blob: f07611c243950fad535bbc5ea711f9cd9a0420df [file] [log] [blame]
/*
* Copyright (C) 1999-2002 Harri Porten (porten@kde.org)
* Copyright (C) 2001 Peter Kelly (pmk@post.com)
* Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2012 Apple Inc. All rights reserved.
* Copyright (C) 2007 Cameron Zwarich (cwzwarich@uwaterloo.ca)
* Copyright (C) 2007 Maks Orlovich
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include "config.h"
#include "JSGlobalObjectFunctions.h"
#include "CallFrame.h"
#include "Interpreter.h"
#include "JSFunction.h"
#include "JSGlobalObject.h"
#include "JSString.h"
#include "JSStringBuilder.h"
#include "Lexer.h"
#include "LiteralParser.h"
#include "Nodes.h"
#include "Parser.h"
#include <wtf/dtoa.h>
#include <stdio.h>
#include <stdlib.h>
#include <wtf/ASCIICType.h>
#include <wtf/Assertions.h>
#include <wtf/MathExtras.h>
#include <wtf/StringExtras.h>
#include <wtf/text/StringBuilder.h>
#include <wtf/unicode/UTF8.h>
using namespace WTF;
using namespace Unicode;
namespace JSC {
static JSValue encode(ExecState* exec, const char* doNotEscape)
{
CString cstr = exec->argument(0).toString(exec)->value(exec).utf8(String::StrictConversion);
if (!cstr.data())
return throwError(exec, createURIError(exec, ASCIILiteral("String contained an illegal UTF-16 sequence.")));
JSStringBuilder builder;
const char* p = cstr.data();
for (size_t k = 0; k < cstr.length(); k++, p++) {
char c = *p;
if (c && strchr(doNotEscape, c))
builder.append(c);
else {
char tmp[4];
snprintf(tmp, sizeof(tmp), "%%%02X", static_cast<unsigned char>(c));
builder.append(tmp);
}
}
return builder.build(exec);
}
template <typename CharType>
ALWAYS_INLINE
static JSValue decode(ExecState* exec, const CharType* characters, int length, const char* doNotUnescape, bool strict)
{
JSStringBuilder builder;
int k = 0;
UChar u = 0;
while (k < length) {
const CharType* p = characters + k;
CharType c = *p;
if (c == '%') {
int charLen = 0;
if (k <= length - 3 && isASCIIHexDigit(p[1]) && isASCIIHexDigit(p[2])) {
const char b0 = Lexer<CharType>::convertHex(p[1], p[2]);
const int sequenceLen = UTF8SequenceLength(b0);
if (sequenceLen && k <= length - sequenceLen * 3) {
charLen = sequenceLen * 3;
char sequence[5];
sequence[0] = b0;
for (int i = 1; i < sequenceLen; ++i) {
const CharType* q = p + i * 3;
if (q[0] == '%' && isASCIIHexDigit(q[1]) && isASCIIHexDigit(q[2]))
sequence[i] = Lexer<CharType>::convertHex(q[1], q[2]);
else {
charLen = 0;
break;
}
}
if (charLen != 0) {
sequence[sequenceLen] = 0;
const int character = decodeUTF8Sequence(sequence);
if (character < 0 || character >= 0x110000)
charLen = 0;
else if (character >= 0x10000) {
// Convert to surrogate pair.
builder.append(static_cast<UChar>(0xD800 | ((character - 0x10000) >> 10)));
u = static_cast<UChar>(0xDC00 | ((character - 0x10000) & 0x3FF));
} else
u = static_cast<UChar>(character);
}
}
}
if (charLen == 0) {
if (strict)
return throwError(exec, createURIError(exec, ASCIILiteral("URI error")));
// The only case where we don't use "strict" mode is the "unescape" function.
// For that, it's good to support the wonky "%u" syntax for compatibility with WinIE.
if (k <= length - 6 && p[1] == 'u'
&& isASCIIHexDigit(p[2]) && isASCIIHexDigit(p[3])
&& isASCIIHexDigit(p[4]) && isASCIIHexDigit(p[5])) {
charLen = 6;
u = Lexer<UChar>::convertUnicode(p[2], p[3], p[4], p[5]);
}
}
if (charLen && (u == 0 || u >= 128 || !strchr(doNotUnescape, u))) {
if (u < 256)
builder.append(static_cast<LChar>(u));
else
builder.append(u);
k += charLen;
continue;
}
}
k++;
builder.append(c);
}
return builder.build(exec);
}
static JSValue decode(ExecState* exec, const char* doNotUnescape, bool strict)
{
JSStringBuilder builder;
String str = exec->argument(0).toString(exec)->value(exec);
if (str.is8Bit())
return decode(exec, str.characters8(), str.length(), doNotUnescape, strict);
return decode(exec, str.characters16(), str.length(), doNotUnescape, strict);
}
bool isStrWhiteSpace(UChar c)
{
switch (c) {
// ECMA-262-5th 7.2 & 7.3
case 0x0009:
case 0x000A:
case 0x000B:
case 0x000C:
case 0x000D:
case 0x0020:
case 0x00A0:
case 0x2028:
case 0x2029:
case 0xFEFF:
return true;
default:
return c > 0xff && isSeparatorSpace(c);
}
}
static int parseDigit(unsigned short c, int radix)
{
int digit = -1;
if (c >= '0' && c <= '9')
digit = c - '0';
else if (c >= 'A' && c <= 'Z')
digit = c - 'A' + 10;
else if (c >= 'a' && c <= 'z')
digit = c - 'a' + 10;
if (digit >= radix)
return -1;
return digit;
}
double parseIntOverflow(const LChar* s, int length, int radix)
{
double number = 0.0;
double radixMultiplier = 1.0;
for (const LChar* p = s + length - 1; p >= s; p--) {
if (radixMultiplier == std::numeric_limits<double>::infinity()) {
if (*p != '0') {
number = std::numeric_limits<double>::infinity();
break;
}
} else {
int digit = parseDigit(*p, radix);
number += digit * radixMultiplier;
}
radixMultiplier *= radix;
}
return number;
}
double parseIntOverflow(const UChar* s, int length, int radix)
{
double number = 0.0;
double radixMultiplier = 1.0;
for (const UChar* p = s + length - 1; p >= s; p--) {
if (radixMultiplier == std::numeric_limits<double>::infinity()) {
if (*p != '0') {
number = std::numeric_limits<double>::infinity();
break;
}
} else {
int digit = parseDigit(*p, radix);
number += digit * radixMultiplier;
}
radixMultiplier *= radix;
}
return number;
}
// ES5.1 15.1.2.2
template <typename CharType>
ALWAYS_INLINE
static double parseInt(const String& s, const CharType* data, int radix)
{
// 1. Let inputString be ToString(string).
// 2. Let S be a newly created substring of inputString consisting of the first character that is not a
// StrWhiteSpaceChar and all characters following that character. (In other words, remove leading white
// space.) If inputString does not contain any such characters, let S be the empty string.
int length = s.length();
int p = 0;
while (p < length && isStrWhiteSpace(data[p]))
++p;
// 3. Let sign be 1.
// 4. If S is not empty and the first character of S is a minus sign -, let sign be -1.
// 5. If S is not empty and the first character of S is a plus sign + or a minus sign -, then remove the first character from S.
double sign = 1;
if (p < length) {
if (data[p] == '+')
++p;
else if (data[p] == '-') {
sign = -1;
++p;
}
}
// 6. Let R = ToInt32(radix).
// 7. Let stripPrefix be true.
// 8. If R != 0,then
// b. If R != 16, let stripPrefix be false.
// 9. Else, R == 0
// a. LetR = 10.
// 10. If stripPrefix is true, then
// a. If the length of S is at least 2 and the first two characters of S are either -0x or -0X,
// then remove the first two characters from S and let R = 16.
// 11. If S contains any character that is not a radix-R digit, then let Z be the substring of S
// consisting of all characters before the first such character; otherwise, let Z be S.
if ((radix == 0 || radix == 16) && length - p >= 2 && data[p] == '0' && (data[p + 1] == 'x' || data[p + 1] == 'X')) {
radix = 16;
p += 2;
} else if (radix == 0)
radix = 10;
// 8.a If R < 2 or R > 36, then return NaN.
if (radix < 2 || radix > 36)
return QNaN;
// 13. Let mathInt be the mathematical integer value that is represented by Z in radix-R notation, using the letters
// A-Z and a-z for digits with values 10 through 35. (However, if R is 10 and Z contains more than 20 significant
// digits, every significant digit after the 20th may be replaced by a 0 digit, at the option of the implementation;
// and if R is not 2, 4, 8, 10, 16, or 32, then mathInt may be an implementation-dependent approximation to the
// mathematical integer value that is represented by Z in radix-R notation.)
// 14. Let number be the Number value for mathInt.
int firstDigitPosition = p;
bool sawDigit = false;
double number = 0;
while (p < length) {
int digit = parseDigit(data[p], radix);
if (digit == -1)
break;
sawDigit = true;
number *= radix;
number += digit;
++p;
}
// 12. If Z is empty, return NaN.
if (!sawDigit)
return QNaN;
// Alternate code path for certain large numbers.
if (number >= mantissaOverflowLowerBound) {
if (radix == 10) {
size_t parsedLength;
number = parseDouble(s.characters() + firstDigitPosition, p - firstDigitPosition, parsedLength);
} else if (radix == 2 || radix == 4 || radix == 8 || radix == 16 || radix == 32)
number = parseIntOverflow(s.substringSharingImpl(firstDigitPosition, p - firstDigitPosition).utf8().data(), p - firstDigitPosition, radix);
}
// 15. Return sign x number.
return sign * number;
}
static double parseInt(const String& s, int radix)
{
if (s.is8Bit())
return parseInt(s, s.characters8(), radix);
return parseInt(s, s.characters16(), radix);
}
static const int SizeOfInfinity = 8;
template <typename CharType>
static bool isInfinity(const CharType* data, const CharType* end)
{
return (end - data) >= SizeOfInfinity
&& data[0] == 'I'
&& data[1] == 'n'
&& data[2] == 'f'
&& data[3] == 'i'
&& data[4] == 'n'
&& data[5] == 'i'
&& data[6] == 't'
&& data[7] == 'y';
}
// See ecma-262 9.3.1
template <typename CharType>
static double jsHexIntegerLiteral(const CharType*& data, const CharType* end)
{
// Hex number.
data += 2;
const CharType* firstDigitPosition = data;
double number = 0;
while (true) {
number = number * 16 + toASCIIHexValue(*data);
++data;
if (data == end)
break;
if (!isASCIIHexDigit(*data))
break;
}
if (number >= mantissaOverflowLowerBound)
number = parseIntOverflow(firstDigitPosition, data - firstDigitPosition, 16);
return number;
}
// See ecma-262 9.3.1
template <typename CharType>
static double jsStrDecimalLiteral(const CharType*& data, const CharType* end)
{
ASSERT(data < end);
size_t parsedLength;
double number = parseDouble(data, end - data, parsedLength);
if (parsedLength) {
data += parsedLength;
return number;
}
// Check for [+-]?Infinity
switch (*data) {
case 'I':
if (isInfinity(data, end)) {
data += SizeOfInfinity;
return std::numeric_limits<double>::infinity();
}
break;
case '+':
if (isInfinity(data + 1, end)) {
data += SizeOfInfinity + 1;
return std::numeric_limits<double>::infinity();
}
break;
case '-':
if (isInfinity(data + 1, end)) {
data += SizeOfInfinity + 1;
return -std::numeric_limits<double>::infinity();
}
break;
}
// Not a number.
return QNaN;
}
template <typename CharType>
static double toDouble(const CharType* characters, unsigned size)
{
const CharType* endCharacters = characters + size;
// Skip leading white space.
for (; characters < endCharacters; ++characters) {
if (!isStrWhiteSpace(*characters))
break;
}
// Empty string.
if (characters == endCharacters)
return 0.0;
double number;
if (characters[0] == '0' && characters + 2 < endCharacters && (characters[1] | 0x20) == 'x' && isASCIIHexDigit(characters[2]))
number = jsHexIntegerLiteral(characters, endCharacters);
else
number = jsStrDecimalLiteral(characters, endCharacters);
// Allow trailing white space.
for (; characters < endCharacters; ++characters) {
if (!isStrWhiteSpace(*characters))
break;
}
if (characters != endCharacters)
return QNaN;
return number;
}
// See ecma-262 9.3.1
double jsToNumber(const String& s)
{
unsigned size = s.length();
if (size == 1) {
UChar c = s[0];
if (isASCIIDigit(c))
return c - '0';
if (isStrWhiteSpace(c))
return 0;
return QNaN;
}
if (s.is8Bit())
return toDouble(s.characters8(), size);
return toDouble(s.characters16(), size);
}
static double parseFloat(const String& s)
{
unsigned size = s.length();
if (size == 1) {
UChar c = s[0];
if (isASCIIDigit(c))
return c - '0';
return QNaN;
}
if (s.is8Bit()) {
const LChar* data = s.characters8();
const LChar* end = data + size;
// Skip leading white space.
for (; data < end; ++data) {
if (!isStrWhiteSpace(*data))
break;
}
// Empty string.
if (data == end)
return QNaN;
return jsStrDecimalLiteral(data, end);
}
const UChar* data = s.characters16();
const UChar* end = data + size;
// Skip leading white space.
for (; data < end; ++data) {
if (!isStrWhiteSpace(*data))
break;
}
// Empty string.
if (data == end)
return QNaN;
return jsStrDecimalLiteral(data, end);
}
EncodedJSValue JSC_HOST_CALL globalFuncEval(ExecState* exec)
{
JSValue x = exec->argument(0);
if (!x.isString())
return JSValue::encode(x);
String s = x.toString(exec)->value(exec);
if (s.is8Bit()) {
LiteralParser<LChar> preparser(exec, s.characters8(), s.length(), NonStrictJSON);
if (JSValue parsedObject = preparser.tryLiteralParse())
return JSValue::encode(parsedObject);
} else {
LiteralParser<UChar> preparser(exec, s.characters16(), s.length(), NonStrictJSON);
if (JSValue parsedObject = preparser.tryLiteralParse())
return JSValue::encode(parsedObject);
}
JSGlobalObject* calleeGlobalObject = exec->callee()->globalObject();
EvalExecutable* eval = EvalExecutable::create(exec, makeSource(s), false);
JSObject* error = eval->compile(exec, calleeGlobalObject);
if (error)
return throwVMError(exec, error);
return JSValue::encode(exec->interpreter()->execute(eval, exec, calleeGlobalObject->globalThis(), calleeGlobalObject));
}
EncodedJSValue JSC_HOST_CALL globalFuncParseInt(ExecState* exec)
{
JSValue value = exec->argument(0);
JSValue radixValue = exec->argument(1);
// Optimized handling for numbers:
// If the argument is 0 or a number in range 10^-6 <= n < INT_MAX+1, then parseInt
// results in a truncation to integer. In the case of -0, this is converted to 0.
//
// This is also a truncation for values in the range INT_MAX+1 <= n < 10^21,
// however these values cannot be trivially truncated to int since 10^21 exceeds
// even the int64_t range. Negative numbers are a little trickier, the case for
// values in the range -10^21 < n <= -1 are similar to those for integer, but
// values in the range -1 < n <= -10^-6 need to truncate to -0, not 0.
static const double tenToTheMinus6 = 0.000001;
static const double intMaxPlusOne = 2147483648.0;
if (value.isNumber()) {
double n = value.asNumber();
if (((n < intMaxPlusOne && n >= tenToTheMinus6) || !n) && radixValue.isUndefinedOrNull())
return JSValue::encode(jsNumber(static_cast<int32_t>(n)));
}
// If ToString throws, we shouldn't call ToInt32.
String s = value.toString(exec)->value(exec);
if (exec->hadException())
return JSValue::encode(jsUndefined());
return JSValue::encode(jsNumber(parseInt(s, radixValue.toInt32(exec))));
}
EncodedJSValue JSC_HOST_CALL globalFuncParseFloat(ExecState* exec)
{
return JSValue::encode(jsNumber(parseFloat(exec->argument(0).toString(exec)->value(exec))));
}
EncodedJSValue JSC_HOST_CALL globalFuncIsNaN(ExecState* exec)
{
return JSValue::encode(jsBoolean(isnan(exec->argument(0).toNumber(exec))));
}
EncodedJSValue JSC_HOST_CALL globalFuncIsFinite(ExecState* exec)
{
double n = exec->argument(0).toNumber(exec);
return JSValue::encode(jsBoolean(isfinite(n)));
}
EncodedJSValue JSC_HOST_CALL globalFuncDecodeURI(ExecState* exec)
{
static const char do_not_unescape_when_decoding_URI[] =
"#$&+,/:;=?@";
return JSValue::encode(decode(exec, do_not_unescape_when_decoding_URI, true));
}
EncodedJSValue JSC_HOST_CALL globalFuncDecodeURIComponent(ExecState* exec)
{
return JSValue::encode(decode(exec, "", true));
}
EncodedJSValue JSC_HOST_CALL globalFuncEncodeURI(ExecState* exec)
{
static const char do_not_escape_when_encoding_URI[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789"
"!#$&'()*+,-./:;=?@_~";
return JSValue::encode(encode(exec, do_not_escape_when_encoding_URI));
}
EncodedJSValue JSC_HOST_CALL globalFuncEncodeURIComponent(ExecState* exec)
{
static const char do_not_escape_when_encoding_URI_component[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789"
"!'()*-._~";
return JSValue::encode(encode(exec, do_not_escape_when_encoding_URI_component));
}
EncodedJSValue JSC_HOST_CALL globalFuncEscape(ExecState* exec)
{
static const char do_not_escape[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789"
"*+-./@_";
JSStringBuilder builder;
String str = exec->argument(0).toString(exec)->value(exec);
if (str.is8Bit()) {
const LChar* c = str.characters8();
for (unsigned k = 0; k < str.length(); k++, c++) {
int u = c[0];
if (u && strchr(do_not_escape, static_cast<char>(u)))
builder.append(c, 1);
else {
char tmp[4];
snprintf(tmp, sizeof(tmp), "%%%02X", u);
builder.append(tmp);
}
}
return JSValue::encode(builder.build(exec));
}
const UChar* c = str.characters16();
for (unsigned k = 0; k < str.length(); k++, c++) {
int u = c[0];
if (u > 255) {
char tmp[7];
snprintf(tmp, sizeof(tmp), "%%u%04X", u);
builder.append(tmp);
} else if (u != 0 && strchr(do_not_escape, static_cast<char>(u)))
builder.append(c, 1);
else {
char tmp[4];
snprintf(tmp, sizeof(tmp), "%%%02X", u);
builder.append(tmp);
}
}
return JSValue::encode(builder.build(exec));
}
EncodedJSValue JSC_HOST_CALL globalFuncUnescape(ExecState* exec)
{
StringBuilder builder;
String str = exec->argument(0).toString(exec)->value(exec);
int k = 0;
int len = str.length();
if (str.is8Bit()) {
const LChar* characters = str.characters8();
LChar convertedLChar;
while (k < len) {
const LChar* c = characters + k;
if (c[0] == '%' && k <= len - 6 && c[1] == 'u') {
if (isASCIIHexDigit(c[2]) && isASCIIHexDigit(c[3]) && isASCIIHexDigit(c[4]) && isASCIIHexDigit(c[5])) {
builder.append(Lexer<UChar>::convertUnicode(c[2], c[3], c[4], c[5]));
k += 6;
continue;
}
} else if (c[0] == '%' && k <= len - 3 && isASCIIHexDigit(c[1]) && isASCIIHexDigit(c[2])) {
convertedLChar = LChar(Lexer<LChar>::convertHex(c[1], c[2]));
c = &convertedLChar;
k += 2;
}
builder.append(*c);
k++;
}
} else {
const UChar* characters = str.characters16();
while (k < len) {
const UChar* c = characters + k;
UChar convertedUChar;
if (c[0] == '%' && k <= len - 6 && c[1] == 'u') {
if (isASCIIHexDigit(c[2]) && isASCIIHexDigit(c[3]) && isASCIIHexDigit(c[4]) && isASCIIHexDigit(c[5])) {
convertedUChar = Lexer<UChar>::convertUnicode(c[2], c[3], c[4], c[5]);
c = &convertedUChar;
k += 5;
}
} else if (c[0] == '%' && k <= len - 3 && isASCIIHexDigit(c[1]) && isASCIIHexDigit(c[2])) {
convertedUChar = UChar(Lexer<UChar>::convertHex(c[1], c[2]));
c = &convertedUChar;
k += 2;
}
k++;
builder.append(*c);
}
}
return JSValue::encode(jsString(exec, builder.toString()));
}
EncodedJSValue JSC_HOST_CALL globalFuncThrowTypeError(ExecState* exec)
{
return throwVMTypeError(exec);
}
EncodedJSValue JSC_HOST_CALL globalFuncProtoGetter(ExecState* exec)
{
if (!exec->thisValue().isObject())
return JSValue::encode(exec->thisValue().synthesizePrototype(exec));
JSObject* thisObject = asObject(exec->thisValue());
if (!thisObject->allowsAccessFrom(exec->trueCallerFrame()))
return JSValue::encode(jsUndefined());
return JSValue::encode(thisObject->prototype());
}
EncodedJSValue JSC_HOST_CALL globalFuncProtoSetter(ExecState* exec)
{
JSValue value = exec->argument(0);
// Setting __proto__ of a primitive should have no effect.
if (!exec->thisValue().isObject())
return JSValue::encode(jsUndefined());
JSObject* thisObject = asObject(exec->thisValue());
if (!thisObject->allowsAccessFrom(exec->trueCallerFrame()))
return JSValue::encode(jsUndefined());
// Setting __proto__ to a non-object, non-null value is silently ignored to match Mozilla.
if (!value.isObject() && !value.isNull())
return JSValue::encode(jsUndefined());
if (!thisObject->isExtensible())
return throwVMError(exec, createTypeError(exec, GetStrictModeReadonlyPropertyWriteError()));
if (!thisObject->setPrototypeWithCycleCheck(exec->globalData(), value))
throwError(exec, createError(exec, "cyclic __proto__ value"));
return JSValue::encode(jsUndefined());
}
} // namespace JSC