isOperandConstantImmediateInt(op1)) {
linkSlowCase(iter); // int32 check -- op1 is not an int
if (supportsFloatingPointTruncate()) {
JumpList failures;
failures.append(branch32(Above, regT1, TrustedImm32(JSValue::LowestTag))); // op1 is not a double
emitLoadDouble(op1, fpRegT0);
failures.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); // op2 is not an int
failures.append(branchTruncateDoubleToInt32(fpRegT0, regT0));
if (isUnsigned) {
urshift32(regT2, regT0);
failures.append(branch32(LessThan, regT0, TrustedImm32(0)));
} else
rshift32(regT2, regT0);
move(TrustedImm32(JSValue::Int32Tag), regT1);
emitStoreInt32(dst, regT0, false);
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_rshift));
failures.link(this);
}
}
linkSlowCase(iter); // int32 check - op2 is not an int
if (isUnsigned)
linkSlowCase(iter); // Can't represent unsigned result as an immediate
}
JITStubCall stubCall(this, isUnsigned ? cti_op_urshift : cti_op_rshift);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call(dst);
}
// RightShift (>>)
void JIT::emit_op_rshift(Instruction* currentInstruction)
{
emitRightShift(currentInstruction, false);
}
void JIT::emitSlow_op_rshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
emitRightShiftSlowCase(currentInstruction, iter, false);
}
// UnsignedRightShift (>>>)
void JIT::emit_op_urshift(Instruction* currentInstruction)
{
emitRightShift(currentInstruction, true);
}
void JIT::emitSlow_op_urshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
emitRightShiftSlowCase(currentInstruction, iter, true);
}
// BitAnd (&)
void JIT::emit_op_bitand(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
unsigned op;
int32_t constant;
if (getOperandConstantImmediateInt(op1, op2, op, constant)) {
emitLoad(op, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
and32(Imm32(constant), regT0);
emitStoreAndMapInt32(dst, regT1, regT0, dst == op, OPCODE_LENGTH(op_bitand));
return;
}
emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
and32(regT2, regT0);
emitStoreAndMapInt32(dst, regT1, regT0, (op1 == dst || op2 == dst), OPCODE_LENGTH(op_bitand));
}
void JIT::emitSlow_op_bitand(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // int32 check
JITStubCall stubCall(this, cti_op_bitand);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call(dst);
}
// BitOr (|)
void JIT::emit_op_bitor(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
unsigned op;
int32_t constant;
if (getOperandConstantImmediateInt(op1, op2, op, constant)) {
emitLoad(op, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
or32(Imm32(constant), regT0);
emitStoreAndMapInt32(dst, regT1, regT0, op == dst, OPCODE_LENGTH(op_bitor));
return;
}
emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
or32(regT2, regT0);
emitStoreAndMapInt32(dst, regT1, regT0, (op1 == dst || op2 == dst), OPCODE_LENGTH(op_bitor));
}
void JIT::emitSlow_op_bitor(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // int32 check
JITStubCall stubCall(this, cti_op_bitor);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call(dst);
}
// BitXor (^)
void JIT::emit_op_bitxor(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
unsigned op;
int32_t constant;
if (getOperandConstantImmediateInt(op1, op2, op, constant)) {
emitLoad(op, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
xor32(Imm32(constant), regT0);
emitStoreAndMapInt32(dst, regT1, regT0, op == dst, OPCODE_LENGTH(op_bitxor));
return;
}
emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
xor32(regT2, regT0);
emitStoreAndMapInt32(dst, regT1, regT0, (op1 == dst || op2 == dst), OPCODE_LENGTH(op_bitxor));
}
void JIT::emitSlow_op_bitxor(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // int32 check
JITStubCall stubCall(this, cti_op_bitxor);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call(dst);
}
// PostInc (i++)
void JIT::emit_op_post_inc(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned srcDst = currentInstruction[2].u.operand;
emitLoad(srcDst, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
if (dst == srcDst) // x = x++ is a noop for ints.
return;
move(regT0, regT2);
addSlowCase(branchAdd32(Overflow, TrustedImm32(1), regT2));
emitStoreInt32(srcDst, regT2, true);
emitStoreAndMapInt32(dst, regT1, regT0, false, OPCODE_LENGTH(op_post_inc));
}
void JIT::emitSlow_op_post_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned srcDst = currentInstruction[2].u.operand;
linkSlowCase(iter); // int32 check
if (dst != srcDst)
linkSlowCase(iter); // overflow check
JITStubCall stubCall(this, cti_op_post_inc);
stubCall.addArgument(srcDst);
stubCall.addArgument(TrustedImm32(srcDst));
stubCall.call(dst);
}
// PostDec (i--)
void JIT::emit_op_post_dec(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned srcDst = currentInstruction[2].u.operand;
emitLoad(srcDst, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
if (dst == srcDst) // x = x-- is a noop for ints.
return;
move(regT0, regT2);
addSlowCase(branchSub32(Overflow, TrustedImm32(1), regT2));
emitStoreInt32(srcDst, regT2, true);
emitStoreAndMapInt32(dst, regT1, regT0, false, OPCODE_LENGTH(op_post_dec));
}
void JIT::emitSlow_op_post_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned srcDst = currentInstruction[2].u.operand;
linkSlowCase(iter); // int32 check
if (dst != srcDst)
linkSlowCase(iter); // overflow check
JITStubCall stubCall(this, cti_op_post_dec);
stubCall.addArgument(srcDst);
stubCall.addArgument(TrustedImm32(srcDst));
stubCall.call(dst);
}
// PreInc (++i)
void JIT::emit_op_pre_inc(Instruction* currentInstruction)
{
unsigned srcDst = currentInstruction[1].u.operand;
emitLoad(srcDst, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
addSlowCase(branchAdd32(Overflow, TrustedImm32(1), regT0));
emitStoreAndMapInt32(srcDst, regT1, regT0, true, OPCODE_LENGTH(op_pre_inc));
}
void JIT::emitSlow_op_pre_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned srcDst = currentInstruction[1].u.operand;
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // overflow check
JITStubCall stubCall(this, cti_op_pre_inc);
stubCall.addArgument(srcDst);
stubCall.call(srcDst);
}
// PreDec (--i)
void JIT::emit_op_pre_dec(Instruction* currentInstruction)
{
unsigned srcDst = currentInstruction[1].u.operand;
emitLoad(srcDst, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
addSlowCase(branchSub32(Overflow, TrustedImm32(1), regT0));
emitStoreAndMapInt32(srcDst, regT1, regT0, true, OPCODE_LENGTH(op_pre_dec));
}
void JIT::emitSlow_op_pre_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned srcDst = currentInstruction[1].u.operand;
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // overflow check
JITStubCall stubCall(this, cti_op_pre_dec);
stubCall.addArgument(srcDst);
stubCall.call(srcDst);
}
// Addition (+)
void JIT::emit_op_add(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) {
addSlowCase();
JITStubCall stubCall(this, cti_op_add);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call(dst);
return;
}
JumpList notInt32Op1;
JumpList notInt32Op2;
unsigned op;
int32_t constant;
if (getOperandConstantImmediateInt(op1, op2, op, constant)) {
emitAdd32Constant(dst, op, constant, op == op1 ? types.first() : types.second());
return;
}
emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
// Int32 case.
addSlowCase(branchAdd32(Overflow, regT2, regT0));
emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
if (!supportsFloatingPoint()) {
addSlowCase(notInt32Op1);
addSlowCase(notInt32Op2);
return;
}
Jump end = jump();
// Double case.
emitBinaryDoubleOp(op_add, dst, op1, op2, types, notInt32Op1, notInt32Op2);
end.link(this);
}
void JIT::emitAdd32Constant(unsigned dst, unsigned op, int32_t constant, ResultType opType)
{
// Int32 case.
emitLoad(op, regT1, regT2);
Jump notInt32 = branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag));
addSlowCase(branchAdd32(Overflow, regT2, Imm32(constant), regT0));
emitStoreInt32(dst, regT0, (op == dst));
// Double case.
if (!supportsFloatingPoint()) {
addSlowCase(notInt32);
return;
}
Jump end = jump();
notInt32.link(this);
if (!opType.definitelyIsNumber())
addSlowCase(branch32(Above, regT1, TrustedImm32(JSValue::LowestTag)));
move(Imm32(constant), regT2);
convertInt32ToDouble(regT2, fpRegT0);
emitLoadDouble(op, fpRegT1);
addDouble(fpRegT1, fpRegT0);
emitStoreDouble(dst, fpRegT0);
end.link(this);
}
void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) {
linkDummySlowCase(iter);
return;
}
unsigned op;
int32_t constant;
if (getOperandConstantImmediateInt(op1, op2, op, constant)) {
linkSlowCase(iter); // overflow check
if (!supportsFloatingPoint())
linkSlowCase(iter); // non-sse case
else {
ResultType opType = op == op1 ? types.first() : types.second();
if (!opType.definitelyIsNumber())
linkSlowCase(iter); // double check
}
} else {
linkSlowCase(iter); // overflow check
if (!supportsFloatingPoint()) {
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // int32 check
} else {
if (!types.first().definitelyIsNumber())
linkSlowCase(iter); // double check
if (!types.second().definitelyIsNumber()) {
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // double check
}
}
}
JITStubCall stubCall(this, cti_op_add);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call(dst);
}
// Subtraction (-)
void JIT::emit_op_sub(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
JumpList notInt32Op1;
JumpList notInt32Op2;
if (isOperandConstantImmediateInt(op2)) {
emitSub32Constant(dst, op1, getConstantOperand(op2).asInt32(), types.first());
return;
}
emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
// Int32 case.
addSlowCase(branchSub32(Overflow, regT2, regT0));
emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
if (!supportsFloatingPoint()) {
addSlowCase(notInt32Op1);
addSlowCase(notInt32Op2);
return;
}
Jump end = jump();
// Double case.
emitBinaryDoubleOp(op_sub, dst, op1, op2, types, notInt32Op1, notInt32Op2);
end.link(this);
}
void JIT::emitSub32Constant(unsigned dst, unsigned op, int32_t constant, ResultType opType)
{
// Int32 case.
emitLoad(op, regT1, regT0);
Jump notInt32 = branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag));
#if ENABLE(JIT_CONSTANT_BLINDING)
addSlowCase(branchSub32(Overflow, regT0, Imm32(constant), regT2, regT3));
#else
addSlowCase(branchSub32(Overflow, regT0, Imm32(constant), regT2));
#endif
emitStoreInt32(dst, regT2, (op == dst));
// Double case.
if (!supportsFloatingPoint()) {
addSlowCase(notInt32);
return;
}
Jump end = jump();
notInt32.link(this);
if (!opType.definitelyIsNumber())
addSlowCase(branch32(Above, regT1, TrustedImm32(JSValue::LowestTag)));
move(Imm32(constant), regT2);
convertInt32ToDouble(regT2, fpRegT0);
emitLoadDouble(op, fpRegT1);
subDouble(fpRegT0, fpRegT1);
emitStoreDouble(dst, fpRegT1);
end.link(this);
}
void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
if (isOperandConstantImmediateInt(op2)) {
linkSlowCase(iter); // overflow check
if (!supportsFloatingPoint() || !types.first().definitelyIsNumber())
linkSlowCase(iter); // int32 or double check
} else {
linkSlowCase(iter); // overflow check
if (!supportsFloatingPoint()) {
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // int32 check
} else {
if (!types.first().definitelyIsNumber())
linkSlowCase(iter); // double check
if (!types.second().definitelyIsNumber()) {
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // double check
}
}
}
JITStubCall stubCall(this, cti_op_sub);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call(dst);
}
void JIT::emitBinaryDoubleOp(OpcodeID opcodeID, unsigned dst, unsigned op1, unsigned op2, OperandTypes types, JumpList& notInt32Op1, JumpList& notInt32Op2, bool op1IsInRegisters, bool op2IsInRegisters)
{
JumpList end;
if (!notInt32Op1.empty()) {
// Double case 1: Op1 is not int32; Op2 is unknown.
notInt32Op1.link(this);
ASSERT(op1IsInRegisters);
// Verify Op1 is double.
if (!types.first().definitelyIsNumber())
addSlowCase(branch32(Above, regT1, TrustedImm32(JSValue::LowestTag)));
if (!op2IsInRegisters)
emitLoad(op2, regT3, regT2);
Jump doubleOp2 = branch32(Below, regT3, TrustedImm32(JSValue::LowestTag));
if (!types.second().definitelyIsNumber())
addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
convertInt32ToDouble(regT2, fpRegT0);
Jump doTheMath = jump();
// Load Op2 as double into double register.
doubleOp2.link(this);
emitLoadDouble(op2, fpRegT0);
// Do the math.
doTheMath.link(this);
switch (opcodeID) {
case op_mul:
emitLoadDouble(op1, fpRegT2);
mulDouble(fpRegT2, fpRegT0);
emitStoreDouble(dst, fpRegT0);
break;
case op_add:
emitLoadDouble(op1, fpRegT2);
addDouble(fpRegT2, fpRegT0);
emitStoreDouble(dst, fpRegT0);
break;
case op_sub:
emitLoadDouble(op1, fpRegT1);
subDouble(fpRegT0, fpRegT1);
emitStoreDouble(dst, fpRegT1);
break;
case op_div: {
emitLoadDouble(op1, fpRegT1);
divDouble(fpRegT0, fpRegT1);
#if ENABLE(VALUE_PROFILER)
// Is the result actually an integer? The DFG JIT would really like to know. If it's
// not an integer, we increment a count. If this together with the slow case counter
// are below threshold then the DFG JIT will compile this division with a specualtion
// that the remainder is zero.
// As well, there are cases where a double result here would cause an important field
// in the heap to sometimes have doubles in it, resulting in double predictions getting
// propagated to a use site where it might cause damage (such as the index to an array
// access). So if we are DFG compiling anything in the program, we want this code to
// ensure that it produces integers whenever possible.
// FIXME: This will fail to convert to integer if the result is zero. We should
// distinguish between positive zero and negative zero here.
JumpList notInteger;
branchConvertDoubleToInt32(fpRegT1, regT2, notInteger, fpRegT0);
// If we've got an integer, we might as well make that the result of the division.
emitStoreInt32(dst, regT2);
Jump isInteger = jump();
notInteger.link(this);
add32(TrustedImm32(1), AbsoluteAddress(&m_codeBlock->specialFastCaseProfileForBytecodeOffset(m_bytecodeOffset)->m_counter));
emitStoreDouble(dst, fpRegT1);
isInteger.link(this);
#else
emitStoreDouble(dst, fpRegT1);
#endif
break;
}
case op_jless:
emitLoadDouble(op1, fpRegT2);
addJump(branchDouble(DoubleLessThan, fpRegT2, fpRegT0), dst);
break;
case op_jlesseq:
emitLoadDouble(op1, fpRegT2);
addJump(branchDouble(DoubleLessThanOrEqual, fpRegT2, fpRegT0), dst);
break;
case op_jgreater:
emitLoadDouble(op1, fpRegT2);
addJump(branchDouble(DoubleGreaterThan, fpRegT2, fpRegT0), dst);
break;
case op_jgreatereq:
emitLoadDouble(op1, fpRegT2);
addJump(branchDouble(DoubleGreaterThanOrEqual, fpRegT2, fpRegT0), dst);
break;
case op_jnless:
emitLoadDouble(op1, fpRegT2);
addJump(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT0, fpRegT2), dst);
break;
case op_jnlesseq:
emitLoadDouble(op1, fpRegT2);
addJump(branchDouble(DoubleLessThanOrUnordered, fpRegT0, fpRegT2), dst);
break;
case op_jngreater:
emitLoadDouble(op1, fpRegT2);
addJump(branchDouble(DoubleGreaterThanOrEqualOrUnordered, fpRegT0, fpRegT2), dst);
break;
case op_jngreatereq:
emitLoadDouble(op1, fpRegT2);
addJump(branchDouble(DoubleGreaterThanOrUnordered, fpRegT0, fpRegT2), dst);
break;
default:
ASSERT_NOT_REACHED();
}
if (!notInt32Op2.empty())
end.append(jump());
}
if (!notInt32Op2.empty()) {
// Double case 2: Op1 is int32; Op2 is not int32.
notInt32Op2.link(this);
ASSERT(op2IsInRegisters);
if (!op1IsInRegisters)
emitLoadPayload(op1, regT0);
convertInt32ToDouble(regT0, fpRegT0);
// Verify op2 is double.
if (!types.second().definitelyIsNumber())
addSlowCase(branch32(Above, regT3, TrustedImm32(JSValue::LowestTag)));
// Do the math.
switch (opcodeID) {
case op_mul:
emitLoadDouble(op2, fpRegT2);
mulDouble(fpRegT2, fpRegT0);
emitStoreDouble(dst, fpRegT0);
break;
case op_add:
emitLoadDouble(op2, fpRegT2);
addDouble(fpRegT2, fpRegT0);
emitStoreDouble(dst, fpRegT0);
break;
case op_sub:
emitLoadDouble(op2, fpRegT2);
subDouble(fpRegT2, fpRegT0);
emitStoreDouble(dst, fpRegT0);
break;
case op_div: {
emitLoadDouble(op2, fpRegT2);
divDouble(fpRegT2, fpRegT0);
#if ENABLE(VALUE_PROFILER)
// Is the result actually an integer? The DFG JIT would really like to know. If it's
// not an integer, we increment a count. If this together with the slow case counter
// are below threshold then the DFG JIT will compile this division with a specualtion
// that the remainder is zero.
// As well, there are cases where a double result here would cause an important field
// in the heap to sometimes have doubles in it, resulting in double predictions getting
// propagated to a use site where it might cause damage (such as the index to an array
// access). So if we are DFG compiling anything in the program, we want this code to
// ensure that it produces integers whenever possible.
// FIXME: This will fail to convert to integer if the result is zero. We should
// distinguish between positive zero and negative zero here.
JumpList notInteger;
branchConvertDoubleToInt32(fpRegT0, regT2, notInteger, fpRegT1);
// If we've got an integer, we might as well make that the result of the division.
emitStoreInt32(dst, regT2);
Jump isInteger = jump();
notInteger.link(this);
add32(TrustedImm32(1), AbsoluteAddress(&m_codeBlock->specialFastCaseProfileForBytecodeOffset(m_bytecodeOffset)->m_counter));
emitStoreDouble(dst, fpRegT0);
isInteger.link(this);
#else
emitStoreDouble(dst, fpRegT0);
#endif
break;
}
case op_jless:
emitLoadDouble(op2, fpRegT1);
addJump(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), dst);
break;
case op_jlesseq:
emitLoadDouble(op2, fpRegT1);
addJump(branchDouble(DoubleLessThanOrEqual, fpRegT0, fpRegT1), dst);
break;
case op_jgreater:
emitLoadDouble(op2, fpRegT1);
addJump(branchDouble(DoubleGreaterThan, fpRegT0, fpRegT1), dst);
break;
case op_jgreatereq:
emitLoadDouble(op2, fpRegT1);
addJump(branchDouble(DoubleGreaterThanOrEqual, fpRegT0, fpRegT1), dst);
break;
case op_jnless:
emitLoadDouble(op2, fpRegT1);
addJump(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), dst);
break;
case op_jnlesseq:
emitLoadDouble(op2, fpRegT1);
addJump(branchDouble(DoubleLessThanOrUnordered, fpRegT1, fpRegT0), dst);
break;
case op_jngreater:
emitLoadDouble(op2, fpRegT1);
addJump(branchDouble(DoubleGreaterThanOrEqualOrUnordered, fpRegT1, fpRegT0), dst);
break;
case op_jngreatereq:
emitLoadDouble(op2, fpRegT1);
addJump(branchDouble(DoubleGreaterThanOrUnordered, fpRegT1, fpRegT0), dst);
break;
default:
ASSERT_NOT_REACHED();
}
}
end.link(this);
}
// Multiplication (*)
void JIT::emit_op_mul(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
#if ENABLE(VALUE_PROFILER)
m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset);
#endif
JumpList notInt32Op1;
JumpList notInt32Op2;
emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
// Int32 case.
move(regT0, regT3);
addSlowCase(branchMul32(Overflow, regT2, regT0));
addSlowCase(branchTest32(Zero, regT0));
emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
if (!supportsFloatingPoint()) {
addSlowCase(notInt32Op1);
addSlowCase(notInt32Op2);
return;
}
Jump end = jump();
// Double case.
emitBinaryDoubleOp(op_mul, dst, op1, op2, types, notInt32Op1, notInt32Op2);
end.link(this);
}
void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
Jump overflow = getSlowCase(iter); // overflow check
linkSlowCase(iter); // zero result check
Jump negZero = branchOr32(Signed, regT2, regT3);
emitStoreInt32(dst, TrustedImm32(0), (op1 == dst || op2 == dst));
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_mul));
negZero.link(this);
#if ENABLE(VALUE_PROFILER)
// We only get here if we have a genuine negative zero. Record this,
// so that the speculative JIT knows that we failed speculation
// because of a negative zero.
add32(TrustedImm32(1), AbsoluteAddress(&m_codeBlock->specialFastCaseProfileForBytecodeOffset(m_bytecodeOffset)->m_counter));
#endif
overflow.link(this);
if (!supportsFloatingPoint()) {
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // int32 check
}
if (supportsFloatingPoint()) {
if (!types.first().definitelyIsNumber())
linkSlowCase(iter); // double check
if (!types.second().definitelyIsNumber()) {
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // double check
}
}
Label jitStubCall(this);
JITStubCall stubCall(this, cti_op_mul);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call(dst);
}
// Division (/)
void JIT::emit_op_div(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
#if ENABLE(VALUE_PROFILER)
m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset);
#endif
if (!supportsFloatingPoint()) {
addSlowCase(jump());
return;
}
// Int32 divide.
JumpList notInt32Op1;
JumpList notInt32Op2;
JumpList end;
emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
convertInt32ToDouble(regT0, fpRegT0);
convertInt32ToDouble(regT2, fpRegT1);
divDouble(fpRegT1, fpRegT0);
#if ENABLE(VALUE_PROFILER)
// Is the result actually an integer? The DFG JIT would really like to know. If it's
// not an integer, we increment a count. If this together with the slow case counter
// are below threshold then the DFG JIT will compile this division with a specualtion
// that the remainder is zero.
// As well, there are cases where a double result here would cause an important field
// in the heap to sometimes have doubles in it, resulting in double predictions getting
// propagated to a use site where it might cause damage (such as the index to an array
// access). So if we are DFG compiling anything in the program, we want this code to
// ensure that it produces integers whenever possible.
// FIXME: This will fail to convert to integer if the result is zero. We should
// distinguish between positive zero and negative zero here.
JumpList notInteger;
branchConvertDoubleToInt32(fpRegT0, regT2, notInteger, fpRegT1);
// If we've got an integer, we might as well make that the result of the division.
emitStoreInt32(dst, regT2);
end.append(jump());
notInteger.link(this);
add32(TrustedImm32(1), AbsoluteAddress(&m_codeBlock->specialFastCaseProfileForBytecodeOffset(m_bytecodeOffset)->m_counter));
emitStoreDouble(dst, fpRegT0);
#else
emitStoreDouble(dst, fpRegT0);
#endif
end.append(jump());
// Double divide.
emitBinaryDoubleOp(op_div, dst, op1, op2, types, notInt32Op1, notInt32Op2);
end.link(this);
}
void JIT::emitSlow_op_div(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
if (!supportsFloatingPoint())
linkSlowCase(iter);
else {
if (!types.first().definitelyIsNumber())
linkSlowCase(iter); // double check
if (!types.second().definitelyIsNumber()) {
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // double check
}
}
JITStubCall stubCall(this, cti_op_div);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call(dst);
}
// Mod (%)
/* ------------------------------ BEGIN: OP_MOD ------------------------------ */
void JIT::emit_op_mod(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
#if CPU(X86) || CPU(X86_64)
// Make sure registers are correct for x86 IDIV instructions.
ASSERT(regT0 == X86Registers::eax);
ASSERT(regT1 == X86Registers::edx);
ASSERT(regT2 == X86Registers::ecx);
ASSERT(regT3 == X86Registers::ebx);
emitLoad2(op1, regT0, regT3, op2, regT1, regT2);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
addSlowCase(branch32(NotEqual, regT0, TrustedImm32(JSValue::Int32Tag)));
move(regT3, regT0);
addSlowCase(branchTest32(Zero, regT2));
Jump denominatorNotNeg1 = branch32(NotEqual, regT2, TrustedImm32(-1));
addSlowCase(branch32(Equal, regT0, TrustedImm32(-2147483647-1)));
denominatorNotNeg1.link(this);
m_assembler.cdq();
m_assembler.idivl_r(regT2);
Jump numeratorPositive = branch32(GreaterThanOrEqual, regT3, TrustedImm32(0));
addSlowCase(branchTest32(Zero, regT1));
numeratorPositive.link(this);
emitStoreInt32(dst, regT1, (op1 == dst || op2 == dst));
#else
JITStubCall stubCall(this, cti_op_mod);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call(dst);
#endif
}
void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
#if CPU(X86) || CPU(X86_64)
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_mod);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call(result);
#else
UNUSED_PARAM(currentInstruction);
UNUSED_PARAM(iter);
// We would have really useful assertions here if it wasn't for the compiler's
// insistence on attribute noreturn.
// ASSERT_NOT_REACHED();
#endif
}
/* ------------------------------ END: OP_MOD ------------------------------ */
} // namespace JSC
#endif // USE(JSVALUE32_64)
#endif // ENABLE(JIT)