| /* |
| ** 2017-03-08 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ****************************************************************************** |
| ** |
| ** This SQLite extension implements functions that compute SHA3 hashes. |
| ** Two SQL functions are implemented: |
| ** |
| ** sha3(X,SIZE) |
| ** sha3_query(Y,SIZE) |
| ** |
| ** The sha3(X) function computes the SHA3 hash of the input X, or NULL if |
| ** X is NULL. |
| ** |
| ** The sha3_query(Y) function evaluates all queries in the SQL statements of Y |
| ** and returns a hash of their results. |
| ** |
| ** The SIZE argument is optional. If omitted, the SHA3-256 hash algorithm |
| ** is used. If SIZE is included it must be one of the integers 224, 256, |
| ** 384, or 512, to determine SHA3 hash variant that is computed. |
| */ |
| #include "sqlite3ext.h" |
| SQLITE_EXTENSION_INIT1 |
| #include <assert.h> |
| #include <string.h> |
| #include <stdarg.h> |
| |
| #ifndef SQLITE_AMALGAMATION |
| typedef sqlite3_uint64 u64; |
| #endif /* SQLITE_AMALGAMATION */ |
| |
| /****************************************************************************** |
| ** The Hash Engine |
| */ |
| /* |
| ** Macros to determine whether the machine is big or little endian, |
| ** and whether or not that determination is run-time or compile-time. |
| ** |
| ** For best performance, an attempt is made to guess at the byte-order |
| ** using C-preprocessor macros. If that is unsuccessful, or if |
| ** -DSHA3_BYTEORDER=0 is set, then byte-order is determined |
| ** at run-time. |
| */ |
| #ifndef SHA3_BYTEORDER |
| # if defined(i386) || defined(__i386__) || defined(_M_IX86) || \ |
| defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ |
| defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \ |
| defined(__arm__) |
| # define SHA3_BYTEORDER 1234 |
| # elif defined(sparc) || defined(__ppc__) |
| # define SHA3_BYTEORDER 4321 |
| # else |
| # define SHA3_BYTEORDER 0 |
| # endif |
| #endif |
| |
| |
| /* |
| ** State structure for a SHA3 hash in progress |
| */ |
| typedef struct SHA3Context SHA3Context; |
| struct SHA3Context { |
| union { |
| u64 s[25]; /* Keccak state. 5x5 lines of 64 bits each */ |
| unsigned char x[1600]; /* ... or 1600 bytes */ |
| } u; |
| unsigned nRate; /* Bytes of input accepted per Keccak iteration */ |
| unsigned nLoaded; /* Input bytes loaded into u.x[] so far this cycle */ |
| unsigned ixMask; /* Insert next input into u.x[nLoaded^ixMask]. */ |
| }; |
| |
| /* |
| ** A single step of the Keccak mixing function for a 1600-bit state |
| */ |
| static void KeccakF1600Step(SHA3Context *p){ |
| int i; |
| u64 b0, b1, b2, b3, b4; |
| u64 c0, c1, c2, c3, c4; |
| u64 d0, d1, d2, d3, d4; |
| static const u64 RC[] = { |
| 0x0000000000000001ULL, 0x0000000000008082ULL, |
| 0x800000000000808aULL, 0x8000000080008000ULL, |
| 0x000000000000808bULL, 0x0000000080000001ULL, |
| 0x8000000080008081ULL, 0x8000000000008009ULL, |
| 0x000000000000008aULL, 0x0000000000000088ULL, |
| 0x0000000080008009ULL, 0x000000008000000aULL, |
| 0x000000008000808bULL, 0x800000000000008bULL, |
| 0x8000000000008089ULL, 0x8000000000008003ULL, |
| 0x8000000000008002ULL, 0x8000000000000080ULL, |
| 0x000000000000800aULL, 0x800000008000000aULL, |
| 0x8000000080008081ULL, 0x8000000000008080ULL, |
| 0x0000000080000001ULL, 0x8000000080008008ULL |
| }; |
| # define a00 (p->u.s[0]) |
| # define a01 (p->u.s[1]) |
| # define a02 (p->u.s[2]) |
| # define a03 (p->u.s[3]) |
| # define a04 (p->u.s[4]) |
| # define a10 (p->u.s[5]) |
| # define a11 (p->u.s[6]) |
| # define a12 (p->u.s[7]) |
| # define a13 (p->u.s[8]) |
| # define a14 (p->u.s[9]) |
| # define a20 (p->u.s[10]) |
| # define a21 (p->u.s[11]) |
| # define a22 (p->u.s[12]) |
| # define a23 (p->u.s[13]) |
| # define a24 (p->u.s[14]) |
| # define a30 (p->u.s[15]) |
| # define a31 (p->u.s[16]) |
| # define a32 (p->u.s[17]) |
| # define a33 (p->u.s[18]) |
| # define a34 (p->u.s[19]) |
| # define a40 (p->u.s[20]) |
| # define a41 (p->u.s[21]) |
| # define a42 (p->u.s[22]) |
| # define a43 (p->u.s[23]) |
| # define a44 (p->u.s[24]) |
| # define ROL64(a,x) ((a<<x)|(a>>(64-x))) |
| |
| for(i=0; i<24; i+=4){ |
| c0 = a00^a10^a20^a30^a40; |
| c1 = a01^a11^a21^a31^a41; |
| c2 = a02^a12^a22^a32^a42; |
| c3 = a03^a13^a23^a33^a43; |
| c4 = a04^a14^a24^a34^a44; |
| d0 = c4^ROL64(c1, 1); |
| d1 = c0^ROL64(c2, 1); |
| d2 = c1^ROL64(c3, 1); |
| d3 = c2^ROL64(c4, 1); |
| d4 = c3^ROL64(c0, 1); |
| |
| b0 = (a00^d0); |
| b1 = ROL64((a11^d1), 44); |
| b2 = ROL64((a22^d2), 43); |
| b3 = ROL64((a33^d3), 21); |
| b4 = ROL64((a44^d4), 14); |
| a00 = b0 ^((~b1)& b2 ); |
| a00 ^= RC[i]; |
| a11 = b1 ^((~b2)& b3 ); |
| a22 = b2 ^((~b3)& b4 ); |
| a33 = b3 ^((~b4)& b0 ); |
| a44 = b4 ^((~b0)& b1 ); |
| |
| b2 = ROL64((a20^d0), 3); |
| b3 = ROL64((a31^d1), 45); |
| b4 = ROL64((a42^d2), 61); |
| b0 = ROL64((a03^d3), 28); |
| b1 = ROL64((a14^d4), 20); |
| a20 = b0 ^((~b1)& b2 ); |
| a31 = b1 ^((~b2)& b3 ); |
| a42 = b2 ^((~b3)& b4 ); |
| a03 = b3 ^((~b4)& b0 ); |
| a14 = b4 ^((~b0)& b1 ); |
| |
| b4 = ROL64((a40^d0), 18); |
| b0 = ROL64((a01^d1), 1); |
| b1 = ROL64((a12^d2), 6); |
| b2 = ROL64((a23^d3), 25); |
| b3 = ROL64((a34^d4), 8); |
| a40 = b0 ^((~b1)& b2 ); |
| a01 = b1 ^((~b2)& b3 ); |
| a12 = b2 ^((~b3)& b4 ); |
| a23 = b3 ^((~b4)& b0 ); |
| a34 = b4 ^((~b0)& b1 ); |
| |
| b1 = ROL64((a10^d0), 36); |
| b2 = ROL64((a21^d1), 10); |
| b3 = ROL64((a32^d2), 15); |
| b4 = ROL64((a43^d3), 56); |
| b0 = ROL64((a04^d4), 27); |
| a10 = b0 ^((~b1)& b2 ); |
| a21 = b1 ^((~b2)& b3 ); |
| a32 = b2 ^((~b3)& b4 ); |
| a43 = b3 ^((~b4)& b0 ); |
| a04 = b4 ^((~b0)& b1 ); |
| |
| b3 = ROL64((a30^d0), 41); |
| b4 = ROL64((a41^d1), 2); |
| b0 = ROL64((a02^d2), 62); |
| b1 = ROL64((a13^d3), 55); |
| b2 = ROL64((a24^d4), 39); |
| a30 = b0 ^((~b1)& b2 ); |
| a41 = b1 ^((~b2)& b3 ); |
| a02 = b2 ^((~b3)& b4 ); |
| a13 = b3 ^((~b4)& b0 ); |
| a24 = b4 ^((~b0)& b1 ); |
| |
| c0 = a00^a20^a40^a10^a30; |
| c1 = a11^a31^a01^a21^a41; |
| c2 = a22^a42^a12^a32^a02; |
| c3 = a33^a03^a23^a43^a13; |
| c4 = a44^a14^a34^a04^a24; |
| d0 = c4^ROL64(c1, 1); |
| d1 = c0^ROL64(c2, 1); |
| d2 = c1^ROL64(c3, 1); |
| d3 = c2^ROL64(c4, 1); |
| d4 = c3^ROL64(c0, 1); |
| |
| b0 = (a00^d0); |
| b1 = ROL64((a31^d1), 44); |
| b2 = ROL64((a12^d2), 43); |
| b3 = ROL64((a43^d3), 21); |
| b4 = ROL64((a24^d4), 14); |
| a00 = b0 ^((~b1)& b2 ); |
| a00 ^= RC[i+1]; |
| a31 = b1 ^((~b2)& b3 ); |
| a12 = b2 ^((~b3)& b4 ); |
| a43 = b3 ^((~b4)& b0 ); |
| a24 = b4 ^((~b0)& b1 ); |
| |
| b2 = ROL64((a40^d0), 3); |
| b3 = ROL64((a21^d1), 45); |
| b4 = ROL64((a02^d2), 61); |
| b0 = ROL64((a33^d3), 28); |
| b1 = ROL64((a14^d4), 20); |
| a40 = b0 ^((~b1)& b2 ); |
| a21 = b1 ^((~b2)& b3 ); |
| a02 = b2 ^((~b3)& b4 ); |
| a33 = b3 ^((~b4)& b0 ); |
| a14 = b4 ^((~b0)& b1 ); |
| |
| b4 = ROL64((a30^d0), 18); |
| b0 = ROL64((a11^d1), 1); |
| b1 = ROL64((a42^d2), 6); |
| b2 = ROL64((a23^d3), 25); |
| b3 = ROL64((a04^d4), 8); |
| a30 = b0 ^((~b1)& b2 ); |
| a11 = b1 ^((~b2)& b3 ); |
| a42 = b2 ^((~b3)& b4 ); |
| a23 = b3 ^((~b4)& b0 ); |
| a04 = b4 ^((~b0)& b1 ); |
| |
| b1 = ROL64((a20^d0), 36); |
| b2 = ROL64((a01^d1), 10); |
| b3 = ROL64((a32^d2), 15); |
| b4 = ROL64((a13^d3), 56); |
| b0 = ROL64((a44^d4), 27); |
| a20 = b0 ^((~b1)& b2 ); |
| a01 = b1 ^((~b2)& b3 ); |
| a32 = b2 ^((~b3)& b4 ); |
| a13 = b3 ^((~b4)& b0 ); |
| a44 = b4 ^((~b0)& b1 ); |
| |
| b3 = ROL64((a10^d0), 41); |
| b4 = ROL64((a41^d1), 2); |
| b0 = ROL64((a22^d2), 62); |
| b1 = ROL64((a03^d3), 55); |
| b2 = ROL64((a34^d4), 39); |
| a10 = b0 ^((~b1)& b2 ); |
| a41 = b1 ^((~b2)& b3 ); |
| a22 = b2 ^((~b3)& b4 ); |
| a03 = b3 ^((~b4)& b0 ); |
| a34 = b4 ^((~b0)& b1 ); |
| |
| c0 = a00^a40^a30^a20^a10; |
| c1 = a31^a21^a11^a01^a41; |
| c2 = a12^a02^a42^a32^a22; |
| c3 = a43^a33^a23^a13^a03; |
| c4 = a24^a14^a04^a44^a34; |
| d0 = c4^ROL64(c1, 1); |
| d1 = c0^ROL64(c2, 1); |
| d2 = c1^ROL64(c3, 1); |
| d3 = c2^ROL64(c4, 1); |
| d4 = c3^ROL64(c0, 1); |
| |
| b0 = (a00^d0); |
| b1 = ROL64((a21^d1), 44); |
| b2 = ROL64((a42^d2), 43); |
| b3 = ROL64((a13^d3), 21); |
| b4 = ROL64((a34^d4), 14); |
| a00 = b0 ^((~b1)& b2 ); |
| a00 ^= RC[i+2]; |
| a21 = b1 ^((~b2)& b3 ); |
| a42 = b2 ^((~b3)& b4 ); |
| a13 = b3 ^((~b4)& b0 ); |
| a34 = b4 ^((~b0)& b1 ); |
| |
| b2 = ROL64((a30^d0), 3); |
| b3 = ROL64((a01^d1), 45); |
| b4 = ROL64((a22^d2), 61); |
| b0 = ROL64((a43^d3), 28); |
| b1 = ROL64((a14^d4), 20); |
| a30 = b0 ^((~b1)& b2 ); |
| a01 = b1 ^((~b2)& b3 ); |
| a22 = b2 ^((~b3)& b4 ); |
| a43 = b3 ^((~b4)& b0 ); |
| a14 = b4 ^((~b0)& b1 ); |
| |
| b4 = ROL64((a10^d0), 18); |
| b0 = ROL64((a31^d1), 1); |
| b1 = ROL64((a02^d2), 6); |
| b2 = ROL64((a23^d3), 25); |
| b3 = ROL64((a44^d4), 8); |
| a10 = b0 ^((~b1)& b2 ); |
| a31 = b1 ^((~b2)& b3 ); |
| a02 = b2 ^((~b3)& b4 ); |
| a23 = b3 ^((~b4)& b0 ); |
| a44 = b4 ^((~b0)& b1 ); |
| |
| b1 = ROL64((a40^d0), 36); |
| b2 = ROL64((a11^d1), 10); |
| b3 = ROL64((a32^d2), 15); |
| b4 = ROL64((a03^d3), 56); |
| b0 = ROL64((a24^d4), 27); |
| a40 = b0 ^((~b1)& b2 ); |
| a11 = b1 ^((~b2)& b3 ); |
| a32 = b2 ^((~b3)& b4 ); |
| a03 = b3 ^((~b4)& b0 ); |
| a24 = b4 ^((~b0)& b1 ); |
| |
| b3 = ROL64((a20^d0), 41); |
| b4 = ROL64((a41^d1), 2); |
| b0 = ROL64((a12^d2), 62); |
| b1 = ROL64((a33^d3), 55); |
| b2 = ROL64((a04^d4), 39); |
| a20 = b0 ^((~b1)& b2 ); |
| a41 = b1 ^((~b2)& b3 ); |
| a12 = b2 ^((~b3)& b4 ); |
| a33 = b3 ^((~b4)& b0 ); |
| a04 = b4 ^((~b0)& b1 ); |
| |
| c0 = a00^a30^a10^a40^a20; |
| c1 = a21^a01^a31^a11^a41; |
| c2 = a42^a22^a02^a32^a12; |
| c3 = a13^a43^a23^a03^a33; |
| c4 = a34^a14^a44^a24^a04; |
| d0 = c4^ROL64(c1, 1); |
| d1 = c0^ROL64(c2, 1); |
| d2 = c1^ROL64(c3, 1); |
| d3 = c2^ROL64(c4, 1); |
| d4 = c3^ROL64(c0, 1); |
| |
| b0 = (a00^d0); |
| b1 = ROL64((a01^d1), 44); |
| b2 = ROL64((a02^d2), 43); |
| b3 = ROL64((a03^d3), 21); |
| b4 = ROL64((a04^d4), 14); |
| a00 = b0 ^((~b1)& b2 ); |
| a00 ^= RC[i+3]; |
| a01 = b1 ^((~b2)& b3 ); |
| a02 = b2 ^((~b3)& b4 ); |
| a03 = b3 ^((~b4)& b0 ); |
| a04 = b4 ^((~b0)& b1 ); |
| |
| b2 = ROL64((a10^d0), 3); |
| b3 = ROL64((a11^d1), 45); |
| b4 = ROL64((a12^d2), 61); |
| b0 = ROL64((a13^d3), 28); |
| b1 = ROL64((a14^d4), 20); |
| a10 = b0 ^((~b1)& b2 ); |
| a11 = b1 ^((~b2)& b3 ); |
| a12 = b2 ^((~b3)& b4 ); |
| a13 = b3 ^((~b4)& b0 ); |
| a14 = b4 ^((~b0)& b1 ); |
| |
| b4 = ROL64((a20^d0), 18); |
| b0 = ROL64((a21^d1), 1); |
| b1 = ROL64((a22^d2), 6); |
| b2 = ROL64((a23^d3), 25); |
| b3 = ROL64((a24^d4), 8); |
| a20 = b0 ^((~b1)& b2 ); |
| a21 = b1 ^((~b2)& b3 ); |
| a22 = b2 ^((~b3)& b4 ); |
| a23 = b3 ^((~b4)& b0 ); |
| a24 = b4 ^((~b0)& b1 ); |
| |
| b1 = ROL64((a30^d0), 36); |
| b2 = ROL64((a31^d1), 10); |
| b3 = ROL64((a32^d2), 15); |
| b4 = ROL64((a33^d3), 56); |
| b0 = ROL64((a34^d4), 27); |
| a30 = b0 ^((~b1)& b2 ); |
| a31 = b1 ^((~b2)& b3 ); |
| a32 = b2 ^((~b3)& b4 ); |
| a33 = b3 ^((~b4)& b0 ); |
| a34 = b4 ^((~b0)& b1 ); |
| |
| b3 = ROL64((a40^d0), 41); |
| b4 = ROL64((a41^d1), 2); |
| b0 = ROL64((a42^d2), 62); |
| b1 = ROL64((a43^d3), 55); |
| b2 = ROL64((a44^d4), 39); |
| a40 = b0 ^((~b1)& b2 ); |
| a41 = b1 ^((~b2)& b3 ); |
| a42 = b2 ^((~b3)& b4 ); |
| a43 = b3 ^((~b4)& b0 ); |
| a44 = b4 ^((~b0)& b1 ); |
| } |
| } |
| |
| /* |
| ** Initialize a new hash. iSize determines the size of the hash |
| ** in bits and should be one of 224, 256, 384, or 512. Or iSize |
| ** can be zero to use the default hash size of 256 bits. |
| */ |
| static void SHA3Init(SHA3Context *p, int iSize){ |
| memset(p, 0, sizeof(*p)); |
| if( iSize>=128 && iSize<=512 ){ |
| p->nRate = (1600 - ((iSize + 31)&~31)*2)/8; |
| }else{ |
| p->nRate = (1600 - 2*256)/8; |
| } |
| #if SHA3_BYTEORDER==1234 |
| /* Known to be little-endian at compile-time. No-op */ |
| #elif SHA3_BYTEORDER==4321 |
| p->ixMask = 7; /* Big-endian */ |
| #else |
| { |
| static unsigned int one = 1; |
| if( 1==*(unsigned char*)&one ){ |
| /* Little endian. No byte swapping. */ |
| p->ixMask = 0; |
| }else{ |
| /* Big endian. Byte swap. */ |
| p->ixMask = 7; |
| } |
| } |
| #endif |
| } |
| |
| /* |
| ** Make consecutive calls to the SHA3Update function to add new content |
| ** to the hash |
| */ |
| static void SHA3Update( |
| SHA3Context *p, |
| const unsigned char *aData, |
| unsigned int nData |
| ){ |
| unsigned int i = 0; |
| if( aData==0 ) return; |
| #if SHA3_BYTEORDER==1234 |
| if( (p->nLoaded % 8)==0 && ((aData - (const unsigned char*)0)&7)==0 ){ |
| for(; i+7<nData; i+=8){ |
| p->u.s[p->nLoaded/8] ^= *(u64*)&aData[i]; |
| p->nLoaded += 8; |
| if( p->nLoaded>=p->nRate ){ |
| KeccakF1600Step(p); |
| p->nLoaded = 0; |
| } |
| } |
| } |
| #endif |
| for(; i<nData; i++){ |
| #if SHA3_BYTEORDER==1234 |
| p->u.x[p->nLoaded] ^= aData[i]; |
| #elif SHA3_BYTEORDER==4321 |
| p->u.x[p->nLoaded^0x07] ^= aData[i]; |
| #else |
| p->u.x[p->nLoaded^p->ixMask] ^= aData[i]; |
| #endif |
| p->nLoaded++; |
| if( p->nLoaded==p->nRate ){ |
| KeccakF1600Step(p); |
| p->nLoaded = 0; |
| } |
| } |
| } |
| |
| /* |
| ** After all content has been added, invoke SHA3Final() to compute |
| ** the final hash. The function returns a pointer to the binary |
| ** hash value. |
| */ |
| static unsigned char *SHA3Final(SHA3Context *p){ |
| unsigned int i; |
| if( p->nLoaded==p->nRate-1 ){ |
| const unsigned char c1 = 0x86; |
| SHA3Update(p, &c1, 1); |
| }else{ |
| const unsigned char c2 = 0x06; |
| const unsigned char c3 = 0x80; |
| SHA3Update(p, &c2, 1); |
| p->nLoaded = p->nRate - 1; |
| SHA3Update(p, &c3, 1); |
| } |
| for(i=0; i<p->nRate; i++){ |
| p->u.x[i+p->nRate] = p->u.x[i^p->ixMask]; |
| } |
| return &p->u.x[p->nRate]; |
| } |
| /* End of the hashing logic |
| *****************************************************************************/ |
| |
| /* |
| ** Implementation of the sha3(X,SIZE) function. |
| ** |
| ** Return a BLOB which is the SIZE-bit SHA3 hash of X. The default |
| ** size is 256. If X is a BLOB, it is hashed as is. |
| ** For all other non-NULL types of input, X is converted into a UTF-8 string |
| ** and the string is hashed without the trailing 0x00 terminator. The hash |
| ** of a NULL value is NULL. |
| */ |
| static void sha3Func( |
| sqlite3_context *context, |
| int argc, |
| sqlite3_value **argv |
| ){ |
| SHA3Context cx; |
| int eType = sqlite3_value_type(argv[0]); |
| int nByte = sqlite3_value_bytes(argv[0]); |
| int iSize; |
| if( argc==1 ){ |
| iSize = 256; |
| }else{ |
| iSize = sqlite3_value_int(argv[1]); |
| if( iSize!=224 && iSize!=256 && iSize!=384 && iSize!=512 ){ |
| sqlite3_result_error(context, "SHA3 size should be one of: 224 256 " |
| "384 512", -1); |
| return; |
| } |
| } |
| if( eType==SQLITE_NULL ) return; |
| SHA3Init(&cx, iSize); |
| if( eType==SQLITE_BLOB ){ |
| SHA3Update(&cx, sqlite3_value_blob(argv[0]), nByte); |
| }else{ |
| SHA3Update(&cx, sqlite3_value_text(argv[0]), nByte); |
| } |
| sqlite3_result_blob(context, SHA3Final(&cx), iSize/8, SQLITE_TRANSIENT); |
| } |
| |
| /* Compute a string using sqlite3_vsnprintf() with a maximum length |
| ** of 50 bytes and add it to the hash. |
| */ |
| static void hash_step_vformat( |
| SHA3Context *p, /* Add content to this context */ |
| const char *zFormat, |
| ... |
| ){ |
| va_list ap; |
| int n; |
| char zBuf[50]; |
| va_start(ap, zFormat); |
| sqlite3_vsnprintf(sizeof(zBuf),zBuf,zFormat,ap); |
| va_end(ap); |
| n = (int)strlen(zBuf); |
| SHA3Update(p, (unsigned char*)zBuf, n); |
| } |
| |
| /* |
| ** Implementation of the sha3_query(SQL,SIZE) function. |
| ** |
| ** This function compiles and runs the SQL statement(s) given in the |
| ** argument. The results are hashed using a SIZE-bit SHA3. The default |
| ** size is 256. |
| ** |
| ** The format of the byte stream that is hashed is summarized as follows: |
| ** |
| ** S<n>:<sql> |
| ** R |
| ** N |
| ** I<int> |
| ** F<ieee-float> |
| ** B<size>:<bytes> |
| ** T<size>:<text> |
| ** |
| ** <sql> is the original SQL text for each statement run and <n> is |
| ** the size of that text. The SQL text is UTF-8. A single R character |
| ** occurs before the start of each row. N means a NULL value. |
| ** I mean an 8-byte little-endian integer <int>. F is a floating point |
| ** number with an 8-byte little-endian IEEE floating point value <ieee-float>. |
| ** B means blobs of <size> bytes. T means text rendered as <size> |
| ** bytes of UTF-8. The <n> and <size> values are expressed as an ASCII |
| ** text integers. |
| ** |
| ** For each SQL statement in the X input, there is one S segment. Each |
| ** S segment is followed by zero or more R segments, one for each row in the |
| ** result set. After each R, there are one or more N, I, F, B, or T segments, |
| ** one for each column in the result set. Segments are concatentated directly |
| ** with no delimiters of any kind. |
| */ |
| static void sha3QueryFunc( |
| sqlite3_context *context, |
| int argc, |
| sqlite3_value **argv |
| ){ |
| sqlite3 *db = sqlite3_context_db_handle(context); |
| const char *zSql = (const char*)sqlite3_value_text(argv[0]); |
| sqlite3_stmt *pStmt = 0; |
| int nCol; /* Number of columns in the result set */ |
| int i; /* Loop counter */ |
| int rc; |
| int n; |
| const char *z; |
| SHA3Context cx; |
| int iSize; |
| |
| if( argc==1 ){ |
| iSize = 256; |
| }else{ |
| iSize = sqlite3_value_int(argv[1]); |
| if( iSize!=224 && iSize!=256 && iSize!=384 && iSize!=512 ){ |
| sqlite3_result_error(context, "SHA3 size should be one of: 224 256 " |
| "384 512", -1); |
| return; |
| } |
| } |
| if( zSql==0 ) return; |
| SHA3Init(&cx, iSize); |
| while( zSql[0] ){ |
| rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zSql); |
| if( rc ){ |
| char *zMsg = sqlite3_mprintf("error SQL statement [%s]: %s", |
| zSql, sqlite3_errmsg(db)); |
| sqlite3_finalize(pStmt); |
| sqlite3_result_error(context, zMsg, -1); |
| sqlite3_free(zMsg); |
| return; |
| } |
| if( !sqlite3_stmt_readonly(pStmt) ){ |
| char *zMsg = sqlite3_mprintf("non-query: [%s]", sqlite3_sql(pStmt)); |
| sqlite3_finalize(pStmt); |
| sqlite3_result_error(context, zMsg, -1); |
| sqlite3_free(zMsg); |
| return; |
| } |
| nCol = sqlite3_column_count(pStmt); |
| z = sqlite3_sql(pStmt); |
| if( z ){ |
| n = (int)strlen(z); |
| hash_step_vformat(&cx,"S%d:",n); |
| SHA3Update(&cx,(unsigned char*)z,n); |
| } |
| |
| /* Compute a hash over the result of the query */ |
| while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| SHA3Update(&cx,(const unsigned char*)"R",1); |
| for(i=0; i<nCol; i++){ |
| switch( sqlite3_column_type(pStmt,i) ){ |
| case SQLITE_NULL: { |
| SHA3Update(&cx, (const unsigned char*)"N",1); |
| break; |
| } |
| case SQLITE_INTEGER: { |
| sqlite3_uint64 u; |
| int j; |
| unsigned char x[9]; |
| sqlite3_int64 v = sqlite3_column_int64(pStmt,i); |
| memcpy(&u, &v, 8); |
| for(j=8; j>=1; j--){ |
| x[j] = u & 0xff; |
| u >>= 8; |
| } |
| x[0] = 'I'; |
| SHA3Update(&cx, x, 9); |
| break; |
| } |
| case SQLITE_FLOAT: { |
| sqlite3_uint64 u; |
| int j; |
| unsigned char x[9]; |
| double r = sqlite3_column_double(pStmt,i); |
| memcpy(&u, &r, 8); |
| for(j=8; j>=1; j--){ |
| x[j] = u & 0xff; |
| u >>= 8; |
| } |
| x[0] = 'F'; |
| SHA3Update(&cx,x,9); |
| break; |
| } |
| case SQLITE_TEXT: { |
| int n2 = sqlite3_column_bytes(pStmt, i); |
| const unsigned char *z2 = sqlite3_column_text(pStmt, i); |
| hash_step_vformat(&cx,"T%d:",n2); |
| SHA3Update(&cx, z2, n2); |
| break; |
| } |
| case SQLITE_BLOB: { |
| int n2 = sqlite3_column_bytes(pStmt, i); |
| const unsigned char *z2 = sqlite3_column_blob(pStmt, i); |
| hash_step_vformat(&cx,"B%d:",n2); |
| SHA3Update(&cx, z2, n2); |
| break; |
| } |
| } |
| } |
| } |
| sqlite3_finalize(pStmt); |
| } |
| sqlite3_result_blob(context, SHA3Final(&cx), iSize/8, SQLITE_TRANSIENT); |
| } |
| |
| |
| #ifdef _WIN32 |
| __declspec(dllexport) |
| #endif |
| int sqlite3_shathree_init( |
| sqlite3 *db, |
| char **pzErrMsg, |
| const sqlite3_api_routines *pApi |
| ){ |
| int rc = SQLITE_OK; |
| SQLITE_EXTENSION_INIT2(pApi); |
| (void)pzErrMsg; /* Unused parameter */ |
| rc = sqlite3_create_function(db, "sha3", 1, |
| SQLITE_UTF8 | SQLITE_INNOCUOUS | SQLITE_DETERMINISTIC, |
| 0, sha3Func, 0, 0); |
| if( rc==SQLITE_OK ){ |
| rc = sqlite3_create_function(db, "sha3", 2, |
| SQLITE_UTF8 | SQLITE_INNOCUOUS | SQLITE_DETERMINISTIC, |
| 0, sha3Func, 0, 0); |
| } |
| if( rc==SQLITE_OK ){ |
| rc = sqlite3_create_function(db, "sha3_query", 1, |
| SQLITE_UTF8 | SQLITE_DIRECTONLY, |
| 0, sha3QueryFunc, 0, 0); |
| } |
| if( rc==SQLITE_OK ){ |
| rc = sqlite3_create_function(db, "sha3_query", 2, |
| SQLITE_UTF8 | SQLITE_DIRECTONLY, |
| 0, sha3QueryFunc, 0, 0); |
| } |
| return rc; |
| } |