blob: fd61c96c09f52e59c99fe87ec87059e723cb6453 [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/base/test_helpers.h"
#include <stdint.h>
#include <memory>
#include "base/check_op.h"
#include "base/functional/bind.h"
#include "base/notreached.h"
#include "base/pickle.h"
#include "base/run_loop.h"
#include "base/task/bind_post_task.h"
#include "base/test/test_timeouts.h"
#include "base/time/time.h"
#include "base/timer/timer.h"
#include "media/base/audio_buffer.h"
#include "media/base/decoder_buffer.h"
#include "media/base/media_util.h"
#include "media/base/mock_filters.h"
#include "ui/gfx/geometry/rect.h"
using ::testing::_;
using ::testing::StrictMock;
namespace media {
// Utility mock for testing methods expecting Closures and PipelineStatusCBs.
class MockCallback : public base::RefCountedThreadSafe<MockCallback> {
public:
MockCallback();
MockCallback(const MockCallback&) = delete;
MockCallback& operator=(const MockCallback&) = delete;
MOCK_METHOD0(Run, void());
MOCK_METHOD1(RunWithBool, void(bool));
MOCK_METHOD1(RunWithStatus, void(PipelineStatus));
protected:
friend class base::RefCountedThreadSafe<MockCallback>;
virtual ~MockCallback();
};
MockCallback::MockCallback() = default;
MockCallback::~MockCallback() = default;
base::OnceClosure NewExpectedClosure() {
StrictMock<MockCallback>* callback = new StrictMock<MockCallback>();
EXPECT_CALL(*callback, Run());
return base::BindOnce(&MockCallback::Run, WrapRefCounted(callback));
}
base::OnceCallback<void(bool)> NewExpectedBoolCB(bool success) {
StrictMock<MockCallback>* callback = new StrictMock<MockCallback>();
EXPECT_CALL(*callback, RunWithBool(success));
return base::BindOnce(&MockCallback::RunWithBool, WrapRefCounted(callback));
}
PipelineStatusCallback NewExpectedStatusCB(PipelineStatus status) {
StrictMock<MockCallback>* callback = new StrictMock<MockCallback>();
EXPECT_CALL(*callback, RunWithStatus(status));
return base::BindOnce(&MockCallback::RunWithStatus, WrapRefCounted(callback));
}
WaitableMessageLoopEvent::WaitableMessageLoopEvent()
: WaitableMessageLoopEvent(TestTimeouts::action_timeout()) {}
WaitableMessageLoopEvent::WaitableMessageLoopEvent(base::TimeDelta timeout)
: signaled_(false), status_(PIPELINE_OK), timeout_(timeout) {}
WaitableMessageLoopEvent::~WaitableMessageLoopEvent() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
}
base::OnceClosure WaitableMessageLoopEvent::GetClosure() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
return base::BindPostTaskToCurrentDefault(
base::BindOnce(&WaitableMessageLoopEvent::OnCallback,
base::Unretained(this), PIPELINE_OK));
}
PipelineStatusCallback WaitableMessageLoopEvent::GetPipelineStatusCB() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
return base::BindPostTaskToCurrentDefault(base::BindOnce(
&WaitableMessageLoopEvent::OnCallback, base::Unretained(this)));
}
void WaitableMessageLoopEvent::RunAndWait() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
RunAndWaitForStatus(PIPELINE_OK);
}
void WaitableMessageLoopEvent::RunAndWaitForStatus(PipelineStatus expected) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
if (signaled_) {
EXPECT_EQ(expected, status_);
return;
}
run_loop_ = std::make_unique<base::RunLoop>();
base::OneShotTimer timer;
timer.Start(FROM_HERE, timeout_,
base::BindOnce(&WaitableMessageLoopEvent::OnTimeout,
base::Unretained(this)));
run_loop_->Run();
EXPECT_TRUE(signaled_);
EXPECT_EQ(expected, status_);
run_loop_.reset();
}
void WaitableMessageLoopEvent::OnCallback(PipelineStatus status) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
signaled_ = true;
status_ = status;
// |run_loop_| may be null if the callback fires before RunAndWaitForStatus().
if (run_loop_)
run_loop_->Quit();
}
void WaitableMessageLoopEvent::OnTimeout() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
ADD_FAILURE() << "Timed out waiting for message loop to quit";
run_loop_->Quit();
}
static VideoDecoderConfig GetTestConfig(VideoCodec codec,
VideoCodecProfile profile,
const VideoColorSpace& color_space,
VideoRotation rotation,
gfx::Size coded_size,
bool is_encrypted) {
gfx::Rect visible_rect(coded_size.width(), coded_size.height());
gfx::Size natural_size = coded_size;
return VideoDecoderConfig(
codec, profile, VideoDecoderConfig::AlphaMode::kIsOpaque, color_space,
VideoTransformation(rotation), coded_size, visible_rect, natural_size,
EmptyExtraData(),
is_encrypted ? EncryptionScheme::kCenc : EncryptionScheme::kUnencrypted);
}
static VideoCodecProfile MinProfile(VideoCodec codec) {
switch (codec) {
case VideoCodec::kUnknown:
case VideoCodec::kVC1:
case VideoCodec::kMPEG2:
case VideoCodec::kMPEG4:
return VIDEO_CODEC_PROFILE_UNKNOWN;
case VideoCodec::kH264:
return H264PROFILE_MIN;
case VideoCodec::kTheora:
return THEORAPROFILE_MIN;
case VideoCodec::kVP8:
return VP8PROFILE_MIN;
case VideoCodec::kVP9:
return VP9PROFILE_MIN;
case VideoCodec::kHEVC:
return HEVCPROFILE_MIN;
case VideoCodec::kDolbyVision:
return DOLBYVISION_PROFILE0;
case VideoCodec::kAV1:
return AV1PROFILE_MIN;
}
}
static const gfx::Size kNormalSize(320, 240);
static const gfx::Size kLargeSize(640, 480);
static const gfx::Size kExtraLargeSize(15360, 8640);
// static
VideoDecoderConfig TestVideoConfig::Invalid() {
return GetTestConfig(VideoCodec::kUnknown, VIDEO_CODEC_PROFILE_UNKNOWN,
VideoColorSpace::JPEG(), VIDEO_ROTATION_0, kNormalSize,
false);
}
// static
VideoDecoderConfig TestVideoConfig::Normal(VideoCodec codec) {
return GetTestConfig(codec, MinProfile(codec), VideoColorSpace::JPEG(),
VIDEO_ROTATION_0, kNormalSize, false);
}
// static
VideoDecoderConfig TestVideoConfig::NormalWithColorSpace(
VideoCodec codec,
const VideoColorSpace& color_space) {
return GetTestConfig(codec, MinProfile(codec), color_space, VIDEO_ROTATION_0,
kNormalSize, false);
}
// static
VideoDecoderConfig TestVideoConfig::NormalH264(VideoCodecProfile config) {
return GetTestConfig(VideoCodec::kH264, MinProfile(VideoCodec::kH264),
VideoColorSpace::JPEG(), VIDEO_ROTATION_0, kNormalSize,
false);
}
// static
VideoDecoderConfig TestVideoConfig::NormalCodecProfile(
VideoCodec codec,
VideoCodecProfile profile) {
return GetTestConfig(codec, profile, VideoColorSpace::JPEG(),
VIDEO_ROTATION_0, kNormalSize, false);
}
// static
VideoDecoderConfig TestVideoConfig::NormalEncrypted(VideoCodec codec,
VideoCodecProfile profile) {
return GetTestConfig(codec, profile, VideoColorSpace::JPEG(),
VIDEO_ROTATION_0, kNormalSize, true);
}
// static
VideoDecoderConfig TestVideoConfig::NormalRotated(VideoRotation rotation) {
return GetTestConfig(VideoCodec::kVP8, MinProfile(VideoCodec::kVP8),
VideoColorSpace::JPEG(), rotation, kNormalSize, false);
}
// static
VideoDecoderConfig TestVideoConfig::Large(VideoCodec codec) {
return GetTestConfig(codec, MinProfile(codec), VideoColorSpace::JPEG(),
VIDEO_ROTATION_0, kLargeSize, false);
}
// static
VideoDecoderConfig TestVideoConfig::LargeEncrypted(VideoCodec codec) {
return GetTestConfig(codec, MinProfile(codec), VideoColorSpace::JPEG(),
VIDEO_ROTATION_0, kLargeSize, true);
}
// static
VideoDecoderConfig TestVideoConfig::ExtraLarge(VideoCodec codec) {
return GetTestConfig(codec, MinProfile(codec), VideoColorSpace::JPEG(),
VIDEO_ROTATION_0, kExtraLargeSize, false);
}
// static
VideoDecoderConfig TestVideoConfig::ExtraLargeEncrypted(VideoCodec codec) {
return GetTestConfig(codec, MinProfile(codec), VideoColorSpace::JPEG(),
VIDEO_ROTATION_0, kExtraLargeSize, true);
}
// static
VideoDecoderConfig TestVideoConfig::Custom(gfx::Size size, VideoCodec codec) {
return GetTestConfig(codec, MinProfile(codec), VideoColorSpace::JPEG(),
VIDEO_ROTATION_0, size, false);
}
// static
VideoDecoderConfig TestVideoConfig::CustomEncrypted(gfx::Size size,
VideoCodec codec) {
return GetTestConfig(codec, MinProfile(codec), VideoColorSpace::JPEG(),
VIDEO_ROTATION_0, size, true);
}
// static
gfx::Size TestVideoConfig::NormalCodedSize() {
return kNormalSize;
}
// static
gfx::Size TestVideoConfig::LargeCodedSize() {
return kLargeSize;
}
// static
gfx::Size TestVideoConfig::ExtraLargeCodedSize() {
return kExtraLargeSize;
}
AudioDecoderConfig TestAudioConfig::Normal() {
return AudioDecoderConfig(AudioCodec::kVorbis, kSampleFormatPlanarF32,
CHANNEL_LAYOUT_STEREO, NormalSampleRateValue(),
EmptyExtraData(), EncryptionScheme::kUnencrypted);
}
AudioDecoderConfig TestAudioConfig::NormalEncrypted() {
return AudioDecoderConfig(AudioCodec::kVorbis, kSampleFormatPlanarF32,
CHANNEL_LAYOUT_STEREO, NormalSampleRateValue(),
EmptyExtraData(), EncryptionScheme::kCenc);
}
AudioDecoderConfig TestAudioConfig::HighSampleRate() {
return AudioDecoderConfig(AudioCodec::kVorbis, kSampleFormatPlanarF32,
CHANNEL_LAYOUT_STEREO, HighSampleRateValue(),
EmptyExtraData(), EncryptionScheme::kUnencrypted);
}
AudioDecoderConfig TestAudioConfig::HighSampleRateEncrypted() {
return AudioDecoderConfig(AudioCodec::kVorbis, kSampleFormatPlanarF32,
CHANNEL_LAYOUT_STEREO, HighSampleRateValue(),
EmptyExtraData(), EncryptionScheme::kCenc);
}
int TestAudioConfig::NormalSampleRateValue() {
return 44100;
}
int TestAudioConfig::HighSampleRateValue() {
return 192000;
}
// static
AudioParameters TestAudioParameters::Normal() {
return AudioParameters(AudioParameters::AUDIO_PCM_LOW_LATENCY,
ChannelLayoutConfig::Stereo(), 48000, 2048);
}
template <class T>
scoped_refptr<AudioBuffer> MakeAudioBuffer(SampleFormat format,
ChannelLayout channel_layout,
size_t channel_count,
int sample_rate,
T start,
T increment,
size_t frames,
base::TimeDelta timestamp) {
const size_t channels = ChannelLayoutToChannelCount(channel_layout);
scoped_refptr<AudioBuffer> output =
AudioBuffer::CreateBuffer(format,
channel_layout,
static_cast<int>(channel_count),
sample_rate,
static_cast<int>(frames));
output->set_timestamp(timestamp);
const bool is_planar = IsPlanar(format);
// Values in channel 0 will be:
// start
// start + increment
// start + 2 * increment, ...
// While, values in channel 1 will be:
// start + frames * increment
// start + (frames + 1) * increment
// start + (frames + 2) * increment, ...
for (size_t ch = 0; ch < channels; ++ch) {
T* buffer =
reinterpret_cast<T*>(output->channel_data()[is_planar ? ch : 0]);
const T v = static_cast<T>(start + ch * frames * increment);
for (size_t i = 0; i < frames; ++i) {
buffer[is_planar ? i : ch + i * channels] =
static_cast<T>(v + i * increment);
}
}
return output;
}
template <>
scoped_refptr<AudioBuffer> MakeAudioBuffer<float>(SampleFormat format,
ChannelLayout channel_layout,
size_t channel_count,
int sample_rate,
float start,
float increment,
size_t frames,
base::TimeDelta timestamp) {
const size_t channels = ChannelLayoutToChannelCount(channel_layout);
scoped_refptr<AudioBuffer> output = AudioBuffer::CreateBuffer(
format, channel_layout, static_cast<int>(channel_count), sample_rate,
static_cast<int>(frames));
output->set_timestamp(timestamp);
const bool is_planar =
format == kSampleFormatPlanarS16 || format == kSampleFormatPlanarF32;
// Values in channel 0 will be:
// (start) / max_value
// (start + increment) / max_value
// (start + 2 * increment) / max_value, ...
// While, values in channel 1 will be:
// (start + frames * increment) / max_value
// (start + (frames + 1) * increment) / max_value
// (start + (frames + 2) * increment) / max_value, ...
for (size_t ch = 0; ch < channels; ++ch) {
float* buffer =
reinterpret_cast<float*>(output->channel_data()[is_planar ? ch : 0]);
const float v = static_cast<float>(start + ch * frames * increment);
for (size_t i = 0; i < frames; ++i) {
buffer[is_planar ? i : ch + i * channels] =
static_cast<float>(v + i * increment) /
std::numeric_limits<uint16_t>::max();
}
}
return output;
}
scoped_refptr<AudioBuffer> MakeBitstreamAudioBuffer(
SampleFormat format,
ChannelLayout channel_layout,
size_t channel_count,
int sample_rate,
uint8_t start,
uint8_t increment,
size_t frames,
size_t data_size,
base::TimeDelta timestamp) {
scoped_refptr<AudioBuffer> output = AudioBuffer::CreateBitstreamBuffer(
format, channel_layout, static_cast<int>(channel_count), sample_rate,
static_cast<int>(frames), data_size);
output->set_timestamp(timestamp);
// Values in channel 0 will be:
// start
// start + increment
// start + 2 * increment, ...
uint8_t* buffer = reinterpret_cast<uint8_t*>(output->channel_data()[0]);
for (size_t i = 0; i < data_size; ++i) {
buffer[i] = static_cast<uint8_t>(start + i * increment);
}
return output;
}
void VerifyBitstreamAudioBus(AudioBus* bus,
size_t data_size,
uint8_t start,
uint8_t increment) {
ASSERT_TRUE(bus->is_bitstream_format());
// Values in channel 0 will be:
// start
// start + increment
// start + 2 * increment, ...
uint8_t* buffer = reinterpret_cast<uint8_t*>(bus->channel(0));
for (size_t i = 0; i < data_size; ++i) {
ASSERT_EQ(buffer[i], static_cast<uint8_t>(start + i * increment));
}
}
// Instantiate all the types of MakeAudioBuffer() and
// MakeAudioBuffer() needed.
#define DEFINE_MAKE_AUDIO_BUFFER_INSTANCE(type) \
template scoped_refptr<AudioBuffer> MakeAudioBuffer<type>( \
SampleFormat format, \
ChannelLayout channel_layout, \
size_t channel_count, \
int sample_rate, \
type start, \
type increment, \
size_t frames, \
base::TimeDelta start_time)
DEFINE_MAKE_AUDIO_BUFFER_INSTANCE(uint8_t);
DEFINE_MAKE_AUDIO_BUFFER_INSTANCE(int16_t);
DEFINE_MAKE_AUDIO_BUFFER_INSTANCE(int32_t);
static const char kFakeVideoBufferHeader[] = "FakeVideoBufferForTest";
scoped_refptr<DecoderBuffer> CreateFakeVideoBufferForTest(
const VideoDecoderConfig& config,
base::TimeDelta timestamp, base::TimeDelta duration) {
base::Pickle pickle;
pickle.WriteString(kFakeVideoBufferHeader);
pickle.WriteInt(config.coded_size().width());
pickle.WriteInt(config.coded_size().height());
pickle.WriteInt64(timestamp.InMilliseconds());
scoped_refptr<DecoderBuffer> buffer =
DecoderBuffer::CopyFrom(static_cast<const uint8_t*>(pickle.data()),
static_cast<int>(pickle.size()));
buffer->set_timestamp(timestamp);
buffer->set_duration(duration);
buffer->set_is_key_frame(true);
return buffer;
}
scoped_refptr<DecoderBuffer> CreateMismatchedBufferForTest() {
std::vector<uint8_t> data = {42, 22, 26, 13, 7, 16, 8, 2};
std::vector<uint8_t> kFakeData = {36, 23, 36};
scoped_refptr<media::DecoderBuffer> mismatched_encrypted_buffer =
media::DecoderBuffer::CopyFrom(data.data(), data.size());
mismatched_encrypted_buffer->set_timestamp(base::Seconds(42));
mismatched_encrypted_buffer->set_duration(base::Seconds(64));
mismatched_encrypted_buffer->set_decrypt_config(
media::DecryptConfig::CreateCencConfig("fake_key_id", "fake_iv_16_bytes",
{{1, 1}, {2, 2}, {3, 3}}));
return mismatched_encrypted_buffer;
}
bool VerifyFakeVideoBufferForTest(const DecoderBuffer& buffer,
const VideoDecoderConfig& config) {
// Check if the input |buffer| matches the |config|.
base::PickleIterator pickle(
base::Pickle(reinterpret_cast<const char*>(buffer.data()),
static_cast<int>(buffer.data_size())));
std::string header;
int width = 0;
int height = 0;
bool success = pickle.ReadString(&header) && pickle.ReadInt(&width) &&
pickle.ReadInt(&height);
return (success && header == kFakeVideoBufferHeader &&
width == config.coded_size().width() &&
height == config.coded_size().height());
}
std::unique_ptr<StrictMock<MockDemuxerStream>> CreateMockDemuxerStream(
DemuxerStream::Type type,
bool encrypted) {
auto stream = std::make_unique<StrictMock<MockDemuxerStream>>(type);
switch (type) {
case DemuxerStream::AUDIO:
stream->set_audio_decoder_config(encrypted
? TestAudioConfig::NormalEncrypted()
: TestAudioConfig::Normal());
break;
case DemuxerStream::VIDEO:
stream->set_video_decoder_config(encrypted
? TestVideoConfig::NormalEncrypted()
: TestVideoConfig::Normal());
break;
default:
NOTREACHED();
break;
}
return stream;
}
} // namespace media