| # 2021 September 13 |
| # |
| # The author disclaims copyright to this source code. In place of |
| # a legal notice, here is a blessing: |
| # |
| # May you do good and not evil. |
| # May you find forgiveness for yourself and forgive others. |
| # May you share freely, never taking more than you give. |
| # |
| #*********************************************************************** |
| # |
| # The focus of this file is testing the r-tree extension. |
| # |
| |
| if {![info exists testdir]} { |
| set testdir [file join [file dirname [info script]] .. .. test] |
| } |
| source [file join [file dirname [info script]] rtree_util.tcl] |
| source $testdir/tester.tcl |
| set testprefix rtreedoc |
| |
| ifcapable !rtree { |
| finish_test |
| return |
| } |
| |
| # This command returns the number of columns in table $tbl within the |
| # database opened by database handle $db |
| proc column_count {db tbl} { |
| set nCol 0 |
| $db eval "PRAGMA table_info = $tbl" { incr nCol } |
| return $nCol |
| } |
| |
| proc column_name_list {db tbl} { |
| set lCol [list] |
| $db eval "PRAGMA table_info = $tbl" { |
| lappend lCol $name |
| } |
| return $lCol |
| } |
| unset -nocomplain res |
| |
| #------------------------------------------------------------------------- |
| #------------------------------------------------------------------------- |
| # Section 3 of documentation. |
| #------------------------------------------------------------------------- |
| #------------------------------------------------------------------------- |
| set testprefix rtreedoc-1 |
| |
| # EVIDENCE-OF: R-15060-13876 A 1-dimensional R*Tree thus has 3 columns. |
| do_execsql_test 1.1.1 { CREATE VIRTUAL TABLE rt1 USING rtree(id, x1,x2) } |
| do_test 1.1.2 { column_count db rt1 } 3 |
| |
| # EVIDENCE-OF: R-19353-19546 A 2-dimensional R*Tree has 5 columns. |
| do_execsql_test 1.2.1 { CREATE VIRTUAL TABLE rt2 USING rtree(id,x1,x2, y1,y2) } |
| do_test 1.2.2 { column_count db rt2 } 5 |
| |
| # EVIDENCE-OF: R-13615-19528 A 3-dimensional R*Tree has 7 columns. |
| do_execsql_test 1.3.1 { |
| CREATE VIRTUAL TABLE rt3 USING rtree(id, x1,x2, y1,y2, z1,z2) |
| } |
| do_test 1.3.2 { column_count db rt3 } 7 |
| |
| # EVIDENCE-OF: R-53479-41922 A 4-dimensional R*Tree has 9 columns. |
| do_execsql_test 1.4.1 { |
| CREATE VIRTUAL TABLE rt4 USING rtree(id, x1,x2, y1,y2, z1,z2, v1,v2) |
| } |
| do_test 1.4.2 { column_count db rt4 } 9 |
| |
| # EVIDENCE-OF: R-13981-28768 And a 5-dimensional R*Tree has 11 columns. |
| do_execsql_test 1.5.1 { |
| CREATE VIRTUAL TABLE rt5 USING rtree(id, x1,x2, y1,y2, z1,z2, v1,v2, w1,w2) |
| } |
| do_test 1.5.2 { column_count db rt5 } 11 |
| |
| |
| # Attempt to create r-tree tables with 6 and 7 dimensions. |
| # |
| # EVIDENCE-OF: R-61533-25862 The SQLite R*Tree implementation does not |
| # support R*Trees wider than 5 dimensions. |
| do_catchsql_test 2.1.1 { |
| CREATE VIRTUAL TABLE rt6 USING rtree( |
| id, x1,x2, y1,y2, z1,z2, v1,v2, w1,w2, a1,a2 |
| ) |
| } {1 {Too many columns for an rtree table}} |
| do_catchsql_test 2.1.2 { |
| CREATE VIRTUAL TABLE rt6 USING rtree( |
| id, x1,x2, y1,y2, z1,z2, v1,v2, w1,w2, a1,a2, b1, b2 |
| ) |
| } {1 {Too many columns for an rtree table}} |
| |
| # Attempt to create r-tree tables with no columns, a single column, or |
| # an even number of columns. This and the tests above establish that: |
| # |
| # EVIDENCE-OF: R-16717-50504 Each R*Tree index is a virtual table with |
| # an odd number of columns between 3 and 11. |
| foreach {tn cols err} { |
| 1 "" "Too few columns for an rtree table" |
| 2 "x" "Too few columns for an rtree table" |
| 3 "x,y" "Too few columns for an rtree table" |
| 4 "a,b,c,d" "Wrong number of columns for an rtree table" |
| 5 "a,b,c,d,e,f" "Wrong number of columns for an rtree table" |
| 6 "a,b,c,d,e,f,g,h" "Wrong number of columns for an rtree table" |
| 7 "a,b,c,d,e,f,g,h,i,j" "Wrong number of columns for an rtree table" |
| 8 "a,b,c,d,e,f,g,h,i,j,k,l" "Too many columns for an rtree table" |
| } { |
| do_catchsql_test 3.$tn " |
| CREATE VIRTUAL TABLE xyz USING rtree($cols) |
| " [list 1 $err] |
| } |
| |
| # EVIDENCE-OF: R-17874-21123 The first column of an SQLite R*Tree is |
| # similar to an integer primary key column of a normal SQLite table. |
| # |
| # EVIDENCE-OF: R-46619-65417 The first column is always a 64-bit signed |
| # integer primary key. |
| # |
| # EVIDENCE-OF: R-46866-24036 It may only store a 64-bit signed integer |
| # value. |
| # |
| # EVIDENCE-OF: R-00250-64843 If an attempt is made to insert any other |
| # non-integer value into this column, the r-tree module silently |
| # converts it to an integer before writing it into the database. |
| # |
| do_execsql_test 4.0 { CREATE VIRTUAL TABLE rt USING rtree(id, x1, x2) } |
| foreach {tn val res} { |
| 1 10 10 |
| 2 10.6 10 |
| 3 10.99 10 |
| 4 '123' 123 |
| 5 X'313233' 123 |
| 6 -10 -10 |
| 7 9223372036854775807 9223372036854775807 |
| 8 -9223372036854775808 -9223372036854775808 |
| 9 '9223372036854775807' 9223372036854775807 |
| 10 '-9223372036854775808' -9223372036854775808 |
| 11 'hello+world' 0 |
| } { |
| do_execsql_test 4.$tn.1 " |
| DELETE FROM rt; |
| INSERT INTO rt VALUES($val, 10, 20); |
| " |
| do_execsql_test 4.$tn.2 { |
| SELECT typeof(id), id FROM rt |
| } [list integer $res] |
| } |
| |
| # EVIDENCE-OF: R-15544-29079 Inserting a NULL value into this column |
| # causes SQLite to automatically generate a new unique primary key |
| # value. |
| do_execsql_test 5.1 { |
| DELETE FROM rt; |
| INSERT INTO rt VALUES(100, 1, 2); |
| INSERT INTO rt VALUES(NULL, 1, 2); |
| } |
| do_execsql_test 5.2 { SELECT id FROM rt } {100 101} |
| do_execsql_test 5.3 { |
| INSERT INTO rt VALUES(9223372036854775807, 1, 2); |
| INSERT INTO rt VALUES(NULL, 1, 2); |
| } |
| do_execsql_test 5.4 { |
| SELECT count(*) FROM rt; |
| } 4 |
| do_execsql_test 5.5 { |
| SELECT id IN(100, 101, 9223372036854775807) FROM rt ORDER BY 1; |
| } {0 1 1 1} |
| |
| |
| # EVIDENCE-OF: R-64317-38978 The other columns are pairs, one pair per |
| # dimension, containing the minimum and maximum values for that |
| # dimension, respectively. |
| # |
| # Show this by observing that attempts to insert rows with max>min fail. |
| # |
| do_execsql_test 6.1 { |
| CREATE VIRTUAL TABLE rtF USING rtree(id, x1,x2, y1,y2); |
| CREATE VIRTUAL TABLE rtI USING rtree_i32(id, x1,x2, y1,y2, z1,z2); |
| } |
| foreach {tn x1 x2 y1 y2 ok} { |
| 1 10.3 20.1 30.9 40.2 1 |
| 2 10.3 20.1 40.2 30.9 0 |
| 3 10.3 30.9 20.1 40.2 1 |
| 4 20.1 10.3 30.9 40.2 0 |
| } { |
| do_test 6.2.$tn { |
| catch { db eval { INSERT INTO rtF VALUES(NULL, $x1, $x2, $y1, $y2) } } |
| } [expr $ok==0] |
| } |
| foreach {tn x1 x2 y1 y2 z1 z2 ok} { |
| 1 10 20 30 40 50 60 1 |
| 2 10 20 30 40 60 50 0 |
| 3 10 20 30 50 40 60 1 |
| 4 10 20 40 30 50 60 0 |
| 5 10 30 20 40 50 60 1 |
| 6 20 10 30 40 50 60 0 |
| } { |
| do_test 6.3.$tn { |
| catch { db eval { INSERT INTO rtI VALUES(NULL,$x1,$x2,$y1,$y2,$z1,$z2) } } |
| } [expr $ok==0] |
| } |
| |
| # EVIDENCE-OF: R-08054-15429 The min/max-value pair columns are stored |
| # as 32-bit floating point values for "rtree" virtual tables or as |
| # 32-bit signed integers in "rtree_i32" virtual tables. |
| # |
| # Show this by showing that large values are rounded in ways consistent |
| # with those two 32-bit types. |
| do_execsql_test 7.1 { |
| DELETE FROM rtI; |
| INSERT INTO rtI VALUES( |
| 0, -2000000000, 2000000000, -5000000000, 5000000000, |
| -1000000000000, 10000000000000 |
| ); |
| SELECT * FROM rtI; |
| } { |
| 0 -2000000000 2000000000 -705032704 705032704 727379968 1316134912 |
| } |
| do_execsql_test 7.2 { |
| DELETE FROM rtF; |
| INSERT INTO rtF VALUES( |
| 0, -2000000000, 2000000000, |
| -1000000000000, 10000000000000 |
| ); |
| SELECT * FROM rtF; |
| } { |
| 0 -2000000000.0 2000000000.0 -1000000126976.0 10000000876544.0 |
| } |
| |
| # EVIDENCE-OF: R-47371-54529 Unlike regular SQLite tables which can |
| # store data in a variety of datatypes and formats, the R*Tree rigidly |
| # enforce these storage types. |
| # |
| # EVIDENCE-OF: R-39153-14977 If any other type of value is inserted into |
| # such a column, the r-tree module silently converts it to the required |
| # type before writing the new record to the database. |
| do_execsql_test 8.1 { |
| DELETE FROM rtI; |
| INSERT INTO rtI VALUES( |
| 1, 'hello world', X'616263', NULL, 44.5, 1000, 9999.9999 |
| ); |
| SELECT * FROM rtI; |
| } { |
| 1 0 0 0 44 1000 9999 |
| } |
| |
| do_execsql_test 8.2 { |
| SELECT |
| typeof(x1), typeof(x2), typeof(y1), typeof(y2), typeof(z1), typeof(z2) |
| FROM rtI |
| } {integer integer integer integer integer integer} |
| |
| do_execsql_test 8.3 { |
| DELETE FROM rtF; |
| INSERT INTO rtF VALUES( |
| 1, 'hello world', X'616263', NULL, 44 |
| ); |
| SELECT * FROM rtF; |
| } { |
| 1 0.0 0.0 0.0 44.0 |
| } |
| do_execsql_test 8.4 { |
| SELECT |
| typeof(x1), typeof(x2), typeof(y1), typeof(y2) |
| FROM rtF |
| } {real real real real} |
| |
| |
| |
| |
| #------------------------------------------------------------------------- |
| #------------------------------------------------------------------------- |
| # Section 3.1 of documentation. |
| #------------------------------------------------------------------------- |
| #------------------------------------------------------------------------- |
| set testprefix rtreedoc-2 |
| reset_db |
| |
| foreach {tn name clist} { |
| 1 t1 "id x1 x2" |
| 2 t2 "id x1 x2 y1 y2 z1 z2" |
| } { |
| # EVIDENCE-OF: R-15142-18077 A new R*Tree index is created as follows: |
| # CREATE VIRTUAL TABLE <name> USING rtree(<column-names>); |
| do_execsql_test 1.$tn.1 " |
| CREATE VIRTUAL TABLE $name USING rtree([join $clist ,]) |
| " |
| |
| # EVIDENCE-OF: R-51698-09302 The <name> is the name your |
| # application chooses for the R*Tree index and <column-names> is a |
| # comma separated list of between 3 and 11 columns. |
| do_test 1.$tn.2 { column_name_list db $name } [list {*}$clist] |
| |
| # EVIDENCE-OF: R-50130-53472 The virtual <name> table creates |
| # three shadow tables to actually store its content. |
| do_execsql_test 1.$tn.3 { |
| SELECT count(*) FROM sqlite_schema |
| } [expr 1+3] |
| |
| # EVIDENCE-OF: R-45256-35998 The names of these shadow tables are: |
| # <name>_node <name>_rowid <name>_parent |
| do_execsql_test 1.$tn.4 { |
| SELECT name FROM sqlite_schema WHERE rootpage>0 ORDER BY 1 |
| } [list ${name}_node ${name}_parent ${name}_rowid] |
| |
| do_execsql_test 1.$tn.5 "DROP TABLE $name" |
| } |
| |
| # EVIDENCE-OF: R-11241-54478 As an example, consider creating a |
| # two-dimensional R*Tree index for use in spatial queries: CREATE |
| # VIRTUAL TABLE demo_index USING rtree( id, -- Integer primary key minX, |
| # maxX, -- Minimum and maximum X coordinate minY, maxY -- Minimum and |
| # maximum Y coordinate ); |
| do_execsql_test 2.0 { |
| CREATE VIRTUAL TABLE demo_index USING rtree( |
| id, -- Integer primary key |
| minX, maxX, -- Minimum and maximum X coordinate |
| minY, maxY -- Minimum and maximum Y coordinate |
| ); |
| INSERT INTO demo_index VALUES(1,2,3,4,5); |
| INSERT INTO demo_index VALUES(6,7,8,9,10); |
| } |
| |
| # EVIDENCE-OF: R-02287-33529 The shadow tables are ordinary SQLite data |
| # tables. |
| # |
| # Ordinary tables. With ordinary sqlite_schema entries. |
| do_execsql_test 2.1 { |
| SELECT type, name, sql FROM sqlite_schema WHERE sql NOT LIKE '%virtual%' |
| } { |
| table demo_index_rowid |
| {CREATE TABLE "demo_index_rowid"(rowid INTEGER PRIMARY KEY,nodeno)} |
| table demo_index_node |
| {CREATE TABLE "demo_index_node"(nodeno INTEGER PRIMARY KEY,data)} |
| table demo_index_parent |
| {CREATE TABLE "demo_index_parent"(nodeno INTEGER PRIMARY KEY,parentnode)} |
| } |
| |
| # EVIDENCE-OF: R-10863-13089 You can query them directly if you like, |
| # though this unlikely to reveal anything particularly useful. |
| # |
| # Querying: |
| do_execsql_test 2.2 { |
| SELECT count(*) FROM demo_index_node; |
| SELECT count(*) FROM demo_index_rowid; |
| SELECT count(*) FROM demo_index_parent; |
| } {1 2 0} |
| |
| # EVIDENCE-OF: R-05650-46070 And you can UPDATE, DELETE, INSERT or even |
| # DROP the shadow tables, though doing so will corrupt your R*Tree |
| # index. |
| do_execsql_test 2.3 { |
| DELETE FROM demo_index_rowid; |
| INSERT INTO demo_index_parent VALUES(2, 3); |
| UPDATE demo_index_node SET data = 'hello world' |
| } |
| do_catchsql_test 2.4 { |
| SELECT * FROM demo_index WHERE minX>10 AND maxX<30 |
| } {1 {database disk image is malformed}} |
| do_execsql_test 2.5 { |
| DROP TABLE demo_index_rowid |
| } |
| |
| #------------------------------------------------------------------------- |
| #------------------------------------------------------------------------- |
| # Section 3.1.1 of documentation. |
| #------------------------------------------------------------------------- |
| #------------------------------------------------------------------------- |
| set testprefix rtreedoc-3 |
| reset_db |
| |
| # EVIDENCE-OF: R-44253-50720 In the argments to "rtree" in the CREATE |
| # VIRTUAL TABLE statement, the names of the columns are taken from the |
| # first token of each argument. All subsequent tokens within each |
| # argument are silently ignored. |
| # |
| foreach {tn cols lCol} { |
| 1 {(id TEXT, x1 TEXT, x2 TEXT, y1 TEXT, y2 TEXT)} {id x1 x2 y1 y2} |
| 2 {(id TEXT, x1 UNIQUE, x2 TEXT, y1 NOT NULL, y2 TEXT)} {id x1 x2 y1 y2} |
| 3 {(id, x1 DEFAULT 4, x2 TEXT, y1 NOT NULL, y2 TEXT)} {id x1 x2 y1 y2} |
| } { |
| do_execsql_test 1.$tn.1 " CREATE VIRTUAL TABLE abc USING rtree $cols " |
| do_test 1.$tn.2 { column_name_list db abc } $lCol |
| |
| # EVIDENCE-OF: R-52032-06717 This means, for example, that if you try to |
| # give a column a type affinity or add a constraint such as UNIQUE or |
| # NOT NULL or DEFAULT to a column, those extra tokens are accepted as |
| # valid, but they do not change the behavior of the rtree. |
| |
| # Show there are no UNIQUE constraints |
| do_execsql_test 1.$tn.3 { |
| INSERT INTO abc VALUES(1, 10.0, 20.0, 10.0, 20.0); |
| INSERT INTO abc VALUES(2, 10.0, 20.0, 10.0, 20.0); |
| } |
| |
| # Show the default values have not been modified |
| do_execsql_test 1.$tn.4 { |
| INSERT INTO abc DEFAULT VALUES; |
| SELECT * FROM abc WHERE rowid NOT IN (1,2) |
| } {3 0.0 0.0 0.0 0.0} |
| |
| # Show that there are no NOT NULL constraints |
| do_execsql_test 1.$tn.5 { |
| INSERT INTO abc VALUES(NULL, NULL, NULL, NULL, NULL); |
| SELECT * FROM abc WHERE rowid NOT IN (1,2,3) |
| } {4 0.0 0.0 0.0 0.0} |
| |
| # EVIDENCE-OF: R-06893-30579 In an RTREE virtual table, the first column |
| # always has a type affinity of INTEGER and all other data columns have |
| # a type affinity of REAL. |
| do_execsql_test 1.$tn.5 { |
| INSERT INTO abc VALUES('5', '5', '5', '5', '5'); |
| SELECT * FROM abc WHERE rowid NOT IN (1,2,3,4) |
| } {5 5.0 5.0 5.0 5.0} |
| do_execsql_test 1.$tn.6 { |
| SELECT type FROM pragma_table_info('abc') ORDER BY cid |
| } {INT REAL REAL REAL REAL} |
| |
| do_execsql_test 1.$tn.7 " CREATE VIRTUAL TABLE abc2 USING rtree_i32 $cols " |
| |
| # EVIDENCE-OF: R-06224-52418 In an RTREE_I32 virtual table, all columns |
| # have type affinity of INTEGER. |
| do_execsql_test 1.$tn.8 { |
| INSERT INTO abc2 VALUES('6.0', '6.0', '6.0', '6.0', '6.0'); |
| SELECT * FROM abc2 |
| } {6 6 6 6 6} |
| do_execsql_test 1.$tn.9 { |
| SELECT type FROM pragma_table_info('abc2') ORDER BY cid |
| } {INT INT INT INT INT} |
| |
| |
| do_execsql_test 1.$tn.10 { |
| DROP TABLE abc; |
| DROP TABLE abc2; |
| } |
| } |
| |
| #------------------------------------------------------------------------- |
| #------------------------------------------------------------------------- |
| # Section 3.2 of documentation. |
| #------------------------------------------------------------------------- |
| #------------------------------------------------------------------------- |
| set testprefix rtreedoc-4 |
| reset_db |
| |
| # EVIDENCE-OF: R-36195-31555 The usual INSERT, UPDATE, and DELETE |
| # commands work on an R*Tree index just like on regular tables. |
| # |
| # Create a regular table and an rtree table. Perform INSERT, UPDATE and |
| # DELETE operations, then observe that the contents of the two tables |
| # are identical. |
| do_execsql_test 1.0 { |
| CREATE VIRTUAL TABLE rt USING rtree(id, x1, x2); |
| CREATE TABLE t1(id INTEGER PRIMARY KEY, x1 REAL, x2 REAL); |
| } |
| foreach {tn sql} { |
| 1 "INSERT INTO %TBL% VALUES(5, 11,12)" |
| 2 "INSERT INTO %TBL% VALUES(11, -11,14.5)" |
| 3 "UPDATE %TBL% SET x1=-99 WHERE id=11" |
| 4 "DELETE FROM %TBL% WHERE x2=14.5" |
| 5 "DELETE FROM %TBL%" |
| } { |
| set sql1 [string map {%TBL% rt} $sql] |
| set sql2 [string map {%TBL% t1} $sql] |
| do_execsql_test 1.$tn.0 $sql1 |
| do_execsql_test 1.$tn.1 $sql2 |
| |
| set data1 [execsql {SELECT * FROM rt ORDER BY 1}] |
| set data2 [execsql {SELECT * FROM t1 ORDER BY 1}] |
| |
| set res [expr {$data1==$data2}] |
| do_test 1.$tn.2 {set res} 1 |
| } |
| |
| # EVIDENCE-OF: R-56987-45305 |
| do_execsql_test 2.0 { |
| CREATE VIRTUAL TABLE demo_index USING rtree( |
| id, -- Integer primary key |
| minX, maxX, -- Minimum and maximum X coordinate |
| minY, maxY -- Minimum and maximum Y coordinate |
| ); |
| |
| INSERT INTO demo_index VALUES |
| (28215, -80.781227, -80.604706, 35.208813, 35.297367), |
| (28216, -80.957283, -80.840599, 35.235920, 35.367825), |
| (28217, -80.960869, -80.869431, 35.133682, 35.208233), |
| (28226, -80.878983, -80.778275, 35.060287, 35.154446), |
| (28227, -80.745544, -80.555382, 35.130215, 35.236916), |
| (28244, -80.844208, -80.841988, 35.223728, 35.225471), |
| (28262, -80.809074, -80.682938, 35.276207, 35.377747), |
| (28269, -80.851471, -80.735718, 35.272560, 35.407925), |
| (28270, -80.794983, -80.728966, 35.059872, 35.161823), |
| (28273, -80.994766, -80.875259, 35.074734, 35.172836), |
| (28277, -80.876793, -80.767586, 35.001709, 35.101063), |
| (28278, -81.058029, -80.956375, 35.044701, 35.223812), |
| (28280, -80.844208, -80.841972, 35.225468, 35.227203), |
| (28282, -80.846382, -80.844193, 35.223972, 35.225655); |
| } |
| |
| #------------------------------------------------------------------------- |
| #------------------------------------------------------------------------- |
| # Section 3.3 of documentation. |
| #------------------------------------------------------------------------- |
| #------------------------------------------------------------------------- |
| set testprefix rtreedoc-5 |
| |
| do_execsql_test 1.0 { |
| INSERT INTO demo_index |
| SELECT NULL, minX, maxX, minY+0.2, maxY+0.2 FROM demo_index; |
| INSERT INTO demo_index |
| SELECT NULL, minX+0.2, maxX+0.2, minY, maxY FROM demo_index; |
| INSERT INTO demo_index |
| SELECT NULL, minX, maxX, minY+0.4, maxY+0.4 FROM demo_index; |
| INSERT INTO demo_index |
| SELECT NULL, minX+0.4, maxX+0.4, minY, maxY FROM demo_index; |
| INSERT INTO demo_index |
| SELECT NULL, minX, maxX, minY+0.8, maxY+0.8 FROM demo_index; |
| INSERT INTO demo_index |
| SELECT NULL, minX+0.8, maxX+0.8, minY, maxY FROM demo_index; |
| |
| SELECT count(*) FROM demo_index; |
| } {896} |
| |
| proc do_vmstep_test {tn sql expr} { |
| execsql $sql |
| set step [db status vmstep] |
| do_test $tn.$step "expr {[subst $expr]}" 1 |
| } |
| |
| # EVIDENCE-OF: R-45880-07724 Any valid query will work against an R*Tree |
| # index. |
| do_execsql_test 1.1.0 { |
| CREATE TABLE demo_tbl AS SELECT * FROM demo_index; |
| } |
| foreach {tn sql} { |
| 1 {SELECT * FROM %TBL% ORDER BY 1} |
| 2 {SELECT max(minX) FROM %TBL% ORDER BY 1} |
| 3 {SELECT max(minX) FROM %TBL% GROUP BY round(minY) ORDER BY 1} |
| } { |
| set sql1 [string map {%TBL% demo_index} $sql] |
| set sql2 [string map {%TBL% demo_tbl} $sql] |
| |
| do_execsql_test 1.1.$tn $sql1 [execsql $sql2] |
| } |
| |
| # EVIDENCE-OF: R-60814-18273 The R*Tree implementation just makes some |
| # kinds of queries especially efficient. |
| # |
| # The second query is more efficient than the first. |
| do_vmstep_test 1.2.1 {SELECT * FROM demo_index WHERE +rowid=28269} {$step>2000} |
| do_vmstep_test 1.2.2 {SELECT * FROM demo_index WHERE rowid=28269} {$step<100} |
| |
| # EVIDENCE-OF: R-37800-50174 Queries against the primary key are |
| # efficient: SELECT * FROM demo_index WHERE id=28269; |
| do_vmstep_test 2.2 { SELECT * FROM demo_index WHERE id=28269 } {$step < 100} |
| |
| # EVIDENCE-OF: R-35847-18866 The big reason for using an R*Tree is so |
| # that you can efficiently do range queries against the coordinate |
| # ranges. |
| # |
| # EVIDENCE-OF: R-49927-54202 |
| do_vmstep_test 2.3 { |
| SELECT id FROM demo_index |
| WHERE minX<=-80.77470 AND maxX>=-80.77470 |
| AND minY<=35.37785 AND maxY>=35.37785; |
| } {$step < 100} |
| |
| # EVIDENCE-OF: R-12823-37176 The query above will quickly locate all |
| # zipcodes that contain the SQLite main office in their bounding box, |
| # even if the R*Tree contains many entries. |
| # |
| do_execsql_test 2.4 { |
| SELECT id FROM demo_index |
| WHERE minX<=-80.77470 AND maxX>=-80.77470 |
| AND minY<=35.37785 AND maxY>=35.37785; |
| } { |
| 28322 28269 |
| } |
| |
| # EVIDENCE-OF: R-07351-00257 For example, to find all zipcode bounding |
| # boxes that overlap with the 28269 zipcode: SELECT A.id FROM demo_index |
| # AS A, demo_index AS B WHERE A.maxX>=B.minX AND A.minX<=B.maxX |
| # AND A.maxY>=B.minY AND A.minY<=B.maxY AND B.id=28269; |
| # |
| # Also check that it is efficient |
| # |
| # EVIDENCE-OF: R-39094-01937 This second query will find both 28269 |
| # entry (since every bounding box overlaps with itself) and also other |
| # zipcode that is close enough to 28269 that their bounding boxes |
| # overlap. |
| # |
| # 28269 is there in the result. |
| # |
| do_vmstep_test 2.5.1 { |
| SELECT A.id FROM demo_index AS A, demo_index AS B |
| WHERE A.maxX>=B.minX AND A.minX<=B.maxX |
| AND A.maxY>=B.minY AND A.minY<=B.maxY |
| AND B.id=28269 |
| } {$step < 100} |
| do_execsql_test 2.5.2 { |
| SELECT A.id FROM demo_index AS A, demo_index AS B |
| WHERE A.maxX>=B.minX AND A.minX<=B.maxX |
| AND A.maxY>=B.minY AND A.minY<=B.maxY |
| AND B.id=28269; |
| } { |
| 28293 28216 28322 28286 28269 |
| 28215 28336 28262 28291 28320 |
| 28313 28298 28287 |
| } |
| |
| # EVIDENCE-OF: R-02723-34107 Note that it is not necessary for all |
| # coordinates in an R*Tree index to be constrained in order for the |
| # index search to be efficient. |
| # |
| # EVIDENCE-OF: R-22490-27246 One might, for example, want to query all |
| # objects that overlap with the 35th parallel: SELECT id FROM demo_index |
| # WHERE maxY>=35.0 AND minY<=35.0; |
| do_vmstep_test 2.6.1 { |
| SELECT id FROM demo_index |
| WHERE maxY>=35.0 AND minY<=35.0; |
| } {$step < 100} |
| do_execsql_test 2.6.2 { |
| SELECT id FROM demo_index |
| WHERE maxY>=35.0 AND minY<=35.0; |
| } {} |
| |
| |
| #------------------------------------------------------------------------- |
| #------------------------------------------------------------------------- |
| # Section 3.4 of documentation. |
| #------------------------------------------------------------------------- |
| #------------------------------------------------------------------------- |
| set testprefix rtreedoc-6 |
| reset_db |
| |
| # EVIDENCE-OF: R-08327-00674 By default, coordinates are stored in an |
| # R*Tree using 32-bit floating point values. |
| # |
| # EVIDENCE-OF: R-22000-53613 The default virtual table ("rtree") stores |
| # coordinates as single-precision (4-byte) floating point numbers. |
| # |
| # Show this by showing that rounding is consistent with 32-bit float |
| # rounding. |
| do_execsql_test 1.0 { |
| CREATE VIRTUAL TABLE rt USING rtree(id, a,b); |
| } |
| do_execsql_test 1.1 { |
| INSERT INTO rt VALUES(14, -1000000000000, 1000000000000); |
| SELECT * FROM rt; |
| } {14 -1000000126976.0 1000000126976.0} |
| |
| # EVIDENCE-OF: R-39127-51288 When a coordinate cannot be exactly |
| # represented by a 32-bit floating point number, the lower-bound |
| # coordinates are rounded down and the upper-bound coordinates are |
| # rounded up. |
| foreach {tn val} { |
| 1 100000000000 |
| 2 200000000000 |
| 3 300000000000 |
| 4 400000000000 |
| |
| 5 -100000000000 |
| 6 -200000000000 |
| 7 -300000000000 |
| 8 -400000000000 |
| } { |
| set val [expr $val] |
| do_execsql_test 2.$tn.0 {DELETE FROM rt} |
| do_execsql_test 2.$tn.1 {INSERT INTO rt VALUES(23, $val, $val)} |
| do_execsql_test 2.$tn.2 { |
| SELECT $val>=a, $val<=b, a!=b FROM rt |
| } {1 1 1} |
| } |
| |
| do_execsql_test 3.0 { |
| DROP TABLE rt; |
| CREATE VIRTUAL TABLE rt USING rtree(id, x1,x2, y1,y2); |
| } |
| |
| # EVIDENCE-OF: R-45870-62834 Thus, bounding boxes might be slightly |
| # larger than specified, but will never be any smaller. |
| foreach {tn x1 x2 y1 y2} { |
| 1 100000000000 200000000000 300000000000 400000000000 |
| } { |
| set val [expr $val] |
| do_execsql_test 3.$tn.0 {DELETE FROM rt} |
| do_execsql_test 3.$tn.1 {INSERT INTO rt VALUES(23, $x1, $x2, $y1, $y2)} |
| do_execsql_test 3.$tn.2 { |
| SELECT (x2-x1)*(y2-y1) >= ($x2-$x1)*($y2-$y1) FROM rt |
| } {1} |
| } |
| |
| #------------------------------------------------------------------------- |
| #------------------------------------------------------------------------- |
| # Section 3.5 of documentation. |
| #------------------------------------------------------------------------- |
| #------------------------------------------------------------------------- |
| set testprefix rtreedoc-7 |
| reset_db |
| |
| # EVIDENCE-OF: R-55979-39402 It is the nature of the Guttman R-Tree |
| # algorithm that any write might radically restructure the tree, and in |
| # the process change the scan order of the nodes. |
| # |
| # In the test below, the INSERT marked "THIS INSERT!!" does not affect |
| # the results of queries with an ORDER BY, but does affect the results |
| # of one without an ORDER BY. Therefore the INSERT changed the scan |
| # order. |
| do_execsql_test 1.0 { |
| CREATE VIRTUAL TABLE rt USING rtree(id, minX, maxX); |
| WITH s(i) AS ( |
| SELECT 1 UNION ALL SELECT i+1 FROM s WHERE i<51 |
| ) |
| INSERT INTO rt SELECT NULL, i%10, (i%10)+5 FROM s |
| } |
| do_execsql_test 1.1 { SELECT count(*) FROM rt_node } 1 |
| do_test 1.2 { |
| set res1 [db eval {SELECT * FROM rt WHERE maxX < 30}] |
| set res1o [db eval {SELECT * FROM rt WHERE maxX < 30 ORDER BY +id}] |
| |
| db eval { INSERT INTO rt VALUES(NULL, 50, 50) } ;# THIS INSERT!! |
| |
| set res2 [db eval {SELECT * FROM rt WHERE maxX < 30}] |
| set res2o [db eval {SELECT * FROM rt WHERE maxX < 30 ORDER BY +id}] |
| list [expr {$res1==$res2}] [expr {$res1o==$res2o}] |
| } {0 1} |
| |
| do_execsql_test 1.3 { SELECT count(*) FROM rt_node } 3 |
| |
| # EVIDENCE-OF: R-00683-48865 For this reason, it is not generally |
| # possible to modify the R-Tree in the middle of a query of the R-Tree. |
| # Attempts to do so will fail with a SQLITE_LOCKED "database table is |
| # locked" error. |
| # |
| # SQLITE_LOCKED==6 |
| # |
| do_test 1.4 { |
| set nCnt 3 |
| db eval { SELECT * FROM rt WHERE minX>0 AND maxX<12 } { |
| incr nCnt -1 |
| if {$nCnt==0} { |
| set rc [catch {db eval { |
| INSERT INTO rt VALUES(NULL, 51, 51); |
| }} msg] |
| set errorcode [db errorcode] |
| break |
| } |
| } |
| |
| list $errorcode $rc $msg |
| } {6 1 {database table is locked}} |
| |
| # EVIDENCE-OF: R-19740-29710 So, for example, suppose an application |
| # runs one query against an R-Tree like this: SELECT id FROM demo_index |
| # WHERE maxY>=35.0 AND minY<=35.0; Then for each "id" value |
| # returned, suppose the application creates an UPDATE statement like the |
| # following and binds the "id" value returned against the "?1" |
| # parameter: UPDATE demo_index SET maxY=maxY+0.5 WHERE id=?1; |
| # |
| # EVIDENCE-OF: R-52919-32711 Then the UPDATE might fail with an |
| # SQLITE_LOCKED error. |
| do_execsql_test 2.0 { |
| CREATE VIRTUAL TABLE demo_index USING rtree( |
| id, -- Integer primary key |
| minX, maxX, -- Minimum and maximum X coordinate |
| minY, maxY -- Minimum and maximum Y coordinate |
| ); |
| INSERT INTO demo_index VALUES |
| (28215, -80.781227, -80.604706, 35.208813, 35.297367), |
| (28216, -80.957283, -80.840599, 35.235920, 35.367825), |
| (28217, -80.960869, -80.869431, 35.133682, 35.208233), |
| (28226, -80.878983, -80.778275, 35.060287, 35.154446); |
| } |
| do_test 2.1 { |
| db eval { SELECT id FROM demo_index WHERE maxY>=35.0 AND minY<=35.0 } { |
| set rc [catch { |
| db eval { UPDATE demo_index SET maxY=maxY+0.5 WHERE id=$id } |
| } msg] |
| set errorcode [db errorcode] |
| break |
| } |
| list $errorcode $rc $msg |
| } {6 1 {database table is locked}} |
| |
| # EVIDENCE-OF: R-32604-49843 Ordinary tables in SQLite are able to read |
| # and write at the same time. |
| # |
| do_execsql_test 3.0 { |
| CREATE TABLE x1(a INTEGER PRIMARY KEY, b, c); |
| INSERT INTO x1 VALUES(1, 1, 1); |
| INSERT INTO x1 VALUES(2, 2, 2); |
| INSERT INTO x1 VALUES(3, 3, 3); |
| INSERT INTO x1 VALUES(4, 4, 4); |
| } |
| do_test 3.1 { |
| unset -nocomplain res |
| set res [list] |
| db eval { SELECT * FROM x1 } { |
| lappend res $a $b $c |
| switch -- $a { |
| 1 { |
| db eval { INSERT INTO x1 VALUES(5, 5, 5) } |
| } |
| 2 { |
| db eval { UPDATE x1 SET c=20 WHERE a=2 } |
| } |
| 3 { |
| db eval { DELETE FROM x1 WHERE c IN (3,4) } |
| } |
| } |
| } |
| set res |
| } {1 1 1 2 2 2 3 3 3 5 5 5} |
| do_execsql_test 3.2 { |
| SELECT * FROM x1 |
| } {1 1 1 2 2 20 5 5 5} |
| |
| # EVIDENCE-OF: R-06177-00576 And R-Tree can appear to read and write at |
| # the same time in some circumstances, if it can figure out how to |
| # reliably run the query to completion before starting the update. |
| # |
| # In 8.2, it can, it 8.1, it cannot. |
| do_test 8.1 { |
| db eval { SELECT * FROM rt } { |
| set rc [catch { db eval { INSERT INTO rt VALUES(53,53,53) } } msg] |
| break; |
| } |
| list $rc $msg |
| } {1 {database table is locked}} |
| do_test 8.2 { |
| db eval { SELECT * FROM rt ORDER BY +id } { |
| set rc [catch { db eval { INSERT INTO rt VALUES(53,53,53) } } msg] |
| break |
| } |
| list $rc $msg |
| } {0 {}} |
| |
| #------------------------------------------------------------------------- |
| #------------------------------------------------------------------------- |
| # Section 4 of documentation. |
| #------------------------------------------------------------------------- |
| #------------------------------------------------------------------------- |
| set testprefix rtreedoc-8 |
| reset_db |
| |
| # EVIDENCE-OF: R-21062-30088 For the example above, one might create an |
| # auxiliary table as follows: CREATE TABLE demo_data( id INTEGER PRIMARY |
| # KEY, -- primary key objname TEXT, -- name of the object objtype TEXT, |
| # -- object type boundary BLOB -- detailed boundary of object ); |
| # |
| # One might. |
| # |
| do_execsql_test 1.0 { |
| CREATE TABLE demo_data( |
| id INTEGER PRIMARY KEY, -- primary key |
| objname TEXT, -- name of the object |
| objtype TEXT, -- object type |
| boundary BLOB -- detailed boundary of object |
| ); |
| } |
| |
| do_execsql_test 1.1 { |
| CREATE VIRTUAL TABLE demo_index USING rtree( |
| id, -- Integer primary key |
| minX, maxX, -- Minimum and maximum X coordinate |
| minY, maxY -- Minimum and maximum Y coordinate |
| ); |
| |
| INSERT INTO demo_index VALUES |
| (28215, -80.781227, -80.604706, 35.208813, 35.297367), |
| (28216, -80.957283, -80.840599, 35.235920, 35.367825), |
| (28217, -80.960869, -80.869431, 35.133682, 35.208233), |
| (28226, -80.878983, -80.778275, 35.060287, 35.154446), |
| (28227, -80.745544, -80.555382, 35.130215, 35.236916), |
| (28244, -80.844208, -80.841988, 35.223728, 35.225471), |
| (28262, -80.809074, -80.682938, 35.276207, 35.377747), |
| (28269, -80.851471, -80.735718, 35.272560, 35.407925), |
| (28270, -80.794983, -80.728966, 35.059872, 35.161823), |
| (28273, -80.994766, -80.875259, 35.074734, 35.172836), |
| (28277, -80.876793, -80.767586, 35.001709, 35.101063), |
| (28278, -81.058029, -80.956375, 35.044701, 35.223812), |
| (28280, -80.844208, -80.841972, 35.225468, 35.227203), |
| (28282, -80.846382, -80.844193, 35.223972, 35.225655); |
| |
| INSERT INTO demo_index |
| SELECT NULL, minX, maxX, minY+0.2, maxY+0.2 FROM demo_index; |
| INSERT INTO demo_index |
| SELECT NULL, minX+0.2, maxX+0.2, minY, maxY FROM demo_index; |
| INSERT INTO demo_index |
| SELECT NULL, minX, maxX, minY+0.4, maxY+0.4 FROM demo_index; |
| INSERT INTO demo_index |
| SELECT NULL, minX+0.4, maxX+0.4, minY, maxY FROM demo_index; |
| INSERT INTO demo_index |
| SELECT NULL, minX, maxX, minY+0.8, maxY+0.8 FROM demo_index; |
| INSERT INTO demo_index |
| SELECT NULL, minX+0.8, maxX+0.8, minY, maxY FROM demo_index; |
| |
| INSERT INTO demo_data(id) SELECT id FROM demo_index; |
| |
| SELECT count(*) FROM demo_index; |
| } {896} |
| |
| set ::contained_in 0 |
| proc contained_in {args} {incr ::contained_in ; return 0} |
| db func contained_in contained_in |
| |
| # EVIDENCE-OF: R-32671-43888 Then an efficient way to find the specific |
| # ZIP code for the main SQLite office would be to run a query like this: |
| # SELECT objname FROM demo_data, demo_index WHERE |
| # demo_data.id=demo_index.id AND contained_in(demo_data.boundary, |
| # 35.37785, -80.77470) AND minX<=-80.77470 AND maxX>=-80.77470 AND |
| # minY<=35.37785 AND maxY>=35.37785; |
| do_vmstep_test 1.2 { |
| SELECT objname FROM demo_data, demo_index |
| WHERE demo_data.id=demo_index.id |
| AND contained_in(demo_data.boundary, 35.37785, -80.77470) |
| AND minX<=-80.77470 AND maxX>=-80.77470 |
| AND minY<=35.37785 AND maxY>=35.37785; |
| } {$step<100} |
| set ::contained_in1 $::contained_in |
| |
| # EVIDENCE-OF: R-32761-23915 One would get the same answer without the |
| # use of the R*Tree index using the following simpler query: SELECT |
| # objname FROM demo_data WHERE contained_in(demo_data.boundary, |
| # 35.37785, -80.77470); |
| set ::contained_in 0 |
| do_vmstep_test 1.3 { |
| SELECT objname FROM demo_data |
| WHERE contained_in(demo_data.boundary, 35.37785, -80.77470); |
| } {$step>3200} |
| |
| # EVIDENCE-OF: R-40261-32799 The problem with this latter query is that |
| # it must apply the contained_in() function to all entries in the |
| # demo_data table. |
| # |
| # 896 of them, IIRC. |
| do_test 1.4 { |
| set ::contained_in |
| } 896 |
| |
| # EVIDENCE-OF: R-24212-52761 The use of the R*Tree in the penultimate |
| # query reduces the number of calls to contained_in() function to a |
| # small subset of the entire table. |
| # |
| # 2 is a small subset of 896. |
| # |
| # EVIDENCE-OF: R-39057-63901 The R*Tree index did not find the exact |
| # answer itself, it merely limited the search space. |
| # |
| # contained_in() filtered out those 2 rows. |
| do_test 1.5 { |
| set ::contained_in1 |
| } {2} |
| |
| |
| #------------------------------------------------------------------------- |
| #------------------------------------------------------------------------- |
| # Section 4.1 of documentation. |
| #------------------------------------------------------------------------- |
| #------------------------------------------------------------------------- |
| set testprefix rtreedoc-9 |
| reset_db |
| |
| # EVIDENCE-OF: R-46566-43213 Beginning with SQLite version 3.24.0 |
| # (2018-06-04), r-tree tables can have auxiliary columns that store |
| # arbitrary data. Auxiliary columns can be used in place of secondary |
| # tables such as "demo_data". |
| # |
| # EVIDENCE-OF: R-41287-48160 Auxiliary columns are marked with a "+" |
| # symbol before the column name. |
| # |
| # This interface cannot conveniently be used to prove anything about |
| # versions of SQLite prior to 3.24.0. |
| # |
| do_execsql_test 1.0 { |
| CREATE VIRTUAL TABLE rta USING rtree( |
| id, u1,u2, v1,v2, +aux |
| ); |
| |
| INSERT INTO rta(aux) VALUES(NULL); |
| INSERT INTO rta(aux) VALUES(45); |
| INSERT INTO rta(aux) VALUES(22.3); |
| INSERT INTO rta(aux) VALUES('hello'); |
| INSERT INTO rta(aux) VALUES(X'ABCD'); |
| |
| SELECT typeof(aux), quote(aux) FROM rta; |
| } { |
| null NULL |
| integer 45 |
| real 22.3 |
| text 'hello' |
| blob X'ABCD' |
| } |
| |
| # EVIDENCE-OF: R-30514-26093 Auxiliary columns must come after all of |
| # the coordinate boundary columns. |
| foreach {tn cols} { |
| 1 "id x1,x2, +extra, y1,y2" |
| 2 "extra, +id x1,x2, y1,y2" |
| 3 "id, x1,+x2, extra, y1,y2" |
| } { |
| do_catchsql_test 2.$tn " |
| CREATE VIRTUAL TABLE rrr USING rtree($cols) |
| " {1 {Auxiliary rtree columns must be last}} |
| } |
| do_catchsql_test 3.0 { |
| CREATE VIRTUAL TABLE rrr USING rtree(+id, extra, x1, x2); |
| } {1 {near "+": syntax error}} |
| |
| # EVIDENCE-OF: R-01280-03635 An RTREE table can have no more than 100 |
| # columns total. In other words, the count of columns including the |
| # integer primary key column, the coordinate boundary columns, and all |
| # auxiliary columns must be 100 or less. |
| do_catchsql_test 3.1 { |
| CREATE VIRTUAL TABLE r1 USING rtree(intid, u1,u2, |
| +c00, +c01, +c02, +c03, +c04, +c05, +c06, +c07, +c08, +c09, |
| +c10, +c11, +c12, +c13, +c14, +c15, +c16, +c17, +c18, +c19, |
| +c20, +c21, +c22, +c23, +c24, +c25, +c26, +c27, +c28, +c29, |
| +c30, +c31, +c32, +c33, +c34, +c35, +c36, +c37, +c38, +c39, |
| +c40, +c41, +c42, +c43, +c44, +c45, +c46, +c47, +c48, +c49, |
| +c50, +c51, +c52, +c53, +c54, +c55, +c56, +c57, +c58, +c59, |
| +c60, +c61, +c62, +c63, +c64, +c65, +c66, +c67, +c68, +c69, |
| +c70, +c71, +c72, +c73, +c74, +c75, +c76, +c77, +c78, +c79, |
| +c80, +c81, +c82, +c83, +c84, +c85, +c86, +c87, +c88, +c89, |
| +c90, +c91, +c92, +c93, +c94, +c95, +c96 |
| ); |
| } {0 {}} |
| do_catchsql_test 3.2 { |
| DROP TABLE r1; |
| CREATE VIRTUAL TABLE r1 USING rtree(intid, u1,u2, |
| +c00, +c01, +c02, +c03, +c04, +c05, +c06, +c07, +c08, +c09, |
| +c10, +c11, +c12, +c13, +c14, +c15, +c16, +c17, +c18, +c19, |
| +c20, +c21, +c22, +c23, +c24, +c25, +c26, +c27, +c28, +c29, |
| +c30, +c31, +c32, +c33, +c34, +c35, +c36, +c37, +c38, +c39, |
| +c40, +c41, +c42, +c43, +c44, +c45, +c46, +c47, +c48, +c49, |
| +c50, +c51, +c52, +c53, +c54, +c55, +c56, +c57, +c58, +c59, |
| +c60, +c61, +c62, +c63, +c64, +c65, +c66, +c67, +c68, +c69, |
| +c70, +c71, +c72, +c73, +c74, +c75, +c76, +c77, +c78, +c79, |
| +c80, +c81, +c82, +c83, +c84, +c85, +c86, +c87, +c88, +c89, |
| +c90, +c91, +c92, +c93, +c94, +c95, +c96, +c97 |
| ); |
| } {1 {Too many columns for an rtree table}} |
| do_catchsql_test 3.3 { |
| CREATE VIRTUAL TABLE r1 USING rtree(intid, u1,u2, v1,v2, |
| +c00, +c01, +c02, +c03, +c04, +c05, +c06, +c07, +c08, +c09, |
| +c10, +c11, +c12, +c13, +c14, +c15, +c16, +c17, +c18, +c19, |
| +c20, +c21, +c22, +c23, +c24, +c25, +c26, +c27, +c28, +c29, |
| +c30, +c31, +c32, +c33, +c34, +c35, +c36, +c37, +c38, +c39, |
| +c40, +c41, +c42, +c43, +c44, +c45, +c46, +c47, +c48, +c49, |
| +c50, +c51, +c52, +c53, +c54, +c55, +c56, +c57, +c58, +c59, |
| +c60, +c61, +c62, +c63, +c64, +c65, +c66, +c67, +c68, +c69, |
| +c70, +c71, +c72, +c73, +c74, +c75, +c76, +c77, +c78, +c79, |
| +c80, +c81, +c82, +c83, +c84, +c85, +c86, +c87, +c88, +c89, |
| +c90, +c91, +c92, +c93, +c94, |
| ); |
| } {0 {}} |
| do_catchsql_test 3.4 { |
| DROP TABLE r1; |
| CREATE VIRTUAL TABLE r1 USING rtree(intid, u1,u2, v1,v2, |
| +c00, +c01, +c02, +c03, +c04, +c05, +c06, +c07, +c08, +c09, |
| +c10, +c11, +c12, +c13, +c14, +c15, +c16, +c17, +c18, +c19, |
| +c20, +c21, +c22, +c23, +c24, +c25, +c26, +c27, +c28, +c29, |
| +c30, +c31, +c32, +c33, +c34, +c35, +c36, +c37, +c38, +c39, |
| +c40, +c41, +c42, +c43, +c44, +c45, +c46, +c47, +c48, +c49, |
| +c50, +c51, +c52, +c53, +c54, +c55, +c56, +c57, +c58, +c59, |
| +c60, +c61, +c62, +c63, +c64, +c65, +c66, +c67, +c68, +c69, |
| +c70, +c71, +c72, +c73, +c74, +c75, +c76, +c77, +c78, +c79, |
| +c80, +c81, +c82, +c83, +c84, +c85, +c86, +c87, +c88, +c89, |
| +c90, +c91, +c92, +c93, +c94, +c95, |
| ); |
| } {1 {Too many columns for an rtree table}} |
| |
| # EVIDENCE-OF: R-05552-15084 |
| do_execsql_test 4.0 { |
| CREATE VIRTUAL TABLE demo_index2 USING rtree( |
| id, -- Integer primary key |
| minX, maxX, -- Minimum and maximum X coordinate |
| minY, maxY, -- Minimum and maximum Y coordinate |
| +objname TEXT, -- name of the object |
| +objtype TEXT, -- object type |
| +boundary BLOB -- detailed boundary of object |
| ); |
| } |
| do_execsql_test 4.1 { |
| CREATE VIRTUAL TABLE demo_index USING rtree( |
| id, -- Integer primary key |
| minX, maxX, -- Minimum and maximum X coordinate |
| minY, maxY -- Minimum and maximum Y coordinate |
| ); |
| CREATE TABLE demo_data( |
| id INTEGER PRIMARY KEY, -- primary key |
| objname TEXT, -- name of the object |
| objtype TEXT, -- object type |
| boundary BLOB -- detailed boundary of object |
| ); |
| |
| INSERT INTO demo_index2(id) VALUES(1); |
| INSERT INTO demo_index(id) VALUES(1); |
| INSERT INTO demo_data(id) VALUES(1); |
| } |
| do_test 4.2 { |
| catch { array unset R } |
| db eval {SELECT * FROM demo_index2} R { set r1 [array names R] } |
| catch { array unset R } |
| db eval {SELECT * FROM demo_index NATURAL JOIN demo_data } R { |
| set r2 [array names R] |
| } |
| expr {$r1==$r2} |
| } {1} |
| |
| # EVIDENCE-OF: R-26099-32169 SELECT objname FROM demo_index2 WHERE |
| # contained_in(boundary, 35.37785, -80.77470) AND minX<=-80.77470 AND |
| # maxX>=-80.77470 AND minY<=35.37785 AND maxY>=35.37785; |
| do_execsql_test 4.3.1 { |
| DELETE FROM demo_index2; |
| INSERT INTO demo_index2(id,minX,maxX,minY,maxY) VALUES |
| (28215, -80.781227, -80.604706, 35.208813, 35.297367), |
| (28216, -80.957283, -80.840599, 35.235920, 35.367825), |
| (28217, -80.960869, -80.869431, 35.133682, 35.208233), |
| (28226, -80.878983, -80.778275, 35.060287, 35.154446), |
| (28227, -80.745544, -80.555382, 35.130215, 35.236916), |
| (28244, -80.844208, -80.841988, 35.223728, 35.225471), |
| (28262, -80.809074, -80.682938, 35.276207, 35.377747), |
| (28269, -80.851471, -80.735718, 35.272560, 35.407925), |
| (28270, -80.794983, -80.728966, 35.059872, 35.161823), |
| (28273, -80.994766, -80.875259, 35.074734, 35.172836), |
| (28277, -80.876793, -80.767586, 35.001709, 35.101063), |
| (28278, -81.058029, -80.956375, 35.044701, 35.223812), |
| (28280, -80.844208, -80.841972, 35.225468, 35.227203), |
| (28282, -80.846382, -80.844193, 35.223972, 35.225655); |
| } |
| set ::contained_in 0 |
| proc contained_in {args} { |
| incr ::contained_in |
| return 0 |
| } |
| db func contained_in contained_in |
| do_execsql_test 4.3.2 { |
| SELECT objname FROM demo_index2 |
| WHERE contained_in(boundary, 35.37785, -80.77470) |
| AND minX<=-80.77470 AND maxX>=-80.77470 |
| AND minY<=35.37785 AND maxY>=35.37785; |
| } |
| do_test 4.3.3 { |
| # Function invoked only once because r-tree filtering happened first. |
| set ::contained_in |
| } 1 |
| set ::contained_in 0 |
| do_execsql_test 4.3.4 { |
| SELECT objname FROM demo_index2 |
| WHERE contained_in(boundary, 35.37785, -80.77470) |
| } |
| do_test 4.3.3 { |
| # Function invoked 14 times because no r-tree filtering. Inefficient. |
| set ::contained_in |
| } 14 |
| |
| #------------------------------------------------------------------------- |
| #------------------------------------------------------------------------- |
| # Section 4.1.1 of documentation. |
| #------------------------------------------------------------------------- |
| #------------------------------------------------------------------------- |
| set testprefix rtreedoc-9 |
| reset_db |
| |
| # EVIDENCE-OF: R-24021-02490 For auxiliary columns, only the name of the |
| # column matters. The type affinity is ignored. |
| # |
| # EVIDENCE-OF: R-39906-44154 Constraints such as NOT NULL, UNIQUE, |
| # REFERENCES, or CHECK are also ignored. |
| do_execsql_test 1.0 { PRAGMA foreign_keys = on } |
| foreach {tn auxcol nm} { |
| 1 "+extra INTEGER" extra |
| 2 "+extra TEXT" extra |
| 3 "+extra BLOB" extra |
| 4 "+extra REAL" extra |
| |
| 5 "+col NOT NULL" col |
| 6 "+col CHECK (col IS NOT NULL)" col |
| 7 "+col REFERENCES tbl(x)" col |
| } { |
| do_execsql_test 1.$tn.1 " |
| CREATE VIRTUAL TABLE rt USING rtree_i32(k, a,b, $auxcol) |
| " |
| |
| # Check that the aux column has no affinity. Or NOT NULL constraint. |
| # And that the aux column is the child key of an FK constraint. |
| # |
| do_execsql_test 1.$tn.2 " |
| INSERT INTO rt($nm) VALUES(NULL), (45), (-123.2), ('456'), (X'ABCD'); |
| SELECT typeof($nm), quote($nm) FROM rt; |
| " { |
| null NULL |
| integer 45 |
| real -123.2 |
| text '456' |
| blob X'ABCD' |
| } |
| |
| # Check that there is no UNIQUE constraint either. |
| # |
| do_execsql_test 1.$tn.3 " |
| INSERT INTO rt($nm) VALUES('xyz'), ('xyz'), ('xyz'); |
| " |
| |
| do_execsql_test 1.$tn.2 { |
| DROP TABLE rt |
| } |
| } |
| |
| #------------------------------------------------------------------------- |
| #------------------------------------------------------------------------- |
| # Section 5 of documentation. |
| #------------------------------------------------------------------------- |
| #------------------------------------------------------------------------- |
| set testprefix rtreedoc-10 |
| |
| # EVIDENCE-OF: R-21011-43790 If integer coordinates are desired, declare |
| # the table using "rtree_i32" instead: CREATE VIRTUAL TABLE intrtree |
| # USING rtree_i32(id,x0,x1,y0,y1,z0,z1); |
| do_execsql_test 1.0 { |
| CREATE VIRTUAL TABLE intrtree USING rtree_i32(id,x0,x1,y0,y1,z0,z1); |
| INSERT INTO intrtree DEFAULT VALUES; |
| SELECT typeof(x0) FROM intrtree; |
| } {integer} |
| |
| # EVIDENCE-OF: R-09193-49806 An rtree_i32 stores coordinates as 32-bit |
| # signed integers. |
| # |
| # Show that coordinates are cast in a way consistent with casting to |
| # a signed 32-bit integer. |
| do_execsql_test 1.1 { |
| DELETE FROM intrtree; |
| INSERT INTO intrtree VALUES(333, |
| 1<<44, (1<<44)+1, |
| 10000000000, 10000000001, |
| -10000000001, -10000000000 |
| ); |
| SELECT * FROM intrtree; |
| } { |
| 333 0 1 1410065408 1410065409 -1410065409 -1410065408 |
| } |
| |
| #------------------------------------------------------------------------- |
| #------------------------------------------------------------------------- |
| # Section 7.1 of documentation. |
| #------------------------------------------------------------------------- |
| #------------------------------------------------------------------------- |
| set testprefix rtreedoc-11 |
| reset_db |
| |
| # This command assumes that the argument is a node blob for a 2 dimensional |
| # i32 r-tree table. It decodes and returns a list of cells from the node |
| # as a list. Each cell is itself a list of the following form: |
| # |
| # {$rowid $minX $maxX $minY $maxY} |
| # |
| # For internal (non-leaf) nodes, the rowid is replaced by the child node |
| # number. |
| # |
| proc rnode {aData} { |
| set nDim 2 |
| |
| set nData [string length $aData] |
| set nBytePerCell [expr (8 + 2*$nDim*4)] |
| binary scan [string range $aData 2 3] S nCell |
| |
| set res [list] |
| for {set i 0} {$i < $nCell} {incr i} { |
| set iOff [expr $i*$nBytePerCell+4] |
| set cell [string range $aData $iOff [expr $iOff+$nBytePerCell-1]] |
| binary scan $cell WIIII rowid x1 x2 y1 y2 |
| lappend res [list $rowid $x1 $x2 $y1 $y2] |
| } |
| |
| return $res |
| } |
| |
| # aData must be a node blob. This command returns true if the node contains |
| # rowid $rowid, or false otherwise. |
| # |
| proc rnode_contains {aData rowid} { |
| set L [rnode $aData] |
| foreach cell $L { |
| set r [lindex $cell 0] |
| if {$r==$rowid} { return 1 } |
| } |
| return 0 |
| } |
| |
| proc rnode_replace_cell {aData iCell cell} { |
| set aCell [binary format WIIII {*}$cell] |
| set nDim 2 |
| set nBytePerCell [expr (8 + 2*$nDim*4)] |
| set iOff [expr $iCell*$nBytePerCell+4] |
| |
| set aNew [binary format a*a*a* \ |
| [string range $aData 0 $iOff-1] \ |
| $aCell \ |
| [string range $aData $iOff+$nBytePerCell end] \ |
| ] |
| return $aNew |
| } |
| |
| db function rnode rnode |
| db function rnode_contains rnode_contains |
| db function rnode_replace_cell rnode_replace_cell |
| |
| foreach {tn nm} { |
| 1 x1 |
| 2 asdfghjkl |
| 3 hello_world |
| } { |
| do_execsql_test 1.$tn.1 " |
| CREATE VIRTUAL TABLE $nm USING rtree(a,b,c,d,e); |
| " |
| |
| # EVIDENCE-OF: R-33789-46762 The content of an R*Tree index is actually |
| # stored in three ordinary SQLite tables with names derived from the |
| # name of the R*Tree. |
| # |
| # EVIDENCE-OF: R-39849-06566 This is their schema: CREATE TABLE |
| # %_node(nodeno INTEGER PRIMARY KEY, data) CREATE TABLE %_parent(nodeno |
| # INTEGER PRIMARY KEY, parentnode) CREATE TABLE %_rowid(rowid INTEGER |
| # PRIMARY KEY, nodeno) |
| # |
| # EVIDENCE-OF: R-07489-10051 The "%" in the name of each shadow table is |
| # replaced by the name of the R*Tree virtual table. So, if the name of |
| # the R*Tree table is "xyz" then the three shadow tables would be |
| # "xyz_node", "xyz_parent", and "xyz_rowid". |
| do_execsql_test 1.$tn.2 { |
| SELECT sql FROM sqlite_schema WHERE name!=$nm ORDER BY 1 |
| } [string map [list % $nm] " |
| {CREATE TABLE \"%_node\"(nodeno INTEGER PRIMARY KEY,data)} |
| {CREATE TABLE \"%_parent\"(nodeno INTEGER PRIMARY KEY,parentnode)} |
| {CREATE TABLE \"%_rowid\"(rowid INTEGER PRIMARY KEY,nodeno)} |
| "] |
| |
| do_execsql_test 1.$tn "DROP TABLE $nm" |
| } |
| |
| |
| # EVIDENCE-OF: R-51070-59303 There is one entry in the %_node table for |
| # each R*Tree node. |
| # |
| # The following creates a 6 node r-tree structure. |
| # |
| do_execsql_test 2.0 { |
| CREATE VIRTUAL TABLE r1 USING rtree_i32(i, x1,x2, y1,y2); |
| WITH t(i) AS ( |
| VALUES(1) UNION SELECT i+1 FROM t WHERE i<110 |
| ) |
| INSERT INTO r1 SELECT i, (i%10), (i%10)+2, (i%6), (i%7)+6 FROM t; |
| } |
| do_execsql_test 2.1 { |
| SELECT count(*) FROM r1_node; |
| } 6 |
| |
| # EVIDENCE-OF: R-27261-09153 All nodes other than the root have an entry |
| # in the %_parent shadow table that identifies the parent node. |
| # |
| # In this case nodes 2-6 are the children of node 1. |
| # |
| do_execsql_test 2.3 { |
| SELECT nodeno, parentnode FROM r1_parent |
| } {2 1 3 1 4 1 5 1 6 1} |
| |
| # EVIDENCE-OF: R-02358-35037 The %_rowid shadow table maps entry rowids |
| # to the node that contains that entry. |
| # |
| do_execsql_test 2.4 { |
| SELECT 'failed' FROM r1_rowid WHERE 0==rnode_contains( |
| (SELECT data FROM r1_node WHERE nodeno=r1_rowid.nodeno), rowid |
| ) |
| } |
| do_test 2.5 { |
| db eval { SELECT nodeno, data FROM r1_node WHERE nodeno!=1 } { |
| set L [rnode $data] |
| foreach cell $L { |
| set rowid [lindex $cell 0] |
| set rowid_nodeno 0 |
| db eval {SELECT nodeno AS rowid_nodeno FROM r1_rowid WHERE rowid=$rowid} { |
| break |
| } |
| if {$rowid_nodeno!=$nodeno} { error "data mismatch!" } |
| } |
| } |
| } {} |
| |
| # EVIDENCE-OF: R-65201-22208 Extra columns appended to the %_rowid table |
| # hold the content of auxiliary columns. |
| # |
| # EVIDENCE-OF: R-44161-28345 The names of these extra %_rowid columns |
| # are probably not the same as the actual auxiliary column names. |
| # |
| # In this case, the auxiliary columns are named "e1" and "e2". The |
| # extra %_rowid columns are named "a0" and "a1". |
| # |
| do_execsql_test 3.0 { |
| CREATE VIRTUAL TABLE rtaux USING rtree(id, x1,x2, y1,y2, +e1, +e2); |
| SELECT sql FROM sqlite_schema WHERE name='rtaux_rowid'; |
| } { |
| {CREATE TABLE "rtaux_rowid"(rowid INTEGER PRIMARY KEY,nodeno,a0,a1)} |
| } |
| do_execsql_test 3.1 { |
| INSERT INTO rtaux(e1, e2) VALUES('hello', 'world'), (123, 456); |
| } |
| do_execsql_test 3.2 { |
| SELECT a0, a1 FROM rtaux_rowid; |
| } { |
| hello world 123 456 |
| } |
| |
| #------------------------------------------------------------------------- |
| #------------------------------------------------------------------------- |
| # Section 7.2 of documentation. |
| #------------------------------------------------------------------------- |
| #------------------------------------------------------------------------- |
| set testprefix rtreedoc-12 |
| reset_db |
| forcedelete test.db2 |
| |
| db function rnode rnode |
| db function rnode_contains rnode_contains |
| db function rnode_replace_cell rnode_replace_cell |
| |
| # EVIDENCE-OF: R-13571-45795 The scalar SQL function rtreecheck(R) or |
| # rtreecheck(S,R) runs an integrity check on the rtree table named R |
| # contained within database S. |
| # |
| # EVIDENCE-OF: R-36011-59963 The function returns a human-language |
| # description of any problems found, or the string 'ok' if everything is |
| # ok. |
| # |
| do_execsql_test 1.0 { |
| CREATE VIRTUAL TABLE rt1 USING rtree(id, a, b); |
| WITH s(i) AS ( |
| VALUES(1) UNION ALL SELECT i+1 FROM s WHERE i<200 |
| ) |
| INSERT INTO rt1 SELECT i, i, i FROM s; |
| |
| ATTACH 'test.db2' AS 'aux'; |
| CREATE VIRTUAL TABLE aux.rt1 USING rtree(id, a, b); |
| INSERT INTO aux.rt1 SELECT * FROM rt1; |
| } |
| |
| do_execsql_test 1.1.1 { SELECT rtreecheck('rt1'); } {ok} |
| do_execsql_test 1.1.2 { SELECT rtreecheck('main', 'rt1'); } {ok} |
| do_execsql_test 1.1.3 { SELECT rtreecheck('aux', 'rt1'); } {ok} |
| do_catchsql_test 1.1.4 { |
| SELECT rtreecheck('nosuchdb', 'rt1'); |
| } {1 {SQL logic error}} |
| |
| # Corrupt the table in database 'main': |
| do_execsql_test 1.2.1 { UPDATE rt1_node SET nodeno=21 WHERE nodeno=3; } |
| do_execsql_test 1.2.1 { SELECT rtreecheck('rt1')=='ok'; } {0} |
| do_execsql_test 1.2.2 { SELECT rtreecheck('main', 'rt1')=='ok'; } {0} |
| do_execsql_test 1.2.3 { SELECT rtreecheck('aux', 'rt1')=='ok'; } {1} |
| do_execsql_test 1.2.4 { UPDATE rt1_node SET nodeno=3 WHERE nodeno=21; } |
| |
| # Corrupt the table in database 'aux': |
| do_execsql_test 1.2.1 { UPDATE aux.rt1_node SET nodeno=21 WHERE nodeno=3; } |
| do_execsql_test 1.2.1 { SELECT rtreecheck('rt1')=='ok'; } {1} |
| do_execsql_test 1.2.2 { SELECT rtreecheck('main', 'rt1')=='ok'; } {1} |
| do_execsql_test 1.2.3 { SELECT rtreecheck('aux', 'rt1')=='ok'; } {0} |
| do_execsql_test 1.2.4 { UPDATE rt1_node SET nodeno=3 WHERE nodeno=21; } |
| |
| # EVIDENCE-OF: R-45759-33459 Example: To verify that an R*Tree named |
| # "demo_index" is well-formed and internally consistent, run: SELECT |
| # rtreecheck('demo_index'); |
| do_execsql_test 2.0 { |
| CREATE VIRTUAL TABLE demo_index USING rtree(id, x1,x2, y1,y2); |
| INSERT INTO demo_index SELECT id, a, b, a, b FROM rt1; |
| } |
| do_execsql_test 2.1 { SELECT rtreecheck('demo_index') } {ok} |
| do_execsql_test 2.2 { |
| UPDATE demo_index_rowid SET nodeno=44 WHERE rowid=44; |
| SELECT rtreecheck('demo_index'); |
| } {{Found (44 -> 44) in %_rowid table, expected (44 -> 4)}} |
| |
| |
| do_execsql_test 3.0 { |
| CREATE VIRTUAL TABLE rt2 USING rtree_i32(id, a, b, c, d); |
| WITH s(i) AS ( |
| VALUES(1) UNION ALL SELECT i+1 FROM s WHERE i<200 |
| ) |
| INSERT INTO rt2 SELECT i, i, i+2, i, i+2 FROM s; |
| } |
| |
| # EVIDENCE-OF: R-02555-31045 for each dimension, (coord1 <= coord2). |
| # |
| execsql BEGIN |
| do_test 3.1 { |
| set cell [ |
| lindex [execsql {SELECT rnode(data) FROM rt2_node WHERE nodeno=3}] 0 3 |
| ] |
| set cell [list [lindex $cell 0] \ |
| [lindex $cell 2] [lindex $cell 1] \ |
| [lindex $cell 3] [lindex $cell 4] \ |
| ] |
| execsql { |
| UPDATE rt2_node SET data=rnode_replace_cell(data, 3, $cell) WHERE nodeno=3 |
| } |
| execsql { SELECT rtreecheck('rt2') } |
| } {{Dimension 0 of cell 3 on node 3 is corrupt}} |
| execsql ROLLBACK |
| |
| # EVIDENCE-OF: R-13844-15873 unless the cell is on the root node, that |
| # the cell is bounded by the parent cell on the parent node. |
| # |
| execsql BEGIN |
| do_test 3.2 { |
| set cell [ |
| lindex [execsql {SELECT rnode(data) FROM rt2_node WHERE nodeno=3}] 0 3 |
| ] |
| lset cell 3 450 |
| lset cell 4 451 |
| execsql { |
| UPDATE rt2_node SET data=rnode_replace_cell(data, 3, $cell) WHERE nodeno=3 |
| } |
| execsql { SELECT rtreecheck('rt2') } |
| } {{Dimension 1 of cell 3 on node 3 is corrupt relative to parent}} |
| execsql ROLLBACK |
| |
| # EVIDENCE-OF: R-02505-03621 for leaf nodes, that there is an entry in |
| # the %_rowid table corresponding to the cell's rowid value that points |
| # to the correct node. |
| # |
| execsql BEGIN |
| do_test 3.3 { |
| execsql { |
| UPDATE rt2_rowid SET rowid=452 WHERE rowid=100 |
| } |
| execsql { SELECT rtreecheck('rt2') } |
| } {{Mapping (100 -> 6) missing from %_rowid table}} |
| execsql ROLLBACK |
| |
| # EVIDENCE-OF: R-50927-02218 for cells on non-leaf nodes, that there is |
| # an entry in the %_parent table mapping from the cell's child node to |
| # the node that it resides on. |
| # |
| execsql BEGIN |
| do_test 3.4.1 { |
| execsql { |
| UPDATE rt2_parent SET parentnode=123 WHERE nodeno=3 |
| } |
| execsql { SELECT rtreecheck('rt2') } |
| } {{Found (3 -> 123) in %_parent table, expected (3 -> 1)}} |
| execsql ROLLBACK |
| execsql BEGIN |
| do_test 3.4.2 { |
| execsql { |
| UPDATE rt2_parent SET nodeno=123 WHERE nodeno=3 |
| } |
| execsql { SELECT rtreecheck('rt2') } |
| } {{Mapping (3 -> 1) missing from %_parent table}} |
| execsql ROLLBACK |
| |
| # EVIDENCE-OF: R-23235-09153 That there are the same number of entries |
| # in the %_rowid table as there are leaf cells in the r-tree structure, |
| # and that there is a leaf cell that corresponds to each entry in the |
| # %_rowid table. |
| execsql BEGIN |
| do_test 3.5 { |
| execsql { INSERT INTO rt2_rowid VALUES(1000, 1000) } |
| execsql { SELECT rtreecheck('rt2') } |
| } {{Wrong number of entries in %_rowid table - expected 200, actual 201}} |
| execsql ROLLBACK |
| |
| # EVIDENCE-OF: R-62800-43436 That there are the same number of entries |
| # in the %_parent table as there are non-leaf cells in the r-tree |
| # structure, and that there is a non-leaf cell that corresponds to each |
| # entry in the %_parent table. |
| execsql BEGIN |
| do_test 3.6 { |
| execsql { INSERT INTO rt2_parent VALUES(1000, 1000) } |
| execsql { SELECT rtreecheck('rt2') } |
| } {{Wrong number of entries in %_parent table - expected 9, actual 10}} |
| execsql ROLLBACK |
| |
| |
| |
| finish_test |