blob: c2238120b6479433b93b2313b8789fb6afb1b044 [file] [log] [blame]
* Copyright 2019 Google Inc.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
#ifndef GrOpsTask_DEFINED
#define GrOpsTask_DEFINED
#include "include/core/SkMatrix.h"
#include "include/core/SkRefCnt.h"
#include "include/core/SkStrokeRec.h"
#include "include/core/SkTypes.h"
#include "include/private/SkColorData.h"
#include "include/private/SkTArray.h"
#include "include/private/SkTDArray.h"
#include "src/core/SkArenaAlloc.h"
#include "src/core/SkClipStack.h"
#include "src/core/SkStringUtils.h"
#include "src/core/SkTLazy.h"
#include "src/gpu/GrAppliedClip.h"
#include "src/gpu/GrPathRendering.h"
#include "src/gpu/GrPrimitiveProcessor.h"
#include "src/gpu/GrRenderTask.h"
#include "src/gpu/ops/GrDrawOp.h"
#include "src/gpu/ops/GrOp.h"
class GrAuditTrail;
class GrCaps;
class GrClearOp;
class GrGpuBuffer;
class GrOpMemoryPool;
class GrRenderTargetProxy;
class GrOpsTask : public GrRenderTask {
using DstProxy = GrXferProcessor::DstProxy;
GrOpsTask(sk_sp<GrOpMemoryPool>, sk_sp<GrRenderTargetProxy>, GrAuditTrail*);
~GrOpsTask() override;
GrOpsTask* asOpsTask() override { return this; }
bool isEmpty() const { return fOpChains.empty(); }
* Empties the draw buffer of any queued up draws.
void endFlush() override;
void onPrePrepare(GrRecordingContext*) override;
* Together these two functions flush all queued up draws to GrCommandBuffer. The return value
* of executeOps() indicates whether any commands were actually issued to the GPU.
void onPrepare(GrOpFlushState* flushState) override;
bool onExecute(GrOpFlushState* flushState) override;
void addSampledTexture(GrTextureProxy* proxy) {
void addOp(std::unique_ptr<GrOp> op, GrTextureResolveManager textureResolveManager,
const GrCaps& caps) {
auto addDependency = [ textureResolveManager, &caps, this ] (
GrTextureProxy* p, GrMipMapped mipmapped) {
this->addDependency(p, mipmapped, textureResolveManager, caps);
this->recordOp(std::move(op), GrProcessorSet::EmptySetAnalysis(), nullptr, nullptr, caps);
void addWaitOp(std::unique_ptr<GrOp> op, GrTextureResolveManager textureResolveManager,
const GrCaps& caps) {
fHasWaitOp = true;
this->addOp(std::move(op), textureResolveManager, caps);
void addDrawOp(std::unique_ptr<GrDrawOp> op, const GrProcessorSet::Analysis& processorAnalysis,
GrAppliedClip&& clip, const DstProxy& dstProxy,
GrTextureResolveManager textureResolveManager, const GrCaps& caps) {
auto addDependency = [ textureResolveManager, &caps, this ] (
GrTextureProxy* p, GrMipMapped mipmapped) {
this->addDependency(p, mipmapped, textureResolveManager, caps);
if (dstProxy.proxy()) {
addDependency(dstProxy.proxy(), GrMipMapped::kNo);
this->recordOp(std::move(op), processorAnalysis, clip.doesClip() ? &clip : nullptr,
&dstProxy, caps);
void discard();
SkDEBUGCODE(void dump(bool printDependencies) const override;)
SkDEBUGCODE(int numClips() const override { return fNumClips; })
SkDEBUGCODE(void visitProxies_debugOnly(const VisitSurfaceProxyFunc&) const override;)
bool isNoOp() const {
// TODO: GrLoadOp::kDiscard (i.e., storing a discard) should also be grounds for skipping
// execution. We currently don't because of Vulkan. See
// TODO: We should also consider stencil load/store here. We get away with it for now
// because we never discard stencil buffers.
return fOpChains.empty() && GrLoadOp::kLoad == fColorLoadOp;
void deleteOps();
enum class StencilContent {
kUserBitsCleared, // User bits: cleared
// Clip bit: don't care (Ganesh always pre-clears the clip bit.)
// Lets the caller specify what the content of the stencil buffer should be at the beginning
// of the render pass.
// When requesting kClear: Tilers will load the stencil buffer with a "clear" op; non-tilers
// will clear the stencil on first load, and then preserve it on subsequent loads. (Preserving
// works because renderTargetContexts are required to leave the user bits in a cleared state
// once finished.)
// NOTE: initialContent must not be kClear if caps.performStencilClearsAsDraws() is true.
void setInitialStencilContent(StencilContent initialContent) {
fInitialStencilContent = initialContent;
// If a renderTargetContext splits its opsTask, it uses this method to guarantee stencil values
// get preserved across its split tasks.
void setMustPreserveStencil() { fMustPreserveStencil = true; }
// Must only be called if native color buffer clearing is enabled.
void setColorLoadOp(GrLoadOp op, const SkPMColor4f& color);
// Sets the clear color to transparent black
void setColorLoadOp(GrLoadOp op) {
static const SkPMColor4f kDefaultClearColor = {0.f, 0.f, 0.f, 0.f};
this->setColorLoadOp(op, kDefaultClearColor);
enum class CanDiscardPreviousOps : bool {
kYes = true,
kNo = false
// Perform book-keeping for a fullscreen clear, regardless of how the clear is implemented later
// (i.e. setColorLoadOp(), adding a ClearOp, or adding a GrFillRectOp that covers the device).
// Returns true if the clear can be converted into a load op (barring device caps).
bool resetForFullscreenClear(CanDiscardPreviousOps);
class OpChain {
OpChain(const OpChain&) = delete;
OpChain& operator=(const OpChain&) = delete;
OpChain(std::unique_ptr<GrOp>, GrProcessorSet::Analysis, GrAppliedClip*, const DstProxy*);
~OpChain() {
// The ops are stored in a GrMemoryPool and must be explicitly deleted via the pool.
void visitProxies(const GrOp::VisitProxyFunc&) const;
GrOp* head() const { return fList.head(); }
GrAppliedClip* appliedClip() const { return fAppliedClip; }
const DstProxy& dstProxy() const { return fDstProxy; }
const SkRect& bounds() const { return fBounds; }
// Deletes all the ops in the chain via the pool.
void deleteOps(GrOpMemoryPool* pool);
// Attempts to move the ops from the passed chain to this chain at the head. Also attempts
// to merge ops between the chains. Upon success the passed chain is empty.
// Fails when the chains aren't of the same op type, have different clips or dst proxies.
bool prependChain(OpChain*, const GrCaps&, GrOpMemoryPool*, GrAuditTrail*);
// Attempts to add 'op' to this chain either by merging or adding to the tail. Returns
// 'op' to the caller upon failure, otherwise null. Fails when the op and chain aren't of
// the same op type, have different clips or dst proxies.
std::unique_ptr<GrOp> appendOp(std::unique_ptr<GrOp> op, GrProcessorSet::Analysis,
const DstProxy*, const GrAppliedClip*, const GrCaps&,
GrOpMemoryPool*, GrAuditTrail*);
void setSkipExecuteFlag() { fSkipExecute = true; }
bool shouldExecute() const {
return SkToBool(this->head()) && !fSkipExecute;
class List {
List() = default;
List& operator=(List&& that);
bool empty() const { return !SkToBool(fHead); }
GrOp* head() const { return fHead.get(); }
GrOp* tail() const { return fTail; }
std::unique_ptr<GrOp> popHead();
std::unique_ptr<GrOp> removeOp(GrOp* op);
void pushHead(std::unique_ptr<GrOp> op);
void pushTail(std::unique_ptr<GrOp>);
void validate() const;
std::unique_ptr<GrOp> fHead;
GrOp* fTail = nullptr;
void validate() const;
bool tryConcat(List*, GrProcessorSet::Analysis, const DstProxy&, const GrAppliedClip*,
const SkRect& bounds, const GrCaps&, GrOpMemoryPool*, GrAuditTrail*);
static List DoConcat(List, List, const GrCaps&, GrOpMemoryPool*, GrAuditTrail*);
List fList;
GrProcessorSet::Analysis fProcessorAnalysis;
DstProxy fDstProxy;
GrAppliedClip* fAppliedClip;
SkRect fBounds;
// We set this flag to true if any of the ops' proxies fail to instantiate so that we know
// not to try and draw the op.
bool fSkipExecute = false;
bool onIsUsed(GrSurfaceProxy*) const override;
void handleInternalAllocationFailure() override;
void gatherProxyIntervals(GrResourceAllocator*) const override;
void recordOp(std::unique_ptr<GrOp>, GrProcessorSet::Analysis, GrAppliedClip*, const DstProxy*,
const GrCaps& caps);
void forwardCombine(const GrCaps&);
ExpectedOutcome onMakeClosed(const GrCaps& caps, SkIRect* targetUpdateBounds) override;
friend class GrRenderTargetContextPriv; // for stencil clip state. TODO: this is invasive
// The RTC and OpsTask have to work together to handle buffer clears. In most cases, buffer
// clearing can be done natively, in which case the op list's load ops are sufficient. In other
// cases, draw ops must be used, which makes the RTC the best place for those decisions. This,
// however, requires that the RTC be able to coordinate with the op list to achieve similar ends
friend class GrRenderTargetContext;
// This is a backpointer to the GrOpMemoryPool that holds the memory for this GrOpsTask's ops.
// In the DDL case, these back pointers keep the DDL's GrOpMemoryPool alive as long as its
// constituent GrOpsTask survives.
sk_sp<GrOpMemoryPool> fOpMemoryPool;
GrAuditTrail* fAuditTrail;
GrLoadOp fColorLoadOp = GrLoadOp::kLoad;
SkPMColor4f fLoadClearColor = SK_PMColor4fTRANSPARENT;
StencilContent fInitialStencilContent = StencilContent::kDontCare;
bool fMustPreserveStencil = false;
uint32_t fLastClipStackGenID;
SkIRect fLastDevClipBounds;
int fLastClipNumAnalyticFPs;
// We must track if we have a wait op so that we don't delete the op when we have a full clear.
bool fHasWaitOp = false;;
// For ops/opsTask we have mean: 5 stdDev: 28
SkSTArray<25, OpChain, true> fOpChains;
// MDB TODO: 4096 for the first allocation of the clip space will be huge overkill.
// Gather statistics to determine the correct size.
SkArenaAlloc fClipAllocator{4096};
SkDEBUGCODE(int fNumClips;)
// TODO: We could look into this being a set if we find we're adding a lot of duplicates that is
// causing slow downs.
SkTArray<GrTextureProxy*, true> fSampledProxies;
SkRect fTotalBounds = SkRect::MakeEmpty();
SkIRect fClippedContentBounds = SkIRect::MakeEmpty();