| // Copyright 2011 The Chromium Authors |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef BASE_FUNCTIONAL_BIND_INTERNAL_H_ |
| #define BASE_FUNCTIONAL_BIND_INTERNAL_H_ |
| |
| #include <stddef.h> |
| |
| #include <functional> |
| #include <memory> |
| #include <tuple> |
| #include <type_traits> |
| #include <utility> |
| |
| #include "base/allocator/partition_allocator/partition_alloc_buildflags.h" |
| #include "base/allocator/partition_allocator/partition_alloc_config.h" |
| #include "base/allocator/partition_allocator/pointers/raw_ptr.h" |
| #include "base/check.h" |
| #include "base/compiler_specific.h" |
| #include "base/functional/callback_internal.h" |
| #include "base/functional/disallow_unretained.h" |
| #include "base/functional/unretained_traits.h" |
| #include "base/memory/raw_ptr.h" |
| #include "base/memory/raw_ptr_asan_bound_arg_tracker.h" |
| #include "base/memory/raw_ptr_asan_service.h" |
| #include "base/memory/raw_ref.h" |
| #include "base/memory/raw_scoped_refptr_mismatch_checker.h" |
| #include "base/memory/weak_ptr.h" |
| #include "base/notreached.h" |
| #include "base/types/always_false.h" |
| #include "build/build_config.h" |
| #include "third_party/abseil-cpp/absl/functional/function_ref.h" |
| |
| #if BUILDFLAG(IS_APPLE) && !HAS_FEATURE(objc_arc) |
| #include "base/mac/scoped_block.h" |
| #endif |
| |
| // See base/functional/callback.h for user documentation. |
| // |
| // |
| // CONCEPTS: |
| // Functor -- A movable type representing something that should be called. |
| // All function pointers and Callback<> are functors even if the |
| // invocation syntax differs. |
| // RunType -- A function type (as opposed to function _pointer_ type) for |
| // a Callback<>::Run(). Usually just a convenience typedef. |
| // (Bound)Args -- A set of types that stores the arguments. |
| // |
| // Types: |
| // ForceVoidReturn<> -- Helper class for translating function signatures to |
| // equivalent forms with a "void" return type. |
| // FunctorTraits<> -- Type traits used to determine the correct RunType and |
| // invocation manner for a Functor. This is where function |
| // signature adapters are applied. |
| // StorageTraits<> -- Type traits that determine how a bound argument is |
| // stored in BindState. |
| // InvokeHelper<> -- Take a Functor + arguments and actually invokes it. |
| // Handle the differing syntaxes needed for WeakPtr<> |
| // support. This is separate from Invoker to avoid creating |
| // multiple version of Invoker<>. |
| // Invoker<> -- Unwraps the curried parameters and executes the Functor. |
| // BindState<> -- Stores the curried parameters, and is the main entry point |
| // into the Bind() system. |
| |
| #if BUILDFLAG(IS_WIN) |
| namespace Microsoft { |
| namespace WRL { |
| template <typename> |
| class ComPtr; |
| } // namespace WRL |
| } // namespace Microsoft |
| #endif |
| |
| namespace base { |
| |
| template <typename T> |
| struct IsWeakReceiver; |
| |
| template <typename> |
| struct BindUnwrapTraits; |
| |
| template <typename Functor, typename BoundArgsTuple, typename SFINAE = void> |
| struct CallbackCancellationTraits; |
| |
| template <typename Signature> |
| class FunctionRef; |
| |
| namespace unretained_traits { |
| |
| // UnretainedWrapper will check and report if pointer is dangling upon |
| // invocation. |
| struct MayNotDangle {}; |
| // UnretainedWrapper won't check if pointer is dangling upon invocation. For |
| // extra safety, the receiver must be of type MayBeDangling<>. |
| struct MayDangle {}; |
| // UnretainedWrapper won't check if pointer is dangling upon invocation. The |
| // receiver doesn't have to be a raw_ptr<>. This is just a temporary state, to |
| // allow dangling pointers that would otherwise crash if MayNotDangle was used. |
| // It should be replaced ASAP with MayNotDangle (after fixing the dangling |
| // pointers) or with MayDangle if there is really no other way (after making |
| // receivers MayBeDangling<>). |
| struct MayDangleUntriaged {}; |
| |
| } // namespace unretained_traits |
| |
| namespace internal { |
| |
| template <typename Functor, typename SFINAE = void> |
| struct FunctorTraits; |
| |
| template <typename T, |
| typename UnretainedTrait, |
| RawPtrTraits PtrTraits = RawPtrTraits::kEmpty> |
| class UnretainedWrapper { |
| // Note that if PtrTraits already includes MayDangle, DanglingRawPtrType |
| // will be identical to `raw_ptr<T, PtrTraits>`. |
| using DanglingRawPtrType = MayBeDangling<T, PtrTraits>; |
| |
| public: |
| // We want the getter type to match the receiver parameter that it is passed |
| // into, to minimize `raw_ptr<T>` <-> `T*` conversions. We also would like to |
| // match `StorageType`, but sometimes we can't have both, as shown in |
| // https://docs.google.com/document/d/1dLM34aKqbNBfRdOYxxV_T-zQU4J5wjmXwIBJZr7JvZM/edit |
| // When we can't have both, prefer the former, mostly because |
| // `GetPtrType`=`raw_ptr<T>` would break if e.g. UnretainedWrapper() is |
| // constructed using `char*`, but the receiver is of type `std::string&`. |
| // This is enforced by static_asserts in base::internal::AssertConstructible. |
| using GetPtrType = std::conditional_t< |
| raw_ptr_traits::IsSupportedType<T>::value && |
| std::is_same_v<UnretainedTrait, unretained_traits::MayDangle>, |
| DanglingRawPtrType, |
| T*>; |
| |
| static_assert(TypeSupportsUnretainedV<T>, |
| "Callback cannot capture an unprotected C++ pointer since this " |
| "Type is annotated with DISALLOW_UNRETAINED(). Please see " |
| "base/functional/disallow_unretained.h for alternatives."); |
| |
| // Raw pointer makes sense only if there are no PtrTraits. If there are, |
| // it means that a `raw_ptr` is being passed, so use the ctors below instead. |
| template <RawPtrTraits PTraits = PtrTraits, |
| typename = std::enable_if_t<PTraits == RawPtrTraits::kEmpty>> |
| explicit UnretainedWrapper(T* o) : ptr_(o) {} |
| |
| // Trick to only instantiate these constructors if they are used. Otherwise, |
| // instantiating UnretainedWrapper with a T that is not supported by |
| // raw_ptr would trigger raw_ptr<T>'s static_assert. |
| template <typename U = T> |
| explicit UnretainedWrapper(const raw_ptr<U, PtrTraits>& o) : ptr_(o) {} |
| template <typename U = T> |
| explicit UnretainedWrapper(raw_ptr<U, PtrTraits>&& o) : ptr_(std::move(o)) {} |
| |
| GetPtrType get() const { return GetInternal(ptr_); } |
| |
| private: |
| // `ptr_` is either a `raw_ptr` or a regular C++ pointer. |
| template <typename U> |
| static GetPtrType GetInternal(U* ptr) { |
| static_assert(std::is_same_v<T, U>); |
| return ptr; |
| } |
| template <typename U, RawPtrTraits Traits> |
| static GetPtrType GetInternal(const raw_ptr<U, Traits>& ptr) { |
| static_assert(std::is_same_v<T, U>); |
| if constexpr (std::is_same_v<UnretainedTrait, |
| unretained_traits::MayNotDangle>) { |
| ptr.ReportIfDangling(); |
| } |
| return ptr; |
| } |
| |
| // `Unretained()` arguments often dangle by design (a common design pattern |
| // is to manage an object's lifetime inside the callback itself, using |
| // stateful information), so disable direct dangling pointer detection |
| // of `ptr_`. |
| // |
| // If the callback is invoked, dangling pointer detection will be triggered |
| // before invoking the bound functor (unless stated otherwise, see |
| // `UnsafeDangling()` and `UnsafeDanglingUntriaged()`), when retrieving the |
| // pointer value via `get()` above. |
| using StorageType = |
| std::conditional_t<raw_ptr_traits::IsSupportedType<T>::value, |
| DanglingRawPtrType, |
| T*>; |
| // Avoid converting between different `raw_ptr` types when calling `get()`. |
| // It is allowable to convert `raw_ptr<T>` -> `T*`, but not in the other |
| // direction. See the comment by `GetPtrType` describing for more details. |
| static_assert(std::is_pointer_v<GetPtrType> || |
| std::is_same_v<GetPtrType, StorageType>); |
| StorageType ptr_; |
| }; |
| |
| // Storage type for std::reference_wrapper so `BindState` can internally store |
| // unprotected references using raw_ref. |
| // |
| // std::reference_wrapper<T> and T& do not work, since the reference lifetime is |
| // not safely protected by MiraclePtr. |
| // |
| // UnretainedWrapper<T> and raw_ptr<T> do not work, since BindUnwrapTraits would |
| // try to pass by T* rather than T&. |
| template <typename T, |
| typename UnretainedTrait, |
| RawPtrTraits PtrTraits = RawPtrTraits::kEmpty> |
| class UnretainedRefWrapper { |
| public: |
| static_assert( |
| TypeSupportsUnretainedV<T>, |
| "Callback cannot capture an unprotected C++ reference since this " |
| "type is annotated with DISALLOW_UNRETAINED(). Please see " |
| "base/functional/disallow_unretained.h for alternatives."); |
| |
| // Raw reference makes sense only if there are no PtrTraits. If there are, |
| // it means that a `raw_ref` is being passed, so use the ctors below instead. |
| template <RawPtrTraits PTraits = PtrTraits, |
| typename = std::enable_if_t<PTraits == RawPtrTraits::kEmpty>> |
| explicit UnretainedRefWrapper(T& o) : ref_(o) {} |
| |
| // Trick to only instantiate these constructors if they are used. Otherwise, |
| // instantiating UnretainedWrapper with a T that is not supported by |
| // raw_ref would trigger raw_ref<T>'s static_assert. |
| template <typename U = T> |
| explicit UnretainedRefWrapper(const raw_ref<U, PtrTraits>& o) : ref_(o) {} |
| template <typename U = T> |
| explicit UnretainedRefWrapper(raw_ref<U, PtrTraits>&& o) |
| : ref_(std::move(o)) {} |
| |
| T& get() const { return GetInternal(ref_); } |
| |
| private: |
| // `ref_` is either a `raw_ref` or a regular C++ reference. |
| template <typename U> |
| static T& GetInternal(U& ref) { |
| static_assert(std::is_same_v<T, U>); |
| return ref; |
| } |
| template <typename U, RawPtrTraits Traits> |
| static T& GetInternal(const raw_ref<U, Traits>& ref) { |
| static_assert(std::is_same_v<T, U>); |
| // The ultimate goal is to crash when a callback is invoked with a |
| // dangling pointer. This is checked here. For now, it is configured to |
| // either crash, DumpWithoutCrashing or be ignored. This depends on the |
| // PartitionAllocUnretainedDanglingPtr feature. |
| if constexpr (std::is_same_v<UnretainedTrait, |
| unretained_traits::MayNotDangle>) { |
| ref.ReportIfDangling(); |
| } |
| // We can't use operator* here, we need to use raw_ptr's GetForExtraction |
| // instead of GetForDereference. If we did use GetForDereference then we'd |
| // crash in ASAN builds on calling a bound callback with a dangling |
| // reference parameter even if that parameter is not used. This could hide |
| // a later unprotected issue that would be reached in release builds. |
| return ref.get(); |
| } |
| |
| // `Unretained()` arguments often dangle by design (a common design pattern |
| // is to manage an object's lifetime inside the callback itself, using |
| // stateful information), so disable direct dangling pointer detection |
| // of `ref_`. |
| // |
| // If the callback is invoked, dangling pointer detection will be triggered |
| // before invoking the bound functor (unless stated otherwise, see |
| // `UnsafeDangling()` and `UnsafeDanglingUntriaged()`), when retrieving the |
| // pointer value via `get()` above. |
| using StorageType = |
| std::conditional_t<raw_ptr_traits::IsSupportedType<T>::value, |
| raw_ref<T, DisableDanglingPtrDetection>, |
| T&>; |
| |
| StorageType ref_; |
| }; |
| |
| // The class is used to wrap `UnretainedRefWrapper` when the latter is used as |
| // a method receiver (a reference on `this` argument). This is needed because |
| // the internal callback mechanism expects the receiver to have the type |
| // `MyClass*` and to have `operator*`. |
| // This is used as storage. |
| template <typename T, typename UnretainedTrait, RawPtrTraits PtrTraits> |
| class UnretainedRefWrapperReceiver { |
| public: |
| // NOLINTNEXTLINE(google-explicit-constructor) |
| UnretainedRefWrapperReceiver( |
| UnretainedRefWrapper<T, UnretainedTrait, PtrTraits>&& o) |
| : obj_(std::move(o)) {} |
| // NOLINTNEXTLINE(google-explicit-constructor) |
| T& operator*() const { return obj_.get(); } |
| |
| private: |
| UnretainedRefWrapper<T, UnretainedTrait, PtrTraits> obj_; |
| }; |
| |
| // MethodReceiverStorageType converts the current receiver type to its stored |
| // type. For instance, it converts pointers to `scoped_refptr`, and wraps |
| // `UnretainedRefWrapper` to make it compliant with the internal callback |
| // invocation mechanism. |
| template <typename T> |
| struct MethodReceiverStorageType { |
| using Type = |
| std::conditional_t<IsPointerV<T>, scoped_refptr<RemovePointerT<T>>, T>; |
| }; |
| |
| template <typename T, typename UnretainedTrait, RawPtrTraits PtrTraits> |
| struct MethodReceiverStorageType< |
| UnretainedRefWrapper<T, UnretainedTrait, PtrTraits>> { |
| // We can't use UnretainedRefWrapper as a receiver directly (see |
| // UnretainedRefWrapperReceiver for why). |
| using Type = UnretainedRefWrapperReceiver<T, UnretainedTrait, PtrTraits>; |
| }; |
| |
| template <typename T> |
| class RetainedRefWrapper { |
| public: |
| explicit RetainedRefWrapper(T* o) : ptr_(o) {} |
| explicit RetainedRefWrapper(scoped_refptr<T> o) : ptr_(std::move(o)) {} |
| T* get() const { return ptr_.get(); } |
| |
| private: |
| scoped_refptr<T> ptr_; |
| }; |
| |
| template <typename T> |
| struct IgnoreResultHelper { |
| explicit IgnoreResultHelper(T functor) : functor_(std::move(functor)) {} |
| explicit operator bool() const { return !!functor_; } |
| |
| T functor_; |
| }; |
| |
| template <typename T, typename Deleter = std::default_delete<T>> |
| class OwnedWrapper { |
| public: |
| explicit OwnedWrapper(T* o) : ptr_(o) {} |
| explicit OwnedWrapper(std::unique_ptr<T, Deleter>&& ptr) |
| : ptr_(std::move(ptr)) {} |
| T* get() const { return ptr_.get(); } |
| |
| private: |
| std::unique_ptr<T, Deleter> ptr_; |
| }; |
| |
| template <typename T> |
| class OwnedRefWrapper { |
| public: |
| explicit OwnedRefWrapper(const T& t) : t_(t) {} |
| explicit OwnedRefWrapper(T&& t) : t_(std::move(t)) {} |
| T& get() const { return t_; } |
| |
| private: |
| mutable T t_; |
| }; |
| |
| // PassedWrapper is a copyable adapter for a scoper that ignores const. |
| // |
| // It is needed to get around the fact that Bind() takes a const reference to |
| // all its arguments. Because Bind() takes a const reference to avoid |
| // unnecessary copies, it is incompatible with movable-but-not-copyable |
| // types; doing a destructive "move" of the type into Bind() would violate |
| // the const correctness. |
| // |
| // This conundrum cannot be solved without either C++11 rvalue references or |
| // a O(2^n) blowup of Bind() templates to handle each combination of regular |
| // types and movable-but-not-copyable types. Thus we introduce a wrapper type |
| // that is copyable to transmit the correct type information down into |
| // BindState<>. Ignoring const in this type makes sense because it is only |
| // created when we are explicitly trying to do a destructive move. |
| // |
| // Two notes: |
| // 1) PassedWrapper supports any type that has a move constructor, however |
| // the type will need to be specifically allowed in order for it to be |
| // bound to a Callback. We guard this explicitly at the call of Passed() |
| // to make for clear errors. Things not given to Passed() will be forwarded |
| // and stored by value which will not work for general move-only types. |
| // 2) is_valid_ is distinct from NULL because it is valid to bind a "NULL" |
| // scoper to a Callback and allow the Callback to execute once. |
| template <typename T> |
| class PassedWrapper { |
| public: |
| explicit PassedWrapper(T&& scoper) : scoper_(std::move(scoper)) {} |
| PassedWrapper(PassedWrapper&& other) |
| : is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {} |
| T Take() const { |
| CHECK(is_valid_); |
| is_valid_ = false; |
| return std::move(scoper_); |
| } |
| |
| private: |
| mutable bool is_valid_ = true; |
| mutable T scoper_; |
| }; |
| |
| template <typename T> |
| using Unwrapper = BindUnwrapTraits<std::decay_t<T>>; |
| |
| template <typename T> |
| decltype(auto) Unwrap(T&& o) { |
| return Unwrapper<T>::Unwrap(std::forward<T>(o)); |
| } |
| |
| // IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a |
| // method. It is used internally by Bind() to select the correct |
| // InvokeHelper that will no-op itself in the event the WeakPtr<> for |
| // the target object is invalidated. |
| // |
| // The first argument should be the type of the object that will be received by |
| // the method. |
| template <bool is_method, typename... Args> |
| struct IsWeakMethod : std::false_type {}; |
| |
| template <typename T, typename... Args> |
| struct IsWeakMethod<true, T, Args...> : IsWeakReceiver<T> {}; |
| |
| // Packs a list of types to hold them in a single type. |
| template <typename... Types> |
| struct TypeList {}; |
| |
| // Used for DropTypeListItem implementation. |
| template <size_t n, typename List> |
| struct DropTypeListItemImpl; |
| |
| // Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure. |
| template <size_t n, typename T, typename... List> |
| struct DropTypeListItemImpl<n, TypeList<T, List...>> |
| : DropTypeListItemImpl<n - 1, TypeList<List...>> {}; |
| |
| template <typename T, typename... List> |
| struct DropTypeListItemImpl<0, TypeList<T, List...>> { |
| using Type = TypeList<T, List...>; |
| }; |
| |
| template <> |
| struct DropTypeListItemImpl<0, TypeList<>> { |
| using Type = TypeList<>; |
| }; |
| |
| // A type-level function that drops |n| list item from given TypeList. |
| template <size_t n, typename List> |
| using DropTypeListItem = typename DropTypeListItemImpl<n, List>::Type; |
| |
| // Used for TakeTypeListItem implementation. |
| template <size_t n, typename List, typename... Accum> |
| struct TakeTypeListItemImpl; |
| |
| // Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure. |
| template <size_t n, typename T, typename... List, typename... Accum> |
| struct TakeTypeListItemImpl<n, TypeList<T, List...>, Accum...> |
| : TakeTypeListItemImpl<n - 1, TypeList<List...>, Accum..., T> {}; |
| |
| template <typename T, typename... List, typename... Accum> |
| struct TakeTypeListItemImpl<0, TypeList<T, List...>, Accum...> { |
| using Type = TypeList<Accum...>; |
| }; |
| |
| template <typename... Accum> |
| struct TakeTypeListItemImpl<0, TypeList<>, Accum...> { |
| using Type = TypeList<Accum...>; |
| }; |
| |
| // A type-level function that takes first |n| list item from given TypeList. |
| // E.g. TakeTypeListItem<3, TypeList<A, B, C, D>> is evaluated to |
| // TypeList<A, B, C>. |
| template <size_t n, typename List> |
| using TakeTypeListItem = typename TakeTypeListItemImpl<n, List>::Type; |
| |
| // Used for ConcatTypeLists implementation. |
| template <typename List1, typename List2> |
| struct ConcatTypeListsImpl; |
| |
| template <typename... Types1, typename... Types2> |
| struct ConcatTypeListsImpl<TypeList<Types1...>, TypeList<Types2...>> { |
| using Type = TypeList<Types1..., Types2...>; |
| }; |
| |
| // A type-level function that concats two TypeLists. |
| template <typename List1, typename List2> |
| using ConcatTypeLists = typename ConcatTypeListsImpl<List1, List2>::Type; |
| |
| // Used for MakeFunctionType implementation. |
| template <typename R, typename ArgList> |
| struct MakeFunctionTypeImpl; |
| |
| template <typename R, typename... Args> |
| struct MakeFunctionTypeImpl<R, TypeList<Args...>> { |
| // MSVC 2013 doesn't support Type Alias of function types. |
| // Revisit this after we update it to newer version. |
| typedef R Type(Args...); |
| }; |
| |
| // A type-level function that constructs a function type that has |R| as its |
| // return type and has TypeLists items as its arguments. |
| template <typename R, typename ArgList> |
| using MakeFunctionType = typename MakeFunctionTypeImpl<R, ArgList>::Type; |
| |
| // Used for ExtractArgs and ExtractReturnType. |
| template <typename Signature> |
| struct ExtractArgsImpl; |
| |
| template <typename R, typename... Args> |
| struct ExtractArgsImpl<R(Args...)> { |
| using ReturnType = R; |
| using ArgsList = TypeList<Args...>; |
| }; |
| |
| // A type-level function that extracts function arguments into a TypeList. |
| // E.g. ExtractArgs<R(A, B, C)> is evaluated to TypeList<A, B, C>. |
| template <typename Signature> |
| using ExtractArgs = typename ExtractArgsImpl<Signature>::ArgsList; |
| |
| // A type-level function that extracts the return type of a function. |
| // E.g. ExtractReturnType<R(A, B, C)> is evaluated to R. |
| template <typename Signature> |
| using ExtractReturnType = typename ExtractArgsImpl<Signature>::ReturnType; |
| |
| template <typename Callable, |
| typename Signature = decltype(&Callable::operator())> |
| struct ExtractCallableRunTypeImpl; |
| |
| template <typename Callable, typename R, typename... Args> |
| struct ExtractCallableRunTypeImpl<Callable, R (Callable::*)(Args...)> { |
| using Type = R(Args...); |
| }; |
| |
| template <typename Callable, typename R, typename... Args> |
| struct ExtractCallableRunTypeImpl<Callable, R (Callable::*)(Args...) const> { |
| using Type = R(Args...); |
| }; |
| |
| template <typename Callable, typename R, typename... Args> |
| struct ExtractCallableRunTypeImpl<Callable, R (Callable::*)(Args...) noexcept> { |
| using Type = R(Args...); |
| }; |
| |
| template <typename Callable, typename R, typename... Args> |
| struct ExtractCallableRunTypeImpl<Callable, |
| R (Callable::*)(Args...) const noexcept> { |
| using Type = R(Args...); |
| }; |
| |
| // Evaluated to RunType of the given callable type. |
| // Example: |
| // auto f = [](int, char*) { return 0.1; }; |
| // ExtractCallableRunType<decltype(f)> |
| // is evaluated to |
| // double(int, char*); |
| template <typename Callable> |
| using ExtractCallableRunType = |
| typename ExtractCallableRunTypeImpl<Callable>::Type; |
| |
| // IsCallableObject<Functor> is std::true_type if |Functor| has operator(). |
| // Otherwise, it's std::false_type. |
| // Example: |
| // IsCallableObject<void(*)()>::value is false. |
| // |
| // struct Foo {}; |
| // IsCallableObject<void(Foo::*)()>::value is false. |
| // |
| // int i = 0; |
| // auto f = [i]() {}; |
| // IsCallableObject<decltype(f)>::value is false. |
| template <typename Functor, typename SFINAE = void> |
| struct IsCallableObject : std::false_type {}; |
| |
| template <typename Callable> |
| struct IsCallableObject<Callable, std::void_t<decltype(&Callable::operator())>> |
| : std::true_type {}; |
| |
| // HasRefCountedTypeAsRawPtr inherits from true_type when any of the |Args| is a |
| // raw pointer to a RefCounted type. |
| template <typename... Ts> |
| struct HasRefCountedTypeAsRawPtr |
| : std::disjunction<NeedsScopedRefptrButGetsRawPtr<Ts>...> {}; |
| |
| // ForceVoidReturn<> |
| // |
| // Set of templates that support forcing the function return type to void. |
| template <typename Sig> |
| struct ForceVoidReturn; |
| |
| template <typename R, typename... Args> |
| struct ForceVoidReturn<R(Args...)> { |
| using RunType = void(Args...); |
| }; |
| |
| // FunctorTraits<> |
| // |
| // See description at top of file. |
| template <typename Functor, typename SFINAE> |
| struct FunctorTraits; |
| |
| // For callable types. |
| // This specialization handles lambdas (captureless and capturing) and functors |
| // with a call operator. Capturing lambdas and stateful functors are explicitly |
| // disallowed by BindImpl(). |
| // |
| // Example: |
| // |
| // // Captureless lambdas are allowed. |
| // []() {return 42;}; |
| // |
| // // Capturing lambdas are *not* allowed. |
| // int x; |
| // [x]() {return x;}; |
| // |
| // // Any empty class with operator() is allowed. |
| // struct Foo { |
| // void operator()() const {} |
| // // No non-static member variable and no virtual functions. |
| // }; |
| template <typename Functor> |
| struct FunctorTraits<Functor, |
| std::enable_if_t<IsCallableObject<Functor>::value>> { |
| using RunType = ExtractCallableRunType<Functor>; |
| static constexpr bool is_method = false; |
| static constexpr bool is_nullable = false; |
| static constexpr bool is_callback = false; |
| static constexpr bool is_stateless = std::is_empty_v<Functor>; |
| |
| template <typename RunFunctor, typename... RunArgs> |
| static ExtractReturnType<RunType> Invoke(RunFunctor&& functor, |
| RunArgs&&... args) { |
| return std::forward<RunFunctor>(functor)(std::forward<RunArgs>(args)...); |
| } |
| }; |
| |
| // For functions. |
| template <typename R, typename... Args> |
| struct FunctorTraits<R (*)(Args...)> { |
| using RunType = R(Args...); |
| static constexpr bool is_method = false; |
| static constexpr bool is_nullable = true; |
| static constexpr bool is_callback = false; |
| static constexpr bool is_stateless = true; |
| |
| template <typename Function, typename... RunArgs> |
| static R Invoke(Function&& function, RunArgs&&... args) { |
| return std::forward<Function>(function)(std::forward<RunArgs>(args)...); |
| } |
| }; |
| |
| #if BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS) |
| |
| // For functions. |
| template <typename R, typename... Args> |
| struct FunctorTraits<R(__stdcall*)(Args...)> { |
| using RunType = R(Args...); |
| static constexpr bool is_method = false; |
| static constexpr bool is_nullable = true; |
| static constexpr bool is_callback = false; |
| static constexpr bool is_stateless = true; |
| |
| template <typename... RunArgs> |
| static R Invoke(R(__stdcall* function)(Args...), RunArgs&&... args) { |
| return function(std::forward<RunArgs>(args)...); |
| } |
| }; |
| |
| // For functions. |
| template <typename R, typename... Args> |
| struct FunctorTraits<R(__fastcall*)(Args...)> { |
| using RunType = R(Args...); |
| static constexpr bool is_method = false; |
| static constexpr bool is_nullable = true; |
| static constexpr bool is_callback = false; |
| static constexpr bool is_stateless = true; |
| |
| template <typename... RunArgs> |
| static R Invoke(R(__fastcall* function)(Args...), RunArgs&&... args) { |
| return function(std::forward<RunArgs>(args)...); |
| } |
| }; |
| |
| #endif // BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS) |
| |
| #if BUILDFLAG(IS_APPLE) |
| |
| // Support for Objective-C blocks. There are two implementation depending |
| // on whether Automated Reference Counting (ARC) is enabled. When ARC is |
| // enabled, then the block itself can be bound as the compiler will ensure |
| // its lifetime will be correctly managed. Otherwise, require the block to |
| // be wrapped in a base::mac::ScopedBlock (via base::RetainBlock) that will |
| // correctly manage the block lifetime. |
| // |
| // The two implementation ensure that the One Definition Rule (ODR) is not |
| // broken (it is not possible to write a template base::RetainBlock that would |
| // work correctly both with ARC enabled and disabled). |
| |
| #if HAS_FEATURE(objc_arc) |
| |
| template <typename R, typename... Args> |
| struct FunctorTraits<R (^)(Args...)> { |
| using RunType = R(Args...); |
| static constexpr bool is_method = false; |
| static constexpr bool is_nullable = true; |
| static constexpr bool is_callback = false; |
| static constexpr bool is_stateless = true; |
| |
| template <typename BlockType, typename... RunArgs> |
| static R Invoke(BlockType&& block, RunArgs&&... args) { |
| // According to LLVM documentation (§ 6.3), "local variables of automatic |
| // storage duration do not have precise lifetime." Use objc_precise_lifetime |
| // to ensure that the Objective-C block is not deallocated until it has |
| // finished executing even if the Callback<> is destroyed during the block |
| // execution. |
| // https://clang.llvm.org/docs/AutomaticReferenceCounting.html#precise-lifetime-semantics |
| __attribute__((objc_precise_lifetime)) R (^scoped_block)(Args...) = block; |
| return scoped_block(std::forward<RunArgs>(args)...); |
| } |
| }; |
| |
| #else // HAS_FEATURE(objc_arc) |
| |
| template <typename R, typename... Args> |
| struct FunctorTraits<base::mac::ScopedBlock<R (^)(Args...)>> { |
| using RunType = R(Args...); |
| static constexpr bool is_method = false; |
| static constexpr bool is_nullable = true; |
| static constexpr bool is_callback = false; |
| static constexpr bool is_stateless = true; |
| |
| template <typename BlockType, typename... RunArgs> |
| static R Invoke(BlockType&& block, RunArgs&&... args) { |
| // Copy the block to ensure that the Objective-C block is not deallocated |
| // until it has finished executing even if the Callback<> is destroyed |
| // during the block execution. |
| base::mac::ScopedBlock<R (^)(Args...)> scoped_block(block); |
| return scoped_block.get()(std::forward<RunArgs>(args)...); |
| } |
| }; |
| |
| #endif // HAS_FEATURE(objc_arc) |
| #endif // BUILDFLAG(IS_APPLE) |
| |
| // For methods. |
| template <typename R, typename Receiver, typename... Args> |
| struct FunctorTraits<R (Receiver::*)(Args...)> { |
| using RunType = R(Receiver*, Args...); |
| static constexpr bool is_method = true; |
| static constexpr bool is_nullable = true; |
| static constexpr bool is_callback = false; |
| static constexpr bool is_stateless = true; |
| |
| template <typename Method, typename ReceiverPtr, typename... RunArgs> |
| static R Invoke(Method method, |
| ReceiverPtr&& receiver_ptr, |
| RunArgs&&... args) { |
| return ((*receiver_ptr).*method)(std::forward<RunArgs>(args)...); |
| } |
| }; |
| |
| // For const methods. |
| template <typename R, typename Receiver, typename... Args> |
| struct FunctorTraits<R (Receiver::*)(Args...) const> { |
| using RunType = R(const Receiver*, Args...); |
| static constexpr bool is_method = true; |
| static constexpr bool is_nullable = true; |
| static constexpr bool is_callback = false; |
| static constexpr bool is_stateless = true; |
| |
| template <typename Method, typename ReceiverPtr, typename... RunArgs> |
| static R Invoke(Method method, |
| ReceiverPtr&& receiver_ptr, |
| RunArgs&&... args) { |
| return ((*receiver_ptr).*method)(std::forward<RunArgs>(args)...); |
| } |
| }; |
| |
| #if BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS) |
| |
| // For __stdcall methods. |
| template <typename R, typename Receiver, typename... Args> |
| struct FunctorTraits<R (__stdcall Receiver::*)(Args...)> { |
| using RunType = R(Receiver*, Args...); |
| static constexpr bool is_method = true; |
| static constexpr bool is_nullable = true; |
| static constexpr bool is_callback = false; |
| static constexpr bool is_stateless = true; |
| |
| template <typename Method, typename ReceiverPtr, typename... RunArgs> |
| static R Invoke(Method method, |
| ReceiverPtr&& receiver_ptr, |
| RunArgs&&... args) { |
| return ((*receiver_ptr).*method)(std::forward<RunArgs>(args)...); |
| } |
| }; |
| |
| // For __stdcall const methods. |
| template <typename R, typename Receiver, typename... Args> |
| struct FunctorTraits<R (__stdcall Receiver::*)(Args...) const> { |
| using RunType = R(const Receiver*, Args...); |
| static constexpr bool is_method = true; |
| static constexpr bool is_nullable = true; |
| static constexpr bool is_callback = false; |
| static constexpr bool is_stateless = true; |
| |
| template <typename Method, typename ReceiverPtr, typename... RunArgs> |
| static R Invoke(Method method, |
| ReceiverPtr&& receiver_ptr, |
| RunArgs&&... args) { |
| return ((*receiver_ptr).*method)(std::forward<RunArgs>(args)...); |
| } |
| }; |
| |
| #endif // BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS) |
| |
| #ifdef __cpp_noexcept_function_type |
| // noexcept makes a distinct function type in C++17. |
| // I.e. `void(*)()` and `void(*)() noexcept` are same in pre-C++17, and |
| // different in C++17. |
| template <typename R, typename... Args> |
| struct FunctorTraits<R (*)(Args...) noexcept> : FunctorTraits<R (*)(Args...)> { |
| }; |
| |
| template <typename R, typename Receiver, typename... Args> |
| struct FunctorTraits<R (Receiver::*)(Args...) noexcept> |
| : FunctorTraits<R (Receiver::*)(Args...)> {}; |
| |
| template <typename R, typename Receiver, typename... Args> |
| struct FunctorTraits<R (Receiver::*)(Args...) const noexcept> |
| : FunctorTraits<R (Receiver::*)(Args...) const> {}; |
| #endif |
| |
| // For IgnoreResults. |
| template <typename T> |
| struct FunctorTraits<IgnoreResultHelper<T>> : FunctorTraits<T> { |
| using RunType = |
| typename ForceVoidReturn<typename FunctorTraits<T>::RunType>::RunType; |
| |
| template <typename IgnoreResultType, typename... RunArgs> |
| static void Invoke(IgnoreResultType&& ignore_result_helper, |
| RunArgs&&... args) { |
| FunctorTraits<T>::Invoke( |
| std::forward<IgnoreResultType>(ignore_result_helper).functor_, |
| std::forward<RunArgs>(args)...); |
| } |
| }; |
| |
| // For OnceCallbacks. |
| template <typename R, typename... Args> |
| struct FunctorTraits<OnceCallback<R(Args...)>> { |
| using RunType = R(Args...); |
| static constexpr bool is_method = false; |
| static constexpr bool is_nullable = true; |
| static constexpr bool is_callback = true; |
| static constexpr bool is_stateless = true; |
| |
| template <typename CallbackType, typename... RunArgs> |
| static R Invoke(CallbackType&& callback, RunArgs&&... args) { |
| DCHECK(!callback.is_null()); |
| return std::forward<CallbackType>(callback).Run( |
| std::forward<RunArgs>(args)...); |
| } |
| }; |
| |
| // For RepeatingCallbacks. |
| template <typename R, typename... Args> |
| struct FunctorTraits<RepeatingCallback<R(Args...)>> { |
| using RunType = R(Args...); |
| static constexpr bool is_method = false; |
| static constexpr bool is_nullable = true; |
| static constexpr bool is_callback = true; |
| static constexpr bool is_stateless = true; |
| |
| template <typename CallbackType, typename... RunArgs> |
| static R Invoke(CallbackType&& callback, RunArgs&&... args) { |
| DCHECK(!callback.is_null()); |
| return std::forward<CallbackType>(callback).Run( |
| std::forward<RunArgs>(args)...); |
| } |
| }; |
| |
| template <typename Functor> |
| using MakeFunctorTraits = FunctorTraits<std::decay_t<Functor>>; |
| |
| // StorageTraits<> |
| // |
| // See description at top of file. |
| template <typename T> |
| struct StorageTraits { |
| using Type = T; |
| }; |
| |
| // For T*, store as UnretainedWrapper<T> for safety, as it internally uses |
| // raw_ptr<T> (when possible). |
| template <typename T> |
| struct StorageTraits<T*> { |
| using Type = UnretainedWrapper<T, unretained_traits::MayNotDangle>; |
| }; |
| |
| // For raw_ptr<T>, store as UnretainedWrapper<T> for safety. This may seem |
| // contradictory, but this ensures guaranteed protection for the pointer even |
| // during execution of callbacks with parameters of type raw_ptr<T>. |
| template <typename T, RawPtrTraits PtrTraits> |
| struct StorageTraits<raw_ptr<T, PtrTraits>> { |
| using Type = UnretainedWrapper<T, unretained_traits::MayNotDangle, PtrTraits>; |
| }; |
| |
| // Unwrap std::reference_wrapper and store it in a custom wrapper so that |
| // references are also protected with raw_ptr<T>. |
| template <typename T> |
| struct StorageTraits<std::reference_wrapper<T>> { |
| using Type = UnretainedRefWrapper<T, unretained_traits::MayNotDangle>; |
| }; |
| |
| template <typename T> |
| using MakeStorageType = typename StorageTraits<std::decay_t<T>>::Type; |
| |
| // InvokeHelper<> |
| // |
| // There are 2 logical InvokeHelper<> specializations: normal, WeakCalls. |
| // |
| // The normal type just calls the underlying runnable. |
| // |
| // WeakCalls need special syntax that is applied to the first argument to check |
| // if they should no-op themselves. |
| template <bool is_weak_call, typename ReturnType, size_t... indices> |
| struct InvokeHelper; |
| |
| template <typename ReturnType, size_t... indices> |
| struct InvokeHelper<false, ReturnType, indices...> { |
| template <typename Functor, typename BoundArgsTuple, typename... RunArgs> |
| static inline ReturnType MakeItSo(Functor&& functor, |
| BoundArgsTuple&& bound, |
| RunArgs&&... args) { |
| using Traits = MakeFunctorTraits<Functor>; |
| return Traits::Invoke( |
| std::forward<Functor>(functor), |
| Unwrap(std::get<indices>(std::forward<BoundArgsTuple>(bound)))..., |
| std::forward<RunArgs>(args)...); |
| } |
| }; |
| |
| template <typename ReturnType, size_t index_target, size_t... index_tail> |
| struct InvokeHelper<true, ReturnType, index_target, index_tail...> { |
| // WeakCalls are only supported for functions with a void return type. |
| // Otherwise, the function result would be undefined if the WeakPtr<> |
| // is invalidated. |
| static_assert(std::is_void_v<ReturnType>, |
| "weak_ptrs can only bind to methods without return values"); |
| |
| template <typename Functor, typename BoundArgsTuple, typename... RunArgs> |
| static inline void MakeItSo(Functor&& functor, |
| BoundArgsTuple&& bound, |
| RunArgs&&... args) { |
| static_assert(index_target == 0); |
| // Note the validity of the weak pointer should be tested _after_ it is |
| // unwrapped, otherwise it creates a race for weak pointer implementations |
| // that allow cross-thread usage and perform `Lock()` in Unwrap() traits. |
| const auto& target = Unwrap(std::get<0>(bound)); |
| if (!target) { |
| return; |
| } |
| using Traits = MakeFunctorTraits<Functor>; |
| Traits::Invoke( |
| std::forward<Functor>(functor), target, |
| Unwrap(std::get<index_tail>(std::forward<BoundArgsTuple>(bound)))..., |
| std::forward<RunArgs>(args)...); |
| } |
| }; |
| |
| // Invoker<> |
| // |
| // See description at the top of the file. |
| template <typename StorageType, typename UnboundRunType> |
| struct Invoker; |
| |
| template <typename StorageType, typename R, typename... UnboundArgs> |
| struct Invoker<StorageType, R(UnboundArgs...)> { |
| static R RunOnce(BindStateBase* base, |
| PassingType<UnboundArgs>... unbound_args) { |
| // Local references to make debugger stepping easier. If in a debugger, |
| // you really want to warp ahead and step through the |
| // InvokeHelper<>::MakeItSo() call below. |
| StorageType* storage = static_cast<StorageType*>(base); |
| static constexpr size_t num_bound_args = |
| std::tuple_size_v<decltype(storage->bound_args_)>; |
| return RunImpl(std::move(storage->functor_), |
| std::move(storage->bound_args_), |
| std::make_index_sequence<num_bound_args>(), |
| std::forward<UnboundArgs>(unbound_args)...); |
| } |
| |
| static R Run(BindStateBase* base, PassingType<UnboundArgs>... unbound_args) { |
| // Local references to make debugger stepping easier. If in a debugger, |
| // you really want to warp ahead and step through the |
| // InvokeHelper<>::MakeItSo() call below. |
| const StorageType* storage = static_cast<StorageType*>(base); |
| static constexpr size_t num_bound_args = |
| std::tuple_size_v<decltype(storage->bound_args_)>; |
| return RunImpl(storage->functor_, storage->bound_args_, |
| std::make_index_sequence<num_bound_args>(), |
| std::forward<UnboundArgs>(unbound_args)...); |
| } |
| |
| private: |
| template <typename Functor, typename BoundArgsTuple, size_t... indices> |
| static inline R RunImpl(Functor&& functor, |
| BoundArgsTuple&& bound, |
| std::index_sequence<indices...> seq, |
| UnboundArgs&&... unbound_args) { |
| static constexpr bool is_method = MakeFunctorTraits<Functor>::is_method; |
| |
| using DecayedArgsTuple = std::decay_t<BoundArgsTuple>; |
| |
| #if BUILDFLAG(USE_ASAN_BACKUP_REF_PTR) |
| RawPtrAsanBoundArgTracker raw_ptr_asan_bound_arg_tracker; |
| raw_ptr_asan_bound_arg_tracker.AddArgs( |
| std::get<indices>(std::forward<BoundArgsTuple>(bound))..., |
| std::forward<UnboundArgs>(unbound_args)...); |
| #endif // BUILDFLAG(USE_ASAN_BACKUP_REF_PTR) |
| |
| static constexpr bool is_weak_call = |
| IsWeakMethod<is_method, |
| std::tuple_element_t<indices, DecayedArgsTuple>...>(); |
| |
| // Do not `Unwrap()` here, as that immediately triggers dangling pointer |
| // detection. Dangling pointer detection should only be triggered if the |
| // callback is not cancelled, but cancellation status is not determined |
| // until later inside the InvokeHelper::MakeItSo specialization for weak |
| // calls. |
| // |
| // Dangling pointers when invoking a cancelled callback are not considered |
| // a memory safety error because protecting raw pointers usage with weak |
| // receivers (where the weak receiver usually own the pointed objects) is a |
| // common and broadly used pattern in the codebase. |
| return InvokeHelper<is_weak_call, R, indices...>::MakeItSo( |
| std::forward<Functor>(functor), std::forward<BoundArgsTuple>(bound), |
| std::forward<UnboundArgs>(unbound_args)...); |
| } |
| }; |
| |
| // Extracts necessary type info from Functor and BoundArgs. |
| // Used to implement MakeUnboundRunType, BindOnce and BindRepeating. |
| template <typename Functor, typename... BoundArgs> |
| struct BindTypeHelper { |
| static constexpr size_t num_bounds = sizeof...(BoundArgs); |
| using FunctorTraits = MakeFunctorTraits<Functor>; |
| |
| // Example: |
| // When Functor is `double (Foo::*)(int, const std::string&)`, and BoundArgs |
| // is a template pack of `Foo*` and `int16_t`: |
| // - RunType is `double(Foo*, int, const std::string&)`, |
| // - ReturnType is `double`, |
| // - RunParamsList is `TypeList<Foo*, int, const std::string&>`, |
| // - BoundParamsList is `TypeList<Foo*, int>`, |
| // - UnboundParamsList is `TypeList<const std::string&>`, |
| // - BoundArgsList is `TypeList<Foo*, int16_t>`, |
| // - UnboundRunType is `double(const std::string&)`. |
| using RunType = typename FunctorTraits::RunType; |
| using ReturnType = ExtractReturnType<RunType>; |
| |
| using RunParamsList = ExtractArgs<RunType>; |
| using BoundParamsList = TakeTypeListItem<num_bounds, RunParamsList>; |
| using UnboundParamsList = DropTypeListItem<num_bounds, RunParamsList>; |
| |
| using BoundArgsList = TypeList<BoundArgs...>; |
| |
| using UnboundRunType = MakeFunctionType<ReturnType, UnboundParamsList>; |
| }; |
| |
| template <typename Functor> |
| std::enable_if_t<FunctorTraits<Functor>::is_nullable, bool> IsNull( |
| const Functor& functor) { |
| return !functor; |
| } |
| |
| template <typename Functor> |
| std::enable_if_t<!FunctorTraits<Functor>::is_nullable, bool> IsNull( |
| const Functor&) { |
| return false; |
| } |
| |
| // Used by QueryCancellationTraits below. |
| template <typename Functor, typename BoundArgsTuple, size_t... indices> |
| bool QueryCancellationTraitsImpl(BindStateBase::CancellationQueryMode mode, |
| const Functor& functor, |
| const BoundArgsTuple& bound_args, |
| std::index_sequence<indices...>) { |
| switch (mode) { |
| case BindStateBase::IS_CANCELLED: |
| return CallbackCancellationTraits<Functor, BoundArgsTuple>::IsCancelled( |
| functor, std::get<indices>(bound_args)...); |
| case BindStateBase::MAYBE_VALID: |
| return CallbackCancellationTraits<Functor, BoundArgsTuple>::MaybeValid( |
| functor, std::get<indices>(bound_args)...); |
| } |
| NOTREACHED(); |
| return false; |
| } |
| |
| // Relays |base| to corresponding CallbackCancellationTraits<>::Run(). Returns |
| // true if the callback |base| represents is canceled. |
| template <typename BindStateType> |
| bool QueryCancellationTraits(const BindStateBase* base, |
| BindStateBase::CancellationQueryMode mode) { |
| const BindStateType* storage = static_cast<const BindStateType*>(base); |
| static constexpr size_t num_bound_args = |
| std::tuple_size_v<decltype(storage->bound_args_)>; |
| return QueryCancellationTraitsImpl( |
| mode, storage->functor_, storage->bound_args_, |
| std::make_index_sequence<num_bound_args>()); |
| } |
| |
| // The base case of BanUnconstructedRefCountedReceiver that checks nothing. |
| template <typename Functor, typename Receiver, typename... Unused> |
| std::enable_if_t< |
| !(MakeFunctorTraits<Functor>::is_method && |
| IsPointerV<std::decay_t<Receiver>> && |
| IsRefCountedType<RemovePointerT<std::decay_t<Receiver>>>::value)> |
| BanUnconstructedRefCountedReceiver(const Receiver& receiver, Unused&&...) {} |
| |
| template <typename Functor> |
| void BanUnconstructedRefCountedReceiver() {} |
| |
| // Asserts that Callback is not the first owner of a ref-counted receiver. |
| template <typename Functor, typename Receiver, typename... Unused> |
| std::enable_if_t< |
| MakeFunctorTraits<Functor>::is_method && |
| IsPointerV<std::decay_t<Receiver>> && |
| IsRefCountedType<RemovePointerT<std::decay_t<Receiver>>>::value> |
| BanUnconstructedRefCountedReceiver(const Receiver& receiver, Unused&&...) { |
| DCHECK(receiver); |
| |
| // It's error prone to make the implicit first reference to ref-counted types. |
| // In the example below, base::BindOnce() would make the implicit first |
| // reference to the ref-counted Foo. If PostTask() failed or the posted task |
| // ran fast enough, the newly created instance could be destroyed before `oo` |
| // makes another reference. |
| // Foo::Foo() { |
| // base::ThreadPool::PostTask(FROM_HERE, base::BindOnce(&Foo::Bar, this)); |
| // } |
| // |
| // scoped_refptr<Foo> oo = new Foo(); |
| // |
| // Hence, base::Bind{Once,Repeating}() refuses to create the first reference |
| // to ref-counted objects, and DCHECK()s otherwise. As above, that typically |
| // happens around PostTask() in their constructor, and such objects can be |
| // destroyed before `new` returns if the task resolves fast enough. |
| // |
| // Instead of doing the above, please consider adding a static constructor, |
| // and keep the first reference alive explicitly. |
| // // static |
| // scoped_refptr<Foo> Foo::Create() { |
| // auto foo = base::WrapRefCounted(new Foo()); |
| // base::ThreadPool::PostTask(FROM_HERE, base::BindOnce(&Foo::Bar, foo)); |
| // return foo; |
| // } |
| // |
| // Foo::Foo() {} |
| // |
| // scoped_refptr<Foo> oo = Foo::Create(); |
| // |
| DCHECK(receiver->HasAtLeastOneRef()); |
| } |
| |
| // BindState<> |
| // |
| // This stores all the state passed into Bind(). |
| template <typename Functor, typename... BoundArgs> |
| struct BindState final : BindStateBase { |
| using IsCancellable = std::bool_constant< |
| CallbackCancellationTraits<Functor, |
| std::tuple<BoundArgs...>>::is_cancellable>; |
| template <typename ForwardFunctor, typename... ForwardBoundArgs> |
| static BindState* Create(BindStateBase::InvokeFuncStorage invoke_func, |
| ForwardFunctor&& functor, |
| ForwardBoundArgs&&... bound_args) { |
| // Ban ref counted receivers that were not yet fully constructed to avoid |
| // a common pattern of racy situation. |
| BanUnconstructedRefCountedReceiver<ForwardFunctor>(bound_args...); |
| |
| // IsCancellable is std::false_type if |
| // CallbackCancellationTraits<>::IsCancelled returns always false. |
| // Otherwise, it's std::true_type. |
| return new BindState(IsCancellable{}, invoke_func, |
| std::forward<ForwardFunctor>(functor), |
| std::forward<ForwardBoundArgs>(bound_args)...); |
| } |
| |
| Functor functor_; |
| std::tuple<BoundArgs...> bound_args_; |
| |
| private: |
| static constexpr bool is_nested_callback = |
| MakeFunctorTraits<Functor>::is_callback; |
| |
| template <typename ForwardFunctor, typename... ForwardBoundArgs> |
| explicit BindState(std::true_type, |
| BindStateBase::InvokeFuncStorage invoke_func, |
| ForwardFunctor&& functor, |
| ForwardBoundArgs&&... bound_args) |
| : BindStateBase(invoke_func, |
| &Destroy, |
| &QueryCancellationTraits<BindState>), |
| functor_(std::forward<ForwardFunctor>(functor)), |
| bound_args_(std::forward<ForwardBoundArgs>(bound_args)...) { |
| // We check the validity of nested callbacks (e.g., Bind(callback, ...)) in |
| // release builds to avoid null pointers from ending up in posted tasks, |
| // causing hard-to-diagnose crashes. Ideally we'd do this for all functors |
| // here, but that would have a large binary size impact. |
| if (is_nested_callback) { |
| CHECK(!IsNull(functor_)); |
| } else { |
| DCHECK(!IsNull(functor_)); |
| } |
| } |
| |
| template <typename ForwardFunctor, typename... ForwardBoundArgs> |
| explicit BindState(std::false_type, |
| BindStateBase::InvokeFuncStorage invoke_func, |
| ForwardFunctor&& functor, |
| ForwardBoundArgs&&... bound_args) |
| : BindStateBase(invoke_func, &Destroy), |
| functor_(std::forward<ForwardFunctor>(functor)), |
| bound_args_(std::forward<ForwardBoundArgs>(bound_args)...) { |
| // See above for CHECK/DCHECK rationale. |
| if (is_nested_callback) { |
| CHECK(!IsNull(functor_)); |
| } else { |
| DCHECK(!IsNull(functor_)); |
| } |
| } |
| |
| ~BindState() = default; |
| |
| static void Destroy(const BindStateBase* self) { |
| delete static_cast<const BindState*>(self); |
| } |
| }; |
| |
| // Used to implement MakeBindStateType. |
| template <bool is_method, typename Functor, typename... BoundArgs> |
| struct MakeBindStateTypeImpl; |
| |
| template <typename Functor, typename... BoundArgs> |
| struct MakeBindStateTypeImpl<false, Functor, BoundArgs...> { |
| static_assert(!HasRefCountedTypeAsRawPtr<std::decay_t<BoundArgs>...>::value, |
| "A parameter is a refcounted type and needs scoped_refptr."); |
| using Type = BindState<std::decay_t<Functor>, MakeStorageType<BoundArgs>...>; |
| }; |
| |
| template <typename Functor> |
| struct MakeBindStateTypeImpl<true, Functor> { |
| using Type = BindState<std::decay_t<Functor>>; |
| }; |
| |
| template <typename Functor, typename Receiver, typename... BoundArgs> |
| struct MakeBindStateTypeImpl<true, Functor, Receiver, BoundArgs...> { |
| private: |
| using DecayedReceiver = std::decay_t<Receiver>; |
| static_assert(!std::is_array_v<std::remove_reference_t<Receiver>>, |
| "First bound argument to a method cannot be an array."); |
| static_assert( |
| !IsRawRefV<DecayedReceiver>, |
| "Receivers may not be raw_ref<T>. If using a raw_ref<T> here is safe" |
| " and has no lifetime concerns, use base::Unretained() and document why" |
| " it's safe."); |
| static_assert( |
| !IsPointerV<DecayedReceiver> || |
| IsRefCountedType<RemovePointerT<DecayedReceiver>>::value, |
| "Receivers may not be raw pointers. If using a raw pointer here is safe" |
| " and has no lifetime concerns, use base::Unretained() and document why" |
| " it's safe."); |
| |
| static_assert(!HasRefCountedTypeAsRawPtr<std::decay_t<BoundArgs>...>::value, |
| "A parameter is a refcounted type and needs scoped_refptr."); |
| |
| using ReceiverStorageType = |
| typename MethodReceiverStorageType<DecayedReceiver>::Type; |
| |
| public: |
| using Type = BindState<std::decay_t<Functor>, |
| ReceiverStorageType, |
| MakeStorageType<BoundArgs>...>; |
| }; |
| |
| template <typename Functor, typename... BoundArgs> |
| using MakeBindStateType = |
| typename MakeBindStateTypeImpl<MakeFunctorTraits<Functor>::is_method, |
| Functor, |
| BoundArgs...>::Type; |
| |
| // Returns a RunType of bound functor. |
| // E.g. MakeUnboundRunType<R(A, B, C), A, B> is evaluated to R(C). |
| template <typename Functor, typename... BoundArgs> |
| using MakeUnboundRunType = |
| typename BindTypeHelper<Functor, BoundArgs...>::UnboundRunType; |
| |
| // The implementation of TransformToUnwrappedType below. |
| template <bool is_once, typename T> |
| struct TransformToUnwrappedTypeImpl; |
| |
| template <typename T> |
| struct TransformToUnwrappedTypeImpl<true, T> { |
| using StoredType = std::decay_t<T>; |
| using ForwardType = StoredType&&; |
| using Unwrapped = decltype(Unwrap(std::declval<ForwardType>())); |
| }; |
| |
| template <typename T> |
| struct TransformToUnwrappedTypeImpl<false, T> { |
| using StoredType = std::decay_t<T>; |
| using ForwardType = const StoredType&; |
| using Unwrapped = decltype(Unwrap(std::declval<ForwardType>())); |
| }; |
| |
| // Transform |T| into `Unwrapped` type, which is passed to the target function. |
| // Example: |
| // In is_once == true case, |
| // `int&&` -> `int&&`, |
| // `const int&` -> `int&&`, |
| // `OwnedWrapper<int>&` -> `int*&&`. |
| // In is_once == false case, |
| // `int&&` -> `const int&`, |
| // `const int&` -> `const int&`, |
| // `OwnedWrapper<int>&` -> `int* const &`. |
| template <bool is_once, typename T> |
| using TransformToUnwrappedType = |
| typename TransformToUnwrappedTypeImpl<is_once, T>::Unwrapped; |
| |
| // Transforms |Args| into `Unwrapped` types, and packs them into a TypeList. |
| // If |is_method| is true, tries to dereference the first argument to support |
| // smart pointers. |
| template <bool is_once, bool is_method, typename... Args> |
| struct MakeUnwrappedTypeListImpl { |
| using Type = TypeList<TransformToUnwrappedType<is_once, Args>...>; |
| }; |
| |
| // Performs special handling for this pointers. |
| // Example: |
| // int* -> int*, |
| // std::unique_ptr<int> -> int*. |
| template <bool is_once, typename Receiver, typename... Args> |
| struct MakeUnwrappedTypeListImpl<is_once, true, Receiver, Args...> { |
| using ReceiverStorageType = |
| typename MethodReceiverStorageType<std::decay_t<Receiver>>::Type; |
| using UnwrappedReceiver = |
| TransformToUnwrappedType<is_once, ReceiverStorageType>; |
| using Type = TypeList<decltype(&*std::declval<UnwrappedReceiver>()), |
| TransformToUnwrappedType<is_once, Args>...>; |
| }; |
| |
| template <bool is_once, bool is_method, typename... Args> |
| using MakeUnwrappedTypeList = |
| typename MakeUnwrappedTypeListImpl<is_once, is_method, Args...>::Type; |
| |
| // IsOnceCallback<T> is a std::true_type if |T| is a OnceCallback. |
| template <typename T> |
| struct IsOnceCallback : std::false_type {}; |
| |
| template <typename Signature> |
| struct IsOnceCallback<OnceCallback<Signature>> : std::true_type {}; |
| |
| // IsUnretainedMayDangle is true if StorageType is of type |
| // `UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits>. |
| // Note that it is false for unretained_traits::MayDangleUntriaged. |
| template <typename StorageType> |
| inline constexpr bool IsUnretainedMayDangle = false; |
| template <typename T, RawPtrTraits PtrTraits> |
| inline constexpr bool IsUnretainedMayDangle< |
| UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits>> = true; |
| |
| // UnretainedAndRawPtrHaveCompatibleTraits is true if StorageType is of type |
| // `UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits1>` and |
| // FunctionParamType is of type `raw_ptr<T, PtrTraits2>`, and the former's |
| // ::GetPtrType is the same type as the latter. |
| template <typename StorageType, typename FunctionParamType> |
| inline constexpr bool UnretainedAndRawPtrHaveCompatibleTraits = false; |
| template <typename T, |
| RawPtrTraits PtrTraitsInUnretained, |
| RawPtrTraits PtrTraitsInReceiver> |
| inline constexpr bool UnretainedAndRawPtrHaveCompatibleTraits< |
| UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraitsInUnretained>, |
| raw_ptr<T, PtrTraitsInReceiver>> = |
| std::is_same_v< |
| typename UnretainedWrapper<T, |
| unretained_traits::MayDangle, |
| PtrTraitsInUnretained>::GetPtrType, |
| raw_ptr<T, PtrTraitsInReceiver>>; |
| |
| // Helpers to make error messages slightly more readable. |
| template <int i> |
| struct BindArgument { |
| template <typename ForwardingType> |
| struct ForwardedAs { |
| template <typename FunctorParamType> |
| struct ToParamWithType { |
| static constexpr bool kNotARawPtr = !IsRawPtrV<FunctorParamType>; |
| |
| static constexpr bool kCanBeForwardedToBoundFunctor = |
| std::is_constructible_v<FunctorParamType, ForwardingType>; |
| |
| // If the bound type can't be forwarded then test if `FunctorParamType` is |
| // a non-const lvalue reference and a reference to the unwrapped type |
| // *could* have been successfully forwarded. |
| static constexpr bool kNonConstRefParamMustBeWrapped = |
| kCanBeForwardedToBoundFunctor || |
| !(std::is_lvalue_reference_v<FunctorParamType> && |
| !std::is_const_v<std::remove_reference_t<FunctorParamType>> && |
| std::is_convertible_v<std::decay_t<ForwardingType>&, |
| FunctorParamType>); |
| |
| // Note that this intentionally drops the const qualifier from |
| // `ForwardingType`, to test if it *could* have been successfully |
| // forwarded if `Passed()` had been used. |
| static constexpr bool kMoveOnlyTypeMustUseBasePassed = |
| kCanBeForwardedToBoundFunctor || |
| !std::is_constructible_v<FunctorParamType, |
| std::decay_t<ForwardingType>&&>; |
| }; |
| }; |
| |
| template <typename BoundAsType> |
| struct BoundAs { |
| template <typename StorageType> |
| struct StoredAs { |
| static constexpr bool kBindArgumentCanBeCaptured = |
| std::is_constructible_v<StorageType, BoundAsType>; |
| // Note that this intentionally drops the const qualifier from |
| // `BoundAsType`, to test if it *could* have been successfully bound if |
| // `std::move()` had been used. |
| static constexpr bool kMoveOnlyTypeMustUseStdMove = |
| kBindArgumentCanBeCaptured || |
| !std::is_constructible_v<StorageType, std::decay_t<BoundAsType>&&>; |
| }; |
| }; |
| |
| template <typename FunctionParamType> |
| struct ToParamWithType { |
| template <typename StorageType> |
| struct StoredAs { |
| template <bool is_method> |
| // true if we are handling `this` parameter. |
| static constexpr bool kParamIsThisPointer = is_method && i == 0; |
| // true if the current parameter is of type `raw_ptr<T>` with |
| // `RawPtrTraits::kMayDangle` trait (e.g. `MayBeDangling<T>`). |
| static constexpr bool kParamIsDanglingRawPtr = |
| IsRawPtrMayDangleV<FunctionParamType>; |
| // true if the bound parameter is of type |
| // `UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits>`. |
| static constexpr bool kBoundPtrMayDangle = |
| IsUnretainedMayDangle<StorageType>; |
| // true if bound parameter of type `UnretainedWrapper` and parameter of |
| // type `raw_ptr` have compatible `RawPtrTraits`. |
| static constexpr bool kMayBeDanglingTraitsCorrectness = |
| UnretainedAndRawPtrHaveCompatibleTraits<StorageType, |
| FunctionParamType>; |
| // true if the receiver argument **must** be of type `MayBeDangling<T>`. |
| static constexpr bool kMayBeDanglingMustBeUsed = |
| kBoundPtrMayDangle && kParamIsDanglingRawPtr; |
| |
| // true iff: |
| // - bound parameter is of type |
| // `UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits>` |
| // - the receiving argument is of type `MayBeDangling<T>` |
| template <bool is_method> |
| static constexpr bool kMayBeDanglingPtrPassedCorrectly = |
| kParamIsThisPointer<is_method> || |
| kBoundPtrMayDangle == kParamIsDanglingRawPtr; |
| |
| // true if: |
| // - MayBeDangling<T> must not be used as receiver parameter. |
| // OR |
| // - MayBeDangling<T> must be used as receiver parameter and its traits |
| // are matching Unretained traits. |
| static constexpr bool kUnsafeDanglingAndMayBeDanglingHaveMatchingTraits = |
| !kMayBeDanglingMustBeUsed || kMayBeDanglingTraitsCorrectness; |
| }; |
| }; |
| }; |
| |
| // Helper to assert that parameter |i| of type |Arg| can be bound, which means: |
| // - |Arg| can be retained internally as |Storage|. |
| // - |Arg| can be forwarded as |Unwrapped| to |Param|. |
| template <int i, |
| bool is_method, |
| typename Arg, |
| typename Storage, |
| typename Unwrapped, |
| typename Param> |
| struct AssertConstructible { |
| private: |
| // With `BindRepeating`, there are two decision points for how to handle a |
| // move-only type: |
| // |
| // 1. Whether the move-only argument should be moved into the internal |
| // `BindState`. Either `std::move()` or `Passed` is sufficient to trigger |
| // move-only semantics. |
| // 2. Whether or not the bound, move-only argument should be moved to the |
| // bound functor when invoked. When the argument is bound with `Passed`, |
| // invoking the callback will destructively move the bound, move-only |
| // argument to the bound functor. In contrast, if the argument is bound |
| // with `std::move()`, `RepeatingCallback` will attempt to call the bound |
| // functor with a constant reference to the bound, move-only argument. This |
| // will fail if the bound functor accepts that argument by value, since the |
| // argument cannot be copied. It is this latter case that this |
| // static_assert aims to catch. |
| // |
| // In contrast, `BindOnce()` only has one decision point. Once a move-only |
| // type is captured by value into the internal `BindState`, the bound, |
| // move-only argument will always be moved to the functor when invoked. |
| // Failure to use std::move will simply fail the `kMoveOnlyTypeMustUseStdMove` |
| // assert below instead. |
| // |
| // Note: `Passed()` is a legacy of supporting move-only types when repeating |
| // callbacks were the only callback type. A `RepeatingCallback` with a |
| // `Passed()` argument is really a `OnceCallback` and should eventually be |
| // migrated. |
| static_assert( |
| BindArgument<i>::template ForwardedAs<Unwrapped>:: |
| template ToParamWithType<Param>::kMoveOnlyTypeMustUseBasePassed, |
| "base::BindRepeating() argument is a move-only type. Use base::Passed() " |
| "instead of std::move() to transfer ownership from the callback to the " |
| "bound functor."); |
| static_assert( |
| BindArgument<i>::template ForwardedAs<Unwrapped>:: |
| template ToParamWithType<Param>::kNonConstRefParamMustBeWrapped, |
| "Bound argument for non-const reference parameter must be wrapped in " |
| "std::ref() or base::OwnedRef()."); |
| static_assert( |
| BindArgument<i>::template ForwardedAs<Unwrapped>:: |
| template ToParamWithType<Param>::kCanBeForwardedToBoundFunctor, |
| "Type mismatch between bound argument and bound functor's parameter."); |
| |
| static_assert(BindArgument<i>::template BoundAs<Arg>::template StoredAs< |
| Storage>::kMoveOnlyTypeMustUseStdMove, |
| "Attempting to bind a move-only type. Use std::move() to " |
| "transfer ownership to the created callback."); |
| // In practice, this static_assert should be quite rare as the storage type |
| // is deduced from the arguments passed to `BindOnce()`/`BindRepeating()`. |
| static_assert( |
| BindArgument<i>::template BoundAs<Arg>::template StoredAs< |
| Storage>::kBindArgumentCanBeCaptured, |
| "Cannot capture argument: is the argument copyable or movable?"); |
| |
| // We forbid callbacks to use raw_ptr as a parameter. However, we allow |
| // MayBeDangling<T> iff the callback argument was created using |
| // `base::UnsafeDangling`. |
| static_assert( |
| BindArgument<i>::template ForwardedAs< |
| Unwrapped>::template ToParamWithType<Param>::kNotARawPtr || |
| BindArgument<i>::template ToParamWithType<Param>::template StoredAs< |
| Storage>::kMayBeDanglingMustBeUsed, |
| "base::Bind() target functor has a parameter of type raw_ptr<T>. " |
| "raw_ptr<T> should not be used for function parameters, please use T* or " |
| "T& instead."); |
| |
| // A bound functor must take a dangling pointer argument (e.g. bound using the |
| // UnsafeDangling helper) as a MayBeDangling<T>, to make it clear that the |
| // pointee's lifetime must be externally validated before using it. For |
| // methods, exempt a bound receiver (i.e. the this pointer) as it is not |
| // passed as a regular function argument. |
| static_assert( |
| BindArgument<i>::template ToParamWithType<Param>::template StoredAs< |
| Storage>::template kMayBeDanglingPtrPassedCorrectly<is_method>, |
| "base::UnsafeDangling() pointers must be received by functors with " |
| "MayBeDangling<T> as parameter."); |
| |
| static_assert( |
| BindArgument<i>::template ToParamWithType<Param>::template StoredAs< |
| Storage>::kUnsafeDanglingAndMayBeDanglingHaveMatchingTraits, |
| "MayBeDangling<T> parameter must receive the same RawPtrTraits as the " |
| "one passed to the corresponding base::UnsafeDangling() call."); |
| }; |
| |
| // Takes three same-length TypeLists, and applies AssertConstructible for each |
| // triples. |
| template <bool is_method, |
| typename Index, |
| typename Args, |
| typename UnwrappedTypeList, |
| typename ParamsList> |
| struct AssertBindArgsValidity; |
| |
| template <bool is_method, |
| size_t... Ns, |
| typename... Args, |
| typename... Unwrapped, |
| typename... Params> |
| struct AssertBindArgsValidity<is_method, |
| std::index_sequence<Ns...>, |
| TypeList<Args...>, |
| TypeList<Unwrapped...>, |
| TypeList<Params...>> |
| : AssertConstructible<Ns, |
| is_method, |
| Args, |
| std::decay_t<Args>, |
| Unwrapped, |
| Params>... { |
| static constexpr bool ok = true; |
| }; |
| |
| template <typename T> |
| struct AssertBindArgIsNotBasePassed : public std::true_type {}; |
| |
| template <typename T> |
| struct AssertBindArgIsNotBasePassed<PassedWrapper<T>> : public std::false_type { |
| }; |
| |
| template <template <typename> class CallbackT, |
| typename Functor, |
| typename... Args> |
| decltype(auto) BindImpl(Functor&& functor, Args&&... args) { |
| // This block checks if each |args| matches to the corresponding params of the |
| // target function. This check does not affect the behavior of Bind, but its |
| // error message should be more readable. |
| static constexpr bool kIsOnce = IsOnceCallback<CallbackT<void()>>::value; |
| using Helper = BindTypeHelper<Functor, Args...>; |
| using FunctorTraits = typename Helper::FunctorTraits; |
| using BoundArgsList = typename Helper::BoundArgsList; |
| using UnwrappedArgsList = |
| MakeUnwrappedTypeList<kIsOnce, FunctorTraits::is_method, Args&&...>; |
| using BoundParamsList = typename Helper::BoundParamsList; |
| static_assert( |
| MakeFunctorTraits<Functor>::is_stateless, |
| "Capturing lambdas and stateful lambdas are intentionally not supported. " |
| "Please use base::Bind{Once,Repeating} directly to bind arguments."); |
| static_assert( |
| AssertBindArgsValidity<FunctorTraits::is_method, |
| std::make_index_sequence<Helper::num_bounds>, |
| BoundArgsList, UnwrappedArgsList, |
| BoundParamsList>::ok, |
| "The bound args need to be convertible to the target params."); |
| |
| using BindState = MakeBindStateType<Functor, Args...>; |
| using UnboundRunType = MakeUnboundRunType<Functor, Args...>; |
| using Invoker = Invoker<BindState, UnboundRunType>; |
| using CallbackType = CallbackT<UnboundRunType>; |
| |
| // Store the invoke func into PolymorphicInvoke before casting it to |
| // InvokeFuncStorage, so that we can ensure its type matches to |
| // PolymorphicInvoke, to which CallbackType will cast back. |
| using PolymorphicInvoke = typename CallbackType::PolymorphicInvoke; |
| PolymorphicInvoke invoke_func; |
| if constexpr (kIsOnce) { |
| invoke_func = Invoker::RunOnce; |
| } else { |
| invoke_func = Invoker::Run; |
| } |
| |
| using InvokeFuncStorage = BindStateBase::InvokeFuncStorage; |
| return CallbackType(BindState::Create( |
| reinterpret_cast<InvokeFuncStorage>(invoke_func), |
| std::forward<Functor>(functor), std::forward<Args>(args)...)); |
| } |
| |
| // Special cases for binding to a base::{Once, Repeating}Callback without extra |
| // bound arguments. We CHECK() the validity of callback to guard against null |
| // pointers accidentally ending up in posted tasks, causing hard-to-debug |
| // crashes. |
| template <template <typename> class CallbackT, |
| typename Signature, |
| std::enable_if_t<std::is_same_v<CallbackT<Signature>, |
| OnceCallback<Signature>>>* = nullptr> |
| OnceCallback<Signature> BindImpl(OnceCallback<Signature> callback) { |
| CHECK(callback); |
| return callback; |
| } |
| |
| template <template <typename> class CallbackT, |
| typename Signature, |
| std::enable_if_t<std::is_same_v<CallbackT<Signature>, |
| OnceCallback<Signature>>>* = nullptr> |
| OnceCallback<Signature> BindImpl(RepeatingCallback<Signature> callback) { |
| CHECK(callback); |
| return callback; |
| } |
| |
| template <template <typename> class CallbackT, |
| typename Signature, |
| std::enable_if_t<std::is_same_v<CallbackT<Signature>, |
| RepeatingCallback<Signature>>>* = |
| nullptr> |
| RepeatingCallback<Signature> BindImpl(RepeatingCallback<Signature> callback) { |
| CHECK(callback); |
| return callback; |
| } |
| |
| template <template <typename> class CallbackT, typename Signature> |
| auto BindImpl(absl::FunctionRef<Signature>, ...) { |
| static_assert( |
| AlwaysFalse<Signature>, |
| "base::Bind{Once,Repeating} require strong ownership: non-owning " |
| "function references may not bound as the functor due to potential " |
| "lifetime issues."); |
| return nullptr; |
| } |
| |
| template <template <typename> class CallbackT, typename Signature> |
| auto BindImpl(FunctionRef<Signature>, ...) { |
| static_assert( |
| AlwaysFalse<Signature>, |
| "base::Bind{Once,Repeating} require strong ownership: non-owning " |
| "function references may not bound as the functor due to potential " |
| "lifetime issues."); |
| return nullptr; |
| } |
| |
| } // namespace internal |
| |
| // An injection point to control |this| pointer behavior on a method invocation. |
| // If IsWeakReceiver<> is true_type for |T| and |T| is used for a receiver of a |
| // method, base::Bind cancels the method invocation if the receiver is tested as |
| // false. |
| // E.g. Foo::bar() is not called: |
| // struct Foo : base::SupportsWeakPtr<Foo> { |
| // void bar() {} |
| // }; |
| // |
| // WeakPtr<Foo> oo = nullptr; |
| // base::BindOnce(&Foo::bar, oo).Run(); |
| template <typename T> |
| struct IsWeakReceiver : std::false_type {}; |
| |
| template <typename T> |
| struct IsWeakReceiver<std::reference_wrapper<T>> : IsWeakReceiver<T> {}; |
| |
| template <typename T> |
| struct IsWeakReceiver<WeakPtr<T>> : std::true_type {}; |
| |
| // An injection point to control how objects are checked for maybe validity, |
| // which is an optimistic thread-safe check for full validity. |
| template <typename> |
| struct MaybeValidTraits { |
| template <typename T> |
| static bool MaybeValid(const T& o) { |
| return o.MaybeValid(); |
| } |
| }; |
| |
| // An injection point to control how bound objects passed to the target |
| // function. BindUnwrapTraits<>::Unwrap() is called for each bound objects right |
| // before the target function is invoked. |
| template <typename> |
| struct BindUnwrapTraits { |
| template <typename T> |
| static T&& Unwrap(T&& o) { |
| return std::forward<T>(o); |
| } |
| }; |
| |
| template <typename T, typename UnretainedTrait, RawPtrTraits PtrTraits> |
| struct BindUnwrapTraits< |
| internal::UnretainedWrapper<T, UnretainedTrait, PtrTraits>> { |
| static auto Unwrap( |
| const internal::UnretainedWrapper<T, UnretainedTrait, PtrTraits>& o) { |
| return o.get(); |
| } |
| }; |
| |
| template <typename T, typename UnretainedTrait, RawPtrTraits PtrTraits> |
| struct BindUnwrapTraits< |
| internal::UnretainedRefWrapper<T, UnretainedTrait, PtrTraits>> { |
| static T& Unwrap( |
| const internal::UnretainedRefWrapper<T, UnretainedTrait, PtrTraits>& o) { |
| return o.get(); |
| } |
| }; |
| |
| template <typename T> |
| struct BindUnwrapTraits<internal::RetainedRefWrapper<T>> { |
| static T* Unwrap(const internal::RetainedRefWrapper<T>& o) { return o.get(); } |
| }; |
| |
| template <typename T, typename Deleter> |
| struct BindUnwrapTraits<internal::OwnedWrapper<T, Deleter>> { |
| static T* Unwrap(const internal::OwnedWrapper<T, Deleter>& o) { |
| return o.get(); |
| } |
| }; |
| |
| template <typename T> |
| struct BindUnwrapTraits<internal::OwnedRefWrapper<T>> { |
| static T& Unwrap(const internal::OwnedRefWrapper<T>& o) { return o.get(); } |
| }; |
| |
| template <typename T> |
| struct BindUnwrapTraits<internal::PassedWrapper<T>> { |
| static T Unwrap(const internal::PassedWrapper<T>& o) { return o.Take(); } |
| }; |
| |
| #if BUILDFLAG(IS_WIN) |
| template <typename T> |
| struct BindUnwrapTraits<Microsoft::WRL::ComPtr<T>> { |
| static T* Unwrap(const Microsoft::WRL::ComPtr<T>& ptr) { return ptr.Get(); } |
| }; |
| #endif |
| |
| // CallbackCancellationTraits allows customization of Callback's cancellation |
| // semantics. By default, callbacks are not cancellable. A specialization should |
| // set is_cancellable = true and implement an IsCancelled() that returns if the |
| // callback should be cancelled. |
| template <typename Functor, typename BoundArgsTuple, typename SFINAE> |
| struct CallbackCancellationTraits { |
| static constexpr bool is_cancellable = false; |
| }; |
| |
| // Specialization for method bound to weak pointer receiver. |
| template <typename Functor, typename... BoundArgs> |
| struct CallbackCancellationTraits< |
| Functor, |
| std::tuple<BoundArgs...>, |
| std::enable_if_t< |
| internal::IsWeakMethod<internal::FunctorTraits<Functor>::is_method, |
| BoundArgs...>::value>> { |
| static constexpr bool is_cancellable = true; |
| |
| template <typename Receiver, typename... Args> |
| static bool IsCancelled(const Functor&, |
| const Receiver& receiver, |
| const Args&...) { |
| return !receiver; |
| } |
| |
| template <typename Receiver, typename... Args> |
| static bool MaybeValid(const Functor&, |
| const Receiver& receiver, |
| const Args&...) { |
| return MaybeValidTraits<Receiver>::MaybeValid(receiver); |
| } |
| }; |
| |
| // Specialization for a nested bind. |
| template <typename Signature, typename... BoundArgs> |
| struct CallbackCancellationTraits<OnceCallback<Signature>, |
| std::tuple<BoundArgs...>> { |
| static constexpr bool is_cancellable = true; |
| |
| template <typename Functor> |
| static bool IsCancelled(const Functor& functor, const BoundArgs&...) { |
| return functor.IsCancelled(); |
| } |
| |
| template <typename Functor> |
| static bool MaybeValid(const Functor& functor, const BoundArgs&...) { |
| return MaybeValidTraits<Functor>::MaybeValid(functor); |
| } |
| }; |
| |
| template <typename Signature, typename... BoundArgs> |
| struct CallbackCancellationTraits<RepeatingCallback<Signature>, |
| std::tuple<BoundArgs...>> { |
| static constexpr bool is_cancellable = true; |
| |
| template <typename Functor> |
| static bool IsCancelled(const Functor& functor, const BoundArgs&...) { |
| return functor.IsCancelled(); |
| } |
| |
| template <typename Functor> |
| static bool MaybeValid(const Functor& functor, const BoundArgs&...) { |
| return MaybeValidTraits<Functor>::MaybeValid(functor); |
| } |
| }; |
| |
| } // namespace base |
| |
| #endif // BASE_FUNCTIONAL_BIND_INTERNAL_H_ |