| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #ifndef ABSL_RANDOM_INTERNAL_RANDEN_ENGINE_H_ |
| #define ABSL_RANDOM_INTERNAL_RANDEN_ENGINE_H_ |
| |
| #include <algorithm> |
| #include <cinttypes> |
| #include <cstdlib> |
| #include <iostream> |
| #include <iterator> |
| #include <limits> |
| #include <type_traits> |
| |
| #include "absl/base/internal/endian.h" |
| #include "absl/meta/type_traits.h" |
| #include "absl/random/internal/iostream_state_saver.h" |
| #include "absl/random/internal/randen.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| namespace random_internal { |
| |
| // Deterministic pseudorandom byte generator with backtracking resistance |
| // (leaking the state does not compromise prior outputs). Based on Reverie |
| // (see "A Robust and Sponge-Like PRNG with Improved Efficiency") instantiated |
| // with an improved Simpira-like permutation. |
| // Returns values of type "T" (must be a built-in unsigned integer type). |
| // |
| // RANDen = RANDom generator or beetroots in Swiss High German. |
| // 'Strong' (well-distributed, unpredictable, backtracking-resistant) random |
| // generator, faster in some benchmarks than std::mt19937_64 and pcg64_c32. |
| template <typename T> |
| class alignas(8) randen_engine { |
| public: |
| // C++11 URBG interface: |
| using result_type = T; |
| static_assert(std::is_unsigned<result_type>::value, |
| "randen_engine template argument must be a built-in unsigned " |
| "integer type"); |
| |
| static constexpr result_type(min)() { |
| return (std::numeric_limits<result_type>::min)(); |
| } |
| |
| static constexpr result_type(max)() { |
| return (std::numeric_limits<result_type>::max)(); |
| } |
| |
| randen_engine() : randen_engine(0) {} |
| explicit randen_engine(result_type seed_value) { seed(seed_value); } |
| |
| template <class SeedSequence, |
| typename = typename absl::enable_if_t< |
| !std::is_same<SeedSequence, randen_engine>::value>> |
| explicit randen_engine(SeedSequence&& seq) { |
| seed(seq); |
| } |
| |
| // alignment requirements dictate custom copy and move constructors. |
| randen_engine(const randen_engine& other) |
| : next_(other.next_), impl_(other.impl_) { |
| std::memcpy(state(), other.state(), kStateSizeT * sizeof(result_type)); |
| } |
| randen_engine& operator=(const randen_engine& other) { |
| next_ = other.next_; |
| impl_ = other.impl_; |
| std::memcpy(state(), other.state(), kStateSizeT * sizeof(result_type)); |
| return *this; |
| } |
| |
| // Returns random bits from the buffer in units of result_type. |
| result_type operator()() { |
| // Refill the buffer if needed (unlikely). |
| auto* begin = state(); |
| if (next_ >= kStateSizeT) { |
| next_ = kCapacityT; |
| impl_.Generate(begin); |
| } |
| return little_endian::ToHost(begin[next_++]); |
| } |
| |
| template <class SeedSequence> |
| typename absl::enable_if_t< |
| !std::is_convertible<SeedSequence, result_type>::value> |
| seed(SeedSequence&& seq) { |
| // Zeroes the state. |
| seed(); |
| reseed(seq); |
| } |
| |
| void seed(result_type seed_value = 0) { |
| next_ = kStateSizeT; |
| // Zeroes the inner state and fills the outer state with seed_value to |
| // mimic the behaviour of reseed |
| auto* begin = state(); |
| std::fill(begin, begin + kCapacityT, 0); |
| std::fill(begin + kCapacityT, begin + kStateSizeT, seed_value); |
| } |
| |
| // Inserts entropy into (part of) the state. Calling this periodically with |
| // sufficient entropy ensures prediction resistance (attackers cannot predict |
| // future outputs even if state is compromised). |
| template <class SeedSequence> |
| void reseed(SeedSequence& seq) { |
| using sequence_result_type = typename SeedSequence::result_type; |
| static_assert(sizeof(sequence_result_type) == 4, |
| "SeedSequence::result_type must be 32-bit"); |
| constexpr size_t kBufferSize = |
| Randen::kSeedBytes / sizeof(sequence_result_type); |
| alignas(16) sequence_result_type buffer[kBufferSize]; |
| |
| // Randen::Absorb XORs the seed into state, which is then mixed by a call |
| // to Randen::Generate. Seeding with only the provided entropy is preferred |
| // to using an arbitrary generate() call, so use [rand.req.seed_seq] |
| // size as a proxy for the number of entropy units that can be generated |
| // without relying on seed sequence mixing... |
| const size_t entropy_size = seq.size(); |
| if (entropy_size < kBufferSize) { |
| // ... and only request that many values, or 256-bits, when unspecified. |
| const size_t requested_entropy = (entropy_size == 0) ? 8u : entropy_size; |
| std::fill(buffer + requested_entropy, buffer + kBufferSize, 0); |
| seq.generate(buffer, buffer + requested_entropy); |
| #ifdef ABSL_IS_BIG_ENDIAN |
| // Randen expects the seed buffer to be in Little Endian; reverse it on |
| // Big Endian platforms. |
| for (sequence_result_type& e : buffer) { |
| e = absl::little_endian::FromHost(e); |
| } |
| #endif |
| // The Randen paper suggests preferentially initializing even-numbered |
| // 128-bit vectors of the randen state (there are 16 such vectors). |
| // The seed data is merged into the state offset by 128-bits, which |
| // implies prefering seed bytes [16..31, ..., 208..223]. Since the |
| // buffer is 32-bit values, we swap the corresponding buffer positions in |
| // 128-bit chunks. |
| size_t dst = kBufferSize; |
| while (dst > 7) { |
| // leave the odd bucket as-is. |
| dst -= 4; |
| size_t src = dst >> 1; |
| // swap 128-bits into the even bucket |
| std::swap(buffer[--dst], buffer[--src]); |
| std::swap(buffer[--dst], buffer[--src]); |
| std::swap(buffer[--dst], buffer[--src]); |
| std::swap(buffer[--dst], buffer[--src]); |
| } |
| } else { |
| seq.generate(buffer, buffer + kBufferSize); |
| } |
| impl_.Absorb(buffer, state()); |
| |
| // Generate will be called when operator() is called |
| next_ = kStateSizeT; |
| } |
| |
| void discard(uint64_t count) { |
| uint64_t step = std::min<uint64_t>(kStateSizeT - next_, count); |
| count -= step; |
| |
| constexpr uint64_t kRateT = kStateSizeT - kCapacityT; |
| auto* begin = state(); |
| while (count > 0) { |
| next_ = kCapacityT; |
| impl_.Generate(*reinterpret_cast<result_type(*)[kStateSizeT]>(begin)); |
| step = std::min<uint64_t>(kRateT, count); |
| count -= step; |
| } |
| next_ += step; |
| } |
| |
| bool operator==(const randen_engine& other) const { |
| const auto* begin = state(); |
| return next_ == other.next_ && |
| std::equal(begin, begin + kStateSizeT, other.state()); |
| } |
| |
| bool operator!=(const randen_engine& other) const { |
| return !(*this == other); |
| } |
| |
| template <class CharT, class Traits> |
| friend std::basic_ostream<CharT, Traits>& operator<<( |
| std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references) |
| const randen_engine<T>& engine) { // NOLINT(runtime/references) |
| using numeric_type = |
| typename random_internal::stream_format_type<result_type>::type; |
| auto saver = random_internal::make_ostream_state_saver(os); |
| auto* it = engine.state(); |
| for (auto* end = it + kStateSizeT; it < end; ++it) { |
| // In the case that `elem` is `uint8_t`, it must be cast to something |
| // larger so that it prints as an integer rather than a character. For |
| // simplicity, apply the cast all circumstances. |
| os << static_cast<numeric_type>(little_endian::FromHost(*it)) |
| << os.fill(); |
| } |
| os << engine.next_; |
| return os; |
| } |
| |
| template <class CharT, class Traits> |
| friend std::basic_istream<CharT, Traits>& operator>>( |
| std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references) |
| randen_engine<T>& engine) { // NOLINT(runtime/references) |
| using numeric_type = |
| typename random_internal::stream_format_type<result_type>::type; |
| result_type state[kStateSizeT]; |
| size_t next; |
| for (auto& elem : state) { |
| // It is not possible to read uint8_t from wide streams, so it is |
| // necessary to read a wider type and then cast it to uint8_t. |
| numeric_type value; |
| is >> value; |
| elem = little_endian::ToHost(static_cast<result_type>(value)); |
| } |
| is >> next; |
| if (is.fail()) { |
| return is; |
| } |
| std::memcpy(engine.state(), state, sizeof(state)); |
| engine.next_ = next; |
| return is; |
| } |
| |
| private: |
| static constexpr size_t kStateSizeT = |
| Randen::kStateBytes / sizeof(result_type); |
| static constexpr size_t kCapacityT = |
| Randen::kCapacityBytes / sizeof(result_type); |
| |
| // Returns the state array pointer, which is aligned to 16 bytes. |
| // The first kCapacityT are the `inner' sponge; the remainder are available. |
| result_type* state() { |
| return reinterpret_cast<result_type*>( |
| (reinterpret_cast<uintptr_t>(&raw_state_) & 0xf) ? (raw_state_ + 8) |
| : raw_state_); |
| } |
| const result_type* state() const { |
| return const_cast<randen_engine*>(this)->state(); |
| } |
| |
| // raw state array, manually aligned in state(). This overallocates |
| // by 8 bytes since C++ does not guarantee extended heap alignment. |
| alignas(8) char raw_state_[Randen::kStateBytes + 8]; |
| size_t next_; // index within state() |
| Randen impl_; |
| }; |
| |
| } // namespace random_internal |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| #endif // ABSL_RANDOM_INTERNAL_RANDEN_ENGINE_H_ |