blob: 2dd1d3ebd04b6650ddea65799556d624a399a527 [file] [log] [blame]
//===-- CompilerType.cpp ----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Symbol/CompilerType.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/Scalar.h"
#include "lldb/Core/StreamFile.h"
#include "lldb/Symbol/ClangASTContext.h"
#include "lldb/Symbol/ClangExternalASTSourceCommon.h"
#include "lldb/Symbol/Type.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Process.h"
#include "lldb/Utility/ConstString.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/Stream.h"
#include "lldb/Utility/StreamString.h"
#include <iterator>
#include <mutex>
using namespace lldb;
using namespace lldb_private;
CompilerType::CompilerType(TypeSystem *type_system,
lldb::opaque_compiler_type_t type)
: m_type(type), m_type_system(type_system) {}
CompilerType::CompilerType(clang::ASTContext *ast, clang::QualType qual_type)
: m_type(qual_type.getAsOpaquePtr()),
m_type_system(ClangASTContext::GetASTContext(ast)) {
#ifdef LLDB_CONFIGURATION_DEBUG
if (m_type)
assert(m_type_system != nullptr);
#endif
}
CompilerType::~CompilerType() {}
//----------------------------------------------------------------------
// Tests
//----------------------------------------------------------------------
bool CompilerType::IsAggregateType() const {
if (IsValid())
return m_type_system->IsAggregateType(m_type);
return false;
}
bool CompilerType::IsAnonymousType() const {
if (IsValid())
return m_type_system->IsAnonymousType(m_type);
return false;
}
bool CompilerType::IsArrayType(CompilerType *element_type_ptr, uint64_t *size,
bool *is_incomplete) const {
if (IsValid())
return m_type_system->IsArrayType(m_type, element_type_ptr, size,
is_incomplete);
if (element_type_ptr)
element_type_ptr->Clear();
if (size)
*size = 0;
if (is_incomplete)
*is_incomplete = false;
return false;
}
bool CompilerType::IsVectorType(CompilerType *element_type,
uint64_t *size) const {
if (IsValid())
return m_type_system->IsVectorType(m_type, element_type, size);
return false;
}
bool CompilerType::IsRuntimeGeneratedType() const {
if (IsValid())
return m_type_system->IsRuntimeGeneratedType(m_type);
return false;
}
bool CompilerType::IsCharType() const {
if (IsValid())
return m_type_system->IsCharType(m_type);
return false;
}
bool CompilerType::IsCompleteType() const {
if (IsValid())
return m_type_system->IsCompleteType(m_type);
return false;
}
bool CompilerType::IsConst() const {
if (IsValid())
return m_type_system->IsConst(m_type);
return false;
}
bool CompilerType::IsCStringType(uint32_t &length) const {
if (IsValid())
return m_type_system->IsCStringType(m_type, length);
return false;
}
bool CompilerType::IsFunctionType(bool *is_variadic_ptr) const {
if (IsValid())
return m_type_system->IsFunctionType(m_type, is_variadic_ptr);
return false;
}
// Used to detect "Homogeneous Floating-point Aggregates"
uint32_t
CompilerType::IsHomogeneousAggregate(CompilerType *base_type_ptr) const {
if (IsValid())
return m_type_system->IsHomogeneousAggregate(m_type, base_type_ptr);
return 0;
}
size_t CompilerType::GetNumberOfFunctionArguments() const {
if (IsValid())
return m_type_system->GetNumberOfFunctionArguments(m_type);
return 0;
}
CompilerType
CompilerType::GetFunctionArgumentAtIndex(const size_t index) const {
if (IsValid())
return m_type_system->GetFunctionArgumentAtIndex(m_type, index);
return CompilerType();
}
bool CompilerType::IsFunctionPointerType() const {
if (IsValid())
return m_type_system->IsFunctionPointerType(m_type);
return false;
}
bool CompilerType::IsBlockPointerType(
CompilerType *function_pointer_type_ptr) const {
if (IsValid())
return m_type_system->IsBlockPointerType(m_type, function_pointer_type_ptr);
return 0;
}
bool CompilerType::IsIntegerType(bool &is_signed) const {
if (IsValid())
return m_type_system->IsIntegerType(m_type, is_signed);
return false;
}
bool CompilerType::IsEnumerationType(bool &is_signed) const {
if (IsValid())
return m_type_system->IsEnumerationType(m_type, is_signed);
return false;
}
bool CompilerType::IsIntegerOrEnumerationType(bool &is_signed) const {
return IsIntegerType(is_signed) || IsEnumerationType(is_signed);
}
bool CompilerType::IsPointerType(CompilerType *pointee_type) const {
if (IsValid()) {
return m_type_system->IsPointerType(m_type, pointee_type);
}
if (pointee_type)
pointee_type->Clear();
return false;
}
bool CompilerType::IsPointerOrReferenceType(CompilerType *pointee_type) const {
if (IsValid()) {
return m_type_system->IsPointerOrReferenceType(m_type, pointee_type);
}
if (pointee_type)
pointee_type->Clear();
return false;
}
bool CompilerType::IsReferenceType(CompilerType *pointee_type,
bool *is_rvalue) const {
if (IsValid()) {
return m_type_system->IsReferenceType(m_type, pointee_type, is_rvalue);
}
if (pointee_type)
pointee_type->Clear();
return false;
}
bool CompilerType::ShouldTreatScalarValueAsAddress() const {
if (IsValid())
return m_type_system->ShouldTreatScalarValueAsAddress(m_type);
return false;
}
bool CompilerType::IsFloatingPointType(uint32_t &count,
bool &is_complex) const {
if (IsValid()) {
return m_type_system->IsFloatingPointType(m_type, count, is_complex);
}
count = 0;
is_complex = false;
return false;
}
bool CompilerType::IsDefined() const {
if (IsValid())
return m_type_system->IsDefined(m_type);
return true;
}
bool CompilerType::IsPolymorphicClass() const {
if (IsValid()) {
return m_type_system->IsPolymorphicClass(m_type);
}
return false;
}
bool CompilerType::IsPossibleDynamicType(CompilerType *dynamic_pointee_type,
bool check_cplusplus,
bool check_objc) const {
if (IsValid())
return m_type_system->IsPossibleDynamicType(m_type, dynamic_pointee_type,
check_cplusplus, check_objc);
return false;
}
bool CompilerType::IsScalarType() const {
if (!IsValid())
return false;
return m_type_system->IsScalarType(m_type);
}
bool CompilerType::IsTypedefType() const {
if (!IsValid())
return false;
return m_type_system->IsTypedefType(m_type);
}
bool CompilerType::IsVoidType() const {
if (!IsValid())
return false;
return m_type_system->IsVoidType(m_type);
}
bool CompilerType::IsPointerToScalarType() const {
if (!IsValid())
return false;
return IsPointerType() && GetPointeeType().IsScalarType();
}
bool CompilerType::IsArrayOfScalarType() const {
CompilerType element_type;
if (IsArrayType(&element_type, nullptr, nullptr))
return element_type.IsScalarType();
return false;
}
bool CompilerType::IsBeingDefined() const {
if (!IsValid())
return false;
return m_type_system->IsBeingDefined(m_type);
}
//----------------------------------------------------------------------
// Type Completion
//----------------------------------------------------------------------
bool CompilerType::GetCompleteType() const {
if (!IsValid())
return false;
return m_type_system->GetCompleteType(m_type);
}
//----------------------------------------------------------------------
// AST related queries
//----------------------------------------------------------------------
size_t CompilerType::GetPointerByteSize() const {
if (m_type_system)
return m_type_system->GetPointerByteSize();
return 0;
}
ConstString CompilerType::GetConstQualifiedTypeName() const {
return GetConstTypeName();
}
ConstString CompilerType::GetConstTypeName() const {
if (IsValid()) {
ConstString type_name(GetTypeName());
if (type_name)
return type_name;
}
return ConstString("<invalid>");
}
ConstString CompilerType::GetTypeName() const {
if (IsValid()) {
return m_type_system->GetTypeName(m_type);
}
return ConstString("<invalid>");
}
ConstString CompilerType::GetDisplayTypeName() const { return GetTypeName(); }
uint32_t CompilerType::GetTypeInfo(
CompilerType *pointee_or_element_compiler_type) const {
if (!IsValid())
return 0;
return m_type_system->GetTypeInfo(m_type, pointee_or_element_compiler_type);
}
lldb::LanguageType CompilerType::GetMinimumLanguage() {
if (!IsValid())
return lldb::eLanguageTypeC;
return m_type_system->GetMinimumLanguage(m_type);
}
lldb::TypeClass CompilerType::GetTypeClass() const {
if (!IsValid())
return lldb::eTypeClassInvalid;
return m_type_system->GetTypeClass(m_type);
}
void CompilerType::SetCompilerType(TypeSystem *type_system,
lldb::opaque_compiler_type_t type) {
m_type_system = type_system;
m_type = type;
}
void CompilerType::SetCompilerType(clang::ASTContext *ast,
clang::QualType qual_type) {
m_type_system = ClangASTContext::GetASTContext(ast);
m_type = qual_type.getAsOpaquePtr();
}
unsigned CompilerType::GetTypeQualifiers() const {
if (IsValid())
return m_type_system->GetTypeQualifiers(m_type);
return 0;
}
//----------------------------------------------------------------------
// Creating related types
//----------------------------------------------------------------------
CompilerType CompilerType::GetArrayElementType(uint64_t *stride) const {
if (IsValid()) {
return m_type_system->GetArrayElementType(m_type, stride);
}
return CompilerType();
}
CompilerType CompilerType::GetArrayType(uint64_t size) const {
if (IsValid()) {
return m_type_system->GetArrayType(m_type, size);
}
return CompilerType();
}
CompilerType CompilerType::GetCanonicalType() const {
if (IsValid())
return m_type_system->GetCanonicalType(m_type);
return CompilerType();
}
CompilerType CompilerType::GetFullyUnqualifiedType() const {
if (IsValid())
return m_type_system->GetFullyUnqualifiedType(m_type);
return CompilerType();
}
int CompilerType::GetFunctionArgumentCount() const {
if (IsValid()) {
return m_type_system->GetFunctionArgumentCount(m_type);
}
return -1;
}
CompilerType CompilerType::GetFunctionArgumentTypeAtIndex(size_t idx) const {
if (IsValid()) {
return m_type_system->GetFunctionArgumentTypeAtIndex(m_type, idx);
}
return CompilerType();
}
CompilerType CompilerType::GetFunctionReturnType() const {
if (IsValid()) {
return m_type_system->GetFunctionReturnType(m_type);
}
return CompilerType();
}
size_t CompilerType::GetNumMemberFunctions() const {
if (IsValid()) {
return m_type_system->GetNumMemberFunctions(m_type);
}
return 0;
}
TypeMemberFunctionImpl CompilerType::GetMemberFunctionAtIndex(size_t idx) {
if (IsValid()) {
return m_type_system->GetMemberFunctionAtIndex(m_type, idx);
}
return TypeMemberFunctionImpl();
}
CompilerType CompilerType::GetNonReferenceType() const {
if (IsValid())
return m_type_system->GetNonReferenceType(m_type);
return CompilerType();
}
CompilerType CompilerType::GetPointeeType() const {
if (IsValid()) {
return m_type_system->GetPointeeType(m_type);
}
return CompilerType();
}
CompilerType CompilerType::GetPointerType() const {
if (IsValid()) {
return m_type_system->GetPointerType(m_type);
}
return CompilerType();
}
CompilerType CompilerType::GetLValueReferenceType() const {
if (IsValid())
return m_type_system->GetLValueReferenceType(m_type);
else
return CompilerType();
}
CompilerType CompilerType::GetRValueReferenceType() const {
if (IsValid())
return m_type_system->GetRValueReferenceType(m_type);
else
return CompilerType();
}
CompilerType CompilerType::AddConstModifier() const {
if (IsValid())
return m_type_system->AddConstModifier(m_type);
else
return CompilerType();
}
CompilerType CompilerType::AddVolatileModifier() const {
if (IsValid())
return m_type_system->AddVolatileModifier(m_type);
else
return CompilerType();
}
CompilerType CompilerType::AddRestrictModifier() const {
if (IsValid())
return m_type_system->AddRestrictModifier(m_type);
else
return CompilerType();
}
CompilerType
CompilerType::CreateTypedef(const char *name,
const CompilerDeclContext &decl_ctx) const {
if (IsValid())
return m_type_system->CreateTypedef(m_type, name, decl_ctx);
else
return CompilerType();
}
CompilerType CompilerType::GetTypedefedType() const {
if (IsValid())
return m_type_system->GetTypedefedType(m_type);
else
return CompilerType();
}
//----------------------------------------------------------------------
// Create related types using the current type's AST
//----------------------------------------------------------------------
CompilerType
CompilerType::GetBasicTypeFromAST(lldb::BasicType basic_type) const {
if (IsValid())
return m_type_system->GetBasicTypeFromAST(basic_type);
return CompilerType();
}
//----------------------------------------------------------------------
// Exploring the type
//----------------------------------------------------------------------
uint64_t CompilerType::GetBitSize(ExecutionContextScope *exe_scope) const {
if (IsValid()) {
return m_type_system->GetBitSize(m_type, exe_scope);
}
return 0;
}
uint64_t CompilerType::GetByteSize(ExecutionContextScope *exe_scope) const {
return (GetBitSize(exe_scope) + 7) / 8;
}
size_t CompilerType::GetTypeBitAlign() const {
if (IsValid())
return m_type_system->GetTypeBitAlign(m_type);
return 0;
}
lldb::Encoding CompilerType::GetEncoding(uint64_t &count) const {
if (!IsValid())
return lldb::eEncodingInvalid;
return m_type_system->GetEncoding(m_type, count);
}
lldb::Format CompilerType::GetFormat() const {
if (!IsValid())
return lldb::eFormatDefault;
return m_type_system->GetFormat(m_type);
}
uint32_t CompilerType::GetNumChildren(bool omit_empty_base_classes) const {
if (!IsValid())
return 0;
return m_type_system->GetNumChildren(m_type, omit_empty_base_classes);
}
lldb::BasicType CompilerType::GetBasicTypeEnumeration() const {
if (IsValid())
return m_type_system->GetBasicTypeEnumeration(m_type);
return eBasicTypeInvalid;
}
void CompilerType::ForEachEnumerator(
std::function<bool(const CompilerType &integer_type,
const ConstString &name,
const llvm::APSInt &value)> const &callback) const {
if (IsValid())
return m_type_system->ForEachEnumerator(m_type, callback);
}
uint32_t CompilerType::GetNumFields() const {
if (!IsValid())
return 0;
return m_type_system->GetNumFields(m_type);
}
CompilerType CompilerType::GetFieldAtIndex(size_t idx, std::string &name,
uint64_t *bit_offset_ptr,
uint32_t *bitfield_bit_size_ptr,
bool *is_bitfield_ptr) const {
if (!IsValid())
return CompilerType();
return m_type_system->GetFieldAtIndex(m_type, idx, name, bit_offset_ptr,
bitfield_bit_size_ptr, is_bitfield_ptr);
}
uint32_t CompilerType::GetNumDirectBaseClasses() const {
if (IsValid())
return m_type_system->GetNumDirectBaseClasses(m_type);
return 0;
}
uint32_t CompilerType::GetNumVirtualBaseClasses() const {
if (IsValid())
return m_type_system->GetNumVirtualBaseClasses(m_type);
return 0;
}
CompilerType
CompilerType::GetDirectBaseClassAtIndex(size_t idx,
uint32_t *bit_offset_ptr) const {
if (IsValid())
return m_type_system->GetDirectBaseClassAtIndex(m_type, idx,
bit_offset_ptr);
return CompilerType();
}
CompilerType
CompilerType::GetVirtualBaseClassAtIndex(size_t idx,
uint32_t *bit_offset_ptr) const {
if (IsValid())
return m_type_system->GetVirtualBaseClassAtIndex(m_type, idx,
bit_offset_ptr);
return CompilerType();
}
uint32_t CompilerType::GetIndexOfFieldWithName(
const char *name, CompilerType *field_compiler_type_ptr,
uint64_t *bit_offset_ptr, uint32_t *bitfield_bit_size_ptr,
bool *is_bitfield_ptr) const {
unsigned count = GetNumFields();
std::string field_name;
for (unsigned index = 0; index < count; index++) {
CompilerType field_compiler_type(
GetFieldAtIndex(index, field_name, bit_offset_ptr,
bitfield_bit_size_ptr, is_bitfield_ptr));
if (strcmp(field_name.c_str(), name) == 0) {
if (field_compiler_type_ptr)
*field_compiler_type_ptr = field_compiler_type;
return index;
}
}
return UINT32_MAX;
}
CompilerType CompilerType::GetChildCompilerTypeAtIndex(
ExecutionContext *exe_ctx, size_t idx, bool transparent_pointers,
bool omit_empty_base_classes, bool ignore_array_bounds,
std::string &child_name, uint32_t &child_byte_size,
int32_t &child_byte_offset, uint32_t &child_bitfield_bit_size,
uint32_t &child_bitfield_bit_offset, bool &child_is_base_class,
bool &child_is_deref_of_parent, ValueObject *valobj,
uint64_t &language_flags) const {
if (!IsValid())
return CompilerType();
return m_type_system->GetChildCompilerTypeAtIndex(
m_type, exe_ctx, idx, transparent_pointers, omit_empty_base_classes,
ignore_array_bounds, child_name, child_byte_size, child_byte_offset,
child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class,
child_is_deref_of_parent, valobj, language_flags);
}
// Look for a child member (doesn't include base classes, but it does include
// their members) in the type hierarchy. Returns an index path into
// "clang_type" on how to reach the appropriate member.
//
// class A
// {
// public:
// int m_a;
// int m_b;
// };
//
// class B
// {
// };
//
// class C :
// public B,
// public A
// {
// };
//
// If we have a clang type that describes "class C", and we wanted to looked
// "m_b" in it:
//
// With omit_empty_base_classes == false we would get an integer array back
// with: { 1, 1 } The first index 1 is the child index for "class A" within
// class C The second index 1 is the child index for "m_b" within class A
//
// With omit_empty_base_classes == true we would get an integer array back
// with: { 0, 1 } The first index 0 is the child index for "class A" within
// class C (since class B doesn't have any members it doesn't count) The second
// index 1 is the child index for "m_b" within class A
size_t CompilerType::GetIndexOfChildMemberWithName(
const char *name, bool omit_empty_base_classes,
std::vector<uint32_t> &child_indexes) const {
if (IsValid() && name && name[0]) {
return m_type_system->GetIndexOfChildMemberWithName(
m_type, name, omit_empty_base_classes, child_indexes);
}
return 0;
}
size_t CompilerType::GetNumTemplateArguments() const {
if (IsValid()) {
return m_type_system->GetNumTemplateArguments(m_type);
}
return 0;
}
TemplateArgumentKind CompilerType::GetTemplateArgumentKind(size_t idx) const {
if (IsValid())
return m_type_system->GetTemplateArgumentKind(m_type, idx);
return eTemplateArgumentKindNull;
}
CompilerType CompilerType::GetTypeTemplateArgument(size_t idx) const {
if (IsValid()) {
return m_type_system->GetTypeTemplateArgument(m_type, idx);
}
return CompilerType();
}
llvm::Optional<CompilerType::IntegralTemplateArgument>
CompilerType::GetIntegralTemplateArgument(size_t idx) const {
if (IsValid())
return m_type_system->GetIntegralTemplateArgument(m_type, idx);
return llvm::None;
}
CompilerType CompilerType::GetTypeForFormatters() const {
if (IsValid())
return m_type_system->GetTypeForFormatters(m_type);
return CompilerType();
}
LazyBool CompilerType::ShouldPrintAsOneLiner(ValueObject *valobj) const {
if (IsValid())
return m_type_system->ShouldPrintAsOneLiner(m_type, valobj);
return eLazyBoolCalculate;
}
bool CompilerType::IsMeaninglessWithoutDynamicResolution() const {
if (IsValid())
return m_type_system->IsMeaninglessWithoutDynamicResolution(m_type);
return false;
}
// Get the index of the child of "clang_type" whose name matches. This function
// doesn't descend into the children, but only looks one level deep and name
// matches can include base class names.
uint32_t
CompilerType::GetIndexOfChildWithName(const char *name,
bool omit_empty_base_classes) const {
if (IsValid() && name && name[0]) {
return m_type_system->GetIndexOfChildWithName(m_type, name,
omit_empty_base_classes);
}
return UINT32_MAX;
}
size_t CompilerType::ConvertStringToFloatValue(const char *s, uint8_t *dst,
size_t dst_size) const {
if (IsValid())
return m_type_system->ConvertStringToFloatValue(m_type, s, dst, dst_size);
return 0;
}
//----------------------------------------------------------------------
// Dumping types
//----------------------------------------------------------------------
#define DEPTH_INCREMENT 2
void CompilerType::DumpValue(ExecutionContext *exe_ctx, Stream *s,
lldb::Format format, const DataExtractor &data,
lldb::offset_t data_byte_offset,
size_t data_byte_size, uint32_t bitfield_bit_size,
uint32_t bitfield_bit_offset, bool show_types,
bool show_summary, bool verbose, uint32_t depth) {
if (!IsValid())
return;
m_type_system->DumpValue(m_type, exe_ctx, s, format, data, data_byte_offset,
data_byte_size, bitfield_bit_size,
bitfield_bit_offset, show_types, show_summary,
verbose, depth);
}
bool CompilerType::DumpTypeValue(Stream *s, lldb::Format format,
const DataExtractor &data,
lldb::offset_t byte_offset, size_t byte_size,
uint32_t bitfield_bit_size,
uint32_t bitfield_bit_offset,
ExecutionContextScope *exe_scope) {
if (!IsValid())
return false;
return m_type_system->DumpTypeValue(m_type, s, format, data, byte_offset,
byte_size, bitfield_bit_size,
bitfield_bit_offset, exe_scope);
}
void CompilerType::DumpSummary(ExecutionContext *exe_ctx, Stream *s,
const DataExtractor &data,
lldb::offset_t data_byte_offset,
size_t data_byte_size) {
if (IsValid())
m_type_system->DumpSummary(m_type, exe_ctx, s, data, data_byte_offset,
data_byte_size);
}
void CompilerType::DumpTypeDescription() const {
if (IsValid())
m_type_system->DumpTypeDescription(m_type);
}
void CompilerType::DumpTypeDescription(Stream *s) const {
if (IsValid()) {
m_type_system->DumpTypeDescription(m_type, s);
}
}
bool CompilerType::GetValueAsScalar(const lldb_private::DataExtractor &data,
lldb::offset_t data_byte_offset,
size_t data_byte_size,
Scalar &value) const {
if (!IsValid())
return false;
if (IsAggregateType()) {
return false; // Aggregate types don't have scalar values
} else {
uint64_t count = 0;
lldb::Encoding encoding = GetEncoding(count);
if (encoding == lldb::eEncodingInvalid || count != 1)
return false;
const uint64_t byte_size = GetByteSize(nullptr);
lldb::offset_t offset = data_byte_offset;
switch (encoding) {
case lldb::eEncodingInvalid:
break;
case lldb::eEncodingVector:
break;
case lldb::eEncodingUint:
if (byte_size <= sizeof(unsigned long long)) {
uint64_t uval64 = data.GetMaxU64(&offset, byte_size);
if (byte_size <= sizeof(unsigned int)) {
value = (unsigned int)uval64;
return true;
} else if (byte_size <= sizeof(unsigned long)) {
value = (unsigned long)uval64;
return true;
} else if (byte_size <= sizeof(unsigned long long)) {
value = (unsigned long long)uval64;
return true;
} else
value.Clear();
}
break;
case lldb::eEncodingSint:
if (byte_size <= sizeof(long long)) {
int64_t sval64 = data.GetMaxS64(&offset, byte_size);
if (byte_size <= sizeof(int)) {
value = (int)sval64;
return true;
} else if (byte_size <= sizeof(long)) {
value = (long)sval64;
return true;
} else if (byte_size <= sizeof(long long)) {
value = (long long)sval64;
return true;
} else
value.Clear();
}
break;
case lldb::eEncodingIEEE754:
if (byte_size <= sizeof(long double)) {
uint32_t u32;
uint64_t u64;
if (byte_size == sizeof(float)) {
if (sizeof(float) == sizeof(uint32_t)) {
u32 = data.GetU32(&offset);
value = *((float *)&u32);
return true;
} else if (sizeof(float) == sizeof(uint64_t)) {
u64 = data.GetU64(&offset);
value = *((float *)&u64);
return true;
}
} else if (byte_size == sizeof(double)) {
if (sizeof(double) == sizeof(uint32_t)) {
u32 = data.GetU32(&offset);
value = *((double *)&u32);
return true;
} else if (sizeof(double) == sizeof(uint64_t)) {
u64 = data.GetU64(&offset);
value = *((double *)&u64);
return true;
}
} else if (byte_size == sizeof(long double)) {
if (sizeof(long double) == sizeof(uint32_t)) {
u32 = data.GetU32(&offset);
value = *((long double *)&u32);
return true;
} else if (sizeof(long double) == sizeof(uint64_t)) {
u64 = data.GetU64(&offset);
value = *((long double *)&u64);
return true;
}
}
}
break;
}
}
return false;
}
bool CompilerType::SetValueFromScalar(const Scalar &value, Stream &strm) {
if (!IsValid())
return false;
// Aggregate types don't have scalar values
if (!IsAggregateType()) {
strm.GetFlags().Set(Stream::eBinary);
uint64_t count = 0;
lldb::Encoding encoding = GetEncoding(count);
if (encoding == lldb::eEncodingInvalid || count != 1)
return false;
const uint64_t bit_width = GetBitSize(nullptr);
// This function doesn't currently handle non-byte aligned assignments
if ((bit_width % 8) != 0)
return false;
const uint64_t byte_size = (bit_width + 7) / 8;
switch (encoding) {
case lldb::eEncodingInvalid:
break;
case lldb::eEncodingVector:
break;
case lldb::eEncodingUint:
switch (byte_size) {
case 1:
strm.PutHex8(value.UInt());
return true;
case 2:
strm.PutHex16(value.UInt());
return true;
case 4:
strm.PutHex32(value.UInt());
return true;
case 8:
strm.PutHex64(value.ULongLong());
return true;
default:
break;
}
break;
case lldb::eEncodingSint:
switch (byte_size) {
case 1:
strm.PutHex8(value.SInt());
return true;
case 2:
strm.PutHex16(value.SInt());
return true;
case 4:
strm.PutHex32(value.SInt());
return true;
case 8:
strm.PutHex64(value.SLongLong());
return true;
default:
break;
}
break;
case lldb::eEncodingIEEE754:
if (byte_size <= sizeof(long double)) {
if (byte_size == sizeof(float)) {
strm.PutFloat(value.Float());
return true;
} else if (byte_size == sizeof(double)) {
strm.PutDouble(value.Double());
return true;
} else if (byte_size == sizeof(long double)) {
strm.PutDouble(value.LongDouble());
return true;
}
}
break;
}
}
return false;
}
bool CompilerType::ReadFromMemory(lldb_private::ExecutionContext *exe_ctx,
lldb::addr_t addr, AddressType address_type,
lldb_private::DataExtractor &data) {
if (!IsValid())
return false;
// Can't convert a file address to anything valid without more context (which
// Module it came from)
if (address_type == eAddressTypeFile)
return false;
if (!GetCompleteType())
return false;
const uint64_t byte_size =
GetByteSize(exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL);
if (data.GetByteSize() < byte_size) {
lldb::DataBufferSP data_sp(new DataBufferHeap(byte_size, '\0'));
data.SetData(data_sp);
}
uint8_t *dst = const_cast<uint8_t *>(data.PeekData(0, byte_size));
if (dst != nullptr) {
if (address_type == eAddressTypeHost) {
if (addr == 0)
return false;
// The address is an address in this process, so just copy it
memcpy(dst, reinterpret_cast<uint8_t *>(addr), byte_size);
return true;
} else {
Process *process = nullptr;
if (exe_ctx)
process = exe_ctx->GetProcessPtr();
if (process) {
Status error;
return process->ReadMemory(addr, dst, byte_size, error) == byte_size;
}
}
}
return false;
}
bool CompilerType::WriteToMemory(lldb_private::ExecutionContext *exe_ctx,
lldb::addr_t addr, AddressType address_type,
StreamString &new_value) {
if (!IsValid())
return false;
// Can't convert a file address to anything valid without more context (which
// Module it came from)
if (address_type == eAddressTypeFile)
return false;
if (!GetCompleteType())
return false;
const uint64_t byte_size =
GetByteSize(exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL);
if (byte_size > 0) {
if (address_type == eAddressTypeHost) {
// The address is an address in this process, so just copy it
memcpy((void *)addr, new_value.GetData(), byte_size);
return true;
} else {
Process *process = nullptr;
if (exe_ctx)
process = exe_ctx->GetProcessPtr();
if (process) {
Status error;
return process->WriteMemory(addr, new_value.GetData(), byte_size,
error) == byte_size;
}
}
}
return false;
}
// clang::CXXRecordDecl *
// CompilerType::GetAsCXXRecordDecl (lldb::opaque_compiler_type_t
// opaque_compiler_qual_type)
//{
// if (opaque_compiler_qual_type)
// return
// clang::QualType::getFromOpaquePtr(opaque_compiler_qual_type)->getAsCXXRecordDecl();
// return NULL;
//}
bool lldb_private::operator==(const lldb_private::CompilerType &lhs,
const lldb_private::CompilerType &rhs) {
return lhs.GetTypeSystem() == rhs.GetTypeSystem() &&
lhs.GetOpaqueQualType() == rhs.GetOpaqueQualType();
}
bool lldb_private::operator!=(const lldb_private::CompilerType &lhs,
const lldb_private::CompilerType &rhs) {
return lhs.GetTypeSystem() != rhs.GetTypeSystem() ||
lhs.GetOpaqueQualType() != rhs.GetOpaqueQualType();
}