blob: fe3e831a60451cdadefd13339449d5a1aeef222c [file] [log] [blame]
//===-- UniqueCStringMap.h --------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef liblldb_UniqueCStringMap_h_
#define liblldb_UniqueCStringMap_h_
// C Includes
// C++ Includes
#include <algorithm>
#include <vector>
// Other libraries and framework includes
// Project includes
#include "lldb/Utility/ConstString.h"
#include "lldb/Utility/RegularExpression.h"
namespace lldb_private {
//----------------------------------------------------------------------
// Templatized uniqued string map.
//
// This map is useful for mapping unique C string names to values of type T.
// Each "const char *" name added must be unique for a given
// C string value. ConstString::GetCString() can provide such strings.
// Any other string table that has guaranteed unique values can also be used.
//----------------------------------------------------------------------
template <typename T> class UniqueCStringMap {
public:
struct Entry {
Entry() {}
Entry(ConstString cstr) : cstring(cstr), value() {}
Entry(ConstString cstr, const T &v) : cstring(cstr), value(v) {}
// This is only for uniqueness, not lexicographical ordering, so we can
// just compare pointers.
bool operator<(const Entry &rhs) const {
return cstring.GetCString() < rhs.cstring.GetCString();
}
ConstString cstring;
T value;
};
//------------------------------------------------------------------
// Call this function multiple times to add a bunch of entries to this map,
// then later call UniqueCStringMap<T>::Sort() before doing any searches by
// name.
//------------------------------------------------------------------
void Append(ConstString unique_cstr, const T &value) {
m_map.push_back(typename UniqueCStringMap<T>::Entry(unique_cstr, value));
}
void Append(const Entry &e) { m_map.push_back(e); }
void Clear() { m_map.clear(); }
//------------------------------------------------------------------
// Call this function to always keep the map sorted when putting entries into
// the map.
//------------------------------------------------------------------
void Insert(ConstString unique_cstr, const T &value) {
typename UniqueCStringMap<T>::Entry e(unique_cstr, value);
m_map.insert(std::upper_bound(m_map.begin(), m_map.end(), e), e);
}
void Insert(const Entry &e) {
m_map.insert(std::upper_bound(m_map.begin(), m_map.end(), e), e);
}
//------------------------------------------------------------------
// Get an entries by index in a variety of forms.
//
// The caller is responsible for ensuring that the collection does not change
// during while using the returned values.
//------------------------------------------------------------------
bool GetValueAtIndex(uint32_t idx, T &value) const {
if (idx < m_map.size()) {
value = m_map[idx].value;
return true;
}
return false;
}
ConstString GetCStringAtIndexUnchecked(uint32_t idx) const {
return m_map[idx].cstring;
}
// Use this function if you have simple types in your map that you can easily
// copy when accessing values by index.
T GetValueAtIndexUnchecked(uint32_t idx) const { return m_map[idx].value; }
// Use this function if you have complex types in your map that you don't
// want to copy when accessing values by index.
const T &GetValueRefAtIndexUnchecked(uint32_t idx) const {
return m_map[idx].value;
}
ConstString GetCStringAtIndex(uint32_t idx) const {
return ((idx < m_map.size()) ? m_map[idx].cstring : ConstString());
}
//------------------------------------------------------------------
// Find the value for the unique string in the map.
//
// Return the value for \a unique_cstr if one is found, return \a fail_value
// otherwise. This method works well for simple type
// T values and only if there is a sensible failure value that can
// be returned and that won't match any existing values.
//------------------------------------------------------------------
T Find(ConstString unique_cstr, T fail_value) const {
Entry search_entry(unique_cstr);
const_iterator end = m_map.end();
const_iterator pos = std::lower_bound(m_map.begin(), end, search_entry);
if (pos != end) {
if (pos->cstring == unique_cstr)
return pos->value;
}
return fail_value;
}
//------------------------------------------------------------------
// Get a pointer to the first entry that matches "name". nullptr will be
// returned if there is no entry that matches "name".
//
// The caller is responsible for ensuring that the collection does not change
// during while using the returned pointer.
//------------------------------------------------------------------
const Entry *FindFirstValueForName(ConstString unique_cstr) const {
Entry search_entry(unique_cstr);
const_iterator end = m_map.end();
const_iterator pos = std::lower_bound(m_map.begin(), end, search_entry);
if (pos != end && pos->cstring == unique_cstr)
return &(*pos);
return nullptr;
}
//------------------------------------------------------------------
// Get a pointer to the next entry that matches "name" from a previously
// returned Entry pointer. nullptr will be returned if there is no subsequent
// entry that matches "name".
//
// The caller is responsible for ensuring that the collection does not change
// during while using the returned pointer.
//------------------------------------------------------------------
const Entry *FindNextValueForName(const Entry *entry_ptr) const {
if (!m_map.empty()) {
const Entry *first_entry = &m_map[0];
const Entry *after_last_entry = first_entry + m_map.size();
const Entry *next_entry = entry_ptr + 1;
if (first_entry <= next_entry && next_entry < after_last_entry) {
if (next_entry->cstring == entry_ptr->cstring)
return next_entry;
}
}
return nullptr;
}
size_t GetValues(ConstString unique_cstr, std::vector<T> &values) const {
const size_t start_size = values.size();
Entry search_entry(unique_cstr);
const_iterator pos, end = m_map.end();
for (pos = std::lower_bound(m_map.begin(), end, search_entry); pos != end;
++pos) {
if (pos->cstring == unique_cstr)
values.push_back(pos->value);
else
break;
}
return values.size() - start_size;
}
size_t GetValues(const RegularExpression &regex,
std::vector<T> &values) const {
const size_t start_size = values.size();
const_iterator pos, end = m_map.end();
for (pos = m_map.begin(); pos != end; ++pos) {
if (regex.Execute(pos->cstring.GetCString()))
values.push_back(pos->value);
}
return values.size() - start_size;
}
//------------------------------------------------------------------
// Get the total number of entries in this map.
//------------------------------------------------------------------
size_t GetSize() const { return m_map.size(); }
//------------------------------------------------------------------
// Returns true if this map is empty.
//------------------------------------------------------------------
bool IsEmpty() const { return m_map.empty(); }
//------------------------------------------------------------------
// Reserve memory for at least "n" entries in the map. This is useful to call
// when you know you will be adding a lot of entries using
// UniqueCStringMap::Append() (which should be followed by a call to
// UniqueCStringMap::Sort()) or to UniqueCStringMap::Insert().
//------------------------------------------------------------------
void Reserve(size_t n) { m_map.reserve(n); }
//------------------------------------------------------------------
// Sort the unsorted contents in this map. A typical code flow would be:
// size_t approximate_num_entries = ....
// UniqueCStringMap<uint32_t> my_map;
// my_map.Reserve (approximate_num_entries);
// for (...)
// {
// my_map.Append (UniqueCStringMap::Entry(GetName(...), GetValue(...)));
// }
// my_map.Sort();
//------------------------------------------------------------------
void Sort() { std::sort(m_map.begin(), m_map.end()); }
//------------------------------------------------------------------
// Since we are using a vector to contain our items it will always double its
// memory consumption as things are added to the vector, so if you intend to
// keep a UniqueCStringMap around and have a lot of entries in the map, you
// will want to call this function to create a new vector and copy _only_ the
// exact size needed as part of the finalization of the string map.
//------------------------------------------------------------------
void SizeToFit() {
if (m_map.size() < m_map.capacity()) {
collection temp(m_map.begin(), m_map.end());
m_map.swap(temp);
}
}
size_t Erase(ConstString unique_cstr) {
size_t num_removed = 0;
Entry search_entry(unique_cstr);
iterator end = m_map.end();
iterator begin = m_map.begin();
iterator lower_pos = std::lower_bound(begin, end, search_entry);
if (lower_pos != end) {
if (lower_pos->cstring == unique_cstr) {
iterator upper_pos = std::upper_bound(lower_pos, end, search_entry);
if (lower_pos == upper_pos) {
m_map.erase(lower_pos);
num_removed = 1;
} else {
num_removed = std::distance(lower_pos, upper_pos);
m_map.erase(lower_pos, upper_pos);
}
}
}
return num_removed;
}
protected:
typedef std::vector<Entry> collection;
typedef typename collection::iterator iterator;
typedef typename collection::const_iterator const_iterator;
collection m_map;
};
} // namespace lldb_private
#endif // liblldb_UniqueCStringMap_h_