blob: 0549f2fdb6ce13aa1622a19a91a33590779c2120 [file] [log] [blame]
//
// Copyright 2015 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#include "test_utils/ANGLETest.h"
#include "test_utils/gl_raii.h"
using namespace angle;
namespace
{
class UniformBufferTest : public ANGLETest
{
protected:
UniformBufferTest()
{
setWindowWidth(128);
setWindowHeight(128);
setConfigRedBits(8);
setConfigGreenBits(8);
setConfigBlueBits(8);
setConfigAlphaBits(8);
}
void testSetUp() override
{
mkFS = R"(#version 300 es
precision highp float;
uniform uni { vec4 color; };
out vec4 fragColor;
void main()
{
fragColor = color;
})";
mProgram = CompileProgram(essl3_shaders::vs::Simple(), mkFS);
ASSERT_NE(mProgram, 0u);
mUniformBufferIndex = glGetUniformBlockIndex(mProgram, "uni");
ASSERT_NE(mUniformBufferIndex, -1);
glGenBuffers(1, &mUniformBuffer);
ASSERT_GL_NO_ERROR();
}
void testTearDown() override
{
glDeleteBuffers(1, &mUniformBuffer);
glDeleteProgram(mProgram);
}
const char *mkFS;
GLuint mProgram;
GLint mUniformBufferIndex;
GLuint mUniformBuffer;
};
// Basic UBO functionality.
TEST_P(UniformBufferTest, Simple)
{
glClear(GL_COLOR_BUFFER_BIT);
float floatData[4] = {0.5f, 0.75f, 0.25f, 1.0f};
glBindBuffer(GL_UNIFORM_BUFFER, mUniformBuffer);
glBufferData(GL_UNIFORM_BUFFER, sizeof(float) * 4, floatData, GL_STATIC_DRAW);
glBindBufferBase(GL_UNIFORM_BUFFER, 0, mUniformBuffer);
glUniformBlockBinding(mProgram, mUniformBufferIndex, 0);
drawQuad(mProgram, essl3_shaders::PositionAttrib(), 0.5f);
ASSERT_GL_NO_ERROR();
EXPECT_PIXEL_NEAR(0, 0, 128, 191, 64, 255, 1);
}
// Test that using a UBO with a non-zero offset and size actually works.
// The first step of this test renders a color from a UBO with a zero offset.
// The second step renders a color from a UBO with a non-zero offset.
TEST_P(UniformBufferTest, UniformBufferRange)
{
int px = getWindowWidth() / 2;
int py = getWindowHeight() / 2;
// Query the uniform buffer alignment requirement
GLint alignment;
glGetIntegerv(GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT, &alignment);
GLint64 maxUniformBlockSize;
glGetInteger64v(GL_MAX_UNIFORM_BLOCK_SIZE, &maxUniformBlockSize);
if (alignment >= maxUniformBlockSize)
{
// ANGLE doesn't implement UBO offsets for this platform.
// Ignore the test case.
return;
}
ASSERT_GL_NO_ERROR();
// Let's create a buffer which contains two vec4.
GLuint vec4Size = 4 * sizeof(float);
GLuint stride = 0;
do
{
stride += alignment;
} while (stride < vec4Size);
std::vector<char> v(2 * stride);
float *first = reinterpret_cast<float *>(v.data());
float *second = reinterpret_cast<float *>(v.data() + stride);
first[0] = 10.f / 255.f;
first[1] = 20.f / 255.f;
first[2] = 30.f / 255.f;
first[3] = 40.f / 255.f;
second[0] = 110.f / 255.f;
second[1] = 120.f / 255.f;
second[2] = 130.f / 255.f;
second[3] = 140.f / 255.f;
glBindBuffer(GL_UNIFORM_BUFFER, mUniformBuffer);
// We use on purpose a size which is not a multiple of the alignment.
glBufferData(GL_UNIFORM_BUFFER, stride + vec4Size, v.data(), GL_STATIC_DRAW);
glUniformBlockBinding(mProgram, mUniformBufferIndex, 0);
EXPECT_GL_NO_ERROR();
// Bind the first part of the uniform buffer and draw
// Use a size which is smaller than the alignment to check
// to check that this case is handle correctly in the conversion to 11.1.
glBindBufferRange(GL_UNIFORM_BUFFER, 0, mUniformBuffer, 0, vec4Size);
drawQuad(mProgram, essl3_shaders::PositionAttrib(), 0.5f);
EXPECT_GL_NO_ERROR();
EXPECT_PIXEL_EQ(px, py, 10, 20, 30, 40);
// Bind the second part of the uniform buffer and draw
// Furthermore the D3D11.1 backend will internally round the vec4Size (16 bytes) to a stride
// (256 bytes) hence it will try to map the range [stride, 2 * stride] which is out-of-bound of
// the buffer bufferSize = stride + vec4Size < 2 * stride. Ensure that this behaviour works.
glBindBufferRange(GL_UNIFORM_BUFFER, 0, mUniformBuffer, stride, vec4Size);
drawQuad(mProgram, essl3_shaders::PositionAttrib(), 0.5f);
EXPECT_GL_NO_ERROR();
EXPECT_PIXEL_EQ(px, py, 110, 120, 130, 140);
}
// Test uniform block bindings.
TEST_P(UniformBufferTest, UniformBufferBindings)
{
int px = getWindowWidth() / 2;
int py = getWindowHeight() / 2;
ASSERT_GL_NO_ERROR();
// Let's create a buffer which contains one vec4.
GLuint vec4Size = 4 * sizeof(float);
std::vector<char> v(vec4Size);
float *first = reinterpret_cast<float *>(v.data());
first[0] = 10.f / 255.f;
first[1] = 20.f / 255.f;
first[2] = 30.f / 255.f;
first[3] = 40.f / 255.f;
glBindBuffer(GL_UNIFORM_BUFFER, mUniformBuffer);
glBufferData(GL_UNIFORM_BUFFER, vec4Size, v.data(), GL_STATIC_DRAW);
EXPECT_GL_NO_ERROR();
// Try to bind the buffer to binding point 2
glUniformBlockBinding(mProgram, mUniformBufferIndex, 2);
glBindBufferBase(GL_UNIFORM_BUFFER, 2, mUniformBuffer);
drawQuad(mProgram, essl3_shaders::PositionAttrib(), 0.5f);
EXPECT_GL_NO_ERROR();
EXPECT_PIXEL_EQ(px, py, 10, 20, 30, 40);
// Clear the framebuffer
glClearColor(0.0, 0.0, 0.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT);
EXPECT_PIXEL_EQ(px, py, 0, 0, 0, 0);
// Try to bind the buffer to another binding point
glUniformBlockBinding(mProgram, mUniformBufferIndex, 5);
glBindBufferBase(GL_UNIFORM_BUFFER, 5, mUniformBuffer);
drawQuad(mProgram, essl3_shaders::PositionAttrib(), 0.5f);
EXPECT_GL_NO_ERROR();
EXPECT_PIXEL_EQ(px, py, 10, 20, 30, 40);
}
// Test that ANGLE handles used but unbound UBO. Assumes we are running on ANGLE and produce
// optional but not mandatory errors.
TEST_P(UniformBufferTest, ANGLEUnboundUniformBuffer)
{
glUniformBlockBinding(mProgram, mUniformBufferIndex, 0);
glBindBufferBase(GL_UNIFORM_BUFFER, 0, 0);
EXPECT_GL_NO_ERROR();
drawQuad(mProgram, essl3_shaders::PositionAttrib(), 0.5f);
EXPECT_GL_ERROR(GL_INVALID_OPERATION);
}
// Update a UBO many time and verify that ANGLE uses the latest version of the data.
// https://code.google.com/p/angleproject/issues/detail?id=965
TEST_P(UniformBufferTest, UniformBufferManyUpdates)
{
// TODO(jmadill): Figure out why this fails on OSX Intel OpenGL.
ANGLE_SKIP_TEST_IF(IsIntel() && IsOSX() && IsOpenGL());
int px = getWindowWidth() / 2;
int py = getWindowHeight() / 2;
ASSERT_GL_NO_ERROR();
float data[4];
glBindBuffer(GL_UNIFORM_BUFFER, mUniformBuffer);
glBufferData(GL_UNIFORM_BUFFER, sizeof(data), nullptr, GL_DYNAMIC_DRAW);
glUniformBlockBinding(mProgram, mUniformBufferIndex, 0);
glBindBufferBase(GL_UNIFORM_BUFFER, 0, mUniformBuffer);
EXPECT_GL_NO_ERROR();
// Repeteadly update the data and draw
for (size_t i = 0; i < 10; ++i)
{
data[0] = (i + 10.f) / 255.f;
data[1] = (i + 20.f) / 255.f;
data[2] = (i + 30.f) / 255.f;
data[3] = (i + 40.f) / 255.f;
glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(data), data);
drawQuad(mProgram, essl3_shaders::PositionAttrib(), 0.5f);
EXPECT_GL_NO_ERROR();
EXPECT_PIXEL_EQ(px, py, i + 10, i + 20, i + 30, i + 40);
}
}
// Use a large number of buffer ranges (compared to the actual size of the UBO)
TEST_P(UniformBufferTest, ManyUniformBufferRange)
{
int px = getWindowWidth() / 2;
int py = getWindowHeight() / 2;
// Query the uniform buffer alignment requirement
GLint alignment;
glGetIntegerv(GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT, &alignment);
GLint64 maxUniformBlockSize;
glGetInteger64v(GL_MAX_UNIFORM_BLOCK_SIZE, &maxUniformBlockSize);
if (alignment >= maxUniformBlockSize)
{
// ANGLE doesn't implement UBO offsets for this platform.
// Ignore the test case.
return;
}
ASSERT_GL_NO_ERROR();
// Let's create a buffer which contains eight vec4.
GLuint vec4Size = 4 * sizeof(float);
GLuint stride = 0;
do
{
stride += alignment;
} while (stride < vec4Size);
std::vector<char> v(8 * stride);
for (size_t i = 0; i < 8; ++i)
{
float *data = reinterpret_cast<float *>(v.data() + i * stride);
data[0] = (i + 10.f) / 255.f;
data[1] = (i + 20.f) / 255.f;
data[2] = (i + 30.f) / 255.f;
data[3] = (i + 40.f) / 255.f;
}
glBindBuffer(GL_UNIFORM_BUFFER, mUniformBuffer);
glBufferData(GL_UNIFORM_BUFFER, v.size(), v.data(), GL_STATIC_DRAW);
glUniformBlockBinding(mProgram, mUniformBufferIndex, 0);
EXPECT_GL_NO_ERROR();
// Bind each possible offset
for (size_t i = 0; i < 8; ++i)
{
glBindBufferRange(GL_UNIFORM_BUFFER, 0, mUniformBuffer, i * stride, stride);
drawQuad(mProgram, essl3_shaders::PositionAttrib(), 0.5f);
EXPECT_GL_NO_ERROR();
EXPECT_PIXEL_EQ(px, py, 10 + i, 20 + i, 30 + i, 40 + i);
}
// Try to bind larger range
for (size_t i = 0; i < 7; ++i)
{
glBindBufferRange(GL_UNIFORM_BUFFER, 0, mUniformBuffer, i * stride, 2 * stride);
drawQuad(mProgram, essl3_shaders::PositionAttrib(), 0.5f);
EXPECT_GL_NO_ERROR();
EXPECT_PIXEL_EQ(px, py, 10 + i, 20 + i, 30 + i, 40 + i);
}
// Try to bind even larger range
for (size_t i = 0; i < 5; ++i)
{
glBindBufferRange(GL_UNIFORM_BUFFER, 0, mUniformBuffer, i * stride, 4 * stride);
drawQuad(mProgram, essl3_shaders::PositionAttrib(), 0.5f);
EXPECT_GL_NO_ERROR();
EXPECT_PIXEL_EQ(px, py, 10 + i, 20 + i, 30 + i, 40 + i);
}
}
// Tests that active uniforms have the right names.
TEST_P(UniformBufferTest, ActiveUniformNames)
{
constexpr char kVS[] =
"#version 300 es\n"
"in vec2 position;\n"
"out vec2 v;\n"
"uniform blockName1 {\n"
" float f1;\n"
"} instanceName1;\n"
"uniform blockName2 {\n"
" float f2;\n"
"} instanceName2[1];\n"
"void main() {\n"
" v = vec2(instanceName1.f1, instanceName2[0].f2);\n"
" gl_Position = vec4(position, 0, 1);\n"
"}";
constexpr char kFS[] =
"#version 300 es\n"
"precision highp float;\n"
"in vec2 v;\n"
"out vec4 color;\n"
"void main() {\n"
" color = vec4(v, 0, 1);\n"
"}";
ANGLE_GL_PROGRAM(program, kVS, kFS);
GLint activeUniformBlocks;
glGetProgramiv(program, GL_ACTIVE_UNIFORM_BLOCKS, &activeUniformBlocks);
ASSERT_EQ(2, activeUniformBlocks);
GLuint index = glGetUniformBlockIndex(program, "blockName1");
EXPECT_NE(GL_INVALID_INDEX, index);
ASSERT_GL_NO_ERROR();
index = glGetUniformBlockIndex(program, "blockName2[0]");
EXPECT_NE(GL_INVALID_INDEX, index);
ASSERT_GL_NO_ERROR();
GLint activeUniforms;
glGetProgramiv(program, GL_ACTIVE_UNIFORMS, &activeUniforms);
ASSERT_EQ(2, activeUniforms);
GLint size;
GLenum type;
GLint maxLength;
GLsizei length;
glGetProgramiv(program, GL_ACTIVE_UNIFORM_MAX_LENGTH, &maxLength);
std::vector<GLchar> strUniformNameBuffer(maxLength + 1, 0);
const GLchar *uniformNames[1];
uniformNames[0] = "blockName1.f1";
glGetUniformIndices(program, 1, uniformNames, &index);
EXPECT_NE(GL_INVALID_INDEX, index);
ASSERT_GL_NO_ERROR();
glGetActiveUniform(program, index, maxLength, &length, &size, &type, &strUniformNameBuffer[0]);
EXPECT_EQ(1, size);
EXPECT_GLENUM_EQ(GL_FLOAT, type);
EXPECT_EQ("blockName1.f1", std::string(&strUniformNameBuffer[0]));
uniformNames[0] = "blockName2.f2";
glGetUniformIndices(program, 1, uniformNames, &index);
EXPECT_NE(GL_INVALID_INDEX, index);
ASSERT_GL_NO_ERROR();
glGetActiveUniform(program, index, maxLength, &length, &size, &type, &strUniformNameBuffer[0]);
EXPECT_EQ(1, size);
EXPECT_GLENUM_EQ(GL_FLOAT, type);
EXPECT_EQ("blockName2.f2", std::string(&strUniformNameBuffer[0]));
}
// Tests active uniforms and blocks when the layout is std140, shared and packed.
TEST_P(UniformBufferTest, ActiveUniformNumberAndName)
{
constexpr char kVS[] =
"#version 300 es\n"
"in vec2 position;\n"
"out float v;\n"
"struct S {\n"
" highp ivec3 a;\n"
" mediump ivec2 b[4];\n"
"};\n"
"layout(std140) uniform blockName0 {\n"
" S s0;\n"
" lowp vec2 v0;\n"
" S s1[2];\n"
" highp uint u0;\n"
"};\n"
"layout(std140) uniform blockName1 {\n"
" float f1;\n"
" bool b1;\n"
"} instanceName1;\n"
"layout(shared) uniform blockName2 {\n"
" float f2;\n"
"};\n"
"layout(packed) uniform blockName3 {\n"
" float f3;\n"
"};\n"
"void main() {\n"
" v = instanceName1.f1;\n"
" gl_Position = vec4(position, 0, 1);\n"
"}";
constexpr char kFS[] =
"#version 300 es\n"
"precision highp float;\n"
"in float v;\n"
"out vec4 color;\n"
"void main() {\n"
" color = vec4(v, 0, 0, 1);\n"
"}";
ANGLE_GL_PROGRAM(program, kVS, kFS);
// Note that the packed |blockName3| might (or might not) be optimized out.
GLint activeUniforms;
glGetProgramiv(program.get(), GL_ACTIVE_UNIFORMS, &activeUniforms);
EXPECT_GE(activeUniforms, 11);
GLint activeUniformBlocks;
glGetProgramiv(program.get(), GL_ACTIVE_UNIFORM_BLOCKS, &activeUniformBlocks);
EXPECT_GE(activeUniformBlocks, 3);
GLint maxLength, size;
GLenum type;
GLsizei length;
GLuint index;
const GLchar *uniformNames[1];
glGetProgramiv(program.get(), GL_ACTIVE_UNIFORM_MAX_LENGTH, &maxLength);
std::vector<GLchar> strBuffer(maxLength + 1, 0);
uniformNames[0] = "s0.a";
glGetUniformIndices(program, 1, uniformNames, &index);
EXPECT_NE(GL_INVALID_INDEX, index);
ASSERT_GL_NO_ERROR();
glGetActiveUniform(program.get(), index, maxLength, &length, &size, &type, &strBuffer[0]);
EXPECT_EQ(1, size);
EXPECT_EQ("s0.a", std::string(&strBuffer[0]));
uniformNames[0] = "s0.b[0]";
glGetUniformIndices(program, 1, uniformNames, &index);
EXPECT_NE(GL_INVALID_INDEX, index);
ASSERT_GL_NO_ERROR();
glGetActiveUniform(program.get(), index, maxLength, &length, &size, &type, &strBuffer[0]);
ASSERT_GL_NO_ERROR();
EXPECT_EQ(4, size);
EXPECT_EQ("s0.b[0]", std::string(&strBuffer[0]));
uniformNames[0] = "v0";
glGetUniformIndices(program, 1, uniformNames, &index);
EXPECT_NE(GL_INVALID_INDEX, index);
ASSERT_GL_NO_ERROR();
glGetActiveUniform(program.get(), index, maxLength, &length, &size, &type, &strBuffer[0]);
ASSERT_GL_NO_ERROR();
EXPECT_EQ(1, size);
EXPECT_EQ("v0", std::string(&strBuffer[0]));
uniformNames[0] = "s1[0].a";
glGetUniformIndices(program, 1, uniformNames, &index);
EXPECT_NE(GL_INVALID_INDEX, index);
ASSERT_GL_NO_ERROR();
glGetActiveUniform(program.get(), index, maxLength, &length, &size, &type, &strBuffer[0]);
ASSERT_GL_NO_ERROR();
EXPECT_EQ(1, size);
EXPECT_EQ("s1[0].a", std::string(&strBuffer[0]));
uniformNames[0] = "s1[0].b[0]";
glGetUniformIndices(program, 1, uniformNames, &index);
EXPECT_NE(GL_INVALID_INDEX, index);
ASSERT_GL_NO_ERROR();
glGetActiveUniform(program.get(), index, maxLength, &length, &size, &type, &strBuffer[0]);
ASSERT_GL_NO_ERROR();
EXPECT_EQ(4, size);
EXPECT_EQ("s1[0].b[0]", std::string(&strBuffer[0]));
uniformNames[0] = "s1[1].a";
glGetUniformIndices(program, 1, uniformNames, &index);
EXPECT_NE(GL_INVALID_INDEX, index);
ASSERT_GL_NO_ERROR();
glGetActiveUniform(program.get(), index, maxLength, &length, &size, &type, &strBuffer[0]);
ASSERT_GL_NO_ERROR();
EXPECT_EQ(1, size);
EXPECT_EQ("s1[1].a", std::string(&strBuffer[0]));
uniformNames[0] = "s1[1].b[0]";
glGetUniformIndices(program, 1, uniformNames, &index);
EXPECT_NE(GL_INVALID_INDEX, index);
ASSERT_GL_NO_ERROR();
glGetActiveUniform(program.get(), index, maxLength, &length, &size, &type, &strBuffer[0]);
ASSERT_GL_NO_ERROR();
EXPECT_EQ(4, size);
EXPECT_EQ("s1[1].b[0]", std::string(&strBuffer[0]));
uniformNames[0] = "u0";
glGetUniformIndices(program, 1, uniformNames, &index);
EXPECT_NE(GL_INVALID_INDEX, index);
ASSERT_GL_NO_ERROR();
glGetActiveUniform(program.get(), index, maxLength, &length, &size, &type, &strBuffer[0]);
ASSERT_GL_NO_ERROR();
EXPECT_EQ(1, size);
EXPECT_EQ("u0", std::string(&strBuffer[0]));
uniformNames[0] = "blockName1.f1";
glGetUniformIndices(program, 1, uniformNames, &index);
EXPECT_NE(GL_INVALID_INDEX, index);
ASSERT_GL_NO_ERROR();
glGetActiveUniform(program.get(), index, maxLength, &length, &size, &type, &strBuffer[0]);
ASSERT_GL_NO_ERROR();
EXPECT_EQ(1, size);
EXPECT_EQ("blockName1.f1", std::string(&strBuffer[0]));
uniformNames[0] = "blockName1.b1";
glGetUniformIndices(program, 1, uniformNames, &index);
EXPECT_NE(GL_INVALID_INDEX, index);
ASSERT_GL_NO_ERROR();
glGetActiveUniform(program.get(), index, maxLength, &length, &size, &type, &strBuffer[0]);
ASSERT_GL_NO_ERROR();
EXPECT_EQ(1, size);
EXPECT_EQ("blockName1.b1", std::string(&strBuffer[0]));
uniformNames[0] = "f2";
glGetUniformIndices(program, 1, uniformNames, &index);
EXPECT_NE(GL_INVALID_INDEX, index);
ASSERT_GL_NO_ERROR();
glGetActiveUniform(program.get(), index, maxLength, &length, &size, &type, &strBuffer[0]);
ASSERT_GL_NO_ERROR();
EXPECT_EQ(1, size);
EXPECT_EQ("f2", std::string(&strBuffer[0]));
}
// Test that using a very large buffer to back a small uniform block works OK.
TEST_P(UniformBufferTest, VeryLarge)
{
glClear(GL_COLOR_BUFFER_BIT);
float floatData[4] = {0.5f, 0.75f, 0.25f, 1.0f};
GLsizei bigSize = 4096 * 64;
std::vector<GLubyte> zero(bigSize, 0);
glBindBuffer(GL_UNIFORM_BUFFER, mUniformBuffer);
glBufferData(GL_UNIFORM_BUFFER, bigSize, zero.data(), GL_STATIC_DRAW);
glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(float) * 4, floatData);
glBindBufferBase(GL_UNIFORM_BUFFER, 0, mUniformBuffer);
glUniformBlockBinding(mProgram, mUniformBufferIndex, 0);
drawQuad(mProgram, essl3_shaders::PositionAttrib(), 0.5f);
ASSERT_GL_NO_ERROR();
EXPECT_PIXEL_NEAR(0, 0, 128, 191, 64, 255, 1);
}
// Test that readback from a very large uniform buffer works OK.
TEST_P(UniformBufferTest, VeryLargeReadback)
{
glClear(GL_COLOR_BUFFER_BIT);
// Generate some random data.
GLsizei bigSize = 4096 * 64;
std::vector<GLubyte> expectedData(bigSize);
for (GLsizei index = 0; index < bigSize; ++index)
{
expectedData[index] = static_cast<GLubyte>(index);
}
// Initialize the GL buffer.
glBindBuffer(GL_UNIFORM_BUFFER, mUniformBuffer);
glBufferData(GL_UNIFORM_BUFFER, bigSize, expectedData.data(), GL_STATIC_DRAW);
// Do a small update.
GLsizei smallSize = sizeof(float) * 4;
std::array<float, 4> floatData = {{0.5f, 0.75f, 0.25f, 1.0f}};
memcpy(expectedData.data(), floatData.data(), smallSize);
glBufferSubData(GL_UNIFORM_BUFFER, 0, smallSize, expectedData.data());
// Draw with the buffer.
glBindBufferBase(GL_UNIFORM_BUFFER, 0, mUniformBuffer);
glUniformBlockBinding(mProgram, mUniformBufferIndex, 0);
drawQuad(mProgram, essl3_shaders::PositionAttrib(), 0.5f);
ASSERT_GL_NO_ERROR();
EXPECT_PIXEL_NEAR(0, 0, 128, 191, 64, 255, 1);
// Read back the large buffer data.
const void *mapPtr = glMapBufferRange(GL_UNIFORM_BUFFER, 0, bigSize, GL_MAP_READ_BIT);
ASSERT_GL_NO_ERROR();
const GLubyte *bytePtr = reinterpret_cast<const GLubyte *>(mapPtr);
std::vector<GLubyte> actualData(bytePtr, bytePtr + bigSize);
EXPECT_EQ(expectedData, actualData);
glUnmapBuffer(GL_UNIFORM_BUFFER);
}
class UniformBufferTest31 : public ANGLETest
{
protected:
UniformBufferTest31()
{
setWindowWidth(128);
setWindowHeight(128);
setConfigRedBits(8);
setConfigGreenBits(8);
setConfigBlueBits(8);
setConfigAlphaBits(8);
}
};
// Test uniform block bindings greater than GL_MAX_UNIFORM_BUFFER_BINDINGS cause compile error.
TEST_P(UniformBufferTest31, MaxUniformBufferBindingsExceeded)
{
GLint maxUniformBufferBindings;
glGetIntegerv(GL_MAX_UNIFORM_BUFFER_BINDINGS, &maxUniformBufferBindings);
std::string source =
"#version 310 es\n"
"in vec4 position;\n"
"layout(binding = ";
std::stringstream ss;
ss << maxUniformBufferBindings;
source = source + ss.str() +
") uniform uni {\n"
" vec4 color;\n"
"};\n"
"void main()\n"
"{\n"
" gl_Position = position;\n"
"}";
GLuint shader = CompileShader(GL_VERTEX_SHADER, source.c_str());
EXPECT_EQ(0u, shader);
}
// Test uniform block bindings specified by layout in shader work properly.
TEST_P(UniformBufferTest31, UniformBufferBindings)
{
constexpr char kVS[] =
"#version 310 es\n"
"in vec4 position;\n"
"void main()\n"
"{\n"
" gl_Position = position;\n"
"}";
constexpr char kFS[] =
"#version 310 es\n"
"precision highp float;\n"
"layout(binding = 2) uniform uni {\n"
" vec4 color;\n"
"};\n"
"out vec4 fragColor;\n"
"void main()\n"
"{"
" fragColor = color;\n"
"}";
ANGLE_GL_PROGRAM(program, kVS, kFS);
GLuint uniformBufferIndex = glGetUniformBlockIndex(program, "uni");
ASSERT_NE(GL_INVALID_INDEX, uniformBufferIndex);
GLBuffer uniformBuffer;
int px = getWindowWidth() / 2;
int py = getWindowHeight() / 2;
ASSERT_GL_NO_ERROR();
// Let's create a buffer which contains one vec4.
GLuint vec4Size = 4 * sizeof(float);
std::vector<char> v(vec4Size);
float *first = reinterpret_cast<float *>(v.data());
first[0] = 10.f / 255.f;
first[1] = 20.f / 255.f;
first[2] = 30.f / 255.f;
first[3] = 40.f / 255.f;
glBindBuffer(GL_UNIFORM_BUFFER, uniformBuffer.get());
glBufferData(GL_UNIFORM_BUFFER, vec4Size, v.data(), GL_STATIC_DRAW);
EXPECT_GL_NO_ERROR();
glBindBufferBase(GL_UNIFORM_BUFFER, 2, uniformBuffer.get());
drawQuad(program, "position", 0.5f);
EXPECT_GL_NO_ERROR();
EXPECT_PIXEL_EQ(px, py, 10, 20, 30, 40);
// Clear the framebuffer
glClearColor(0.0, 0.0, 0.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT);
EXPECT_PIXEL_EQ(px, py, 0, 0, 0, 0);
// Try to bind the buffer to another binding point
glUniformBlockBinding(program, uniformBufferIndex, 5);
glBindBufferBase(GL_UNIFORM_BUFFER, 5, uniformBuffer.get());
drawQuad(program, "position", 0.5f);
EXPECT_GL_NO_ERROR();
EXPECT_PIXEL_EQ(px, py, 10, 20, 30, 40);
}
// Test uniform blocks used as instanced array take next binding point for each subsequent element.
TEST_P(UniformBufferTest31, ConsecutiveBindingsForBlockArray)
{
constexpr char kFS[] =
"#version 310 es\n"
"precision highp float;\n"
"layout(binding = 2) uniform uni {\n"
" vec4 color;\n"
"} blocks[2];\n"
"out vec4 fragColor;\n"
"void main()\n"
"{\n"
" fragColor = blocks[0].color + blocks[1].color;\n"
"}";
ANGLE_GL_PROGRAM(program, essl31_shaders::vs::Simple(), kFS);
std::array<GLBuffer, 2> uniformBuffers;
int px = getWindowWidth() / 2;
int py = getWindowHeight() / 2;
ASSERT_GL_NO_ERROR();
// Let's create a buffer which contains one vec4.
GLuint vec4Size = 4 * sizeof(float);
std::vector<char> v(vec4Size);
float *first = reinterpret_cast<float *>(v.data());
first[0] = 10.f / 255.f;
first[1] = 20.f / 255.f;
first[2] = 30.f / 255.f;
first[3] = 40.f / 255.f;
glBindBuffer(GL_UNIFORM_BUFFER, uniformBuffers[0].get());
glBufferData(GL_UNIFORM_BUFFER, vec4Size, v.data(), GL_STATIC_DRAW);
EXPECT_GL_NO_ERROR();
glBindBufferBase(GL_UNIFORM_BUFFER, 2, uniformBuffers[0].get());
ASSERT_GL_NO_ERROR();
glBindBuffer(GL_UNIFORM_BUFFER, uniformBuffers[1].get());
glBufferData(GL_UNIFORM_BUFFER, vec4Size, v.data(), GL_STATIC_DRAW);
EXPECT_GL_NO_ERROR();
glBindBufferBase(GL_UNIFORM_BUFFER, 3, uniformBuffers[1].get());
drawQuad(program, essl31_shaders::PositionAttrib(), 0.5f);
EXPECT_GL_NO_ERROR();
EXPECT_PIXEL_EQ(px, py, 20, 40, 60, 80);
}
// Test the layout qualifier binding must be both specified(ESSL 3.10.4 section 9.2).
TEST_P(UniformBufferTest31, BindingMustBeBothSpecified)
{
constexpr char kVS[] =
"#version 310 es\n"
"in vec4 position;\n"
"uniform uni\n"
"{\n"
" vec4 color;\n"
"} block;\n"
"void main()\n"
"{\n"
" gl_Position = position + block.color;\n"
"}";
constexpr char kFS[] =
"#version 310 es\n"
"precision highp float;\n"
"layout(binding = 0) uniform uni\n"
"{\n"
" vec4 color;\n"
"} block;\n"
"out vec4 fragColor;\n"
"void main()\n"
"{\n"
" fragColor = block.color;\n"
"}";
GLuint program = CompileProgram(kVS, kFS);
ASSERT_EQ(0u, program);
}
// Test with a block containing an array of structs.
TEST_P(UniformBufferTest, BlockContainingArrayOfStructs)
{
constexpr char kFS[] =
"#version 300 es\n"
"precision highp float;\n"
"out vec4 my_FragColor;\n"
"struct light_t {\n"
" vec4 intensity;\n"
"};\n"
"const int maxLights = 2;\n"
"layout(std140) uniform lightData { light_t lights[maxLights]; };\n"
"vec4 processLight(vec4 lighting, light_t light)\n"
"{\n"
" return lighting + light.intensity;\n"
"}\n"
"void main()\n"
"{\n"
" vec4 lighting = vec4(0, 0, 0, 1);\n"
" for (int n = 0; n < maxLights; n++)\n"
" {\n"
" lighting = processLight(lighting, lights[n]);\n"
" }\n"
" my_FragColor = lighting;\n"
"}\n";
ANGLE_GL_PROGRAM(program, essl3_shaders::vs::Simple(), kFS);
GLint uniformBufferIndex = glGetUniformBlockIndex(program, "lightData");
glBindBuffer(GL_UNIFORM_BUFFER, mUniformBuffer);
const GLsizei kStructCount = 2;
const GLsizei kVectorElementCount = 4;
const GLsizei kBytesPerElement = 4;
const GLsizei kDataSize = kStructCount * kVectorElementCount * kBytesPerElement;
std::vector<GLubyte> v(kDataSize, 0);
float *vAsFloat = reinterpret_cast<float *>(v.data());
vAsFloat[1] = 0.5f;
vAsFloat[kVectorElementCount + 1] = 0.5f;
glBufferData(GL_UNIFORM_BUFFER, kDataSize, v.data(), GL_STATIC_DRAW);
glBindBufferBase(GL_UNIFORM_BUFFER, 0, mUniformBuffer);
glUniformBlockBinding(program, uniformBufferIndex, 0);
drawQuad(program.get(), essl3_shaders::PositionAttrib(), 0.5f);
EXPECT_PIXEL_COLOR_EQ(0, 0, GLColor::green);
}
// Test with a block instance array containing an array of structs.
TEST_P(UniformBufferTest, BlockArrayContainingArrayOfStructs)
{
constexpr char kFS[] =
R"(#version 300 es
precision highp float;
out vec4 my_FragColor;
struct light_t
{
vec4 intensity;
};
layout(std140) uniform lightData { light_t lights[2]; } buffers[2];
vec4 processLight(vec4 lighting, light_t light)
{
return lighting + light.intensity;
}
void main()
{
vec4 lighting = vec4(0, 0, 0, 1);
lighting = processLight(lighting, buffers[0].lights[0]);
lighting = processLight(lighting, buffers[1].lights[1]);
my_FragColor = lighting;
})";
ANGLE_GL_PROGRAM(program, essl3_shaders::vs::Simple(), kFS);
GLint uniformBufferIndex = glGetUniformBlockIndex(program, "lightData[0]");
GLint uniformBuffer2Index = glGetUniformBlockIndex(program, "lightData[1]");
glBindBuffer(GL_UNIFORM_BUFFER, mUniformBuffer);
const GLsizei kStructCount = 2;
const GLsizei kVectorElementCount = 4;
const GLsizei kBytesPerElement = 4;
const GLsizei kDataSize = kStructCount * kVectorElementCount * kBytesPerElement;
std::vector<GLubyte> v(kDataSize, 0);
float *vAsFloat = reinterpret_cast<float *>(v.data());
// In the first struct/vector of the first block
vAsFloat[1] = 0.5f;
glBufferData(GL_UNIFORM_BUFFER, kDataSize, v.data(), GL_STATIC_DRAW);
GLBuffer uniformBuffer2;
glBindBuffer(GL_UNIFORM_BUFFER, uniformBuffer2);
vAsFloat[1] = 0.0f;
// In the second struct/vector of the second block
vAsFloat[kVectorElementCount + 1] = 0.5f;
glBufferData(GL_UNIFORM_BUFFER, kDataSize, v.data(), GL_STATIC_DRAW);
glBindBufferBase(GL_UNIFORM_BUFFER, 0, mUniformBuffer);
glBindBufferBase(GL_UNIFORM_BUFFER, 1, uniformBuffer2);
glUniformBlockBinding(program, uniformBufferIndex, 0);
glUniformBlockBinding(program, uniformBuffer2Index, 1);
drawQuad(program.get(), essl3_shaders::PositionAttrib(), 0.5f);
EXPECT_PIXEL_COLOR_EQ(0, 0, GLColor::green);
}
// Test with a block containing an array of structs containing arrays.
TEST_P(UniformBufferTest, BlockContainingArrayOfStructsContainingArrays)
{
constexpr char kFS[] =
R"(#version 300 es
precision highp float;
out vec4 my_FragColor;
struct light_t
{
vec4 intensity[3];
};
const int maxLights = 2;
layout(std140) uniform lightData { light_t lights[maxLights]; };
vec4 processLight(vec4 lighting, light_t light)
{
return lighting + light.intensity[1];
}
void main()
{
vec4 lighting = vec4(0, 0, 0, 1);
lighting = processLight(lighting, lights[0]);
lighting = processLight(lighting, lights[1]);
my_FragColor = lighting;
})";
ANGLE_GL_PROGRAM(program, essl3_shaders::vs::Simple(), kFS);
GLint uniformBufferIndex = glGetUniformBlockIndex(program, "lightData");
glBindBuffer(GL_UNIFORM_BUFFER, mUniformBuffer);
const GLsizei kStructCount = 2;
const GLsizei kVectorsPerStruct = 3;
const GLsizei kElementsPerVector = 4;
const GLsizei kBytesPerElement = 4;
const GLsizei kDataSize =
kStructCount * kVectorsPerStruct * kElementsPerVector * kBytesPerElement;
std::vector<GLubyte> v(kDataSize, 0);
float *vAsFloat = reinterpret_cast<float *>(v.data());
vAsFloat[kElementsPerVector + 1] = 0.5f;
vAsFloat[kVectorsPerStruct * kElementsPerVector + kElementsPerVector + 1] = 0.5f;
glBufferData(GL_UNIFORM_BUFFER, kDataSize, v.data(), GL_STATIC_DRAW);
glBindBufferBase(GL_UNIFORM_BUFFER, 0, mUniformBuffer);
glUniformBlockBinding(program, uniformBufferIndex, 0);
drawQuad(program.get(), essl3_shaders::PositionAttrib(), 0.5f);
EXPECT_PIXEL_COLOR_EQ(0, 0, GLColor::green);
}
// Test with a block containing nested structs.
TEST_P(UniformBufferTest, BlockContainingNestedStructs)
{
constexpr char kFS[] =
"#version 300 es\n"
"precision highp float;\n"
"out vec4 my_FragColor;\n"
"struct light_t {\n"
" vec4 intensity;\n"
"};\n"
"struct lightWrapper_t {\n"
" light_t light;\n"
"};\n"
"const int maxLights = 2;\n"
"layout(std140) uniform lightData { lightWrapper_t lightWrapper; };\n"
"vec4 processLight(vec4 lighting, lightWrapper_t aLightWrapper)\n"
"{\n"
" return lighting + aLightWrapper.light.intensity;\n"
"}\n"
"void main()\n"
"{\n"
" vec4 lighting = vec4(0, 0, 0, 1);\n"
" for (int n = 0; n < maxLights; n++)\n"
" {\n"
" lighting = processLight(lighting, lightWrapper);\n"
" }\n"
" my_FragColor = lighting;\n"
"}\n";
ANGLE_GL_PROGRAM(program, essl3_shaders::vs::Simple(), kFS);
GLint uniformBufferIndex = glGetUniformBlockIndex(program, "lightData");
glBindBuffer(GL_UNIFORM_BUFFER, mUniformBuffer);
const GLsizei kVectorsPerStruct = 3;
const GLsizei kElementsPerVector = 4;
const GLsizei kBytesPerElement = 4;
const GLsizei kDataSize = kVectorsPerStruct * kElementsPerVector * kBytesPerElement;
std::vector<GLubyte> v(kDataSize, 0);
float *vAsFloat = reinterpret_cast<float *>(v.data());
vAsFloat[1] = 1.0f;
glBufferData(GL_UNIFORM_BUFFER, kDataSize, v.data(), GL_STATIC_DRAW);
glBindBufferBase(GL_UNIFORM_BUFFER, 0, mUniformBuffer);
glUniformBlockBinding(program, uniformBufferIndex, 0);
drawQuad(program.get(), essl3_shaders::PositionAttrib(), 0.5f);
EXPECT_PIXEL_COLOR_EQ(0, 0, GLColor::green);
}
// Tests GetUniformBlockIndex return value on error.
TEST_P(UniformBufferTest, GetUniformBlockIndexDefaultReturn)
{
ASSERT_FALSE(glIsProgram(99));
EXPECT_EQ(GL_INVALID_INDEX, glGetUniformBlockIndex(99, "farts"));
EXPECT_GL_ERROR(GL_INVALID_VALUE);
}
// Block names can be reserved names in GLSL, as long as they're not reserved in GLSL ES.
TEST_P(UniformBufferTest, UniformBlockReservedOpenGLName)
{
constexpr char kFS[] =
"#version 300 es\n"
"precision highp float;\n"
"out vec4 my_FragColor;\n"
"layout(std140) uniform buffer { vec4 color; };\n"
"void main()\n"
"{\n"
" my_FragColor = color;\n"
"}\n";
ANGLE_GL_PROGRAM(program, essl3_shaders::vs::Simple(), kFS);
GLint uniformBufferIndex = glGetUniformBlockIndex(program, "buffer");
glBindBuffer(GL_UNIFORM_BUFFER, mUniformBuffer);
const GLsizei kElementsPerVector = 4;
const GLsizei kBytesPerElement = 4;
const GLsizei kDataSize = kElementsPerVector * kBytesPerElement;
std::vector<GLubyte> v(kDataSize, 0);
float *vAsFloat = reinterpret_cast<float *>(v.data());
vAsFloat[1] = 1.0f;
vAsFloat[3] = 1.0f;
glBufferData(GL_UNIFORM_BUFFER, kDataSize, v.data(), GL_STATIC_DRAW);
glBindBufferBase(GL_UNIFORM_BUFFER, 0, mUniformBuffer);
glUniformBlockBinding(program, uniformBufferIndex, 0);
drawQuad(program.get(), essl3_shaders::PositionAttrib(), 0.5f);
EXPECT_PIXEL_COLOR_EQ(0, 0, GLColor::green);
}
// Block instance names can be reserved names in GLSL, as long as they're not reserved in GLSL ES.
TEST_P(UniformBufferTest, UniformBlockInstanceReservedOpenGLName)
{
constexpr char kFS[] =
"#version 300 es\n"
"precision highp float;\n"
"out vec4 my_FragColor;\n"
"layout(std140) uniform dmat2 { vec4 color; } buffer;\n"
"void main()\n"
"{\n"
" my_FragColor = buffer.color;\n"
"}\n";
ANGLE_GL_PROGRAM(program, essl3_shaders::vs::Simple(), kFS);
GLint uniformBufferIndex = glGetUniformBlockIndex(program, "dmat2");
glBindBuffer(GL_UNIFORM_BUFFER, mUniformBuffer);
const GLsizei kElementsPerVector = 4;
const GLsizei kBytesPerElement = 4;
const GLsizei kDataSize = kElementsPerVector * kBytesPerElement;
std::vector<GLubyte> v(kDataSize, 0);
float *vAsFloat = reinterpret_cast<float *>(v.data());
vAsFloat[1] = 1.0f;
vAsFloat[3] = 1.0f;
glBufferData(GL_UNIFORM_BUFFER, kDataSize, v.data(), GL_STATIC_DRAW);
glBindBufferBase(GL_UNIFORM_BUFFER, 0, mUniformBuffer);
glUniformBlockBinding(program, uniformBufferIndex, 0);
drawQuad(program.get(), essl3_shaders::PositionAttrib(), 0.5f);
EXPECT_PIXEL_COLOR_EQ(0, 0, GLColor::green);
}
// Test that uniform block instance with nested structs that contain vec3s inside is handled
// correctly. This is meant to test that HLSL structure padding to implement std140 layout works
// together with uniform blocks.
TEST_P(UniformBufferTest, Std140UniformBlockInstanceWithNestedStructsContainingVec3s)
{
// Got incorrect test result on non-NVIDIA Android - the alpha channel was not set correctly
// from the second vector, possibly the platform doesn't implement std140 packing right?
// http://anglebug.com/2217
ANGLE_SKIP_TEST_IF(IsAndroid() && !IsNVIDIA());
constexpr char kFS[] =
R"(#version 300 es
precision highp float;
out vec4 my_FragColor;
struct Sinner {
vec3 v;
};
struct S {
Sinner s1;
Sinner s2;
};
layout(std140) uniform structBuffer { S s; } buffer;
void accessStruct(S s)
{
my_FragColor = vec4(s.s1.v.xy, s.s2.v.xy);
}
void main()
{
accessStruct(buffer.s);
})";
ANGLE_GL_PROGRAM(program, essl3_shaders::vs::Simple(), kFS);
GLint uniformBufferIndex = glGetUniformBlockIndex(program, "structBuffer");
glBindBuffer(GL_UNIFORM_BUFFER, mUniformBuffer);
const GLsizei kVectorsPerBlock = 2;
const GLsizei kElementsPerPaddedVector = 4;
const GLsizei kBytesPerElement = 4;
const GLsizei kDataSize = kVectorsPerBlock * kElementsPerPaddedVector * kBytesPerElement;
std::vector<GLubyte> v(kDataSize, 0);
float *vAsFloat = reinterpret_cast<float *>(v.data());
// Set second value in each vec3.
vAsFloat[1u] = 1.0f;
vAsFloat[4u + 1u] = 1.0f;
glBufferData(GL_UNIFORM_BUFFER, kDataSize, v.data(), GL_STATIC_DRAW);
glBindBufferBase(GL_UNIFORM_BUFFER, 0, mUniformBuffer);
glUniformBlockBinding(program, uniformBufferIndex, 0);
drawQuad(program.get(), essl3_shaders::PositionAttrib(), 0.5f);
EXPECT_PIXEL_COLOR_EQ(0, 0, GLColor::green);
}
// Tests the detaching shaders from the program and using uniform blocks works.
// This covers a bug in ANGLE's D3D back-end.
TEST_P(UniformBufferTest, DetachShaders)
{
GLuint vertexShader = CompileShader(GL_VERTEX_SHADER, essl3_shaders::vs::Simple());
ASSERT_NE(0u, vertexShader);
GLuint kFS = CompileShader(GL_FRAGMENT_SHADER, mkFS);
ASSERT_NE(0u, kFS);
GLuint program = glCreateProgram();
glAttachShader(program, vertexShader);
glAttachShader(program, kFS);
ASSERT_TRUE(LinkAttachedProgram(program));
glDetachShader(program, vertexShader);
glDetachShader(program, kFS);
glDeleteShader(vertexShader);
glDeleteShader(kFS);
glClear(GL_COLOR_BUFFER_BIT);
float floatData[4] = {0.5f, 0.75f, 0.25f, 1.0f};
glBindBuffer(GL_UNIFORM_BUFFER, mUniformBuffer);
glBufferData(GL_UNIFORM_BUFFER, sizeof(float) * 4, floatData, GL_STATIC_DRAW);
glBindBufferBase(GL_UNIFORM_BUFFER, 0, mUniformBuffer);
GLint uniformBufferIndex = glGetUniformBlockIndex(mProgram, "uni");
ASSERT_NE(uniformBufferIndex, -1);
glUniformBlockBinding(program, uniformBufferIndex, 0);
drawQuad(program, essl3_shaders::PositionAttrib(), 0.5f);
ASSERT_GL_NO_ERROR();
EXPECT_PIXEL_NEAR(0, 0, 128, 191, 64, 255, 1);
glDeleteProgram(program);
}
// Test a uniform block where the whole block is set as row-major.
TEST_P(UniformBufferTest, Std140UniformBlockWithRowMajorQualifier)
{
// AMD OpenGL driver doesn't seem to apply the row-major qualifier right.
// http://anglebug.com/2273
ANGLE_SKIP_TEST_IF(IsAMD() && IsOpenGL());
constexpr char kFS[] =
R"(#version 300 es
precision highp float;
out vec4 my_FragColor;
layout(std140, row_major) uniform matrixBuffer
{
mat2 m;
} buffer;
void main()
{
// Vector constructor accesses elements in column-major order.
my_FragColor = vec4(buffer.m);
})";
ANGLE_GL_PROGRAM(program, essl3_shaders::vs::Simple(), kFS);
GLint uniformBufferIndex = glGetUniformBlockIndex(program, "matrixBuffer");
glBindBuffer(GL_UNIFORM_BUFFER, mUniformBuffer);
const GLsizei kElementsPerMatrix = 8; // Each mat2 row gets padded into a vec4.
const GLsizei kBytesPerElement = 4;
const GLsizei kDataSize = kElementsPerMatrix * kBytesPerElement;
std::vector<GLubyte> v(kDataSize, 0);
float *vAsFloat = reinterpret_cast<float *>(v.data());
vAsFloat[0u] = 1.0f;
vAsFloat[1u] = 128.0f / 255.0f;
vAsFloat[4u] = 64.0f / 255.0f;
vAsFloat[5u] = 32.0f / 255.0f;
glBufferData(GL_UNIFORM_BUFFER, kDataSize, v.data(), GL_STATIC_DRAW);
glBindBufferBase(GL_UNIFORM_BUFFER, 0, mUniformBuffer);
glUniformBlockBinding(program, uniformBufferIndex, 0);
drawQuad(program.get(), essl3_shaders::PositionAttrib(), 0.5f);
ASSERT_GL_NO_ERROR();
EXPECT_PIXEL_COLOR_NEAR(0, 0, GLColor(255, 64, 128, 32), 5);
}
// Test a uniform block where an individual matrix field is set as row-major whereas the whole block
// is set as column-major.
TEST_P(UniformBufferTest, Std140UniformBlockWithPerMemberRowMajorQualifier)
{
// AMD OpenGL driver doesn't seem to apply the row-major qualifier right.
// http://anglebug.com/2273
ANGLE_SKIP_TEST_IF(IsAMD() && IsOpenGL());
constexpr char kFS[] =
R"(#version 300 es
precision highp float;
out vec4 my_FragColor;
layout(std140, column_major) uniform matrixBuffer
{
layout(row_major) mat2 m;
} buffer;
void main()
{
// Vector constructor accesses elements in column-major order.
my_FragColor = vec4(buffer.m);
})";
ANGLE_GL_PROGRAM(program, essl3_shaders::vs::Simple(), kFS);
GLint uniformBufferIndex = glGetUniformBlockIndex(program, "matrixBuffer");
glBindBuffer(GL_UNIFORM_BUFFER, mUniformBuffer);
const GLsizei kElementsPerMatrix = 8; // Each mat2 row gets padded into a vec4.
const GLsizei kBytesPerElement = 4;
const GLsizei kDataSize = kElementsPerMatrix * kBytesPerElement;
std::vector<GLubyte> v(kDataSize, 0);
float *vAsFloat = reinterpret_cast<float *>(v.data());
vAsFloat[0u] = 1.0f;
vAsFloat[1u] = 128.0f / 255.0f;
vAsFloat[4u] = 64.0f / 255.0f;
vAsFloat[5u] = 32.0f / 255.0f;
glBufferData(GL_UNIFORM_BUFFER, kDataSize, v.data(), GL_STATIC_DRAW);
glBindBufferBase(GL_UNIFORM_BUFFER, 0, mUniformBuffer);
glUniformBlockBinding(program, uniformBufferIndex, 0);
drawQuad(program.get(), essl3_shaders::PositionAttrib(), 0.5f);
ASSERT_GL_NO_ERROR();
EXPECT_PIXEL_COLOR_NEAR(0, 0, GLColor(255, 64, 128, 32), 5);
}
// Test a uniform block where an individual matrix field is set as column-major whereas the whole
// block is set as row-major.
TEST_P(UniformBufferTest, Std140UniformBlockWithPerMemberColumnMajorQualifier)
{
constexpr char kFS[] =
R"(#version 300 es
precision highp float;
out vec4 my_FragColor;
layout(std140, row_major) uniform matrixBuffer
{
// 2 columns, 3 rows.
layout(column_major) mat2x3 m;
} buffer;
void main()
{
// Vector constructor accesses elements in column-major order.
my_FragColor = vec4(buffer.m);
})";
ANGLE_GL_PROGRAM(program, essl3_shaders::vs::Simple(), kFS);
GLint uniformBufferIndex = glGetUniformBlockIndex(program, "matrixBuffer");
glBindBuffer(GL_UNIFORM_BUFFER, mUniformBuffer);
const GLsizei kElementsPerMatrix = 8; // Each mat2x3 column gets padded into a vec4.
const GLsizei kBytesPerElement = 4;
const GLsizei kDataSize = kElementsPerMatrix * kBytesPerElement;
std::vector<GLubyte> v(kDataSize, 0);
float *vAsFloat = reinterpret_cast<float *>(v.data());
vAsFloat[0u] = 1.0f;
vAsFloat[1u] = 192.0f / 255.0f;
vAsFloat[2u] = 128.0f / 255.0f;
vAsFloat[4u] = 96.0f / 255.0f;
vAsFloat[5u] = 64.0f / 255.0f;
vAsFloat[6u] = 32.0f / 255.0f;
glBufferData(GL_UNIFORM_BUFFER, kDataSize, v.data(), GL_STATIC_DRAW);
glBindBufferBase(GL_UNIFORM_BUFFER, 0, mUniformBuffer);
glUniformBlockBinding(program, uniformBufferIndex, 0);
drawQuad(program.get(), essl3_shaders::PositionAttrib(), 0.5f);
ASSERT_GL_NO_ERROR();
EXPECT_PIXEL_COLOR_NEAR(0, 0, GLColor(255, 192, 128, 96), 5);
}
// Test a uniform block where a struct field is set as row-major.
TEST_P(UniformBufferTest, Std140UniformBlockWithRowMajorQualifierOnStruct)
{
// AMD OpenGL driver doesn't seem to apply the row-major qualifier right.
// http://anglebug.com/2273
ANGLE_SKIP_TEST_IF(IsAMD() && IsOpenGL());
constexpr char kFS[] =
R"(#version 300 es
precision highp float;
out vec4 my_FragColor;
struct S
{
mat2 m;
};
layout(std140) uniform matrixBuffer
{
layout(row_major) S s;
} buffer;
void main()
{
// Vector constructor accesses elements in column-major order.
my_FragColor = vec4(buffer.s.m);
})";
ANGLE_GL_PROGRAM(program, essl3_shaders::vs::Simple(), kFS);
GLint uniformBufferIndex = glGetUniformBlockIndex(program, "matrixBuffer");
glBindBuffer(GL_UNIFORM_BUFFER, mUniformBuffer);
const GLsizei kElementsPerMatrix = 8; // Each mat2 row gets padded into a vec4.
const GLsizei kBytesPerElement = 4;
const GLsizei kDataSize = kElementsPerMatrix * kBytesPerElement;
std::vector<GLubyte> v(kDataSize, 0);
float *vAsFloat = reinterpret_cast<float *>(v.data());
vAsFloat[0u] = 1.0f;
vAsFloat[1u] = 128.0f / 255.0f;
vAsFloat[4u] = 64.0f / 255.0f;
vAsFloat[5u] = 32.0f / 255.0f;
glBufferData(GL_UNIFORM_BUFFER, kDataSize, v.data(), GL_STATIC_DRAW);
glBindBufferBase(GL_UNIFORM_BUFFER, 0, mUniformBuffer);
glUniformBlockBinding(program, uniformBufferIndex, 0);
drawQuad(program.get(), essl3_shaders::PositionAttrib(), 0.5f);
ASSERT_GL_NO_ERROR();
EXPECT_PIXEL_COLOR_NEAR(0, 0, GLColor(255, 64, 128, 32), 5);
}
constexpr char kFragmentShader[] = R"(#version 300 es
precision mediump float;
layout (std140) uniform color_ubo
{
vec4 color;
};
out vec4 fragColor;
void main()
{
fragColor = color;
})";
// Regression test for a dirty bit bug in ANGLE. See http://crbug.com/792966
TEST_P(UniformBufferTest, SimpleBindingChange)
{
// http://anglebug.com/2287
ANGLE_SKIP_TEST_IF(IsOSX() && IsNVIDIA() && IsDesktopOpenGL());
ANGLE_GL_PROGRAM(program, essl3_shaders::vs::Simple(), kFragmentShader);
glBindAttribLocation(program, 0, essl3_shaders::PositionAttrib());
glUseProgram(program);
GLint uboIndex = glGetUniformBlockIndex(program, "color_ubo");
std::array<GLfloat, 12> vertices{{-1, -1, 0, 1, -1, 0, -1, 1, 0, 1, 1, 0}};
GLBuffer vertexBuf;
glBindBuffer(GL_ARRAY_BUFFER, vertexBuf);
glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(GLfloat), vertices.data(),
GL_STATIC_DRAW);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, false, 0, 0);
std::array<GLshort, 12> indexData = {{0, 1, 2, 2, 1, 3, 0, 1, 2, 2, 1, 3}};
GLBuffer indexBuf;
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexBuf);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indexData.size() * sizeof(GLshort), indexData.data(),
GL_STATIC_DRAW);
// Bind a first buffer with red.
GLBuffer uboBuf1;
glBindBufferBase(GL_UNIFORM_BUFFER, 0, uboBuf1);
glBufferData(GL_UNIFORM_BUFFER, sizeof(GLColor32F), &kFloatRed, GL_STATIC_DRAW);
glUniformBlockBinding(program, uboIndex, 0);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, 0);
// Bind a second buffer with green, updating the buffer binding.
GLBuffer uboBuf2;
glBindBufferBase(GL_UNIFORM_BUFFER, 1, uboBuf2);
glBufferData(GL_UNIFORM_BUFFER, sizeof(GLColor32F), &kFloatGreen, GL_STATIC_DRAW);
glUniformBlockBinding(program, uboIndex, 1);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, reinterpret_cast<const GLvoid *>(12));
// Verify we get the second buffer.
ASSERT_GL_NO_ERROR();
EXPECT_PIXEL_COLOR_EQ(0, 0, GLColor::green);
}
// Regression test for a dirty bit bug in ANGLE. Same as above but for the indexed bindings.
TEST_P(UniformBufferTest, SimpleBufferChange)
{
ANGLE_GL_PROGRAM(program, essl3_shaders::vs::Simple(), kFragmentShader);
glBindAttribLocation(program, 0, essl3_shaders::PositionAttrib());
glUseProgram(program);
GLint uboIndex = glGetUniformBlockIndex(program, "color_ubo");
std::array<GLfloat, 12> vertices{{-1, -1, 0, 1, -1, 0, -1, 1, 0, 1, 1, 0}};
GLBuffer vertexBuf;
glBindBuffer(GL_ARRAY_BUFFER, vertexBuf);
glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(GLfloat), vertices.data(),
GL_STATIC_DRAW);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, false, 0, 0);
std::array<GLshort, 12> indexData = {{0, 1, 2, 2, 1, 3, 0, 1, 2, 2, 1, 3}};
GLBuffer indexBuf;
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexBuf);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indexData.size() * sizeof(GLshort), indexData.data(),
GL_STATIC_DRAW);
// Bind a first buffer with red.
GLBuffer uboBuf1;
glBindBufferBase(GL_UNIFORM_BUFFER, 0, uboBuf1);
glBufferData(GL_UNIFORM_BUFFER, sizeof(GLColor32F), &kFloatRed, GL_STATIC_DRAW);
glUniformBlockBinding(program, uboIndex, 0);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, 0);
// Bind a second buffer to the same binding point (0). This should set to draw green.
GLBuffer uboBuf2;
glBindBufferBase(GL_UNIFORM_BUFFER, 0, uboBuf2);
glBufferData(GL_UNIFORM_BUFFER, sizeof(GLColor32F), &kFloatGreen, GL_STATIC_DRAW);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, reinterpret_cast<const GLvoid *>(12));
ASSERT_GL_NO_ERROR();
EXPECT_PIXEL_COLOR_EQ(0, 0, GLColor::green);
}
// Tests a bug in the D3D11 back-end where re-creating the buffer storage should trigger a state
// update in the State Manager class.
TEST_P(UniformBufferTest, DependentBufferChange)
{
ANGLE_GL_PROGRAM(program, essl3_shaders::vs::Simple(), kFragmentShader);
glBindAttribLocation(program, 0, essl3_shaders::PositionAttrib());
glUseProgram(program);
GLint uboIndex = glGetUniformBlockIndex(program, "color_ubo");
std::array<GLfloat, 12> vertices{{-1, -1, 0, 1, -1, 0, -1, 1, 0, 1, 1, 0}};
GLBuffer vertexBuf;
glBindBuffer(GL_ARRAY_BUFFER, vertexBuf);
glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(GLfloat), vertices.data(),
GL_STATIC_DRAW);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, false, 0, 0);
std::array<GLshort, 6> indexData = {{0, 1, 2, 2, 1, 3}};
GLBuffer indexBuf;
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexBuf);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indexData.size() * sizeof(GLshort), indexData.data(),
GL_STATIC_DRAW);
GLBuffer ubo;
glBindBufferBase(GL_UNIFORM_BUFFER, 0, ubo);
glBufferData(GL_UNIFORM_BUFFER, sizeof(GLColor32F), &kFloatRed, GL_STATIC_DRAW);
glUniformBlockBinding(program, uboIndex, 0);
glDrawElements(GL_TRIANGLES, 3, GL_UNSIGNED_SHORT, 0);
ASSERT_GL_NO_ERROR();
EXPECT_PIXEL_COLOR_EQ(0, 0, GLColor::red);
// Resize the buffer - triggers a re-allocation in the D3D11 back-end.
std::vector<GLColor32F> bigData(128, kFloatGreen);
glBufferData(GL_UNIFORM_BUFFER, sizeof(GLColor32F) * bigData.size(), bigData.data(),
GL_STATIC_DRAW);
glDrawElements(GL_TRIANGLES, 3, GL_UNSIGNED_SHORT, 0);
ASSERT_GL_NO_ERROR();
EXPECT_PIXEL_COLOR_EQ(0, 0, GLColor::green);
}
// Recreate WebGL conformance test conformance2/uniforms/large-uniform-buffers.html to test
// regression in http://anglebug.com/3388
TEST_P(UniformBufferTest, SizeOverMaxBlockSize)
{
// Test crashes on Windows AMD OpenGL
ANGLE_SKIP_TEST_IF(IsAMD() && IsWindows() && IsOpenGL());
ANGLE_GL_PROGRAM(program, essl3_shaders::vs::Simple(), kFragmentShader);
glBindAttribLocation(program, 0, essl3_shaders::PositionAttrib());
glUseProgram(program);
GLint uboIndex = glGetUniformBlockIndex(program, "color_ubo");
std::array<GLfloat, 12> vertices{{-1, -1, 0, 1, -1, 0, -1, 1, 0, 1, 1, 0}};
GLBuffer vertexBuf;
glBindBuffer(GL_ARRAY_BUFFER, vertexBuf);
glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(GLfloat), vertices.data(),
GL_STATIC_DRAW);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, false, 0, 0);
std::array<GLshort, 6> indexData = {{0, 1, 2, 2, 1, 3}};
GLBuffer indexBuf;
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexBuf);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indexData.size() * sizeof(GLshort), indexData.data(),
GL_STATIC_DRAW);
GLint uboDataSize = 0;
glGetActiveUniformBlockiv(program, uboIndex, GL_UNIFORM_BLOCK_DATA_SIZE, &uboDataSize);
EXPECT_NE(uboDataSize, 0); // uniform block data size invalid
GLint64 maxUniformBlockSize;
glGetInteger64v(GL_MAX_UNIFORM_BLOCK_SIZE, &maxUniformBlockSize);
GLBuffer uboBuf;
std::vector<GLfloat> uboData;
uboData.resize(maxUniformBlockSize * 2); // underlying data is twice the max block size
GLint offs0 = 0;
// Red
uboData[offs0 + 0] = 1;
uboData[offs0 + 1] = 0;
uboData[offs0 + 2] = 0;
uboData[offs0 + 3] = 1;
GLint offs1 = maxUniformBlockSize;
GLint alignment = 0;
glGetIntegerv(GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT, &alignment);
EXPECT_EQ(offs1 % alignment, 0);
// Green
uboData[offs1 + 0] = 0;
uboData[offs1 + 1] = 1;
uboData[offs1 + 2] = 0;
uboData[offs1 + 3] = 1;
glUniformBlockBinding(program, uboIndex, 0);
glBindBufferBase(GL_UNIFORM_BUFFER, 0, uboBuf);
glBufferData(GL_UNIFORM_BUFFER, uboData.size() * sizeof(GLfloat), uboData.data(),
GL_STATIC_DRAW);
ASSERT_GL_NO_ERROR(); // No errors from setup
// Draw lower triangle - should be red
glBindBufferRange(GL_UNIFORM_BUFFER, 0, uboBuf, offs0 * sizeof(float), 4 * sizeof(float));
glDrawElements(GL_TRIANGLES, 3, GL_UNSIGNED_SHORT, 0);
ASSERT_GL_NO_ERROR(); // No errors from draw
// Draw upper triangle - should be green
glBindBufferRange(GL_UNIFORM_BUFFER, 0, uboBuf, offs1 * sizeof(float), 4 * sizeof(float));
glDrawElements(GL_TRIANGLES, 3, GL_UNSIGNED_SHORT,
reinterpret_cast<void *>(3 * sizeof(GLshort)));
ASSERT_GL_NO_ERROR(); // No errors from draw
GLint width = getWindowWidth();
GLint height = getWindowHeight();
// Lower left should be red
EXPECT_PIXEL_COLOR_EQ(width / 2 - 5, height / 2 - 5, GLColor::red);
// Top right should be green
EXPECT_PIXEL_COLOR_EQ(width / 2 + 5, height / 2 + 5, GLColor::green);
}
// Use this to select which configurations (e.g. which renderer, which GLES major version) these
// tests should be run against.
ANGLE_INSTANTIATE_TEST_ES3(UniformBufferTest);
ANGLE_INSTANTIATE_TEST_ES31(UniformBufferTest31);
} // namespace