blob: 2e30357bb29236ad41627986352a128eeedd85bb [file] [log] [blame]
//===-- StreamTest.cpp ------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Utility/StreamString.h"
#include "gtest/gtest.h"
using namespace lldb_private;
namespace {
struct StreamTest : ::testing::Test {
// Note: Stream is an abstract class, so we use StreamString to test it. To
// make it easier to change this later, only methods in this class explicitly
// refer to the StringStream class.
StreamString s;
// We return here a std::string because that way gtest can print better
// assertion messages.
std::string TakeValue() {
std::string result = s.GetString().str();
s.Clear();
return result;
}
};
}
namespace {
// A StreamTest where we expect the Stream output to be binary.
struct BinaryStreamTest : StreamTest {
void SetUp() override {
s.GetFlags().Set(Stream::eBinary);
}
};
}
TEST_F(StreamTest, ChangingByteOrder) {
s.SetByteOrder(lldb::eByteOrderPDP);
EXPECT_EQ(lldb::eByteOrderPDP, s.GetByteOrder());
}
TEST_F(StreamTest, PutChar) {
s.PutChar('a');
EXPECT_EQ("a", TakeValue());
s.PutChar('1');
EXPECT_EQ("1", TakeValue());
}
TEST_F(StreamTest, PutCharWhitespace) {
s.PutChar(' ');
EXPECT_EQ(" ", TakeValue());
s.PutChar('\n');
EXPECT_EQ("\n", TakeValue());
s.PutChar('\r');
EXPECT_EQ("\r", TakeValue());
s.PutChar('\t');
EXPECT_EQ("\t", TakeValue());
}
TEST_F(StreamTest, PutCString) {
s.PutCString("");
EXPECT_EQ("", TakeValue());
s.PutCString("foobar");
EXPECT_EQ("foobar", TakeValue());
s.PutCString(" ");
EXPECT_EQ(" ", TakeValue());
}
TEST_F(StreamTest, PutCStringWithStringRef) {
s.PutCString(llvm::StringRef(""));
EXPECT_EQ("", TakeValue());
s.PutCString(llvm::StringRef("foobar"));
EXPECT_EQ("foobar", TakeValue());
s.PutCString(llvm::StringRef(" "));
EXPECT_EQ(" ", TakeValue());
}
TEST_F(StreamTest, QuotedCString) {
s.QuotedCString("foo");
EXPECT_EQ(R"("foo")", TakeValue());
s.QuotedCString("ba r");
EXPECT_EQ(R"("ba r")", TakeValue());
s.QuotedCString(" ");
EXPECT_EQ(R"(" ")", TakeValue());
}
TEST_F(StreamTest, PutCharNull) {
s.PutChar('\0');
EXPECT_EQ(std::string("\0", 1), TakeValue());
s.PutChar('a');
EXPECT_EQ(std::string("a", 1), TakeValue());
}
TEST_F(StreamTest, PutCStringAsRawHex8) {
s.PutCStringAsRawHex8("foobar");
EXPECT_EQ("666f6f626172", TakeValue());
s.PutCStringAsRawHex8(" ");
EXPECT_EQ("20", TakeValue());
}
TEST_F(StreamTest, PutHex8) {
s.PutHex8((uint8_t)55);
EXPECT_EQ("37", TakeValue());
s.PutHex8(std::numeric_limits<uint8_t>::max());
EXPECT_EQ("ff", TakeValue());
s.PutHex8((uint8_t)0);
EXPECT_EQ("00", TakeValue());
}
TEST_F(StreamTest, PutNHex8) {
s.PutNHex8(0, (uint8_t)55);
EXPECT_EQ("", TakeValue());
s.PutNHex8(1, (uint8_t)55);
EXPECT_EQ("37", TakeValue());
s.PutNHex8(2, (uint8_t)55);
EXPECT_EQ("3737", TakeValue());
s.PutNHex8(1, (uint8_t)56);
EXPECT_EQ("38", TakeValue());
}
TEST_F(StreamTest, PutHex16ByteOrderLittle) {
s.PutHex16(0x1234U, lldb::eByteOrderLittle);
EXPECT_EQ("3412", TakeValue());
s.PutHex16(std::numeric_limits<uint16_t>::max(), lldb::eByteOrderLittle);
EXPECT_EQ("ffff", TakeValue());
s.PutHex16(0U, lldb::eByteOrderLittle);
EXPECT_EQ("0000", TakeValue());
}
TEST_F(StreamTest, PutHex16ByteOrderBig) {
s.PutHex16(0x1234U, lldb::eByteOrderBig);
EXPECT_EQ("1234", TakeValue());
s.PutHex16(std::numeric_limits<uint16_t>::max(), lldb::eByteOrderBig);
EXPECT_EQ("ffff", TakeValue());
s.PutHex16(0U, lldb::eByteOrderBig);
EXPECT_EQ("0000", TakeValue());
}
TEST_F(StreamTest, PutHex32ByteOrderLittle) {
s.PutHex32(0x12345678U, lldb::eByteOrderLittle);
EXPECT_EQ("78563412", TakeValue());
s.PutHex32(std::numeric_limits<uint32_t>::max(), lldb::eByteOrderLittle);
EXPECT_EQ("ffffffff", TakeValue());
s.PutHex32(0U, lldb::eByteOrderLittle);
EXPECT_EQ("00000000", TakeValue());
}
TEST_F(StreamTest, PutHex32ByteOrderBig) {
s.PutHex32(0x12345678U, lldb::eByteOrderBig);
EXPECT_EQ("12345678", TakeValue());
s.PutHex32(std::numeric_limits<uint32_t>::max(), lldb::eByteOrderBig);
EXPECT_EQ("ffffffff", TakeValue());
s.PutHex32(0U, lldb::eByteOrderBig);
EXPECT_EQ("00000000", TakeValue());
}
TEST_F(StreamTest, PutHex64ByteOrderLittle) {
s.PutHex64(0x1234567890ABCDEFU, lldb::eByteOrderLittle);
EXPECT_EQ("efcdab9078563412", TakeValue());
s.PutHex64(std::numeric_limits<uint64_t>::max(), lldb::eByteOrderLittle);
EXPECT_EQ("ffffffffffffffff", TakeValue());
s.PutHex64(0U, lldb::eByteOrderLittle);
EXPECT_EQ("0000000000000000", TakeValue());
}
TEST_F(StreamTest, PutHex64ByteOrderBig) {
s.PutHex64(0x1234567890ABCDEFU, lldb::eByteOrderBig);
EXPECT_EQ("1234567890abcdef", TakeValue());
s.PutHex64(std::numeric_limits<uint64_t>::max(), lldb::eByteOrderBig);
EXPECT_EQ("ffffffffffffffff", TakeValue());
s.PutHex64(0U, lldb::eByteOrderBig);
EXPECT_EQ("0000000000000000", TakeValue());
}
//------------------------------------------------------------------------------
// Shift operator tests.
//------------------------------------------------------------------------------
TEST_F(StreamTest, ShiftOperatorChars) {
s << 'a' << 'b';
EXPECT_EQ("ab", TakeValue());
}
TEST_F(StreamTest, ShiftOperatorStrings) {
s << "cstring\n";
s << llvm::StringRef("llvm::StringRef\n");
EXPECT_EQ("cstring\nllvm::StringRef\n", TakeValue());
}
TEST_F(StreamTest, ShiftOperatorInts) {
s << std::numeric_limits<int8_t>::max() << " ";
s << std::numeric_limits<int16_t>::max() << " ";
s << std::numeric_limits<int32_t>::max() << " ";
s << std::numeric_limits<int64_t>::max();
EXPECT_EQ("127 32767 2147483647 9223372036854775807", TakeValue());
}
TEST_F(StreamTest, ShiftOperatorUInts) {
s << std::numeric_limits<uint8_t>::max() << " ";
s << std::numeric_limits<uint16_t>::max() << " ";
s << std::numeric_limits<uint32_t>::max() << " ";
s << std::numeric_limits<uint64_t>::max();
EXPECT_EQ("ff ffff ffffffff ffffffffffffffff", TakeValue());
}
TEST_F(StreamTest, ShiftOperatorPtr) {
// This test is a bit tricky because pretty much everything related to
// pointer printing seems to lead to UB or IB. So let's make the most basic
// test that just checks that we print *something*. This way we at least know
// that pointer printing doesn't do really bad things (e.g. crashing, reading
// OOB/uninitialized memory which the sanitizers would spot).
// Shift our own pointer to the output.
int i = 3;
int *ptr = &i;
s << ptr;
EXPECT_TRUE(!TakeValue().empty());
}
TEST_F(StreamTest, PutPtr) {
// See the ShiftOperatorPtr test for the rationale.
int i = 3;
int *ptr = &i;
s.PutPointer(ptr);
EXPECT_TRUE(!TakeValue().empty());
}
// Alias to make it more clear that 'invalid' means for the Stream interface
// that it should use the host byte order.
const static auto hostByteOrder = lldb::eByteOrderInvalid;
//------------------------------------------------------------------------------
// PutRawBytes/PutBytesAsRawHex tests.
//------------------------------------------------------------------------------
TEST_F(StreamTest, PutBytesAsRawHex8ToBigEndian) {
uint32_t value = 0x12345678;
s.PutBytesAsRawHex8(static_cast<void*>(&value), sizeof(value),
hostByteOrder, lldb::eByteOrderBig);
EXPECT_EQ("78563412", TakeValue());
}
TEST_F(StreamTest, PutRawBytesToBigEndian) {
uint32_t value = 0x12345678;
s.PutRawBytes(static_cast<void*>(&value), sizeof(value),
hostByteOrder, lldb::eByteOrderBig);
EXPECT_EQ("\x78\x56\x34\x12", TakeValue());
}
TEST_F(StreamTest, PutBytesAsRawHex8ToLittleEndian) {
uint32_t value = 0x12345678;
s.PutBytesAsRawHex8(static_cast<void*>(&value), sizeof(value),
hostByteOrder, lldb::eByteOrderLittle);
EXPECT_EQ("12345678", TakeValue());
}
TEST_F(StreamTest, PutRawBytesToLittleEndian) {
uint32_t value = 0x12345678;
s.PutRawBytes(static_cast<void*>(&value), sizeof(value),
hostByteOrder, lldb::eByteOrderLittle);
EXPECT_EQ("\x12\x34\x56\x78", TakeValue());
}
TEST_F(StreamTest, PutBytesAsRawHex8ToMixedEndian) {
uint32_t value = 0x12345678;
s.PutBytesAsRawHex8(static_cast<void*>(&value), sizeof(value),
hostByteOrder, lldb::eByteOrderPDP);
// FIXME: PDP byte order is not actually implemented but Stream just silently
// prints the value in some random byte order...
#if 0
EXPECT_EQ("34127856", TakeValue());
#endif
}
TEST_F(StreamTest, PutRawBytesToMixedEndian) {
uint32_t value = 0x12345678;
s.PutRawBytes(static_cast<void*>(&value), sizeof(value),
lldb::eByteOrderInvalid, lldb::eByteOrderPDP);
// FIXME: PDP byte order is not actually implemented but Stream just silently
// prints the value in some random byte order...
#if 0
EXPECT_EQ("\x34\x12\x78\x56", TakeValue());
#endif
}
//------------------------------------------------------------------------------
// ULEB128 support for binary streams.
//------------------------------------------------------------------------------
TEST_F(BinaryStreamTest, PutULEB128OneByte) {
auto bytes = s.PutULEB128(0x74ULL);
EXPECT_EQ("\x74", TakeValue());
EXPECT_EQ(1U, bytes);
}
TEST_F(BinaryStreamTest, PutULEB128TwoBytes) {
auto bytes = s.PutULEB128(0x1985ULL);
EXPECT_EQ("\x85\x33", TakeValue());
EXPECT_EQ(2U, bytes);
}
TEST_F(BinaryStreamTest, PutULEB128ThreeBytes) {
auto bytes = s.PutULEB128(0x5023ULL);
EXPECT_EQ("\xA3\xA0\x1", TakeValue());
EXPECT_EQ(3U, bytes);
}
TEST_F(BinaryStreamTest, PutULEB128FourBytes) {
auto bytes = s.PutULEB128(0xA48032ULL);
EXPECT_EQ("\xB2\x80\x92\x5", TakeValue());
EXPECT_EQ(4U, bytes);
}
TEST_F(BinaryStreamTest, PutULEB128FiveBytes) {
auto bytes = s.PutULEB128(0x12345678ULL);
EXPECT_EQ("\xF8\xAC\xD1\x91\x1", TakeValue());
EXPECT_EQ(5U, bytes);
}
TEST_F(BinaryStreamTest, PutULEB128SixBytes) {
auto bytes = s.PutULEB128(0xABFE3FAFDFULL);
EXPECT_EQ("\xDF\xDF\xFE\xF1\xBF\x15", TakeValue());
EXPECT_EQ(6U, bytes);
}
TEST_F(BinaryStreamTest, PutULEB128SevenBytes) {
auto bytes = s.PutULEB128(0xDABFE3FAFDFULL);
EXPECT_EQ("\xDF\xDF\xFE\xF1\xBF\xB5\x3", TakeValue());
EXPECT_EQ(7U, bytes);
}
TEST_F(BinaryStreamTest, PutULEB128EightBytes) {
auto bytes = s.PutULEB128(0x7CDABFE3FAFDFULL);
EXPECT_EQ("\xDF\xDF\xFE\xF1\xBF\xB5\xF3\x3", TakeValue());
EXPECT_EQ(8U, bytes);
}
TEST_F(BinaryStreamTest, PutULEB128NineBytes) {
auto bytes = s.PutULEB128(0x327CDABFE3FAFDFULL);
EXPECT_EQ("\xDF\xDF\xFE\xF1\xBF\xB5\xF3\x93\x3", TakeValue());
EXPECT_EQ(9U, bytes);
}
TEST_F(BinaryStreamTest, PutULEB128MaxValue) {
auto bytes = s.PutULEB128(std::numeric_limits<uint64_t>::max());
EXPECT_EQ("\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x1", TakeValue());
EXPECT_EQ(10U, bytes);
}
TEST_F(BinaryStreamTest, PutULEB128Zero) {
auto bytes = s.PutULEB128(0x0U);
EXPECT_EQ(std::string("\0", 1), TakeValue());
EXPECT_EQ(1U, bytes);
}
TEST_F(BinaryStreamTest, PutULEB128One) {
auto bytes = s.PutULEB128(0x1U);
EXPECT_EQ("\x1", TakeValue());
EXPECT_EQ(1U, bytes);
}
//------------------------------------------------------------------------------
// SLEB128 support for binary streams.
//------------------------------------------------------------------------------
TEST_F(BinaryStreamTest, PutSLEB128OneByte) {
auto bytes = s.PutSLEB128(0x74LL);
EXPECT_EQ(std::string("\xF4\0", 2), TakeValue());
EXPECT_EQ(2U, bytes);
}
TEST_F(BinaryStreamTest, PutSLEB128TwoBytes) {
auto bytes = s.PutSLEB128(0x1985LL);
EXPECT_EQ("\x85\x33", TakeValue());
EXPECT_EQ(2U, bytes);
}
TEST_F(BinaryStreamTest, PutSLEB128ThreeBytes) {
auto bytes = s.PutSLEB128(0x5023LL);
EXPECT_EQ("\xA3\xA0\x1", TakeValue());
EXPECT_EQ(3U, bytes);
}
TEST_F(BinaryStreamTest, PutSLEB128FourBytes) {
auto bytes = s.PutSLEB128(0xA48032LL);
EXPECT_EQ("\xB2\x80\x92\x5", TakeValue());
EXPECT_EQ(4U, bytes);
}
TEST_F(BinaryStreamTest, PutSLEB128FiveBytes) {
auto bytes = s.PutSLEB128(0x12345678LL);
EXPECT_EQ("\xF8\xAC\xD1\x91\x1", TakeValue());
EXPECT_EQ(5U, bytes);
}
TEST_F(BinaryStreamTest, PutSLEB128SixBytes) {
auto bytes = s.PutSLEB128(0xABFE3FAFDFLL);
EXPECT_EQ("\xDF\xDF\xFE\xF1\xBF\x15", TakeValue());
EXPECT_EQ(6U, bytes);
}
TEST_F(BinaryStreamTest, PutSLEB128SevenBytes) {
auto bytes = s.PutSLEB128(0xDABFE3FAFDFLL);
EXPECT_EQ("\xDF\xDF\xFE\xF1\xBF\xB5\x3", TakeValue());
EXPECT_EQ(7U, bytes);
}
TEST_F(BinaryStreamTest, PutSLEB128EightBytes) {
auto bytes = s.PutSLEB128(0x7CDABFE3FAFDFLL);
EXPECT_EQ("\xDF\xDF\xFE\xF1\xBF\xB5\xF3\x3", TakeValue());
EXPECT_EQ(8U, bytes);
}
TEST_F(BinaryStreamTest, PutSLEB128NineBytes) {
auto bytes = s.PutSLEB128(0x327CDABFE3FAFDFLL);
EXPECT_EQ("\xDF\xDF\xFE\xF1\xBF\xB5\xF3\x93\x3", TakeValue());
EXPECT_EQ(9U, bytes);
}
TEST_F(BinaryStreamTest, PutSLEB128MaxValue) {
auto bytes = s.PutSLEB128(std::numeric_limits<int64_t>::max());
EXPECT_EQ(std::string("\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\0", 10), TakeValue());
EXPECT_EQ(10U, bytes);
}
TEST_F(BinaryStreamTest, PutSLEB128Zero) {
auto bytes = s.PutSLEB128(0x0);
EXPECT_EQ(std::string("\0", 1), TakeValue());
EXPECT_EQ(1U, bytes);
}
TEST_F(BinaryStreamTest, PutSLEB128One) {
auto bytes = s.PutSLEB128(0x1);
EXPECT_EQ(std::string("\x1", 1), TakeValue());
EXPECT_EQ(1U, bytes);
}
//------------------------------------------------------------------------------
// SLEB128/ULEB128 support for non-binary streams.
//------------------------------------------------------------------------------
// The logic for this is very simple, so it should be enough to test some basic
// use cases.
TEST_F(StreamTest, PutULEB128) {
auto bytes = s.PutULEB128(0x74ULL);
EXPECT_EQ("0x74", TakeValue());
EXPECT_EQ(4U, bytes);
}
TEST_F(StreamTest, PutSLEB128) {
auto bytes = s.PutSLEB128(0x1985LL);
EXPECT_EQ("0x6533", TakeValue());
EXPECT_EQ(6U, bytes);
}