| /* |
| ** 2011 March 24 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** |
| ** Code for a demonstration virtual table that generates variations |
| ** on an input word at increasing edit distances from the original. |
| ** |
| ** A fuzzer virtual table is created like this: |
| ** |
| ** CREATE VIRTUAL TABLE f USING fuzzer(<fuzzer-data-table>); |
| ** |
| ** When it is created, the new fuzzer table must be supplied with the |
| ** name of a "fuzzer data table", which must reside in the same database |
| ** file as the new fuzzer table. The fuzzer data table contains the various |
| ** transformations and their costs that the fuzzer logic uses to generate |
| ** variations. |
| ** |
| ** The fuzzer data table must contain exactly four columns (more precisely, |
| ** the statement "SELECT * FROM <fuzzer_data_table>" must return records |
| ** that consist of four columns). It does not matter what the columns are |
| ** named. |
| ** |
| ** Each row in the fuzzer data table represents a single character |
| ** transformation. The left most column of the row (column 0) contains an |
| ** integer value - the identifier of the ruleset to which the transformation |
| ** rule belongs (see "MULTIPLE RULE SETS" below). The second column of the |
| ** row (column 0) contains the input character or characters. The third |
| ** column contains the output character or characters. And the fourth column |
| ** contains the integer cost of making the transformation. For example: |
| ** |
| ** CREATE TABLE f_data(ruleset, cFrom, cTo, Cost); |
| ** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, '', 'a', 100); |
| ** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'b', '', 87); |
| ** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'o', 'oe', 38); |
| ** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'oe', 'o', 40); |
| ** |
| ** The first row inserted into the fuzzer data table by the SQL script |
| ** above indicates that the cost of inserting a letter 'a' is 100. (All |
| ** costs are integers. We recommend that costs be scaled so that the |
| ** average cost is around 100.) The second INSERT statement creates a rule |
| ** saying that the cost of deleting a single letter 'b' is 87. The third |
| ** and fourth INSERT statements mean that the cost of transforming a |
| ** single letter "o" into the two-letter sequence "oe" is 38 and that the |
| ** cost of transforming "oe" back into "o" is 40. |
| ** |
| ** The contents of the fuzzer data table are loaded into main memory when |
| ** a fuzzer table is first created, and may be internally reloaded by the |
| ** system at any subsequent time. Therefore, the fuzzer data table should be |
| ** populated before the fuzzer table is created and not modified thereafter. |
| ** If you do need to modify the contents of the fuzzer data table, it is |
| ** recommended that the associated fuzzer table be dropped, the fuzzer data |
| ** table edited, and the fuzzer table recreated within a single transaction. |
| ** Alternatively, the fuzzer data table can be edited then the database |
| ** connection can be closed and reopened. |
| ** |
| ** Once it has been created, the fuzzer table can be queried as follows: |
| ** |
| ** SELECT word, distance FROM f |
| ** WHERE word MATCH 'abcdefg' |
| ** AND distance<200; |
| ** |
| ** This first query outputs the string "abcdefg" and all strings that |
| ** can be derived from that string by appling the specified transformations. |
| ** The strings are output together with their total transformation cost |
| ** (called "distance") and appear in order of increasing cost. No string |
| ** is output more than once. If there are multiple ways to transform the |
| ** target string into the output string then the lowest cost transform is |
| ** the one that is returned. In the example, the search is limited to |
| ** strings with a total distance of less than 200. |
| ** |
| ** The fuzzer is a read-only table. Any attempt to DELETE, INSERT, or |
| ** UPDATE on a fuzzer table will throw an error. |
| ** |
| ** It is important to put some kind of a limit on the fuzzer output. This |
| ** can be either in the form of a LIMIT clause at the end of the query, |
| ** or better, a "distance<NNN" constraint where NNN is some number. The |
| ** running time and memory requirement is exponential in the value of NNN |
| ** so you want to make sure that NNN is not too big. A value of NNN that |
| ** is about twice the average transformation cost seems to give good results. |
| ** |
| ** The fuzzer table can be useful for tasks such as spelling correction. |
| ** Suppose there is a second table vocabulary(w) where the w column contains |
| ** all correctly spelled words. Let $word be a word you want to look up. |
| ** |
| ** SELECT vocabulary.w FROM f, vocabulary |
| ** WHERE f.word MATCH $word |
| ** AND f.distance<=200 |
| ** AND f.word=vocabulary.w |
| ** LIMIT 20 |
| ** |
| ** The query above gives the 20 closest words to the $word being tested. |
| ** (Note that for good performance, the vocubulary.w column should be |
| ** indexed.) |
| ** |
| ** A similar query can be used to find all words in the dictionary that |
| ** begin with some prefix $prefix: |
| ** |
| ** SELECT vocabulary.w FROM f, vocabulary |
| ** WHERE f.word MATCH $prefix |
| ** AND f.distance<=200 |
| ** AND vocabulary.w BETWEEN f.word AND (f.word || x'F7BFBFBF') |
| ** LIMIT 50 |
| ** |
| ** This last query will show up to 50 words out of the vocabulary that |
| ** match or nearly match the $prefix. |
| ** |
| ** MULTIPLE RULE SETS |
| ** |
| ** Normally, the "ruleset" value associated with all character transformations |
| ** in the fuzzer data table is zero. However, if required, the fuzzer table |
| ** allows multiple rulesets to be defined. Each query uses only a single |
| ** ruleset. This allows, for example, a single fuzzer table to support |
| ** multiple languages. |
| ** |
| ** By default, only the rules from ruleset 0 are used. To specify an |
| ** alternative ruleset, a "ruleset = ?" expression must be added to the |
| ** WHERE clause of a SELECT, where ? is the identifier of the desired |
| ** ruleset. For example: |
| ** |
| ** SELECT vocabulary.w FROM f, vocabulary |
| ** WHERE f.word MATCH $word |
| ** AND f.distance<=200 |
| ** AND f.word=vocabulary.w |
| ** AND f.ruleset=1 -- Specify the ruleset to use here |
| ** LIMIT 20 |
| ** |
| ** If no "ruleset = ?" constraint is specified in the WHERE clause, ruleset |
| ** 0 is used. |
| ** |
| ** LIMITS |
| ** |
| ** The maximum ruleset number is 2147483647. The maximum length of either |
| ** of the strings in the second or third column of the fuzzer data table |
| ** is 50 bytes. The maximum cost on a rule is 1000. |
| */ |
| #include "sqlite3ext.h" |
| SQLITE_EXTENSION_INIT1 |
| |
| /* If SQLITE_DEBUG is not defined, disable assert statements. */ |
| #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) |
| # define NDEBUG |
| #endif |
| |
| #include <stdlib.h> |
| #include <string.h> |
| #include <assert.h> |
| #include <stdio.h> |
| |
| #ifndef SQLITE_OMIT_VIRTUALTABLE |
| |
| /* |
| ** Forward declaration of objects used by this implementation |
| */ |
| typedef struct fuzzer_vtab fuzzer_vtab; |
| typedef struct fuzzer_cursor fuzzer_cursor; |
| typedef struct fuzzer_rule fuzzer_rule; |
| typedef struct fuzzer_seen fuzzer_seen; |
| typedef struct fuzzer_stem fuzzer_stem; |
| |
| /* |
| ** Various types. |
| ** |
| ** fuzzer_cost is the "cost" of an edit operation. |
| ** |
| ** fuzzer_len is the length of a matching string. |
| ** |
| ** fuzzer_ruleid is an ruleset identifier. |
| */ |
| typedef int fuzzer_cost; |
| typedef signed char fuzzer_len; |
| typedef int fuzzer_ruleid; |
| |
| /* |
| ** Limits |
| */ |
| #define FUZZER_MX_LENGTH 50 /* Maximum length of a rule string */ |
| #define FUZZER_MX_RULEID 2147483647 /* Maximum rule ID */ |
| #define FUZZER_MX_COST 1000 /* Maximum single-rule cost */ |
| #define FUZZER_MX_OUTPUT_LENGTH 100 /* Maximum length of an output string */ |
| |
| |
| /* |
| ** Each transformation rule is stored as an instance of this object. |
| ** All rules are kept on a linked list sorted by rCost. |
| */ |
| struct fuzzer_rule { |
| fuzzer_rule *pNext; /* Next rule in order of increasing rCost */ |
| char *zFrom; /* Transform from */ |
| fuzzer_cost rCost; /* Cost of this transformation */ |
| fuzzer_len nFrom, nTo; /* Length of the zFrom and zTo strings */ |
| fuzzer_ruleid iRuleset; /* The rule set to which this rule belongs */ |
| char zTo[4]; /* Transform to (extra space appended) */ |
| }; |
| |
| /* |
| ** A stem object is used to generate variants. It is also used to record |
| ** previously generated outputs. |
| ** |
| ** Every stem is added to a hash table as it is output. Generation of |
| ** duplicate stems is suppressed. |
| ** |
| ** Active stems (those that might generate new outputs) are kepts on a linked |
| ** list sorted by increasing cost. The cost is the sum of rBaseCost and |
| ** pRule->rCost. |
| */ |
| struct fuzzer_stem { |
| char *zBasis; /* Word being fuzzed */ |
| const fuzzer_rule *pRule; /* Current rule to apply */ |
| fuzzer_stem *pNext; /* Next stem in rCost order */ |
| fuzzer_stem *pHash; /* Next stem with same hash on zBasis */ |
| fuzzer_cost rBaseCost; /* Base cost of getting to zBasis */ |
| fuzzer_cost rCostX; /* Precomputed rBaseCost + pRule->rCost */ |
| fuzzer_len nBasis; /* Length of the zBasis string */ |
| fuzzer_len n; /* Apply pRule at this character offset */ |
| }; |
| |
| /* |
| ** A fuzzer virtual-table object |
| */ |
| struct fuzzer_vtab { |
| sqlite3_vtab base; /* Base class - must be first */ |
| char *zClassName; /* Name of this class. Default: "fuzzer" */ |
| fuzzer_rule *pRule; /* All active rules in this fuzzer */ |
| int nCursor; /* Number of active cursors */ |
| }; |
| |
| #define FUZZER_HASH 4001 /* Hash table size */ |
| #define FUZZER_NQUEUE 20 /* Number of slots on the stem queue */ |
| |
| /* A fuzzer cursor object */ |
| struct fuzzer_cursor { |
| sqlite3_vtab_cursor base; /* Base class - must be first */ |
| sqlite3_int64 iRowid; /* The rowid of the current word */ |
| fuzzer_vtab *pVtab; /* The virtual table this cursor belongs to */ |
| fuzzer_cost rLimit; /* Maximum cost of any term */ |
| fuzzer_stem *pStem; /* Stem with smallest rCostX */ |
| fuzzer_stem *pDone; /* Stems already processed to completion */ |
| fuzzer_stem *aQueue[FUZZER_NQUEUE]; /* Queue of stems with higher rCostX */ |
| int mxQueue; /* Largest used index in aQueue[] */ |
| char *zBuf; /* Temporary use buffer */ |
| int nBuf; /* Bytes allocated for zBuf */ |
| int nStem; /* Number of stems allocated */ |
| int iRuleset; /* Only process rules from this ruleset */ |
| fuzzer_rule nullRule; /* Null rule used first */ |
| fuzzer_stem *apHash[FUZZER_HASH]; /* Hash of previously generated terms */ |
| }; |
| |
| /* |
| ** The two input rule lists are both sorted in order of increasing |
| ** cost. Merge them together into a single list, sorted by cost, and |
| ** return a pointer to the head of that list. |
| */ |
| static fuzzer_rule *fuzzerMergeRules(fuzzer_rule *pA, fuzzer_rule *pB){ |
| fuzzer_rule head; |
| fuzzer_rule *pTail; |
| |
| pTail = &head; |
| while( pA && pB ){ |
| if( pA->rCost<=pB->rCost ){ |
| pTail->pNext = pA; |
| pTail = pA; |
| pA = pA->pNext; |
| }else{ |
| pTail->pNext = pB; |
| pTail = pB; |
| pB = pB->pNext; |
| } |
| } |
| if( pA==0 ){ |
| pTail->pNext = pB; |
| }else{ |
| pTail->pNext = pA; |
| } |
| return head.pNext; |
| } |
| |
| /* |
| ** Statement pStmt currently points to a row in the fuzzer data table. This |
| ** function allocates and populates a fuzzer_rule structure according to |
| ** the content of the row. |
| ** |
| ** If successful, *ppRule is set to point to the new object and SQLITE_OK |
| ** is returned. Otherwise, *ppRule is zeroed, *pzErr may be set to point |
| ** to an error message and an SQLite error code returned. |
| */ |
| static int fuzzerLoadOneRule( |
| fuzzer_vtab *p, /* Fuzzer virtual table handle */ |
| sqlite3_stmt *pStmt, /* Base rule on statements current row */ |
| fuzzer_rule **ppRule, /* OUT: New rule object */ |
| char **pzErr /* OUT: Error message */ |
| ){ |
| sqlite3_int64 iRuleset = sqlite3_column_int64(pStmt, 0); |
| const char *zFrom = (const char *)sqlite3_column_text(pStmt, 1); |
| const char *zTo = (const char *)sqlite3_column_text(pStmt, 2); |
| int nCost = sqlite3_column_int(pStmt, 3); |
| |
| int rc = SQLITE_OK; /* Return code */ |
| int nFrom; /* Size of string zFrom, in bytes */ |
| int nTo; /* Size of string zTo, in bytes */ |
| fuzzer_rule *pRule = 0; /* New rule object to return */ |
| |
| if( zFrom==0 ) zFrom = ""; |
| if( zTo==0 ) zTo = ""; |
| nFrom = (int)strlen(zFrom); |
| nTo = (int)strlen(zTo); |
| |
| /* Silently ignore null transformations */ |
| if( strcmp(zFrom, zTo)==0 ){ |
| *ppRule = 0; |
| return SQLITE_OK; |
| } |
| |
| if( nCost<=0 || nCost>FUZZER_MX_COST ){ |
| *pzErr = sqlite3_mprintf("%s: cost must be between 1 and %d", |
| p->zClassName, FUZZER_MX_COST |
| ); |
| rc = SQLITE_ERROR; |
| }else |
| if( nFrom>FUZZER_MX_LENGTH || nTo>FUZZER_MX_LENGTH ){ |
| *pzErr = sqlite3_mprintf("%s: maximum string length is %d", |
| p->zClassName, FUZZER_MX_LENGTH |
| ); |
| rc = SQLITE_ERROR; |
| }else |
| if( iRuleset<0 || iRuleset>FUZZER_MX_RULEID ){ |
| *pzErr = sqlite3_mprintf("%s: ruleset must be between 0 and %d", |
| p->zClassName, FUZZER_MX_RULEID |
| ); |
| rc = SQLITE_ERROR; |
| }else{ |
| |
| pRule = sqlite3_malloc64( sizeof(*pRule) + nFrom + nTo ); |
| if( pRule==0 ){ |
| rc = SQLITE_NOMEM; |
| }else{ |
| memset(pRule, 0, sizeof(*pRule)); |
| pRule->zFrom = pRule->zTo; |
| pRule->zFrom += nTo + 1; |
| pRule->nFrom = (fuzzer_len)nFrom; |
| memcpy(pRule->zFrom, zFrom, nFrom+1); |
| memcpy(pRule->zTo, zTo, nTo+1); |
| pRule->nTo = (fuzzer_len)nTo; |
| pRule->rCost = nCost; |
| pRule->iRuleset = (int)iRuleset; |
| } |
| } |
| |
| *ppRule = pRule; |
| return rc; |
| } |
| |
| /* |
| ** Load the content of the fuzzer data table into memory. |
| */ |
| static int fuzzerLoadRules( |
| sqlite3 *db, /* Database handle */ |
| fuzzer_vtab *p, /* Virtual fuzzer table to configure */ |
| const char *zDb, /* Database containing rules data */ |
| const char *zData, /* Table containing rules data */ |
| char **pzErr /* OUT: Error message */ |
| ){ |
| int rc = SQLITE_OK; /* Return code */ |
| char *zSql; /* SELECT used to read from rules table */ |
| fuzzer_rule *pHead = 0; |
| |
| zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", zDb, zData); |
| if( zSql==0 ){ |
| rc = SQLITE_NOMEM; |
| }else{ |
| int rc2; /* finalize() return code */ |
| sqlite3_stmt *pStmt = 0; |
| rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); |
| if( rc!=SQLITE_OK ){ |
| *pzErr = sqlite3_mprintf("%s: %s", p->zClassName, sqlite3_errmsg(db)); |
| }else if( sqlite3_column_count(pStmt)!=4 ){ |
| *pzErr = sqlite3_mprintf("%s: %s has %d columns, expected 4", |
| p->zClassName, zData, sqlite3_column_count(pStmt) |
| ); |
| rc = SQLITE_ERROR; |
| }else{ |
| while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ |
| fuzzer_rule *pRule = 0; |
| rc = fuzzerLoadOneRule(p, pStmt, &pRule, pzErr); |
| if( pRule ){ |
| pRule->pNext = pHead; |
| pHead = pRule; |
| } |
| } |
| } |
| rc2 = sqlite3_finalize(pStmt); |
| if( rc==SQLITE_OK ) rc = rc2; |
| } |
| sqlite3_free(zSql); |
| |
| /* All rules are now in a singly linked list starting at pHead. This |
| ** block sorts them by cost and then sets fuzzer_vtab.pRule to point to |
| ** point to the head of the sorted list. |
| */ |
| if( rc==SQLITE_OK ){ |
| unsigned int i; |
| fuzzer_rule *pX; |
| fuzzer_rule *a[15]; |
| for(i=0; i<sizeof(a)/sizeof(a[0]); i++) a[i] = 0; |
| while( (pX = pHead)!=0 ){ |
| pHead = pX->pNext; |
| pX->pNext = 0; |
| for(i=0; a[i] && i<sizeof(a)/sizeof(a[0])-1; i++){ |
| pX = fuzzerMergeRules(a[i], pX); |
| a[i] = 0; |
| } |
| a[i] = fuzzerMergeRules(a[i], pX); |
| } |
| for(pX=a[0], i=1; i<sizeof(a)/sizeof(a[0]); i++){ |
| pX = fuzzerMergeRules(a[i], pX); |
| } |
| p->pRule = fuzzerMergeRules(p->pRule, pX); |
| }else{ |
| /* An error has occurred. Setting p->pRule to point to the head of the |
| ** allocated list ensures that the list will be cleaned up in this case. |
| */ |
| assert( p->pRule==0 ); |
| p->pRule = pHead; |
| } |
| |
| return rc; |
| } |
| |
| /* |
| ** This function converts an SQL quoted string into an unquoted string |
| ** and returns a pointer to a buffer allocated using sqlite3_malloc() |
| ** containing the result. The caller should eventually free this buffer |
| ** using sqlite3_free. |
| ** |
| ** Examples: |
| ** |
| ** "abc" becomes abc |
| ** 'xyz' becomes xyz |
| ** [pqr] becomes pqr |
| ** `mno` becomes mno |
| */ |
| static char *fuzzerDequote(const char *zIn){ |
| sqlite3_int64 nIn; /* Size of input string, in bytes */ |
| char *zOut; /* Output (dequoted) string */ |
| |
| nIn = strlen(zIn); |
| zOut = sqlite3_malloc64(nIn+1); |
| if( zOut ){ |
| char q = zIn[0]; /* Quote character (if any ) */ |
| |
| if( q!='[' && q!= '\'' && q!='"' && q!='`' ){ |
| memcpy(zOut, zIn, (size_t)(nIn+1)); |
| }else{ |
| int iOut = 0; /* Index of next byte to write to output */ |
| int iIn; /* Index of next byte to read from input */ |
| |
| if( q=='[' ) q = ']'; |
| for(iIn=1; iIn<nIn; iIn++){ |
| if( zIn[iIn]==q ) iIn++; |
| zOut[iOut++] = zIn[iIn]; |
| } |
| } |
| assert( (int)strlen(zOut)<=nIn ); |
| } |
| return zOut; |
| } |
| |
| /* |
| ** xDisconnect/xDestroy method for the fuzzer module. |
| */ |
| static int fuzzerDisconnect(sqlite3_vtab *pVtab){ |
| fuzzer_vtab *p = (fuzzer_vtab*)pVtab; |
| assert( p->nCursor==0 ); |
| while( p->pRule ){ |
| fuzzer_rule *pRule = p->pRule; |
| p->pRule = pRule->pNext; |
| sqlite3_free(pRule); |
| } |
| sqlite3_free(p); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** xConnect/xCreate method for the fuzzer module. Arguments are: |
| ** |
| ** argv[0] -> module name ("fuzzer") |
| ** argv[1] -> database name |
| ** argv[2] -> table name |
| ** argv[3] -> fuzzer rule table name |
| */ |
| static int fuzzerConnect( |
| sqlite3 *db, |
| void *pAux, |
| int argc, const char *const*argv, |
| sqlite3_vtab **ppVtab, |
| char **pzErr |
| ){ |
| int rc = SQLITE_OK; /* Return code */ |
| fuzzer_vtab *pNew = 0; /* New virtual table */ |
| const char *zModule = argv[0]; |
| const char *zDb = argv[1]; |
| |
| if( argc!=4 ){ |
| *pzErr = sqlite3_mprintf( |
| "%s: wrong number of CREATE VIRTUAL TABLE arguments", zModule |
| ); |
| rc = SQLITE_ERROR; |
| }else{ |
| sqlite3_int64 nModule; /* Length of zModule, in bytes */ |
| |
| nModule = strlen(zModule); |
| pNew = sqlite3_malloc64( sizeof(*pNew) + nModule + 1); |
| if( pNew==0 ){ |
| rc = SQLITE_NOMEM; |
| }else{ |
| char *zTab; /* Dequoted name of fuzzer data table */ |
| |
| memset(pNew, 0, sizeof(*pNew)); |
| pNew->zClassName = (char*)&pNew[1]; |
| memcpy(pNew->zClassName, zModule, (size_t)(nModule+1)); |
| |
| zTab = fuzzerDequote(argv[3]); |
| if( zTab==0 ){ |
| rc = SQLITE_NOMEM; |
| }else{ |
| rc = fuzzerLoadRules(db, pNew, zDb, zTab, pzErr); |
| sqlite3_free(zTab); |
| } |
| |
| if( rc==SQLITE_OK ){ |
| rc = sqlite3_declare_vtab(db, "CREATE TABLE x(word,distance,ruleset)"); |
| } |
| if( rc!=SQLITE_OK ){ |
| fuzzerDisconnect((sqlite3_vtab *)pNew); |
| pNew = 0; |
| }else{ |
| sqlite3_vtab_config(db, SQLITE_VTAB_INNOCUOUS); |
| } |
| } |
| } |
| |
| *ppVtab = (sqlite3_vtab *)pNew; |
| return rc; |
| } |
| |
| /* |
| ** Open a new fuzzer cursor. |
| */ |
| static int fuzzerOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ |
| fuzzer_vtab *p = (fuzzer_vtab*)pVTab; |
| fuzzer_cursor *pCur; |
| pCur = sqlite3_malloc( sizeof(*pCur) ); |
| if( pCur==0 ) return SQLITE_NOMEM; |
| memset(pCur, 0, sizeof(*pCur)); |
| pCur->pVtab = p; |
| *ppCursor = &pCur->base; |
| p->nCursor++; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Free all stems in a list. |
| */ |
| static void fuzzerClearStemList(fuzzer_stem *pStem){ |
| while( pStem ){ |
| fuzzer_stem *pNext = pStem->pNext; |
| sqlite3_free(pStem); |
| pStem = pNext; |
| } |
| } |
| |
| /* |
| ** Free up all the memory allocated by a cursor. Set it rLimit to 0 |
| ** to indicate that it is at EOF. |
| */ |
| static void fuzzerClearCursor(fuzzer_cursor *pCur, int clearHash){ |
| int i; |
| fuzzerClearStemList(pCur->pStem); |
| fuzzerClearStemList(pCur->pDone); |
| for(i=0; i<FUZZER_NQUEUE; i++) fuzzerClearStemList(pCur->aQueue[i]); |
| pCur->rLimit = (fuzzer_cost)0; |
| if( clearHash && pCur->nStem ){ |
| pCur->mxQueue = 0; |
| pCur->pStem = 0; |
| pCur->pDone = 0; |
| memset(pCur->aQueue, 0, sizeof(pCur->aQueue)); |
| memset(pCur->apHash, 0, sizeof(pCur->apHash)); |
| } |
| pCur->nStem = 0; |
| } |
| |
| /* |
| ** Close a fuzzer cursor. |
| */ |
| static int fuzzerClose(sqlite3_vtab_cursor *cur){ |
| fuzzer_cursor *pCur = (fuzzer_cursor *)cur; |
| fuzzerClearCursor(pCur, 0); |
| sqlite3_free(pCur->zBuf); |
| pCur->pVtab->nCursor--; |
| sqlite3_free(pCur); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Compute the current output term for a fuzzer_stem. |
| */ |
| static int fuzzerRender( |
| fuzzer_stem *pStem, /* The stem to be rendered */ |
| char **pzBuf, /* Write results into this buffer. realloc if needed */ |
| int *pnBuf /* Size of the buffer */ |
| ){ |
| const fuzzer_rule *pRule = pStem->pRule; |
| int n; /* Size of output term without nul-term */ |
| char *z; /* Buffer to assemble output term in */ |
| |
| n = pStem->nBasis + pRule->nTo - pRule->nFrom; |
| if( (*pnBuf)<n+1 ){ |
| (*pzBuf) = sqlite3_realloc((*pzBuf), n+100); |
| if( (*pzBuf)==0 ) return SQLITE_NOMEM; |
| (*pnBuf) = n+100; |
| } |
| n = pStem->n; |
| z = *pzBuf; |
| if( n<0 ){ |
| memcpy(z, pStem->zBasis, pStem->nBasis+1); |
| }else{ |
| memcpy(z, pStem->zBasis, n); |
| memcpy(&z[n], pRule->zTo, pRule->nTo); |
| memcpy(&z[n+pRule->nTo], &pStem->zBasis[n+pRule->nFrom], |
| pStem->nBasis-n-pRule->nFrom+1); |
| } |
| |
| assert( z[pStem->nBasis + pRule->nTo - pRule->nFrom]==0 ); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Compute a hash on zBasis. |
| */ |
| static unsigned int fuzzerHash(const char *z){ |
| unsigned int h = 0; |
| while( *z ){ h = (h<<3) ^ (h>>29) ^ *(z++); } |
| return h % FUZZER_HASH; |
| } |
| |
| /* |
| ** Current cost of a stem |
| */ |
| static fuzzer_cost fuzzerCost(fuzzer_stem *pStem){ |
| return pStem->rCostX = pStem->rBaseCost + pStem->pRule->rCost; |
| } |
| |
| #if 0 |
| /* |
| ** Print a description of a fuzzer_stem on stderr. |
| */ |
| static void fuzzerStemPrint( |
| const char *zPrefix, |
| fuzzer_stem *pStem, |
| const char *zSuffix |
| ){ |
| if( pStem->n<0 ){ |
| fprintf(stderr, "%s[%s](%d)-->self%s", |
| zPrefix, |
| pStem->zBasis, pStem->rBaseCost, |
| zSuffix |
| ); |
| }else{ |
| char *zBuf = 0; |
| int nBuf = 0; |
| if( fuzzerRender(pStem, &zBuf, &nBuf)!=SQLITE_OK ) return; |
| fprintf(stderr, "%s[%s](%d)-->{%s}(%d)%s", |
| zPrefix, |
| pStem->zBasis, pStem->rBaseCost, zBuf, pStem->, |
| zSuffix |
| ); |
| sqlite3_free(zBuf); |
| } |
| } |
| #endif |
| |
| /* |
| ** Return 1 if the string to which the cursor is point has already |
| ** been emitted. Return 0 if not. Return -1 on a memory allocation |
| ** failures. |
| */ |
| static int fuzzerSeen(fuzzer_cursor *pCur, fuzzer_stem *pStem){ |
| unsigned int h; |
| fuzzer_stem *pLookup; |
| |
| if( fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){ |
| return -1; |
| } |
| h = fuzzerHash(pCur->zBuf); |
| pLookup = pCur->apHash[h]; |
| while( pLookup && strcmp(pLookup->zBasis, pCur->zBuf)!=0 ){ |
| pLookup = pLookup->pHash; |
| } |
| return pLookup!=0; |
| } |
| |
| /* |
| ** If argument pRule is NULL, this function returns false. |
| ** |
| ** Otherwise, it returns true if rule pRule should be skipped. A rule |
| ** should be skipped if it does not belong to rule-set iRuleset, or if |
| ** applying it to stem pStem would create a string longer than |
| ** FUZZER_MX_OUTPUT_LENGTH bytes. |
| */ |
| static int fuzzerSkipRule( |
| const fuzzer_rule *pRule, /* Determine whether or not to skip this */ |
| fuzzer_stem *pStem, /* Stem rule may be applied to */ |
| int iRuleset /* Rule-set used by the current query */ |
| ){ |
| return pRule && ( |
| (pRule->iRuleset!=iRuleset) |
| || (pStem->nBasis + pRule->nTo - pRule->nFrom)>FUZZER_MX_OUTPUT_LENGTH |
| ); |
| } |
| |
| /* |
| ** Advance a fuzzer_stem to its next value. Return 0 if there are |
| ** no more values that can be generated by this fuzzer_stem. Return |
| ** -1 on a memory allocation failure. |
| */ |
| static int fuzzerAdvance(fuzzer_cursor *pCur, fuzzer_stem *pStem){ |
| const fuzzer_rule *pRule; |
| while( (pRule = pStem->pRule)!=0 ){ |
| assert( pRule==&pCur->nullRule || pRule->iRuleset==pCur->iRuleset ); |
| while( pStem->n < pStem->nBasis - pRule->nFrom ){ |
| pStem->n++; |
| if( pRule->nFrom==0 |
| || memcmp(&pStem->zBasis[pStem->n], pRule->zFrom, pRule->nFrom)==0 |
| ){ |
| /* Found a rewrite case. Make sure it is not a duplicate */ |
| int rc = fuzzerSeen(pCur, pStem); |
| if( rc<0 ) return -1; |
| if( rc==0 ){ |
| fuzzerCost(pStem); |
| return 1; |
| } |
| } |
| } |
| pStem->n = -1; |
| do{ |
| pRule = pRule->pNext; |
| }while( fuzzerSkipRule(pRule, pStem, pCur->iRuleset) ); |
| pStem->pRule = pRule; |
| if( pRule && fuzzerCost(pStem)>pCur->rLimit ) pStem->pRule = 0; |
| } |
| return 0; |
| } |
| |
| /* |
| ** The two input stem lists are both sorted in order of increasing |
| ** rCostX. Merge them together into a single list, sorted by rCostX, and |
| ** return a pointer to the head of that new list. |
| */ |
| static fuzzer_stem *fuzzerMergeStems(fuzzer_stem *pA, fuzzer_stem *pB){ |
| fuzzer_stem head; |
| fuzzer_stem *pTail; |
| |
| pTail = &head; |
| while( pA && pB ){ |
| if( pA->rCostX<=pB->rCostX ){ |
| pTail->pNext = pA; |
| pTail = pA; |
| pA = pA->pNext; |
| }else{ |
| pTail->pNext = pB; |
| pTail = pB; |
| pB = pB->pNext; |
| } |
| } |
| if( pA==0 ){ |
| pTail->pNext = pB; |
| }else{ |
| pTail->pNext = pA; |
| } |
| return head.pNext; |
| } |
| |
| /* |
| ** Load pCur->pStem with the lowest-cost stem. Return a pointer |
| ** to the lowest-cost stem. |
| */ |
| static fuzzer_stem *fuzzerLowestCostStem(fuzzer_cursor *pCur){ |
| fuzzer_stem *pBest, *pX; |
| int iBest; |
| int i; |
| |
| if( pCur->pStem==0 ){ |
| iBest = -1; |
| pBest = 0; |
| for(i=0; i<=pCur->mxQueue; i++){ |
| pX = pCur->aQueue[i]; |
| if( pX==0 ) continue; |
| if( pBest==0 || pBest->rCostX>pX->rCostX ){ |
| pBest = pX; |
| iBest = i; |
| } |
| } |
| if( pBest ){ |
| pCur->aQueue[iBest] = pBest->pNext; |
| pBest->pNext = 0; |
| pCur->pStem = pBest; |
| } |
| } |
| return pCur->pStem; |
| } |
| |
| /* |
| ** Insert pNew into queue of pending stems. Then find the stem |
| ** with the lowest rCostX and move it into pCur->pStem. |
| ** list. The insert is done such the pNew is in the correct order |
| ** according to fuzzer_stem.zBaseCost+fuzzer_stem.pRule->rCost. |
| */ |
| static fuzzer_stem *fuzzerInsert(fuzzer_cursor *pCur, fuzzer_stem *pNew){ |
| fuzzer_stem *pX; |
| int i; |
| |
| /* If pCur->pStem exists and is greater than pNew, then make pNew |
| ** the new pCur->pStem and insert the old pCur->pStem instead. |
| */ |
| if( (pX = pCur->pStem)!=0 && pX->rCostX>pNew->rCostX ){ |
| pNew->pNext = 0; |
| pCur->pStem = pNew; |
| pNew = pX; |
| } |
| |
| /* Insert the new value */ |
| pNew->pNext = 0; |
| pX = pNew; |
| for(i=0; i<=pCur->mxQueue; i++){ |
| if( pCur->aQueue[i] ){ |
| pX = fuzzerMergeStems(pX, pCur->aQueue[i]); |
| pCur->aQueue[i] = 0; |
| }else{ |
| pCur->aQueue[i] = pX; |
| break; |
| } |
| } |
| if( i>pCur->mxQueue ){ |
| if( i<FUZZER_NQUEUE ){ |
| pCur->mxQueue = i; |
| pCur->aQueue[i] = pX; |
| }else{ |
| assert( pCur->mxQueue==FUZZER_NQUEUE-1 ); |
| pX = fuzzerMergeStems(pX, pCur->aQueue[FUZZER_NQUEUE-1]); |
| pCur->aQueue[FUZZER_NQUEUE-1] = pX; |
| } |
| } |
| |
| return fuzzerLowestCostStem(pCur); |
| } |
| |
| /* |
| ** Allocate a new fuzzer_stem. Add it to the hash table but do not |
| ** link it into either the pCur->pStem or pCur->pDone lists. |
| */ |
| static fuzzer_stem *fuzzerNewStem( |
| fuzzer_cursor *pCur, |
| const char *zWord, |
| fuzzer_cost rBaseCost |
| ){ |
| fuzzer_stem *pNew; |
| fuzzer_rule *pRule; |
| unsigned int h; |
| |
| pNew = sqlite3_malloc64( sizeof(*pNew) + strlen(zWord) + 1 ); |
| if( pNew==0 ) return 0; |
| memset(pNew, 0, sizeof(*pNew)); |
| pNew->zBasis = (char*)&pNew[1]; |
| pNew->nBasis = (fuzzer_len)strlen(zWord); |
| memcpy(pNew->zBasis, zWord, pNew->nBasis+1); |
| pRule = pCur->pVtab->pRule; |
| while( fuzzerSkipRule(pRule, pNew, pCur->iRuleset) ){ |
| pRule = pRule->pNext; |
| } |
| pNew->pRule = pRule; |
| pNew->n = -1; |
| pNew->rBaseCost = pNew->rCostX = rBaseCost; |
| h = fuzzerHash(pNew->zBasis); |
| pNew->pHash = pCur->apHash[h]; |
| pCur->apHash[h] = pNew; |
| pCur->nStem++; |
| return pNew; |
| } |
| |
| |
| /* |
| ** Advance a cursor to its next row of output |
| */ |
| static int fuzzerNext(sqlite3_vtab_cursor *cur){ |
| fuzzer_cursor *pCur = (fuzzer_cursor*)cur; |
| int rc; |
| fuzzer_stem *pStem, *pNew; |
| |
| pCur->iRowid++; |
| |
| /* Use the element the cursor is currently point to to create |
| ** a new stem and insert the new stem into the priority queue. |
| */ |
| pStem = pCur->pStem; |
| if( pStem->rCostX>0 ){ |
| rc = fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf); |
| if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM; |
| pNew = fuzzerNewStem(pCur, pCur->zBuf, pStem->rCostX); |
| if( pNew ){ |
| if( fuzzerAdvance(pCur, pNew)==0 ){ |
| pNew->pNext = pCur->pDone; |
| pCur->pDone = pNew; |
| }else{ |
| if( fuzzerInsert(pCur, pNew)==pNew ){ |
| return SQLITE_OK; |
| } |
| } |
| }else{ |
| return SQLITE_NOMEM; |
| } |
| } |
| |
| /* Adjust the priority queue so that the first element of the |
| ** stem list is the next lowest cost word. |
| */ |
| while( (pStem = pCur->pStem)!=0 ){ |
| int res = fuzzerAdvance(pCur, pStem); |
| if( res<0 ){ |
| return SQLITE_NOMEM; |
| }else if( res>0 ){ |
| pCur->pStem = 0; |
| pStem = fuzzerInsert(pCur, pStem); |
| if( (rc = fuzzerSeen(pCur, pStem))!=0 ){ |
| if( rc<0 ) return SQLITE_NOMEM; |
| continue; |
| } |
| return SQLITE_OK; /* New word found */ |
| } |
| pCur->pStem = 0; |
| pStem->pNext = pCur->pDone; |
| pCur->pDone = pStem; |
| if( fuzzerLowestCostStem(pCur) ){ |
| rc = fuzzerSeen(pCur, pCur->pStem); |
| if( rc<0 ) return SQLITE_NOMEM; |
| if( rc==0 ){ |
| return SQLITE_OK; |
| } |
| } |
| } |
| |
| /* Reach this point only if queue has been exhausted and there is |
| ** nothing left to be output. */ |
| pCur->rLimit = (fuzzer_cost)0; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Called to "rewind" a cursor back to the beginning so that |
| ** it starts its output over again. Always called at least once |
| ** prior to any fuzzerColumn, fuzzerRowid, or fuzzerEof call. |
| */ |
| static int fuzzerFilter( |
| sqlite3_vtab_cursor *pVtabCursor, |
| int idxNum, const char *idxStr, |
| int argc, sqlite3_value **argv |
| ){ |
| fuzzer_cursor *pCur = (fuzzer_cursor *)pVtabCursor; |
| const char *zWord = ""; |
| fuzzer_stem *pStem; |
| int idx; |
| |
| fuzzerClearCursor(pCur, 1); |
| pCur->rLimit = 2147483647; |
| idx = 0; |
| if( idxNum & 1 ){ |
| zWord = (const char*)sqlite3_value_text(argv[0]); |
| idx++; |
| } |
| if( idxNum & 2 ){ |
| pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[idx]); |
| idx++; |
| } |
| if( idxNum & 4 ){ |
| pCur->iRuleset = (fuzzer_cost)sqlite3_value_int(argv[idx]); |
| idx++; |
| } |
| pCur->nullRule.pNext = pCur->pVtab->pRule; |
| pCur->nullRule.rCost = 0; |
| pCur->nullRule.nFrom = 0; |
| pCur->nullRule.nTo = 0; |
| pCur->nullRule.zFrom = ""; |
| pCur->iRowid = 1; |
| assert( pCur->pStem==0 ); |
| |
| /* If the query term is longer than FUZZER_MX_OUTPUT_LENGTH bytes, this |
| ** query will return zero rows. */ |
| if( (int)strlen(zWord)<FUZZER_MX_OUTPUT_LENGTH ){ |
| pCur->pStem = pStem = fuzzerNewStem(pCur, zWord, (fuzzer_cost)0); |
| if( pStem==0 ) return SQLITE_NOMEM; |
| pStem->pRule = &pCur->nullRule; |
| pStem->n = pStem->nBasis; |
| }else{ |
| pCur->rLimit = 0; |
| } |
| |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Only the word and distance columns have values. All other columns |
| ** return NULL |
| */ |
| static int fuzzerColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ |
| fuzzer_cursor *pCur = (fuzzer_cursor*)cur; |
| if( i==0 ){ |
| /* the "word" column */ |
| if( fuzzerRender(pCur->pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){ |
| return SQLITE_NOMEM; |
| } |
| sqlite3_result_text(ctx, pCur->zBuf, -1, SQLITE_TRANSIENT); |
| }else if( i==1 ){ |
| /* the "distance" column */ |
| sqlite3_result_int(ctx, pCur->pStem->rCostX); |
| }else{ |
| /* All other columns are NULL */ |
| sqlite3_result_null(ctx); |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** The rowid. |
| */ |
| static int fuzzerRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ |
| fuzzer_cursor *pCur = (fuzzer_cursor*)cur; |
| *pRowid = pCur->iRowid; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** When the fuzzer_cursor.rLimit value is 0 or less, that is a signal |
| ** that the cursor has nothing more to output. |
| */ |
| static int fuzzerEof(sqlite3_vtab_cursor *cur){ |
| fuzzer_cursor *pCur = (fuzzer_cursor*)cur; |
| return pCur->rLimit<=(fuzzer_cost)0; |
| } |
| |
| /* |
| ** Search for terms of these forms: |
| ** |
| ** (A) word MATCH $str |
| ** (B1) distance < $value |
| ** (B2) distance <= $value |
| ** (C) ruleid == $ruleid |
| ** |
| ** The distance< and distance<= are both treated as distance<=. |
| ** The query plan number is a bit vector: |
| ** |
| ** bit 1: Term of the form (A) found |
| ** bit 2: Term like (B1) or (B2) found |
| ** bit 3: Term like (C) found |
| ** |
| ** If bit-1 is set, $str is always in filter.argv[0]. If bit-2 is set |
| ** then $value is in filter.argv[0] if bit-1 is clear and is in |
| ** filter.argv[1] if bit-1 is set. If bit-3 is set, then $ruleid is |
| ** in filter.argv[0] if bit-1 and bit-2 are both zero, is in |
| ** filter.argv[1] if exactly one of bit-1 and bit-2 are set, and is in |
| ** filter.argv[2] if both bit-1 and bit-2 are set. |
| */ |
| static int fuzzerBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ |
| int iPlan = 0; |
| int iDistTerm = -1; |
| int iRulesetTerm = -1; |
| int i; |
| int seenMatch = 0; |
| const struct sqlite3_index_constraint *pConstraint; |
| double rCost = 1e12; |
| |
| pConstraint = pIdxInfo->aConstraint; |
| for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){ |
| if( pConstraint->iColumn==0 |
| && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){ |
| seenMatch = 1; |
| } |
| if( pConstraint->usable==0 ) continue; |
| if( (iPlan & 1)==0 |
| && pConstraint->iColumn==0 |
| && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH |
| ){ |
| iPlan |= 1; |
| pIdxInfo->aConstraintUsage[i].argvIndex = 1; |
| pIdxInfo->aConstraintUsage[i].omit = 1; |
| rCost /= 1e6; |
| } |
| if( (iPlan & 2)==0 |
| && pConstraint->iColumn==1 |
| && (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT |
| || pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE) |
| ){ |
| iPlan |= 2; |
| iDistTerm = i; |
| rCost /= 10.0; |
| } |
| if( (iPlan & 4)==0 |
| && pConstraint->iColumn==2 |
| && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ |
| ){ |
| iPlan |= 4; |
| pIdxInfo->aConstraintUsage[i].omit = 1; |
| iRulesetTerm = i; |
| rCost /= 10.0; |
| } |
| } |
| if( iPlan & 2 ){ |
| pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1+((iPlan&1)!=0); |
| } |
| if( iPlan & 4 ){ |
| int idx = 1; |
| if( iPlan & 1 ) idx++; |
| if( iPlan & 2 ) idx++; |
| pIdxInfo->aConstraintUsage[iRulesetTerm].argvIndex = idx; |
| } |
| pIdxInfo->idxNum = iPlan; |
| if( pIdxInfo->nOrderBy==1 |
| && pIdxInfo->aOrderBy[0].iColumn==1 |
| && pIdxInfo->aOrderBy[0].desc==0 |
| ){ |
| pIdxInfo->orderByConsumed = 1; |
| } |
| if( seenMatch && (iPlan&1)==0 ) rCost = 1e99; |
| pIdxInfo->estimatedCost = rCost; |
| |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** A virtual table module that implements the "fuzzer". |
| */ |
| static sqlite3_module fuzzerModule = { |
| 0, /* iVersion */ |
| fuzzerConnect, |
| fuzzerConnect, |
| fuzzerBestIndex, |
| fuzzerDisconnect, |
| fuzzerDisconnect, |
| fuzzerOpen, /* xOpen - open a cursor */ |
| fuzzerClose, /* xClose - close a cursor */ |
| fuzzerFilter, /* xFilter - configure scan constraints */ |
| fuzzerNext, /* xNext - advance a cursor */ |
| fuzzerEof, /* xEof - check for end of scan */ |
| fuzzerColumn, /* xColumn - read data */ |
| fuzzerRowid, /* xRowid - read data */ |
| 0, /* xUpdate */ |
| 0, /* xBegin */ |
| 0, /* xSync */ |
| 0, /* xCommit */ |
| 0, /* xRollback */ |
| 0, /* xFindMethod */ |
| 0, /* xRename */ |
| }; |
| |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| |
| |
| #ifdef _WIN32 |
| __declspec(dllexport) |
| #endif |
| int sqlite3_fuzzer_init( |
| sqlite3 *db, |
| char **pzErrMsg, |
| const sqlite3_api_routines *pApi |
| ){ |
| int rc = SQLITE_OK; |
| SQLITE_EXTENSION_INIT2(pApi); |
| #ifndef SQLITE_OMIT_VIRTUALTABLE |
| rc = sqlite3_create_module(db, "fuzzer", &fuzzerModule, 0); |
| #endif |
| return rc; |
| } |