| 'use strict'; |
| |
| // (C) 1995-2013 Jean-loup Gailly and Mark Adler |
| // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin |
| // |
| // This software is provided 'as-is', without any express or implied |
| // warranty. In no event will the authors be held liable for any damages |
| // arising from the use of this software. |
| // |
| // Permission is granted to anyone to use this software for any purpose, |
| // including commercial applications, and to alter it and redistribute it |
| // freely, subject to the following restrictions: |
| // |
| // 1. The origin of this software must not be misrepresented; you must not |
| // claim that you wrote the original software. If you use this software |
| // in a product, an acknowledgment in the product documentation would be |
| // appreciated but is not required. |
| // 2. Altered source versions must be plainly marked as such, and must not be |
| // misrepresented as being the original software. |
| // 3. This notice may not be removed or altered from any source distribution. |
| |
| /* eslint-disable space-unary-ops */ |
| |
| var utils = require('../utils/common'); |
| |
| /* Public constants ==========================================================*/ |
| /* ===========================================================================*/ |
| |
| |
| //var Z_FILTERED = 1; |
| //var Z_HUFFMAN_ONLY = 2; |
| //var Z_RLE = 3; |
| var Z_FIXED = 4; |
| //var Z_DEFAULT_STRATEGY = 0; |
| |
| /* Possible values of the data_type field (though see inflate()) */ |
| var Z_BINARY = 0; |
| var Z_TEXT = 1; |
| //var Z_ASCII = 1; // = Z_TEXT |
| var Z_UNKNOWN = 2; |
| |
| /*============================================================================*/ |
| |
| |
| function zero(buf) { var len = buf.length; while (--len >= 0) { buf[len] = 0; } } |
| |
| // From zutil.h |
| |
| var STORED_BLOCK = 0; |
| var STATIC_TREES = 1; |
| var DYN_TREES = 2; |
| /* The three kinds of block type */ |
| |
| var MIN_MATCH = 3; |
| var MAX_MATCH = 258; |
| /* The minimum and maximum match lengths */ |
| |
| // From deflate.h |
| /* =========================================================================== |
| * Internal compression state. |
| */ |
| |
| var LENGTH_CODES = 29; |
| /* number of length codes, not counting the special END_BLOCK code */ |
| |
| var LITERALS = 256; |
| /* number of literal bytes 0..255 */ |
| |
| var L_CODES = LITERALS + 1 + LENGTH_CODES; |
| /* number of Literal or Length codes, including the END_BLOCK code */ |
| |
| var D_CODES = 30; |
| /* number of distance codes */ |
| |
| var BL_CODES = 19; |
| /* number of codes used to transfer the bit lengths */ |
| |
| var HEAP_SIZE = 2 * L_CODES + 1; |
| /* maximum heap size */ |
| |
| var MAX_BITS = 15; |
| /* All codes must not exceed MAX_BITS bits */ |
| |
| var Buf_size = 16; |
| /* size of bit buffer in bi_buf */ |
| |
| |
| /* =========================================================================== |
| * Constants |
| */ |
| |
| var MAX_BL_BITS = 7; |
| /* Bit length codes must not exceed MAX_BL_BITS bits */ |
| |
| var END_BLOCK = 256; |
| /* end of block literal code */ |
| |
| var REP_3_6 = 16; |
| /* repeat previous bit length 3-6 times (2 bits of repeat count) */ |
| |
| var REPZ_3_10 = 17; |
| /* repeat a zero length 3-10 times (3 bits of repeat count) */ |
| |
| var REPZ_11_138 = 18; |
| /* repeat a zero length 11-138 times (7 bits of repeat count) */ |
| |
| /* eslint-disable comma-spacing,array-bracket-spacing */ |
| var extra_lbits = /* extra bits for each length code */ |
| [0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0]; |
| |
| var extra_dbits = /* extra bits for each distance code */ |
| [0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13]; |
| |
| var extra_blbits = /* extra bits for each bit length code */ |
| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7]; |
| |
| var bl_order = |
| [16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15]; |
| /* eslint-enable comma-spacing,array-bracket-spacing */ |
| |
| /* The lengths of the bit length codes are sent in order of decreasing |
| * probability, to avoid transmitting the lengths for unused bit length codes. |
| */ |
| |
| /* =========================================================================== |
| * Local data. These are initialized only once. |
| */ |
| |
| // We pre-fill arrays with 0 to avoid uninitialized gaps |
| |
| var DIST_CODE_LEN = 512; /* see definition of array dist_code below */ |
| |
| // !!!! Use flat array instead of structure, Freq = i*2, Len = i*2+1 |
| var static_ltree = new Array((L_CODES + 2) * 2); |
| zero(static_ltree); |
| /* The static literal tree. Since the bit lengths are imposed, there is no |
| * need for the L_CODES extra codes used during heap construction. However |
| * The codes 286 and 287 are needed to build a canonical tree (see _tr_init |
| * below). |
| */ |
| |
| var static_dtree = new Array(D_CODES * 2); |
| zero(static_dtree); |
| /* The static distance tree. (Actually a trivial tree since all codes use |
| * 5 bits.) |
| */ |
| |
| var _dist_code = new Array(DIST_CODE_LEN); |
| zero(_dist_code); |
| /* Distance codes. The first 256 values correspond to the distances |
| * 3 .. 258, the last 256 values correspond to the top 8 bits of |
| * the 15 bit distances. |
| */ |
| |
| var _length_code = new Array(MAX_MATCH - MIN_MATCH + 1); |
| zero(_length_code); |
| /* length code for each normalized match length (0 == MIN_MATCH) */ |
| |
| var base_length = new Array(LENGTH_CODES); |
| zero(base_length); |
| /* First normalized length for each code (0 = MIN_MATCH) */ |
| |
| var base_dist = new Array(D_CODES); |
| zero(base_dist); |
| /* First normalized distance for each code (0 = distance of 1) */ |
| |
| |
| function StaticTreeDesc(static_tree, extra_bits, extra_base, elems, max_length) { |
| |
| this.static_tree = static_tree; /* static tree or NULL */ |
| this.extra_bits = extra_bits; /* extra bits for each code or NULL */ |
| this.extra_base = extra_base; /* base index for extra_bits */ |
| this.elems = elems; /* max number of elements in the tree */ |
| this.max_length = max_length; /* max bit length for the codes */ |
| |
| // show if `static_tree` has data or dummy - needed for monomorphic objects |
| this.has_stree = static_tree && static_tree.length; |
| } |
| |
| |
| var static_l_desc; |
| var static_d_desc; |
| var static_bl_desc; |
| |
| |
| function TreeDesc(dyn_tree, stat_desc) { |
| this.dyn_tree = dyn_tree; /* the dynamic tree */ |
| this.max_code = 0; /* largest code with non zero frequency */ |
| this.stat_desc = stat_desc; /* the corresponding static tree */ |
| } |
| |
| |
| |
| function d_code(dist) { |
| return dist < 256 ? _dist_code[dist] : _dist_code[256 + (dist >>> 7)]; |
| } |
| |
| |
| /* =========================================================================== |
| * Output a short LSB first on the stream. |
| * IN assertion: there is enough room in pendingBuf. |
| */ |
| function put_short(s, w) { |
| // put_byte(s, (uch)((w) & 0xff)); |
| // put_byte(s, (uch)((ush)(w) >> 8)); |
| s.pending_buf[s.pending++] = (w) & 0xff; |
| s.pending_buf[s.pending++] = (w >>> 8) & 0xff; |
| } |
| |
| |
| /* =========================================================================== |
| * Send a value on a given number of bits. |
| * IN assertion: length <= 16 and value fits in length bits. |
| */ |
| function send_bits(s, value, length) { |
| if (s.bi_valid > (Buf_size - length)) { |
| s.bi_buf |= (value << s.bi_valid) & 0xffff; |
| put_short(s, s.bi_buf); |
| s.bi_buf = value >> (Buf_size - s.bi_valid); |
| s.bi_valid += length - Buf_size; |
| } else { |
| s.bi_buf |= (value << s.bi_valid) & 0xffff; |
| s.bi_valid += length; |
| } |
| } |
| |
| |
| function send_code(s, c, tree) { |
| send_bits(s, tree[c * 2]/*.Code*/, tree[c * 2 + 1]/*.Len*/); |
| } |
| |
| |
| /* =========================================================================== |
| * Reverse the first len bits of a code, using straightforward code (a faster |
| * method would use a table) |
| * IN assertion: 1 <= len <= 15 |
| */ |
| function bi_reverse(code, len) { |
| var res = 0; |
| do { |
| res |= code & 1; |
| code >>>= 1; |
| res <<= 1; |
| } while (--len > 0); |
| return res >>> 1; |
| } |
| |
| |
| /* =========================================================================== |
| * Flush the bit buffer, keeping at most 7 bits in it. |
| */ |
| function bi_flush(s) { |
| if (s.bi_valid === 16) { |
| put_short(s, s.bi_buf); |
| s.bi_buf = 0; |
| s.bi_valid = 0; |
| |
| } else if (s.bi_valid >= 8) { |
| s.pending_buf[s.pending++] = s.bi_buf & 0xff; |
| s.bi_buf >>= 8; |
| s.bi_valid -= 8; |
| } |
| } |
| |
| |
| /* =========================================================================== |
| * Compute the optimal bit lengths for a tree and update the total bit length |
| * for the current block. |
| * IN assertion: the fields freq and dad are set, heap[heap_max] and |
| * above are the tree nodes sorted by increasing frequency. |
| * OUT assertions: the field len is set to the optimal bit length, the |
| * array bl_count contains the frequencies for each bit length. |
| * The length opt_len is updated; static_len is also updated if stree is |
| * not null. |
| */ |
| function gen_bitlen(s, desc) |
| // deflate_state *s; |
| // tree_desc *desc; /* the tree descriptor */ |
| { |
| var tree = desc.dyn_tree; |
| var max_code = desc.max_code; |
| var stree = desc.stat_desc.static_tree; |
| var has_stree = desc.stat_desc.has_stree; |
| var extra = desc.stat_desc.extra_bits; |
| var base = desc.stat_desc.extra_base; |
| var max_length = desc.stat_desc.max_length; |
| var h; /* heap index */ |
| var n, m; /* iterate over the tree elements */ |
| var bits; /* bit length */ |
| var xbits; /* extra bits */ |
| var f; /* frequency */ |
| var overflow = 0; /* number of elements with bit length too large */ |
| |
| for (bits = 0; bits <= MAX_BITS; bits++) { |
| s.bl_count[bits] = 0; |
| } |
| |
| /* In a first pass, compute the optimal bit lengths (which may |
| * overflow in the case of the bit length tree). |
| */ |
| tree[s.heap[s.heap_max] * 2 + 1]/*.Len*/ = 0; /* root of the heap */ |
| |
| for (h = s.heap_max + 1; h < HEAP_SIZE; h++) { |
| n = s.heap[h]; |
| bits = tree[tree[n * 2 + 1]/*.Dad*/ * 2 + 1]/*.Len*/ + 1; |
| if (bits > max_length) { |
| bits = max_length; |
| overflow++; |
| } |
| tree[n * 2 + 1]/*.Len*/ = bits; |
| /* We overwrite tree[n].Dad which is no longer needed */ |
| |
| if (n > max_code) { continue; } /* not a leaf node */ |
| |
| s.bl_count[bits]++; |
| xbits = 0; |
| if (n >= base) { |
| xbits = extra[n - base]; |
| } |
| f = tree[n * 2]/*.Freq*/; |
| s.opt_len += f * (bits + xbits); |
| if (has_stree) { |
| s.static_len += f * (stree[n * 2 + 1]/*.Len*/ + xbits); |
| } |
| } |
| if (overflow === 0) { return; } |
| |
| // Trace((stderr,"\nbit length overflow\n")); |
| /* This happens for example on obj2 and pic of the Calgary corpus */ |
| |
| /* Find the first bit length which could increase: */ |
| do { |
| bits = max_length - 1; |
| while (s.bl_count[bits] === 0) { bits--; } |
| s.bl_count[bits]--; /* move one leaf down the tree */ |
| s.bl_count[bits + 1] += 2; /* move one overflow item as its brother */ |
| s.bl_count[max_length]--; |
| /* The brother of the overflow item also moves one step up, |
| * but this does not affect bl_count[max_length] |
| */ |
| overflow -= 2; |
| } while (overflow > 0); |
| |
| /* Now recompute all bit lengths, scanning in increasing frequency. |
| * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all |
| * lengths instead of fixing only the wrong ones. This idea is taken |
| * from 'ar' written by Haruhiko Okumura.) |
| */ |
| for (bits = max_length; bits !== 0; bits--) { |
| n = s.bl_count[bits]; |
| while (n !== 0) { |
| m = s.heap[--h]; |
| if (m > max_code) { continue; } |
| if (tree[m * 2 + 1]/*.Len*/ !== bits) { |
| // Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); |
| s.opt_len += (bits - tree[m * 2 + 1]/*.Len*/) * tree[m * 2]/*.Freq*/; |
| tree[m * 2 + 1]/*.Len*/ = bits; |
| } |
| n--; |
| } |
| } |
| } |
| |
| |
| /* =========================================================================== |
| * Generate the codes for a given tree and bit counts (which need not be |
| * optimal). |
| * IN assertion: the array bl_count contains the bit length statistics for |
| * the given tree and the field len is set for all tree elements. |
| * OUT assertion: the field code is set for all tree elements of non |
| * zero code length. |
| */ |
| function gen_codes(tree, max_code, bl_count) |
| // ct_data *tree; /* the tree to decorate */ |
| // int max_code; /* largest code with non zero frequency */ |
| // ushf *bl_count; /* number of codes at each bit length */ |
| { |
| var next_code = new Array(MAX_BITS + 1); /* next code value for each bit length */ |
| var code = 0; /* running code value */ |
| var bits; /* bit index */ |
| var n; /* code index */ |
| |
| /* The distribution counts are first used to generate the code values |
| * without bit reversal. |
| */ |
| for (bits = 1; bits <= MAX_BITS; bits++) { |
| next_code[bits] = code = (code + bl_count[bits - 1]) << 1; |
| } |
| /* Check that the bit counts in bl_count are consistent. The last code |
| * must be all ones. |
| */ |
| //Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, |
| // "inconsistent bit counts"); |
| //Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); |
| |
| for (n = 0; n <= max_code; n++) { |
| var len = tree[n * 2 + 1]/*.Len*/; |
| if (len === 0) { continue; } |
| /* Now reverse the bits */ |
| tree[n * 2]/*.Code*/ = bi_reverse(next_code[len]++, len); |
| |
| //Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", |
| // n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); |
| } |
| } |
| |
| |
| /* =========================================================================== |
| * Initialize the various 'constant' tables. |
| */ |
| function tr_static_init() { |
| var n; /* iterates over tree elements */ |
| var bits; /* bit counter */ |
| var length; /* length value */ |
| var code; /* code value */ |
| var dist; /* distance index */ |
| var bl_count = new Array(MAX_BITS + 1); |
| /* number of codes at each bit length for an optimal tree */ |
| |
| // do check in _tr_init() |
| //if (static_init_done) return; |
| |
| /* For some embedded targets, global variables are not initialized: */ |
| /*#ifdef NO_INIT_GLOBAL_POINTERS |
| static_l_desc.static_tree = static_ltree; |
| static_l_desc.extra_bits = extra_lbits; |
| static_d_desc.static_tree = static_dtree; |
| static_d_desc.extra_bits = extra_dbits; |
| static_bl_desc.extra_bits = extra_blbits; |
| #endif*/ |
| |
| /* Initialize the mapping length (0..255) -> length code (0..28) */ |
| length = 0; |
| for (code = 0; code < LENGTH_CODES - 1; code++) { |
| base_length[code] = length; |
| for (n = 0; n < (1 << extra_lbits[code]); n++) { |
| _length_code[length++] = code; |
| } |
| } |
| //Assert (length == 256, "tr_static_init: length != 256"); |
| /* Note that the length 255 (match length 258) can be represented |
| * in two different ways: code 284 + 5 bits or code 285, so we |
| * overwrite length_code[255] to use the best encoding: |
| */ |
| _length_code[length - 1] = code; |
| |
| /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ |
| dist = 0; |
| for (code = 0; code < 16; code++) { |
| base_dist[code] = dist; |
| for (n = 0; n < (1 << extra_dbits[code]); n++) { |
| _dist_code[dist++] = code; |
| } |
| } |
| //Assert (dist == 256, "tr_static_init: dist != 256"); |
| dist >>= 7; /* from now on, all distances are divided by 128 */ |
| for (; code < D_CODES; code++) { |
| base_dist[code] = dist << 7; |
| for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) { |
| _dist_code[256 + dist++] = code; |
| } |
| } |
| //Assert (dist == 256, "tr_static_init: 256+dist != 512"); |
| |
| /* Construct the codes of the static literal tree */ |
| for (bits = 0; bits <= MAX_BITS; bits++) { |
| bl_count[bits] = 0; |
| } |
| |
| n = 0; |
| while (n <= 143) { |
| static_ltree[n * 2 + 1]/*.Len*/ = 8; |
| n++; |
| bl_count[8]++; |
| } |
| while (n <= 255) { |
| static_ltree[n * 2 + 1]/*.Len*/ = 9; |
| n++; |
| bl_count[9]++; |
| } |
| while (n <= 279) { |
| static_ltree[n * 2 + 1]/*.Len*/ = 7; |
| n++; |
| bl_count[7]++; |
| } |
| while (n <= 287) { |
| static_ltree[n * 2 + 1]/*.Len*/ = 8; |
| n++; |
| bl_count[8]++; |
| } |
| /* Codes 286 and 287 do not exist, but we must include them in the |
| * tree construction to get a canonical Huffman tree (longest code |
| * all ones) |
| */ |
| gen_codes(static_ltree, L_CODES + 1, bl_count); |
| |
| /* The static distance tree is trivial: */ |
| for (n = 0; n < D_CODES; n++) { |
| static_dtree[n * 2 + 1]/*.Len*/ = 5; |
| static_dtree[n * 2]/*.Code*/ = bi_reverse(n, 5); |
| } |
| |
| // Now data ready and we can init static trees |
| static_l_desc = new StaticTreeDesc(static_ltree, extra_lbits, LITERALS + 1, L_CODES, MAX_BITS); |
| static_d_desc = new StaticTreeDesc(static_dtree, extra_dbits, 0, D_CODES, MAX_BITS); |
| static_bl_desc = new StaticTreeDesc(new Array(0), extra_blbits, 0, BL_CODES, MAX_BL_BITS); |
| |
| //static_init_done = true; |
| } |
| |
| |
| /* =========================================================================== |
| * Initialize a new block. |
| */ |
| function init_block(s) { |
| var n; /* iterates over tree elements */ |
| |
| /* Initialize the trees. */ |
| for (n = 0; n < L_CODES; n++) { s.dyn_ltree[n * 2]/*.Freq*/ = 0; } |
| for (n = 0; n < D_CODES; n++) { s.dyn_dtree[n * 2]/*.Freq*/ = 0; } |
| for (n = 0; n < BL_CODES; n++) { s.bl_tree[n * 2]/*.Freq*/ = 0; } |
| |
| s.dyn_ltree[END_BLOCK * 2]/*.Freq*/ = 1; |
| s.opt_len = s.static_len = 0; |
| s.last_lit = s.matches = 0; |
| } |
| |
| |
| /* =========================================================================== |
| * Flush the bit buffer and align the output on a byte boundary |
| */ |
| function bi_windup(s) |
| { |
| if (s.bi_valid > 8) { |
| put_short(s, s.bi_buf); |
| } else if (s.bi_valid > 0) { |
| //put_byte(s, (Byte)s->bi_buf); |
| s.pending_buf[s.pending++] = s.bi_buf; |
| } |
| s.bi_buf = 0; |
| s.bi_valid = 0; |
| } |
| |
| /* =========================================================================== |
| * Copy a stored block, storing first the length and its |
| * one's complement if requested. |
| */ |
| function copy_block(s, buf, len, header) |
| //DeflateState *s; |
| //charf *buf; /* the input data */ |
| //unsigned len; /* its length */ |
| //int header; /* true if block header must be written */ |
| { |
| bi_windup(s); /* align on byte boundary */ |
| |
| if (header) { |
| put_short(s, len); |
| put_short(s, ~len); |
| } |
| // while (len--) { |
| // put_byte(s, *buf++); |
| // } |
| utils.arraySet(s.pending_buf, s.window, buf, len, s.pending); |
| s.pending += len; |
| } |
| |
| /* =========================================================================== |
| * Compares to subtrees, using the tree depth as tie breaker when |
| * the subtrees have equal frequency. This minimizes the worst case length. |
| */ |
| function smaller(tree, n, m, depth) { |
| var _n2 = n * 2; |
| var _m2 = m * 2; |
| return (tree[_n2]/*.Freq*/ < tree[_m2]/*.Freq*/ || |
| (tree[_n2]/*.Freq*/ === tree[_m2]/*.Freq*/ && depth[n] <= depth[m])); |
| } |
| |
| /* =========================================================================== |
| * Restore the heap property by moving down the tree starting at node k, |
| * exchanging a node with the smallest of its two sons if necessary, stopping |
| * when the heap property is re-established (each father smaller than its |
| * two sons). |
| */ |
| function pqdownheap(s, tree, k) |
| // deflate_state *s; |
| // ct_data *tree; /* the tree to restore */ |
| // int k; /* node to move down */ |
| { |
| var v = s.heap[k]; |
| var j = k << 1; /* left son of k */ |
| while (j <= s.heap_len) { |
| /* Set j to the smallest of the two sons: */ |
| if (j < s.heap_len && |
| smaller(tree, s.heap[j + 1], s.heap[j], s.depth)) { |
| j++; |
| } |
| /* Exit if v is smaller than both sons */ |
| if (smaller(tree, v, s.heap[j], s.depth)) { break; } |
| |
| /* Exchange v with the smallest son */ |
| s.heap[k] = s.heap[j]; |
| k = j; |
| |
| /* And continue down the tree, setting j to the left son of k */ |
| j <<= 1; |
| } |
| s.heap[k] = v; |
| } |
| |
| |
| // inlined manually |
| // var SMALLEST = 1; |
| |
| /* =========================================================================== |
| * Send the block data compressed using the given Huffman trees |
| */ |
| function compress_block(s, ltree, dtree) |
| // deflate_state *s; |
| // const ct_data *ltree; /* literal tree */ |
| // const ct_data *dtree; /* distance tree */ |
| { |
| var dist; /* distance of matched string */ |
| var lc; /* match length or unmatched char (if dist == 0) */ |
| var lx = 0; /* running index in l_buf */ |
| var code; /* the code to send */ |
| var extra; /* number of extra bits to send */ |
| |
| if (s.last_lit !== 0) { |
| do { |
| dist = (s.pending_buf[s.d_buf + lx * 2] << 8) | (s.pending_buf[s.d_buf + lx * 2 + 1]); |
| lc = s.pending_buf[s.l_buf + lx]; |
| lx++; |
| |
| if (dist === 0) { |
| send_code(s, lc, ltree); /* send a literal byte */ |
| //Tracecv(isgraph(lc), (stderr," '%c' ", lc)); |
| } else { |
| /* Here, lc is the match length - MIN_MATCH */ |
| code = _length_code[lc]; |
| send_code(s, code + LITERALS + 1, ltree); /* send the length code */ |
| extra = extra_lbits[code]; |
| if (extra !== 0) { |
| lc -= base_length[code]; |
| send_bits(s, lc, extra); /* send the extra length bits */ |
| } |
| dist--; /* dist is now the match distance - 1 */ |
| code = d_code(dist); |
| //Assert (code < D_CODES, "bad d_code"); |
| |
| send_code(s, code, dtree); /* send the distance code */ |
| extra = extra_dbits[code]; |
| if (extra !== 0) { |
| dist -= base_dist[code]; |
| send_bits(s, dist, extra); /* send the extra distance bits */ |
| } |
| } /* literal or match pair ? */ |
| |
| /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ |
| //Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, |
| // "pendingBuf overflow"); |
| |
| } while (lx < s.last_lit); |
| } |
| |
| send_code(s, END_BLOCK, ltree); |
| } |
| |
| |
| /* =========================================================================== |
| * Construct one Huffman tree and assigns the code bit strings and lengths. |
| * Update the total bit length for the current block. |
| * IN assertion: the field freq is set for all tree elements. |
| * OUT assertions: the fields len and code are set to the optimal bit length |
| * and corresponding code. The length opt_len is updated; static_len is |
| * also updated if stree is not null. The field max_code is set. |
| */ |
| function build_tree(s, desc) |
| // deflate_state *s; |
| // tree_desc *desc; /* the tree descriptor */ |
| { |
| var tree = desc.dyn_tree; |
| var stree = desc.stat_desc.static_tree; |
| var has_stree = desc.stat_desc.has_stree; |
| var elems = desc.stat_desc.elems; |
| var n, m; /* iterate over heap elements */ |
| var max_code = -1; /* largest code with non zero frequency */ |
| var node; /* new node being created */ |
| |
| /* Construct the initial heap, with least frequent element in |
| * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. |
| * heap[0] is not used. |
| */ |
| s.heap_len = 0; |
| s.heap_max = HEAP_SIZE; |
| |
| for (n = 0; n < elems; n++) { |
| if (tree[n * 2]/*.Freq*/ !== 0) { |
| s.heap[++s.heap_len] = max_code = n; |
| s.depth[n] = 0; |
| |
| } else { |
| tree[n * 2 + 1]/*.Len*/ = 0; |
| } |
| } |
| |
| /* The pkzip format requires that at least one distance code exists, |
| * and that at least one bit should be sent even if there is only one |
| * possible code. So to avoid special checks later on we force at least |
| * two codes of non zero frequency. |
| */ |
| while (s.heap_len < 2) { |
| node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0); |
| tree[node * 2]/*.Freq*/ = 1; |
| s.depth[node] = 0; |
| s.opt_len--; |
| |
| if (has_stree) { |
| s.static_len -= stree[node * 2 + 1]/*.Len*/; |
| } |
| /* node is 0 or 1 so it does not have extra bits */ |
| } |
| desc.max_code = max_code; |
| |
| /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, |
| * establish sub-heaps of increasing lengths: |
| */ |
| for (n = (s.heap_len >> 1/*int /2*/); n >= 1; n--) { pqdownheap(s, tree, n); } |
| |
| /* Construct the Huffman tree by repeatedly combining the least two |
| * frequent nodes. |
| */ |
| node = elems; /* next internal node of the tree */ |
| do { |
| //pqremove(s, tree, n); /* n = node of least frequency */ |
| /*** pqremove ***/ |
| n = s.heap[1/*SMALLEST*/]; |
| s.heap[1/*SMALLEST*/] = s.heap[s.heap_len--]; |
| pqdownheap(s, tree, 1/*SMALLEST*/); |
| /***/ |
| |
| m = s.heap[1/*SMALLEST*/]; /* m = node of next least frequency */ |
| |
| s.heap[--s.heap_max] = n; /* keep the nodes sorted by frequency */ |
| s.heap[--s.heap_max] = m; |
| |
| /* Create a new node father of n and m */ |
| tree[node * 2]/*.Freq*/ = tree[n * 2]/*.Freq*/ + tree[m * 2]/*.Freq*/; |
| s.depth[node] = (s.depth[n] >= s.depth[m] ? s.depth[n] : s.depth[m]) + 1; |
| tree[n * 2 + 1]/*.Dad*/ = tree[m * 2 + 1]/*.Dad*/ = node; |
| |
| /* and insert the new node in the heap */ |
| s.heap[1/*SMALLEST*/] = node++; |
| pqdownheap(s, tree, 1/*SMALLEST*/); |
| |
| } while (s.heap_len >= 2); |
| |
| s.heap[--s.heap_max] = s.heap[1/*SMALLEST*/]; |
| |
| /* At this point, the fields freq and dad are set. We can now |
| * generate the bit lengths. |
| */ |
| gen_bitlen(s, desc); |
| |
| /* The field len is now set, we can generate the bit codes */ |
| gen_codes(tree, max_code, s.bl_count); |
| } |
| |
| |
| /* =========================================================================== |
| * Scan a literal or distance tree to determine the frequencies of the codes |
| * in the bit length tree. |
| */ |
| function scan_tree(s, tree, max_code) |
| // deflate_state *s; |
| // ct_data *tree; /* the tree to be scanned */ |
| // int max_code; /* and its largest code of non zero frequency */ |
| { |
| var n; /* iterates over all tree elements */ |
| var prevlen = -1; /* last emitted length */ |
| var curlen; /* length of current code */ |
| |
| var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */ |
| |
| var count = 0; /* repeat count of the current code */ |
| var max_count = 7; /* max repeat count */ |
| var min_count = 4; /* min repeat count */ |
| |
| if (nextlen === 0) { |
| max_count = 138; |
| min_count = 3; |
| } |
| tree[(max_code + 1) * 2 + 1]/*.Len*/ = 0xffff; /* guard */ |
| |
| for (n = 0; n <= max_code; n++) { |
| curlen = nextlen; |
| nextlen = tree[(n + 1) * 2 + 1]/*.Len*/; |
| |
| if (++count < max_count && curlen === nextlen) { |
| continue; |
| |
| } else if (count < min_count) { |
| s.bl_tree[curlen * 2]/*.Freq*/ += count; |
| |
| } else if (curlen !== 0) { |
| |
| if (curlen !== prevlen) { s.bl_tree[curlen * 2]/*.Freq*/++; } |
| s.bl_tree[REP_3_6 * 2]/*.Freq*/++; |
| |
| } else if (count <= 10) { |
| s.bl_tree[REPZ_3_10 * 2]/*.Freq*/++; |
| |
| } else { |
| s.bl_tree[REPZ_11_138 * 2]/*.Freq*/++; |
| } |
| |
| count = 0; |
| prevlen = curlen; |
| |
| if (nextlen === 0) { |
| max_count = 138; |
| min_count = 3; |
| |
| } else if (curlen === nextlen) { |
| max_count = 6; |
| min_count = 3; |
| |
| } else { |
| max_count = 7; |
| min_count = 4; |
| } |
| } |
| } |
| |
| |
| /* =========================================================================== |
| * Send a literal or distance tree in compressed form, using the codes in |
| * bl_tree. |
| */ |
| function send_tree(s, tree, max_code) |
| // deflate_state *s; |
| // ct_data *tree; /* the tree to be scanned */ |
| // int max_code; /* and its largest code of non zero frequency */ |
| { |
| var n; /* iterates over all tree elements */ |
| var prevlen = -1; /* last emitted length */ |
| var curlen; /* length of current code */ |
| |
| var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */ |
| |
| var count = 0; /* repeat count of the current code */ |
| var max_count = 7; /* max repeat count */ |
| var min_count = 4; /* min repeat count */ |
| |
| /* tree[max_code+1].Len = -1; */ /* guard already set */ |
| if (nextlen === 0) { |
| max_count = 138; |
| min_count = 3; |
| } |
| |
| for (n = 0; n <= max_code; n++) { |
| curlen = nextlen; |
| nextlen = tree[(n + 1) * 2 + 1]/*.Len*/; |
| |
| if (++count < max_count && curlen === nextlen) { |
| continue; |
| |
| } else if (count < min_count) { |
| do { send_code(s, curlen, s.bl_tree); } while (--count !== 0); |
| |
| } else if (curlen !== 0) { |
| if (curlen !== prevlen) { |
| send_code(s, curlen, s.bl_tree); |
| count--; |
| } |
| //Assert(count >= 3 && count <= 6, " 3_6?"); |
| send_code(s, REP_3_6, s.bl_tree); |
| send_bits(s, count - 3, 2); |
| |
| } else if (count <= 10) { |
| send_code(s, REPZ_3_10, s.bl_tree); |
| send_bits(s, count - 3, 3); |
| |
| } else { |
| send_code(s, REPZ_11_138, s.bl_tree); |
| send_bits(s, count - 11, 7); |
| } |
| |
| count = 0; |
| prevlen = curlen; |
| if (nextlen === 0) { |
| max_count = 138; |
| min_count = 3; |
| |
| } else if (curlen === nextlen) { |
| max_count = 6; |
| min_count = 3; |
| |
| } else { |
| max_count = 7; |
| min_count = 4; |
| } |
| } |
| } |
| |
| |
| /* =========================================================================== |
| * Construct the Huffman tree for the bit lengths and return the index in |
| * bl_order of the last bit length code to send. |
| */ |
| function build_bl_tree(s) { |
| var max_blindex; /* index of last bit length code of non zero freq */ |
| |
| /* Determine the bit length frequencies for literal and distance trees */ |
| scan_tree(s, s.dyn_ltree, s.l_desc.max_code); |
| scan_tree(s, s.dyn_dtree, s.d_desc.max_code); |
| |
| /* Build the bit length tree: */ |
| build_tree(s, s.bl_desc); |
| /* opt_len now includes the length of the tree representations, except |
| * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. |
| */ |
| |
| /* Determine the number of bit length codes to send. The pkzip format |
| * requires that at least 4 bit length codes be sent. (appnote.txt says |
| * 3 but the actual value used is 4.) |
| */ |
| for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) { |
| if (s.bl_tree[bl_order[max_blindex] * 2 + 1]/*.Len*/ !== 0) { |
| break; |
| } |
| } |
| /* Update opt_len to include the bit length tree and counts */ |
| s.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4; |
| //Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", |
| // s->opt_len, s->static_len)); |
| |
| return max_blindex; |
| } |
| |
| |
| /* =========================================================================== |
| * Send the header for a block using dynamic Huffman trees: the counts, the |
| * lengths of the bit length codes, the literal tree and the distance tree. |
| * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. |
| */ |
| function send_all_trees(s, lcodes, dcodes, blcodes) |
| // deflate_state *s; |
| // int lcodes, dcodes, blcodes; /* number of codes for each tree */ |
| { |
| var rank; /* index in bl_order */ |
| |
| //Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); |
| //Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, |
| // "too many codes"); |
| //Tracev((stderr, "\nbl counts: ")); |
| send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */ |
| send_bits(s, dcodes - 1, 5); |
| send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */ |
| for (rank = 0; rank < blcodes; rank++) { |
| //Tracev((stderr, "\nbl code %2d ", bl_order[rank])); |
| send_bits(s, s.bl_tree[bl_order[rank] * 2 + 1]/*.Len*/, 3); |
| } |
| //Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); |
| |
| send_tree(s, s.dyn_ltree, lcodes - 1); /* literal tree */ |
| //Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); |
| |
| send_tree(s, s.dyn_dtree, dcodes - 1); /* distance tree */ |
| //Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); |
| } |
| |
| |
| /* =========================================================================== |
| * Check if the data type is TEXT or BINARY, using the following algorithm: |
| * - TEXT if the two conditions below are satisfied: |
| * a) There are no non-portable control characters belonging to the |
| * "black list" (0..6, 14..25, 28..31). |
| * b) There is at least one printable character belonging to the |
| * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). |
| * - BINARY otherwise. |
| * - The following partially-portable control characters form a |
| * "gray list" that is ignored in this detection algorithm: |
| * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). |
| * IN assertion: the fields Freq of dyn_ltree are set. |
| */ |
| function detect_data_type(s) { |
| /* black_mask is the bit mask of black-listed bytes |
| * set bits 0..6, 14..25, and 28..31 |
| * 0xf3ffc07f = binary 11110011111111111100000001111111 |
| */ |
| var black_mask = 0xf3ffc07f; |
| var n; |
| |
| /* Check for non-textual ("black-listed") bytes. */ |
| for (n = 0; n <= 31; n++, black_mask >>>= 1) { |
| if ((black_mask & 1) && (s.dyn_ltree[n * 2]/*.Freq*/ !== 0)) { |
| return Z_BINARY; |
| } |
| } |
| |
| /* Check for textual ("white-listed") bytes. */ |
| if (s.dyn_ltree[9 * 2]/*.Freq*/ !== 0 || s.dyn_ltree[10 * 2]/*.Freq*/ !== 0 || |
| s.dyn_ltree[13 * 2]/*.Freq*/ !== 0) { |
| return Z_TEXT; |
| } |
| for (n = 32; n < LITERALS; n++) { |
| if (s.dyn_ltree[n * 2]/*.Freq*/ !== 0) { |
| return Z_TEXT; |
| } |
| } |
| |
| /* There are no "black-listed" or "white-listed" bytes: |
| * this stream either is empty or has tolerated ("gray-listed") bytes only. |
| */ |
| return Z_BINARY; |
| } |
| |
| |
| var static_init_done = false; |
| |
| /* =========================================================================== |
| * Initialize the tree data structures for a new zlib stream. |
| */ |
| function _tr_init(s) |
| { |
| |
| if (!static_init_done) { |
| tr_static_init(); |
| static_init_done = true; |
| } |
| |
| s.l_desc = new TreeDesc(s.dyn_ltree, static_l_desc); |
| s.d_desc = new TreeDesc(s.dyn_dtree, static_d_desc); |
| s.bl_desc = new TreeDesc(s.bl_tree, static_bl_desc); |
| |
| s.bi_buf = 0; |
| s.bi_valid = 0; |
| |
| /* Initialize the first block of the first file: */ |
| init_block(s); |
| } |
| |
| |
| /* =========================================================================== |
| * Send a stored block |
| */ |
| function _tr_stored_block(s, buf, stored_len, last) |
| //DeflateState *s; |
| //charf *buf; /* input block */ |
| //ulg stored_len; /* length of input block */ |
| //int last; /* one if this is the last block for a file */ |
| { |
| send_bits(s, (STORED_BLOCK << 1) + (last ? 1 : 0), 3); /* send block type */ |
| copy_block(s, buf, stored_len, true); /* with header */ |
| } |
| |
| |
| /* =========================================================================== |
| * Send one empty static block to give enough lookahead for inflate. |
| * This takes 10 bits, of which 7 may remain in the bit buffer. |
| */ |
| function _tr_align(s) { |
| send_bits(s, STATIC_TREES << 1, 3); |
| send_code(s, END_BLOCK, static_ltree); |
| bi_flush(s); |
| } |
| |
| |
| /* =========================================================================== |
| * Determine the best encoding for the current block: dynamic trees, static |
| * trees or store, and output the encoded block to the zip file. |
| */ |
| function _tr_flush_block(s, buf, stored_len, last) |
| //DeflateState *s; |
| //charf *buf; /* input block, or NULL if too old */ |
| //ulg stored_len; /* length of input block */ |
| //int last; /* one if this is the last block for a file */ |
| { |
| var opt_lenb, static_lenb; /* opt_len and static_len in bytes */ |
| var max_blindex = 0; /* index of last bit length code of non zero freq */ |
| |
| /* Build the Huffman trees unless a stored block is forced */ |
| if (s.level > 0) { |
| |
| /* Check if the file is binary or text */ |
| if (s.strm.data_type === Z_UNKNOWN) { |
| s.strm.data_type = detect_data_type(s); |
| } |
| |
| /* Construct the literal and distance trees */ |
| build_tree(s, s.l_desc); |
| // Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, |
| // s->static_len)); |
| |
| build_tree(s, s.d_desc); |
| // Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, |
| // s->static_len)); |
| /* At this point, opt_len and static_len are the total bit lengths of |
| * the compressed block data, excluding the tree representations. |
| */ |
| |
| /* Build the bit length tree for the above two trees, and get the index |
| * in bl_order of the last bit length code to send. |
| */ |
| max_blindex = build_bl_tree(s); |
| |
| /* Determine the best encoding. Compute the block lengths in bytes. */ |
| opt_lenb = (s.opt_len + 3 + 7) >>> 3; |
| static_lenb = (s.static_len + 3 + 7) >>> 3; |
| |
| // Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", |
| // opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, |
| // s->last_lit)); |
| |
| if (static_lenb <= opt_lenb) { opt_lenb = static_lenb; } |
| |
| } else { |
| // Assert(buf != (char*)0, "lost buf"); |
| opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ |
| } |
| |
| if ((stored_len + 4 <= opt_lenb) && (buf !== -1)) { |
| /* 4: two words for the lengths */ |
| |
| /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. |
| * Otherwise we can't have processed more than WSIZE input bytes since |
| * the last block flush, because compression would have been |
| * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to |
| * transform a block into a stored block. |
| */ |
| _tr_stored_block(s, buf, stored_len, last); |
| |
| } else if (s.strategy === Z_FIXED || static_lenb === opt_lenb) { |
| |
| send_bits(s, (STATIC_TREES << 1) + (last ? 1 : 0), 3); |
| compress_block(s, static_ltree, static_dtree); |
| |
| } else { |
| send_bits(s, (DYN_TREES << 1) + (last ? 1 : 0), 3); |
| send_all_trees(s, s.l_desc.max_code + 1, s.d_desc.max_code + 1, max_blindex + 1); |
| compress_block(s, s.dyn_ltree, s.dyn_dtree); |
| } |
| // Assert (s->compressed_len == s->bits_sent, "bad compressed size"); |
| /* The above check is made mod 2^32, for files larger than 512 MB |
| * and uLong implemented on 32 bits. |
| */ |
| init_block(s); |
| |
| if (last) { |
| bi_windup(s); |
| } |
| // Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, |
| // s->compressed_len-7*last)); |
| } |
| |
| /* =========================================================================== |
| * Save the match info and tally the frequency counts. Return true if |
| * the current block must be flushed. |
| */ |
| function _tr_tally(s, dist, lc) |
| // deflate_state *s; |
| // unsigned dist; /* distance of matched string */ |
| // unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ |
| { |
| //var out_length, in_length, dcode; |
| |
| s.pending_buf[s.d_buf + s.last_lit * 2] = (dist >>> 8) & 0xff; |
| s.pending_buf[s.d_buf + s.last_lit * 2 + 1] = dist & 0xff; |
| |
| s.pending_buf[s.l_buf + s.last_lit] = lc & 0xff; |
| s.last_lit++; |
| |
| if (dist === 0) { |
| /* lc is the unmatched char */ |
| s.dyn_ltree[lc * 2]/*.Freq*/++; |
| } else { |
| s.matches++; |
| /* Here, lc is the match length - MIN_MATCH */ |
| dist--; /* dist = match distance - 1 */ |
| //Assert((ush)dist < (ush)MAX_DIST(s) && |
| // (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && |
| // (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); |
| |
| s.dyn_ltree[(_length_code[lc] + LITERALS + 1) * 2]/*.Freq*/++; |
| s.dyn_dtree[d_code(dist) * 2]/*.Freq*/++; |
| } |
| |
| // (!) This block is disabled in zlib defaults, |
| // don't enable it for binary compatibility |
| |
| //#ifdef TRUNCATE_BLOCK |
| // /* Try to guess if it is profitable to stop the current block here */ |
| // if ((s.last_lit & 0x1fff) === 0 && s.level > 2) { |
| // /* Compute an upper bound for the compressed length */ |
| // out_length = s.last_lit*8; |
| // in_length = s.strstart - s.block_start; |
| // |
| // for (dcode = 0; dcode < D_CODES; dcode++) { |
| // out_length += s.dyn_dtree[dcode*2]/*.Freq*/ * (5 + extra_dbits[dcode]); |
| // } |
| // out_length >>>= 3; |
| // //Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", |
| // // s->last_lit, in_length, out_length, |
| // // 100L - out_length*100L/in_length)); |
| // if (s.matches < (s.last_lit>>1)/*int /2*/ && out_length < (in_length>>1)/*int /2*/) { |
| // return true; |
| // } |
| // } |
| //#endif |
| |
| return (s.last_lit === s.lit_bufsize - 1); |
| /* We avoid equality with lit_bufsize because of wraparound at 64K |
| * on 16 bit machines and because stored blocks are restricted to |
| * 64K-1 bytes. |
| */ |
| } |
| |
| exports._tr_init = _tr_init; |
| exports._tr_stored_block = _tr_stored_block; |
| exports._tr_flush_block = _tr_flush_block; |
| exports._tr_tally = _tr_tally; |
| exports._tr_align = _tr_align; |