| /* |
| ** 2004 May 22 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ****************************************************************************** |
| ** |
| ** This file contains the VFS implementation for unix-like operating systems |
| ** include Linux, MacOSX, *BSD, QNX, VxWorks, AIX, HPUX, and others. |
| ** |
| ** There are actually several different VFS implementations in this file. |
| ** The differences are in the way that file locking is done. The default |
| ** implementation uses Posix Advisory Locks. Alternative implementations |
| ** use flock(), dot-files, various proprietary locking schemas, or simply |
| ** skip locking all together. |
| ** |
| ** This source file is organized into divisions where the logic for various |
| ** subfunctions is contained within the appropriate division. PLEASE |
| ** KEEP THE STRUCTURE OF THIS FILE INTACT. New code should be placed |
| ** in the correct division and should be clearly labeled. |
| ** |
| ** The layout of divisions is as follows: |
| ** |
| ** * General-purpose declarations and utility functions. |
| ** * Unique file ID logic used by VxWorks. |
| ** * Various locking primitive implementations (all except proxy locking): |
| ** + for Posix Advisory Locks |
| ** + for no-op locks |
| ** + for dot-file locks |
| ** + for flock() locking |
| ** + for named semaphore locks (VxWorks only) |
| ** + for AFP filesystem locks (MacOSX only) |
| ** * sqlite3_file methods not associated with locking. |
| ** * Definitions of sqlite3_io_methods objects for all locking |
| ** methods plus "finder" functions for each locking method. |
| ** * sqlite3_vfs method implementations. |
| ** * Locking primitives for the proxy uber-locking-method. (MacOSX only) |
| ** * Definitions of sqlite3_vfs objects for all locking methods |
| ** plus implementations of sqlite3_os_init() and sqlite3_os_end(). |
| */ |
| #include "sqliteInt.h" |
| #if SQLITE_OS_UNIX /* This file is used on unix only */ |
| |
| /* |
| ** There are various methods for file locking used for concurrency |
| ** control: |
| ** |
| ** 1. POSIX locking (the default), |
| ** 2. No locking, |
| ** 3. Dot-file locking, |
| ** 4. flock() locking, |
| ** 5. AFP locking (OSX only), |
| ** 6. Named POSIX semaphores (VXWorks only), |
| ** 7. proxy locking. (OSX only) |
| ** |
| ** Styles 4, 5, and 7 are only available of SQLITE_ENABLE_LOCKING_STYLE |
| ** is defined to 1. The SQLITE_ENABLE_LOCKING_STYLE also enables automatic |
| ** selection of the appropriate locking style based on the filesystem |
| ** where the database is located. |
| */ |
| #if !defined(SQLITE_ENABLE_LOCKING_STYLE) |
| # if defined(__APPLE__) |
| # define SQLITE_ENABLE_LOCKING_STYLE 1 |
| # else |
| # define SQLITE_ENABLE_LOCKING_STYLE 0 |
| # endif |
| #endif |
| |
| /* Use pread() and pwrite() if they are available */ |
| #if defined(__APPLE__) |
| # define HAVE_PREAD 1 |
| # define HAVE_PWRITE 1 |
| #endif |
| #if defined(HAVE_PREAD64) && defined(HAVE_PWRITE64) |
| # undef USE_PREAD |
| # define USE_PREAD64 1 |
| #elif defined(HAVE_PREAD) && defined(HAVE_PWRITE) |
| # undef USE_PREAD64 |
| # define USE_PREAD 1 |
| #endif |
| |
| /* |
| ** standard include files. |
| */ |
| #include <sys/types.h> |
| #include <sys/stat.h> |
| #include <fcntl.h> |
| #include <sys/ioctl.h> |
| #include <unistd.h> |
| #include <time.h> |
| #include <sys/time.h> |
| #include <errno.h> |
| #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 |
| # include <sys/mman.h> |
| #endif |
| |
| #if SQLITE_ENABLE_LOCKING_STYLE |
| # include <sys/ioctl.h> |
| # include <sys/file.h> |
| # include <sys/param.h> |
| #endif /* SQLITE_ENABLE_LOCKING_STYLE */ |
| |
| /* |
| ** Try to determine if gethostuuid() is available based on standard |
| ** macros. This might sometimes compute the wrong value for some |
| ** obscure platforms. For those cases, simply compile with one of |
| ** the following: |
| ** |
| ** -DHAVE_GETHOSTUUID=0 |
| ** -DHAVE_GETHOSTUUID=1 |
| ** |
| ** None if this matters except when building on Apple products with |
| ** -DSQLITE_ENABLE_LOCKING_STYLE. |
| */ |
| #ifndef HAVE_GETHOSTUUID |
| # define HAVE_GETHOSTUUID 0 |
| # if defined(__APPLE__) && ((__MAC_OS_X_VERSION_MIN_REQUIRED > 1050) || \ |
| (__IPHONE_OS_VERSION_MIN_REQUIRED > 2000)) |
| # if (!defined(TARGET_OS_EMBEDDED) || (TARGET_OS_EMBEDDED==0)) \ |
| && (!defined(TARGET_IPHONE_SIMULATOR) || (TARGET_IPHONE_SIMULATOR==0))\ |
| && (!defined(TARGET_OS_MACCATALYST) || (TARGET_OS_MACCATALYST==0)) |
| # undef HAVE_GETHOSTUUID |
| # define HAVE_GETHOSTUUID 1 |
| # else |
| # warning "gethostuuid() is disabled." |
| # endif |
| # endif |
| #endif |
| |
| |
| #if OS_VXWORKS |
| # include <sys/ioctl.h> |
| # include <semaphore.h> |
| # include <limits.h> |
| #endif /* OS_VXWORKS */ |
| |
| #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE |
| # include <sys/mount.h> |
| #endif |
| |
| #ifdef HAVE_UTIME |
| # include <utime.h> |
| #endif |
| |
| /* |
| ** Allowed values of unixFile.fsFlags |
| */ |
| #define SQLITE_FSFLAGS_IS_MSDOS 0x1 |
| |
| /* |
| ** If we are to be thread-safe, include the pthreads header. |
| */ |
| #if SQLITE_THREADSAFE |
| # include <pthread.h> |
| #endif |
| |
| /* |
| ** Default permissions when creating a new file |
| */ |
| #ifndef SQLITE_DEFAULT_FILE_PERMISSIONS |
| # define SQLITE_DEFAULT_FILE_PERMISSIONS 0644 |
| #endif |
| |
| /* |
| ** Default permissions when creating auto proxy dir |
| */ |
| #ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS |
| # define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755 |
| #endif |
| |
| /* |
| ** Maximum supported path-length. |
| */ |
| #define MAX_PATHNAME 512 |
| |
| /* |
| ** Maximum supported symbolic links |
| */ |
| #define SQLITE_MAX_SYMLINKS 100 |
| |
| /* Always cast the getpid() return type for compatibility with |
| ** kernel modules in VxWorks. */ |
| #define osGetpid(X) (pid_t)getpid() |
| |
| /* |
| ** Only set the lastErrno if the error code is a real error and not |
| ** a normal expected return code of SQLITE_BUSY or SQLITE_OK |
| */ |
| #define IS_LOCK_ERROR(x) ((x != SQLITE_OK) && (x != SQLITE_BUSY)) |
| |
| /* Forward references */ |
| typedef struct unixShm unixShm; /* Connection shared memory */ |
| typedef struct unixShmNode unixShmNode; /* Shared memory instance */ |
| typedef struct unixInodeInfo unixInodeInfo; /* An i-node */ |
| typedef struct UnixUnusedFd UnixUnusedFd; /* An unused file descriptor */ |
| |
| /* |
| ** Sometimes, after a file handle is closed by SQLite, the file descriptor |
| ** cannot be closed immediately. In these cases, instances of the following |
| ** structure are used to store the file descriptor while waiting for an |
| ** opportunity to either close or reuse it. |
| */ |
| struct UnixUnusedFd { |
| int fd; /* File descriptor to close */ |
| int flags; /* Flags this file descriptor was opened with */ |
| UnixUnusedFd *pNext; /* Next unused file descriptor on same file */ |
| }; |
| |
| /* |
| ** The unixFile structure is subclass of sqlite3_file specific to the unix |
| ** VFS implementations. |
| */ |
| typedef struct unixFile unixFile; |
| struct unixFile { |
| sqlite3_io_methods const *pMethod; /* Always the first entry */ |
| sqlite3_vfs *pVfs; /* The VFS that created this unixFile */ |
| unixInodeInfo *pInode; /* Info about locks on this inode */ |
| int h; /* The file descriptor */ |
| unsigned char eFileLock; /* The type of lock held on this fd */ |
| unsigned short int ctrlFlags; /* Behavioral bits. UNIXFILE_* flags */ |
| int lastErrno; /* The unix errno from last I/O error */ |
| void *lockingContext; /* Locking style specific state */ |
| UnixUnusedFd *pPreallocatedUnused; /* Pre-allocated UnixUnusedFd */ |
| const char *zPath; /* Name of the file */ |
| unixShm *pShm; /* Shared memory segment information */ |
| int szChunk; /* Configured by FCNTL_CHUNK_SIZE */ |
| #if SQLITE_MAX_MMAP_SIZE>0 |
| int nFetchOut; /* Number of outstanding xFetch refs */ |
| sqlite3_int64 mmapSize; /* Usable size of mapping at pMapRegion */ |
| sqlite3_int64 mmapSizeActual; /* Actual size of mapping at pMapRegion */ |
| sqlite3_int64 mmapSizeMax; /* Configured FCNTL_MMAP_SIZE value */ |
| void *pMapRegion; /* Memory mapped region */ |
| #endif |
| int sectorSize; /* Device sector size */ |
| int deviceCharacteristics; /* Precomputed device characteristics */ |
| #if SQLITE_ENABLE_LOCKING_STYLE |
| int openFlags; /* The flags specified at open() */ |
| #endif |
| #if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__) |
| unsigned fsFlags; /* cached details from statfs() */ |
| #endif |
| #ifdef SQLITE_ENABLE_SETLK_TIMEOUT |
| unsigned iBusyTimeout; /* Wait this many millisec on locks */ |
| #endif |
| #if OS_VXWORKS |
| struct vxworksFileId *pId; /* Unique file ID */ |
| #endif |
| #ifdef SQLITE_DEBUG |
| /* The next group of variables are used to track whether or not the |
| ** transaction counter in bytes 24-27 of database files are updated |
| ** whenever any part of the database changes. An assertion fault will |
| ** occur if a file is updated without also updating the transaction |
| ** counter. This test is made to avoid new problems similar to the |
| ** one described by ticket #3584. |
| */ |
| unsigned char transCntrChng; /* True if the transaction counter changed */ |
| unsigned char dbUpdate; /* True if any part of database file changed */ |
| unsigned char inNormalWrite; /* True if in a normal write operation */ |
| |
| #endif |
| |
| #ifdef SQLITE_TEST |
| /* In test mode, increase the size of this structure a bit so that |
| ** it is larger than the struct CrashFile defined in test6.c. |
| */ |
| char aPadding[32]; |
| #endif |
| }; |
| |
| /* This variable holds the process id (pid) from when the xRandomness() |
| ** method was called. If xOpen() is called from a different process id, |
| ** indicating that a fork() has occurred, the PRNG will be reset. |
| */ |
| static pid_t randomnessPid = 0; |
| |
| /* |
| ** Allowed values for the unixFile.ctrlFlags bitmask: |
| */ |
| #define UNIXFILE_EXCL 0x01 /* Connections from one process only */ |
| #define UNIXFILE_RDONLY 0x02 /* Connection is read only */ |
| #define UNIXFILE_PERSIST_WAL 0x04 /* Persistent WAL mode */ |
| #ifndef SQLITE_DISABLE_DIRSYNC |
| # define UNIXFILE_DIRSYNC 0x08 /* Directory sync needed */ |
| #else |
| # define UNIXFILE_DIRSYNC 0x00 |
| #endif |
| #define UNIXFILE_PSOW 0x10 /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */ |
| #define UNIXFILE_DELETE 0x20 /* Delete on close */ |
| #define UNIXFILE_URI 0x40 /* Filename might have query parameters */ |
| #define UNIXFILE_NOLOCK 0x80 /* Do no file locking */ |
| |
| /* |
| ** Include code that is common to all os_*.c files |
| */ |
| #include "os_common.h" |
| |
| /* |
| ** Define various macros that are missing from some systems. |
| */ |
| #ifndef O_LARGEFILE |
| # define O_LARGEFILE 0 |
| #endif |
| #ifdef SQLITE_DISABLE_LFS |
| # undef O_LARGEFILE |
| # define O_LARGEFILE 0 |
| #endif |
| #ifndef O_NOFOLLOW |
| # define O_NOFOLLOW 0 |
| #endif |
| #ifndef O_BINARY |
| # define O_BINARY 0 |
| #endif |
| |
| /* |
| ** The threadid macro resolves to the thread-id or to 0. Used for |
| ** testing and debugging only. |
| */ |
| #if SQLITE_THREADSAFE |
| #define threadid pthread_self() |
| #else |
| #define threadid 0 |
| #endif |
| |
| /* |
| ** HAVE_MREMAP defaults to true on Linux and false everywhere else. |
| */ |
| #if !defined(HAVE_MREMAP) |
| # if defined(__linux__) && defined(_GNU_SOURCE) |
| # define HAVE_MREMAP 1 |
| # else |
| # define HAVE_MREMAP 0 |
| # endif |
| #endif |
| |
| /* |
| ** Explicitly call the 64-bit version of lseek() on Android. Otherwise, lseek() |
| ** is the 32-bit version, even if _FILE_OFFSET_BITS=64 is defined. |
| */ |
| #ifdef __ANDROID__ |
| # define lseek lseek64 |
| #endif |
| |
| #ifdef __linux__ |
| /* |
| ** Linux-specific IOCTL magic numbers used for controlling F2FS |
| */ |
| #define F2FS_IOCTL_MAGIC 0xf5 |
| #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) |
| #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) |
| #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) |
| #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) |
| #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, u32) |
| #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 |
| #endif /* __linux__ */ |
| |
| |
| /* |
| ** Different Unix systems declare open() in different ways. Same use |
| ** open(const char*,int,mode_t). Others use open(const char*,int,...). |
| ** The difference is important when using a pointer to the function. |
| ** |
| ** The safest way to deal with the problem is to always use this wrapper |
| ** which always has the same well-defined interface. |
| */ |
| static int posixOpen(const char *zFile, int flags, int mode){ |
| return open(zFile, flags, mode); |
| } |
| |
| /* Forward reference */ |
| static int openDirectory(const char*, int*); |
| static int unixGetpagesize(void); |
| |
| /* |
| ** Many system calls are accessed through pointer-to-functions so that |
| ** they may be overridden at runtime to facilitate fault injection during |
| ** testing and sandboxing. The following array holds the names and pointers |
| ** to all overrideable system calls. |
| */ |
| static struct unix_syscall { |
| const char *zName; /* Name of the system call */ |
| sqlite3_syscall_ptr pCurrent; /* Current value of the system call */ |
| sqlite3_syscall_ptr pDefault; /* Default value */ |
| } aSyscall[] = { |
| { "open", (sqlite3_syscall_ptr)posixOpen, 0 }, |
| #define osOpen ((int(*)(const char*,int,int))aSyscall[0].pCurrent) |
| |
| { "close", (sqlite3_syscall_ptr)close, 0 }, |
| #define osClose ((int(*)(int))aSyscall[1].pCurrent) |
| |
| { "access", (sqlite3_syscall_ptr)access, 0 }, |
| #define osAccess ((int(*)(const char*,int))aSyscall[2].pCurrent) |
| |
| { "getcwd", (sqlite3_syscall_ptr)getcwd, 0 }, |
| #define osGetcwd ((char*(*)(char*,size_t))aSyscall[3].pCurrent) |
| |
| { "stat", (sqlite3_syscall_ptr)stat, 0 }, |
| #define osStat ((int(*)(const char*,struct stat*))aSyscall[4].pCurrent) |
| |
| /* |
| ** The DJGPP compiler environment looks mostly like Unix, but it |
| ** lacks the fcntl() system call. So redefine fcntl() to be something |
| ** that always succeeds. This means that locking does not occur under |
| ** DJGPP. But it is DOS - what did you expect? |
| */ |
| #ifdef __DJGPP__ |
| { "fstat", 0, 0 }, |
| #define osFstat(a,b,c) 0 |
| #else |
| { "fstat", (sqlite3_syscall_ptr)fstat, 0 }, |
| #define osFstat ((int(*)(int,struct stat*))aSyscall[5].pCurrent) |
| #endif |
| |
| { "ftruncate", (sqlite3_syscall_ptr)ftruncate, 0 }, |
| #define osFtruncate ((int(*)(int,off_t))aSyscall[6].pCurrent) |
| |
| { "fcntl", (sqlite3_syscall_ptr)fcntl, 0 }, |
| #define osFcntl ((int(*)(int,int,...))aSyscall[7].pCurrent) |
| |
| { "read", (sqlite3_syscall_ptr)read, 0 }, |
| #define osRead ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent) |
| |
| #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE |
| { "pread", (sqlite3_syscall_ptr)pread, 0 }, |
| #else |
| { "pread", (sqlite3_syscall_ptr)0, 0 }, |
| #endif |
| #define osPread ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent) |
| |
| #if defined(USE_PREAD64) |
| { "pread64", (sqlite3_syscall_ptr)pread64, 0 }, |
| #else |
| { "pread64", (sqlite3_syscall_ptr)0, 0 }, |
| #endif |
| #define osPread64 ((ssize_t(*)(int,void*,size_t,off64_t))aSyscall[10].pCurrent) |
| |
| { "write", (sqlite3_syscall_ptr)write, 0 }, |
| #define osWrite ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent) |
| |
| #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE |
| { "pwrite", (sqlite3_syscall_ptr)pwrite, 0 }, |
| #else |
| { "pwrite", (sqlite3_syscall_ptr)0, 0 }, |
| #endif |
| #define osPwrite ((ssize_t(*)(int,const void*,size_t,off_t))\ |
| aSyscall[12].pCurrent) |
| |
| #if defined(USE_PREAD64) |
| { "pwrite64", (sqlite3_syscall_ptr)pwrite64, 0 }, |
| #else |
| { "pwrite64", (sqlite3_syscall_ptr)0, 0 }, |
| #endif |
| #define osPwrite64 ((ssize_t(*)(int,const void*,size_t,off64_t))\ |
| aSyscall[13].pCurrent) |
| |
| { "fchmod", (sqlite3_syscall_ptr)fchmod, 0 }, |
| #define osFchmod ((int(*)(int,mode_t))aSyscall[14].pCurrent) |
| |
| #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE |
| { "fallocate", (sqlite3_syscall_ptr)posix_fallocate, 0 }, |
| #else |
| { "fallocate", (sqlite3_syscall_ptr)0, 0 }, |
| #endif |
| #define osFallocate ((int(*)(int,off_t,off_t))aSyscall[15].pCurrent) |
| |
| { "unlink", (sqlite3_syscall_ptr)unlink, 0 }, |
| #define osUnlink ((int(*)(const char*))aSyscall[16].pCurrent) |
| |
| { "openDirectory", (sqlite3_syscall_ptr)openDirectory, 0 }, |
| #define osOpenDirectory ((int(*)(const char*,int*))aSyscall[17].pCurrent) |
| |
| { "mkdir", (sqlite3_syscall_ptr)mkdir, 0 }, |
| #define osMkdir ((int(*)(const char*,mode_t))aSyscall[18].pCurrent) |
| |
| { "rmdir", (sqlite3_syscall_ptr)rmdir, 0 }, |
| #define osRmdir ((int(*)(const char*))aSyscall[19].pCurrent) |
| |
| #if defined(HAVE_FCHOWN) |
| { "fchown", (sqlite3_syscall_ptr)fchown, 0 }, |
| #else |
| { "fchown", (sqlite3_syscall_ptr)0, 0 }, |
| #endif |
| #define osFchown ((int(*)(int,uid_t,gid_t))aSyscall[20].pCurrent) |
| |
| #if defined(HAVE_FCHOWN) |
| { "geteuid", (sqlite3_syscall_ptr)geteuid, 0 }, |
| #else |
| { "geteuid", (sqlite3_syscall_ptr)0, 0 }, |
| #endif |
| #define osGeteuid ((uid_t(*)(void))aSyscall[21].pCurrent) |
| |
| #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 |
| { "mmap", (sqlite3_syscall_ptr)mmap, 0 }, |
| #else |
| { "mmap", (sqlite3_syscall_ptr)0, 0 }, |
| #endif |
| #define osMmap ((void*(*)(void*,size_t,int,int,int,off_t))aSyscall[22].pCurrent) |
| |
| #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 |
| { "munmap", (sqlite3_syscall_ptr)munmap, 0 }, |
| #else |
| { "munmap", (sqlite3_syscall_ptr)0, 0 }, |
| #endif |
| #define osMunmap ((int(*)(void*,size_t))aSyscall[23].pCurrent) |
| |
| #if HAVE_MREMAP && (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0) |
| { "mremap", (sqlite3_syscall_ptr)mremap, 0 }, |
| #else |
| { "mremap", (sqlite3_syscall_ptr)0, 0 }, |
| #endif |
| #define osMremap ((void*(*)(void*,size_t,size_t,int,...))aSyscall[24].pCurrent) |
| |
| #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 |
| { "getpagesize", (sqlite3_syscall_ptr)unixGetpagesize, 0 }, |
| #else |
| { "getpagesize", (sqlite3_syscall_ptr)0, 0 }, |
| #endif |
| #define osGetpagesize ((int(*)(void))aSyscall[25].pCurrent) |
| |
| #if defined(HAVE_READLINK) |
| { "readlink", (sqlite3_syscall_ptr)readlink, 0 }, |
| #else |
| { "readlink", (sqlite3_syscall_ptr)0, 0 }, |
| #endif |
| #define osReadlink ((ssize_t(*)(const char*,char*,size_t))aSyscall[26].pCurrent) |
| |
| #if defined(HAVE_LSTAT) |
| { "lstat", (sqlite3_syscall_ptr)lstat, 0 }, |
| #else |
| { "lstat", (sqlite3_syscall_ptr)0, 0 }, |
| #endif |
| #define osLstat ((int(*)(const char*,struct stat*))aSyscall[27].pCurrent) |
| |
| #if defined(__linux__) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) |
| # ifdef __ANDROID__ |
| { "ioctl", (sqlite3_syscall_ptr)(int(*)(int, int, ...))ioctl, 0 }, |
| #define osIoctl ((int(*)(int,int,...))aSyscall[28].pCurrent) |
| # else |
| { "ioctl", (sqlite3_syscall_ptr)ioctl, 0 }, |
| #define osIoctl ((int(*)(int,unsigned long,...))aSyscall[28].pCurrent) |
| # endif |
| #else |
| { "ioctl", (sqlite3_syscall_ptr)0, 0 }, |
| #endif |
| |
| }; /* End of the overrideable system calls */ |
| |
| |
| /* |
| ** On some systems, calls to fchown() will trigger a message in a security |
| ** log if they come from non-root processes. So avoid calling fchown() if |
| ** we are not running as root. |
| */ |
| static int robustFchown(int fd, uid_t uid, gid_t gid){ |
| #if defined(HAVE_FCHOWN) |
| return osGeteuid() ? 0 : osFchown(fd,uid,gid); |
| #else |
| return 0; |
| #endif |
| } |
| |
| /* |
| ** This is the xSetSystemCall() method of sqlite3_vfs for all of the |
| ** "unix" VFSes. Return SQLITE_OK opon successfully updating the |
| ** system call pointer, or SQLITE_NOTFOUND if there is no configurable |
| ** system call named zName. |
| */ |
| static int unixSetSystemCall( |
| sqlite3_vfs *pNotUsed, /* The VFS pointer. Not used */ |
| const char *zName, /* Name of system call to override */ |
| sqlite3_syscall_ptr pNewFunc /* Pointer to new system call value */ |
| ){ |
| unsigned int i; |
| int rc = SQLITE_NOTFOUND; |
| |
| UNUSED_PARAMETER(pNotUsed); |
| if( zName==0 ){ |
| /* If no zName is given, restore all system calls to their default |
| ** settings and return NULL |
| */ |
| rc = SQLITE_OK; |
| for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){ |
| if( aSyscall[i].pDefault ){ |
| aSyscall[i].pCurrent = aSyscall[i].pDefault; |
| } |
| } |
| }else{ |
| /* If zName is specified, operate on only the one system call |
| ** specified. |
| */ |
| for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){ |
| if( strcmp(zName, aSyscall[i].zName)==0 ){ |
| if( aSyscall[i].pDefault==0 ){ |
| aSyscall[i].pDefault = aSyscall[i].pCurrent; |
| } |
| rc = SQLITE_OK; |
| if( pNewFunc==0 ) pNewFunc = aSyscall[i].pDefault; |
| aSyscall[i].pCurrent = pNewFunc; |
| break; |
| } |
| } |
| } |
| return rc; |
| } |
| |
| /* |
| ** Return the value of a system call. Return NULL if zName is not a |
| ** recognized system call name. NULL is also returned if the system call |
| ** is currently undefined. |
| */ |
| static sqlite3_syscall_ptr unixGetSystemCall( |
| sqlite3_vfs *pNotUsed, |
| const char *zName |
| ){ |
| unsigned int i; |
| |
| UNUSED_PARAMETER(pNotUsed); |
| for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){ |
| if( strcmp(zName, aSyscall[i].zName)==0 ) return aSyscall[i].pCurrent; |
| } |
| return 0; |
| } |
| |
| /* |
| ** Return the name of the first system call after zName. If zName==NULL |
| ** then return the name of the first system call. Return NULL if zName |
| ** is the last system call or if zName is not the name of a valid |
| ** system call. |
| */ |
| static const char *unixNextSystemCall(sqlite3_vfs *p, const char *zName){ |
| int i = -1; |
| |
| UNUSED_PARAMETER(p); |
| if( zName ){ |
| for(i=0; i<ArraySize(aSyscall)-1; i++){ |
| if( strcmp(zName, aSyscall[i].zName)==0 ) break; |
| } |
| } |
| for(i++; i<ArraySize(aSyscall); i++){ |
| if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName; |
| } |
| return 0; |
| } |
| |
| /* |
| ** Do not accept any file descriptor less than this value, in order to avoid |
| ** opening database file using file descriptors that are commonly used for |
| ** standard input, output, and error. |
| */ |
| #ifndef SQLITE_MINIMUM_FILE_DESCRIPTOR |
| # define SQLITE_MINIMUM_FILE_DESCRIPTOR 3 |
| #endif |
| |
| /* |
| ** Invoke open(). Do so multiple times, until it either succeeds or |
| ** fails for some reason other than EINTR. |
| ** |
| ** If the file creation mode "m" is 0 then set it to the default for |
| ** SQLite. The default is SQLITE_DEFAULT_FILE_PERMISSIONS (normally |
| ** 0644) as modified by the system umask. If m is not 0, then |
| ** make the file creation mode be exactly m ignoring the umask. |
| ** |
| ** The m parameter will be non-zero only when creating -wal, -journal, |
| ** and -shm files. We want those files to have *exactly* the same |
| ** permissions as their original database, unadulterated by the umask. |
| ** In that way, if a database file is -rw-rw-rw or -rw-rw-r-, and a |
| ** transaction crashes and leaves behind hot journals, then any |
| ** process that is able to write to the database will also be able to |
| ** recover the hot journals. |
| */ |
| static int robust_open(const char *z, int f, mode_t m){ |
| int fd; |
| mode_t m2 = m ? m : SQLITE_DEFAULT_FILE_PERMISSIONS; |
| while(1){ |
| #if defined(O_CLOEXEC) |
| fd = osOpen(z,f|O_CLOEXEC,m2); |
| #else |
| fd = osOpen(z,f,m2); |
| #endif |
| if( fd<0 ){ |
| if( errno==EINTR ) continue; |
| break; |
| } |
| if( fd>=SQLITE_MINIMUM_FILE_DESCRIPTOR ) break; |
| osClose(fd); |
| sqlite3_log(SQLITE_WARNING, |
| "attempt to open \"%s\" as file descriptor %d", z, fd); |
| fd = -1; |
| if( osOpen("/dev/null", O_RDONLY, m)<0 ) break; |
| } |
| if( fd>=0 ){ |
| if( m!=0 ){ |
| struct stat statbuf; |
| if( osFstat(fd, &statbuf)==0 |
| && statbuf.st_size==0 |
| && (statbuf.st_mode&0777)!=m |
| ){ |
| osFchmod(fd, m); |
| } |
| } |
| #if defined(FD_CLOEXEC) && (!defined(O_CLOEXEC) || O_CLOEXEC==0) |
| osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC); |
| #endif |
| } |
| return fd; |
| } |
| |
| /* |
| ** Helper functions to obtain and relinquish the global mutex. The |
| ** global mutex is used to protect the unixInodeInfo and |
| ** vxworksFileId objects used by this file, all of which may be |
| ** shared by multiple threads. |
| ** |
| ** Function unixMutexHeld() is used to assert() that the global mutex |
| ** is held when required. This function is only used as part of assert() |
| ** statements. e.g. |
| ** |
| ** unixEnterMutex() |
| ** assert( unixMutexHeld() ); |
| ** unixEnterLeave() |
| ** |
| ** To prevent deadlock, the global unixBigLock must must be acquired |
| ** before the unixInodeInfo.pLockMutex mutex, if both are held. It is |
| ** OK to get the pLockMutex without holding unixBigLock first, but if |
| ** that happens, the unixBigLock mutex must not be acquired until after |
| ** pLockMutex is released. |
| ** |
| ** OK: enter(unixBigLock), enter(pLockInfo) |
| ** OK: enter(unixBigLock) |
| ** OK: enter(pLockInfo) |
| ** ERROR: enter(pLockInfo), enter(unixBigLock) |
| */ |
| static sqlite3_mutex *unixBigLock = 0; |
| static void unixEnterMutex(void){ |
| assert( sqlite3_mutex_notheld(unixBigLock) ); /* Not a recursive mutex */ |
| sqlite3_mutex_enter(unixBigLock); |
| } |
| static void unixLeaveMutex(void){ |
| assert( sqlite3_mutex_held(unixBigLock) ); |
| sqlite3_mutex_leave(unixBigLock); |
| } |
| #ifdef SQLITE_DEBUG |
| static int unixMutexHeld(void) { |
| return sqlite3_mutex_held(unixBigLock); |
| } |
| #endif |
| |
| |
| #ifdef SQLITE_HAVE_OS_TRACE |
| /* |
| ** Helper function for printing out trace information from debugging |
| ** binaries. This returns the string representation of the supplied |
| ** integer lock-type. |
| */ |
| static const char *azFileLock(int eFileLock){ |
| switch( eFileLock ){ |
| case NO_LOCK: return "NONE"; |
| case SHARED_LOCK: return "SHARED"; |
| case RESERVED_LOCK: return "RESERVED"; |
| case PENDING_LOCK: return "PENDING"; |
| case EXCLUSIVE_LOCK: return "EXCLUSIVE"; |
| } |
| return "ERROR"; |
| } |
| #endif |
| |
| #ifdef SQLITE_LOCK_TRACE |
| /* |
| ** Print out information about all locking operations. |
| ** |
| ** This routine is used for troubleshooting locks on multithreaded |
| ** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE |
| ** command-line option on the compiler. This code is normally |
| ** turned off. |
| */ |
| static int lockTrace(int fd, int op, struct flock *p){ |
| char *zOpName, *zType; |
| int s; |
| int savedErrno; |
| if( op==F_GETLK ){ |
| zOpName = "GETLK"; |
| }else if( op==F_SETLK ){ |
| zOpName = "SETLK"; |
| }else{ |
| s = osFcntl(fd, op, p); |
| sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s); |
| return s; |
| } |
| if( p->l_type==F_RDLCK ){ |
| zType = "RDLCK"; |
| }else if( p->l_type==F_WRLCK ){ |
| zType = "WRLCK"; |
| }else if( p->l_type==F_UNLCK ){ |
| zType = "UNLCK"; |
| }else{ |
| assert( 0 ); |
| } |
| assert( p->l_whence==SEEK_SET ); |
| s = osFcntl(fd, op, p); |
| savedErrno = errno; |
| sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n", |
| threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len, |
| (int)p->l_pid, s); |
| if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){ |
| struct flock l2; |
| l2 = *p; |
| osFcntl(fd, F_GETLK, &l2); |
| if( l2.l_type==F_RDLCK ){ |
| zType = "RDLCK"; |
| }else if( l2.l_type==F_WRLCK ){ |
| zType = "WRLCK"; |
| }else if( l2.l_type==F_UNLCK ){ |
| zType = "UNLCK"; |
| }else{ |
| assert( 0 ); |
| } |
| sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n", |
| zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid); |
| } |
| errno = savedErrno; |
| return s; |
| } |
| #undef osFcntl |
| #define osFcntl lockTrace |
| #endif /* SQLITE_LOCK_TRACE */ |
| |
| /* |
| ** Retry ftruncate() calls that fail due to EINTR |
| ** |
| ** All calls to ftruncate() within this file should be made through |
| ** this wrapper. On the Android platform, bypassing the logic below |
| ** could lead to a corrupt database. |
| */ |
| static int robust_ftruncate(int h, sqlite3_int64 sz){ |
| int rc; |
| #ifdef __ANDROID__ |
| /* On Android, ftruncate() always uses 32-bit offsets, even if |
| ** _FILE_OFFSET_BITS=64 is defined. This means it is unsafe to attempt to |
| ** truncate a file to any size larger than 2GiB. Silently ignore any |
| ** such attempts. */ |
| if( sz>(sqlite3_int64)0x7FFFFFFF ){ |
| rc = SQLITE_OK; |
| }else |
| #endif |
| do{ rc = osFtruncate(h,sz); }while( rc<0 && errno==EINTR ); |
| return rc; |
| } |
| |
| /* |
| ** This routine translates a standard POSIX errno code into something |
| ** useful to the clients of the sqlite3 functions. Specifically, it is |
| ** intended to translate a variety of "try again" errors into SQLITE_BUSY |
| ** and a variety of "please close the file descriptor NOW" errors into |
| ** SQLITE_IOERR |
| ** |
| ** Errors during initialization of locks, or file system support for locks, |
| ** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately. |
| */ |
| static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) { |
| assert( (sqliteIOErr == SQLITE_IOERR_LOCK) || |
| (sqliteIOErr == SQLITE_IOERR_UNLOCK) || |
| (sqliteIOErr == SQLITE_IOERR_RDLOCK) || |
| (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ); |
| switch (posixError) { |
| case EACCES: |
| case EAGAIN: |
| case ETIMEDOUT: |
| case EBUSY: |
| case EINTR: |
| case ENOLCK: |
| /* random NFS retry error, unless during file system support |
| * introspection, in which it actually means what it says */ |
| return SQLITE_BUSY; |
| |
| case EPERM: |
| return SQLITE_PERM; |
| |
| default: |
| return sqliteIOErr; |
| } |
| } |
| |
| |
| /****************************************************************************** |
| ****************** Begin Unique File ID Utility Used By VxWorks *************** |
| ** |
| ** On most versions of unix, we can get a unique ID for a file by concatenating |
| ** the device number and the inode number. But this does not work on VxWorks. |
| ** On VxWorks, a unique file id must be based on the canonical filename. |
| ** |
| ** A pointer to an instance of the following structure can be used as a |
| ** unique file ID in VxWorks. Each instance of this structure contains |
| ** a copy of the canonical filename. There is also a reference count. |
| ** The structure is reclaimed when the number of pointers to it drops to |
| ** zero. |
| ** |
| ** There are never very many files open at one time and lookups are not |
| ** a performance-critical path, so it is sufficient to put these |
| ** structures on a linked list. |
| */ |
| struct vxworksFileId { |
| struct vxworksFileId *pNext; /* Next in a list of them all */ |
| int nRef; /* Number of references to this one */ |
| int nName; /* Length of the zCanonicalName[] string */ |
| char *zCanonicalName; /* Canonical filename */ |
| }; |
| |
| #if OS_VXWORKS |
| /* |
| ** All unique filenames are held on a linked list headed by this |
| ** variable: |
| */ |
| static struct vxworksFileId *vxworksFileList = 0; |
| |
| /* |
| ** Simplify a filename into its canonical form |
| ** by making the following changes: |
| ** |
| ** * removing any trailing and duplicate / |
| ** * convert /./ into just / |
| ** * convert /A/../ where A is any simple name into just / |
| ** |
| ** Changes are made in-place. Return the new name length. |
| ** |
| ** The original filename is in z[0..n-1]. Return the number of |
| ** characters in the simplified name. |
| */ |
| static int vxworksSimplifyName(char *z, int n){ |
| int i, j; |
| while( n>1 && z[n-1]=='/' ){ n--; } |
| for(i=j=0; i<n; i++){ |
| if( z[i]=='/' ){ |
| if( z[i+1]=='/' ) continue; |
| if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){ |
| i += 1; |
| continue; |
| } |
| if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){ |
| while( j>0 && z[j-1]!='/' ){ j--; } |
| if( j>0 ){ j--; } |
| i += 2; |
| continue; |
| } |
| } |
| z[j++] = z[i]; |
| } |
| z[j] = 0; |
| return j; |
| } |
| |
| /* |
| ** Find a unique file ID for the given absolute pathname. Return |
| ** a pointer to the vxworksFileId object. This pointer is the unique |
| ** file ID. |
| ** |
| ** The nRef field of the vxworksFileId object is incremented before |
| ** the object is returned. A new vxworksFileId object is created |
| ** and added to the global list if necessary. |
| ** |
| ** If a memory allocation error occurs, return NULL. |
| */ |
| static struct vxworksFileId *vxworksFindFileId(const char *zAbsoluteName){ |
| struct vxworksFileId *pNew; /* search key and new file ID */ |
| struct vxworksFileId *pCandidate; /* For looping over existing file IDs */ |
| int n; /* Length of zAbsoluteName string */ |
| |
| assert( zAbsoluteName[0]=='/' ); |
| n = (int)strlen(zAbsoluteName); |
| pNew = sqlite3_malloc64( sizeof(*pNew) + (n+1) ); |
| if( pNew==0 ) return 0; |
| pNew->zCanonicalName = (char*)&pNew[1]; |
| memcpy(pNew->zCanonicalName, zAbsoluteName, n+1); |
| n = vxworksSimplifyName(pNew->zCanonicalName, n); |
| |
| /* Search for an existing entry that matching the canonical name. |
| ** If found, increment the reference count and return a pointer to |
| ** the existing file ID. |
| */ |
| unixEnterMutex(); |
| for(pCandidate=vxworksFileList; pCandidate; pCandidate=pCandidate->pNext){ |
| if( pCandidate->nName==n |
| && memcmp(pCandidate->zCanonicalName, pNew->zCanonicalName, n)==0 |
| ){ |
| sqlite3_free(pNew); |
| pCandidate->nRef++; |
| unixLeaveMutex(); |
| return pCandidate; |
| } |
| } |
| |
| /* No match was found. We will make a new file ID */ |
| pNew->nRef = 1; |
| pNew->nName = n; |
| pNew->pNext = vxworksFileList; |
| vxworksFileList = pNew; |
| unixLeaveMutex(); |
| return pNew; |
| } |
| |
| /* |
| ** Decrement the reference count on a vxworksFileId object. Free |
| ** the object when the reference count reaches zero. |
| */ |
| static void vxworksReleaseFileId(struct vxworksFileId *pId){ |
| unixEnterMutex(); |
| assert( pId->nRef>0 ); |
| pId->nRef--; |
| if( pId->nRef==0 ){ |
| struct vxworksFileId **pp; |
| for(pp=&vxworksFileList; *pp && *pp!=pId; pp = &((*pp)->pNext)){} |
| assert( *pp==pId ); |
| *pp = pId->pNext; |
| sqlite3_free(pId); |
| } |
| unixLeaveMutex(); |
| } |
| #endif /* OS_VXWORKS */ |
| /*************** End of Unique File ID Utility Used By VxWorks **************** |
| ******************************************************************************/ |
| |
| |
| /****************************************************************************** |
| *************************** Posix Advisory Locking **************************** |
| ** |
| ** POSIX advisory locks are broken by design. ANSI STD 1003.1 (1996) |
| ** section 6.5.2.2 lines 483 through 490 specify that when a process |
| ** sets or clears a lock, that operation overrides any prior locks set |
| ** by the same process. It does not explicitly say so, but this implies |
| ** that it overrides locks set by the same process using a different |
| ** file descriptor. Consider this test case: |
| ** |
| ** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644); |
| ** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644); |
| ** |
| ** Suppose ./file1 and ./file2 are really the same file (because |
| ** one is a hard or symbolic link to the other) then if you set |
| ** an exclusive lock on fd1, then try to get an exclusive lock |
| ** on fd2, it works. I would have expected the second lock to |
| ** fail since there was already a lock on the file due to fd1. |
| ** But not so. Since both locks came from the same process, the |
| ** second overrides the first, even though they were on different |
| ** file descriptors opened on different file names. |
| ** |
| ** This means that we cannot use POSIX locks to synchronize file access |
| ** among competing threads of the same process. POSIX locks will work fine |
| ** to synchronize access for threads in separate processes, but not |
| ** threads within the same process. |
| ** |
| ** To work around the problem, SQLite has to manage file locks internally |
| ** on its own. Whenever a new database is opened, we have to find the |
| ** specific inode of the database file (the inode is determined by the |
| ** st_dev and st_ino fields of the stat structure that fstat() fills in) |
| ** and check for locks already existing on that inode. When locks are |
| ** created or removed, we have to look at our own internal record of the |
| ** locks to see if another thread has previously set a lock on that same |
| ** inode. |
| ** |
| ** (Aside: The use of inode numbers as unique IDs does not work on VxWorks. |
| ** For VxWorks, we have to use the alternative unique ID system based on |
| ** canonical filename and implemented in the previous division.) |
| ** |
| ** The sqlite3_file structure for POSIX is no longer just an integer file |
| ** descriptor. It is now a structure that holds the integer file |
| ** descriptor and a pointer to a structure that describes the internal |
| ** locks on the corresponding inode. There is one locking structure |
| ** per inode, so if the same inode is opened twice, both unixFile structures |
| ** point to the same locking structure. The locking structure keeps |
| ** a reference count (so we will know when to delete it) and a "cnt" |
| ** field that tells us its internal lock status. cnt==0 means the |
| ** file is unlocked. cnt==-1 means the file has an exclusive lock. |
| ** cnt>0 means there are cnt shared locks on the file. |
| ** |
| ** Any attempt to lock or unlock a file first checks the locking |
| ** structure. The fcntl() system call is only invoked to set a |
| ** POSIX lock if the internal lock structure transitions between |
| ** a locked and an unlocked state. |
| ** |
| ** But wait: there are yet more problems with POSIX advisory locks. |
| ** |
| ** If you close a file descriptor that points to a file that has locks, |
| ** all locks on that file that are owned by the current process are |
| ** released. To work around this problem, each unixInodeInfo object |
| ** maintains a count of the number of pending locks on tha inode. |
| ** When an attempt is made to close an unixFile, if there are |
| ** other unixFile open on the same inode that are holding locks, the call |
| ** to close() the file descriptor is deferred until all of the locks clear. |
| ** The unixInodeInfo structure keeps a list of file descriptors that need to |
| ** be closed and that list is walked (and cleared) when the last lock |
| ** clears. |
| ** |
| ** Yet another problem: LinuxThreads do not play well with posix locks. |
| ** |
| ** Many older versions of linux use the LinuxThreads library which is |
| ** not posix compliant. Under LinuxThreads, a lock created by thread |
| ** A cannot be modified or overridden by a different thread B. |
| ** Only thread A can modify the lock. Locking behavior is correct |
| ** if the appliation uses the newer Native Posix Thread Library (NPTL) |
| ** on linux - with NPTL a lock created by thread A can override locks |
| ** in thread B. But there is no way to know at compile-time which |
| ** threading library is being used. So there is no way to know at |
| ** compile-time whether or not thread A can override locks on thread B. |
| ** One has to do a run-time check to discover the behavior of the |
| ** current process. |
| ** |
| ** SQLite used to support LinuxThreads. But support for LinuxThreads |
| ** was dropped beginning with version 3.7.0. SQLite will still work with |
| ** LinuxThreads provided that (1) there is no more than one connection |
| ** per database file in the same process and (2) database connections |
| ** do not move across threads. |
| */ |
| |
| /* |
| ** An instance of the following structure serves as the key used |
| ** to locate a particular unixInodeInfo object. |
| */ |
| struct unixFileId { |
| dev_t dev; /* Device number */ |
| #if OS_VXWORKS |
| struct vxworksFileId *pId; /* Unique file ID for vxworks. */ |
| #else |
| /* We are told that some versions of Android contain a bug that |
| ** sizes ino_t at only 32-bits instead of 64-bits. (See |
| ** https://android-review.googlesource.com/#/c/115351/3/dist/sqlite3.c) |
| ** To work around this, always allocate 64-bits for the inode number. |
| ** On small machines that only have 32-bit inodes, this wastes 4 bytes, |
| ** but that should not be a big deal. */ |
| /* WAS: ino_t ino; */ |
| u64 ino; /* Inode number */ |
| #endif |
| }; |
| |
| /* |
| ** An instance of the following structure is allocated for each open |
| ** inode. |
| ** |
| ** A single inode can have multiple file descriptors, so each unixFile |
| ** structure contains a pointer to an instance of this object and this |
| ** object keeps a count of the number of unixFile pointing to it. |
| ** |
| ** Mutex rules: |
| ** |
| ** (1) Only the pLockMutex mutex must be held in order to read or write |
| ** any of the locking fields: |
| ** nShared, nLock, eFileLock, bProcessLock, pUnused |
| ** |
| ** (2) When nRef>0, then the following fields are unchanging and can |
| ** be read (but not written) without holding any mutex: |
| ** fileId, pLockMutex |
| ** |
| ** (3) With the exceptions above, all the fields may only be read |
| ** or written while holding the global unixBigLock mutex. |
| ** |
| ** Deadlock prevention: The global unixBigLock mutex may not |
| ** be acquired while holding the pLockMutex mutex. If both unixBigLock |
| ** and pLockMutex are needed, then unixBigLock must be acquired first. |
| */ |
| struct unixInodeInfo { |
| struct unixFileId fileId; /* The lookup key */ |
| sqlite3_mutex *pLockMutex; /* Hold this mutex for... */ |
| int nShared; /* Number of SHARED locks held */ |
| int nLock; /* Number of outstanding file locks */ |
| unsigned char eFileLock; /* One of SHARED_LOCK, RESERVED_LOCK etc. */ |
| unsigned char bProcessLock; /* An exclusive process lock is held */ |
| UnixUnusedFd *pUnused; /* Unused file descriptors to close */ |
| int nRef; /* Number of pointers to this structure */ |
| unixShmNode *pShmNode; /* Shared memory associated with this inode */ |
| unixInodeInfo *pNext; /* List of all unixInodeInfo objects */ |
| unixInodeInfo *pPrev; /* .... doubly linked */ |
| #if SQLITE_ENABLE_LOCKING_STYLE |
| unsigned long long sharedByte; /* for AFP simulated shared lock */ |
| #endif |
| #if OS_VXWORKS |
| sem_t *pSem; /* Named POSIX semaphore */ |
| char aSemName[MAX_PATHNAME+2]; /* Name of that semaphore */ |
| #endif |
| }; |
| |
| /* |
| ** A lists of all unixInodeInfo objects. |
| ** |
| ** Must hold unixBigLock in order to read or write this variable. |
| */ |
| static unixInodeInfo *inodeList = 0; /* All unixInodeInfo objects */ |
| |
| #ifdef SQLITE_DEBUG |
| /* |
| ** True if the inode mutex (on the unixFile.pFileMutex field) is held, or not. |
| ** This routine is used only within assert() to help verify correct mutex |
| ** usage. |
| */ |
| int unixFileMutexHeld(unixFile *pFile){ |
| assert( pFile->pInode ); |
| return sqlite3_mutex_held(pFile->pInode->pLockMutex); |
| } |
| int unixFileMutexNotheld(unixFile *pFile){ |
| assert( pFile->pInode ); |
| return sqlite3_mutex_notheld(pFile->pInode->pLockMutex); |
| } |
| #endif |
| |
| /* |
| ** |
| ** This function - unixLogErrorAtLine(), is only ever called via the macro |
| ** unixLogError(). |
| ** |
| ** It is invoked after an error occurs in an OS function and errno has been |
| ** set. It logs a message using sqlite3_log() containing the current value of |
| ** errno and, if possible, the human-readable equivalent from strerror() or |
| ** strerror_r(). |
| ** |
| ** The first argument passed to the macro should be the error code that |
| ** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN). |
| ** The two subsequent arguments should be the name of the OS function that |
| ** failed (e.g. "unlink", "open") and the associated file-system path, |
| ** if any. |
| */ |
| #define unixLogError(a,b,c) unixLogErrorAtLine(a,b,c,__LINE__) |
| static int unixLogErrorAtLine( |
| int errcode, /* SQLite error code */ |
| const char *zFunc, /* Name of OS function that failed */ |
| const char *zPath, /* File path associated with error */ |
| int iLine /* Source line number where error occurred */ |
| ){ |
| char *zErr; /* Message from strerror() or equivalent */ |
| int iErrno = errno; /* Saved syscall error number */ |
| |
| /* If this is not a threadsafe build (SQLITE_THREADSAFE==0), then use |
| ** the strerror() function to obtain the human-readable error message |
| ** equivalent to errno. Otherwise, use strerror_r(). |
| */ |
| #if SQLITE_THREADSAFE && defined(HAVE_STRERROR_R) |
| char aErr[80]; |
| memset(aErr, 0, sizeof(aErr)); |
| zErr = aErr; |
| |
| /* If STRERROR_R_CHAR_P (set by autoconf scripts) or __USE_GNU is defined, |
| ** assume that the system provides the GNU version of strerror_r() that |
| ** returns a pointer to a buffer containing the error message. That pointer |
| ** may point to aErr[], or it may point to some static storage somewhere. |
| ** Otherwise, assume that the system provides the POSIX version of |
| ** strerror_r(), which always writes an error message into aErr[]. |
| ** |
| ** If the code incorrectly assumes that it is the POSIX version that is |
| ** available, the error message will often be an empty string. Not a |
| ** huge problem. Incorrectly concluding that the GNU version is available |
| ** could lead to a segfault though. |
| */ |
| #if defined(STRERROR_R_CHAR_P) || defined(__USE_GNU) |
| zErr = |
| # endif |
| strerror_r(iErrno, aErr, sizeof(aErr)-1); |
| |
| #elif SQLITE_THREADSAFE |
| /* This is a threadsafe build, but strerror_r() is not available. */ |
| zErr = ""; |
| #else |
| /* Non-threadsafe build, use strerror(). */ |
| zErr = strerror(iErrno); |
| #endif |
| |
| if( zPath==0 ) zPath = ""; |
| sqlite3_log(errcode, |
| "os_unix.c:%d: (%d) %s(%s) - %s", |
| iLine, iErrno, zFunc, zPath, zErr |
| ); |
| |
| return errcode; |
| } |
| |
| /* |
| ** Close a file descriptor. |
| ** |
| ** We assume that close() almost always works, since it is only in a |
| ** very sick application or on a very sick platform that it might fail. |
| ** If it does fail, simply leak the file descriptor, but do log the |
| ** error. |
| ** |
| ** Note that it is not safe to retry close() after EINTR since the |
| ** file descriptor might have already been reused by another thread. |
| ** So we don't even try to recover from an EINTR. Just log the error |
| ** and move on. |
| */ |
| static void robust_close(unixFile *pFile, int h, int lineno){ |
| if( osClose(h) ){ |
| unixLogErrorAtLine(SQLITE_IOERR_CLOSE, "close", |
| pFile ? pFile->zPath : 0, lineno); |
| } |
| } |
| |
| /* |
| ** Set the pFile->lastErrno. Do this in a subroutine as that provides |
| ** a convenient place to set a breakpoint. |
| */ |
| static void storeLastErrno(unixFile *pFile, int error){ |
| pFile->lastErrno = error; |
| } |
| |
| /* |
| ** Close all file descriptors accumuated in the unixInodeInfo->pUnused list. |
| */ |
| static void closePendingFds(unixFile *pFile){ |
| unixInodeInfo *pInode = pFile->pInode; |
| UnixUnusedFd *p; |
| UnixUnusedFd *pNext; |
| assert( unixFileMutexHeld(pFile) ); |
| for(p=pInode->pUnused; p; p=pNext){ |
| pNext = p->pNext; |
| robust_close(pFile, p->fd, __LINE__); |
| sqlite3_free(p); |
| } |
| pInode->pUnused = 0; |
| } |
| |
| /* |
| ** Release a unixInodeInfo structure previously allocated by findInodeInfo(). |
| ** |
| ** The global mutex must be held when this routine is called, but the mutex |
| ** on the inode being deleted must NOT be held. |
| */ |
| static void releaseInodeInfo(unixFile *pFile){ |
| unixInodeInfo *pInode = pFile->pInode; |
| assert( unixMutexHeld() ); |
| assert( unixFileMutexNotheld(pFile) ); |
| if( ALWAYS(pInode) ){ |
| pInode->nRef--; |
| if( pInode->nRef==0 ){ |
| assert( pInode->pShmNode==0 ); |
| sqlite3_mutex_enter(pInode->pLockMutex); |
| closePendingFds(pFile); |
| sqlite3_mutex_leave(pInode->pLockMutex); |
| if( pInode->pPrev ){ |
| assert( pInode->pPrev->pNext==pInode ); |
| pInode->pPrev->pNext = pInode->pNext; |
| }else{ |
| assert( inodeList==pInode ); |
| inodeList = pInode->pNext; |
| } |
| if( pInode->pNext ){ |
| assert( pInode->pNext->pPrev==pInode ); |
| pInode->pNext->pPrev = pInode->pPrev; |
| } |
| sqlite3_mutex_free(pInode->pLockMutex); |
| sqlite3_free(pInode); |
| } |
| } |
| } |
| |
| /* |
| ** Given a file descriptor, locate the unixInodeInfo object that |
| ** describes that file descriptor. Create a new one if necessary. The |
| ** return value might be uninitialized if an error occurs. |
| ** |
| ** The global mutex must held when calling this routine. |
| ** |
| ** Return an appropriate error code. |
| */ |
| static int findInodeInfo( |
| unixFile *pFile, /* Unix file with file desc used in the key */ |
| unixInodeInfo **ppInode /* Return the unixInodeInfo object here */ |
| ){ |
| int rc; /* System call return code */ |
| int fd; /* The file descriptor for pFile */ |
| struct unixFileId fileId; /* Lookup key for the unixInodeInfo */ |
| struct stat statbuf; /* Low-level file information */ |
| unixInodeInfo *pInode = 0; /* Candidate unixInodeInfo object */ |
| |
| assert( unixMutexHeld() ); |
| |
| /* Get low-level information about the file that we can used to |
| ** create a unique name for the file. |
| */ |
| fd = pFile->h; |
| rc = osFstat(fd, &statbuf); |
| if( rc!=0 ){ |
| storeLastErrno(pFile, errno); |
| #if defined(EOVERFLOW) && defined(SQLITE_DISABLE_LFS) |
| if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS; |
| #endif |
| return SQLITE_IOERR; |
| } |
| |
| #ifdef __APPLE__ |
| /* On OS X on an msdos filesystem, the inode number is reported |
| ** incorrectly for zero-size files. See ticket #3260. To work |
| ** around this problem (we consider it a bug in OS X, not SQLite) |
| ** we always increase the file size to 1 by writing a single byte |
| ** prior to accessing the inode number. The one byte written is |
| ** an ASCII 'S' character which also happens to be the first byte |
| ** in the header of every SQLite database. In this way, if there |
| ** is a race condition such that another thread has already populated |
| ** the first page of the database, no damage is done. |
| */ |
| if( statbuf.st_size==0 && (pFile->fsFlags & SQLITE_FSFLAGS_IS_MSDOS)!=0 ){ |
| do{ rc = osWrite(fd, "S", 1); }while( rc<0 && errno==EINTR ); |
| if( rc!=1 ){ |
| storeLastErrno(pFile, errno); |
| return SQLITE_IOERR; |
| } |
| rc = osFstat(fd, &statbuf); |
| if( rc!=0 ){ |
| storeLastErrno(pFile, errno); |
| return SQLITE_IOERR; |
| } |
| } |
| #endif |
| |
| memset(&fileId, 0, sizeof(fileId)); |
| fileId.dev = statbuf.st_dev; |
| #if OS_VXWORKS |
| fileId.pId = pFile->pId; |
| #else |
| fileId.ino = (u64)statbuf.st_ino; |
| #endif |
| assert( unixMutexHeld() ); |
| pInode = inodeList; |
| while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){ |
| pInode = pInode->pNext; |
| } |
| if( pInode==0 ){ |
| pInode = sqlite3_malloc64( sizeof(*pInode) ); |
| if( pInode==0 ){ |
| return SQLITE_NOMEM_BKPT; |
| } |
| memset(pInode, 0, sizeof(*pInode)); |
| memcpy(&pInode->fileId, &fileId, sizeof(fileId)); |
| if( sqlite3GlobalConfig.bCoreMutex ){ |
| pInode->pLockMutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); |
| if( pInode->pLockMutex==0 ){ |
| sqlite3_free(pInode); |
| return SQLITE_NOMEM_BKPT; |
| } |
| } |
| pInode->nRef = 1; |
| assert( unixMutexHeld() ); |
| pInode->pNext = inodeList; |
| pInode->pPrev = 0; |
| if( inodeList ) inodeList->pPrev = pInode; |
| inodeList = pInode; |
| }else{ |
| pInode->nRef++; |
| } |
| *ppInode = pInode; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Return TRUE if pFile has been renamed or unlinked since it was first opened. |
| */ |
| static int fileHasMoved(unixFile *pFile){ |
| #if OS_VXWORKS |
| return pFile->pInode!=0 && pFile->pId!=pFile->pInode->fileId.pId; |
| #else |
| struct stat buf; |
| return pFile->pInode!=0 && |
| (osStat(pFile->zPath, &buf)!=0 |
| || (u64)buf.st_ino!=pFile->pInode->fileId.ino); |
| #endif |
| } |
| |
| |
| /* |
| ** Check a unixFile that is a database. Verify the following: |
| ** |
| ** (1) There is exactly one hard link on the file |
| ** (2) The file is not a symbolic link |
| ** (3) The file has not been renamed or unlinked |
| ** |
| ** Issue sqlite3_log(SQLITE_WARNING,...) messages if anything is not right. |
| */ |
| static void verifyDbFile(unixFile *pFile){ |
| struct stat buf; |
| int rc; |
| |
| /* These verifications occurs for the main database only */ |
| if( pFile->ctrlFlags & UNIXFILE_NOLOCK ) return; |
| |
| rc = osFstat(pFile->h, &buf); |
| if( rc!=0 ){ |
| sqlite3_log(SQLITE_WARNING, "cannot fstat db file %s", pFile->zPath); |
| return; |
| } |
| if( buf.st_nlink==0 ){ |
| sqlite3_log(SQLITE_WARNING, "file unlinked while open: %s", pFile->zPath); |
| return; |
| } |
| if( buf.st_nlink>1 ){ |
| sqlite3_log(SQLITE_WARNING, "multiple links to file: %s", pFile->zPath); |
| return; |
| } |
| if( fileHasMoved(pFile) ){ |
| sqlite3_log(SQLITE_WARNING, "file renamed while open: %s", pFile->zPath); |
| return; |
| } |
| } |
| |
| |
| /* |
| ** This routine checks if there is a RESERVED lock held on the specified |
| ** file by this or any other process. If such a lock is held, set *pResOut |
| ** to a non-zero value otherwise *pResOut is set to zero. The return value |
| ** is set to SQLITE_OK unless an I/O error occurs during lock checking. |
| */ |
| static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){ |
| int rc = SQLITE_OK; |
| int reserved = 0; |
| unixFile *pFile = (unixFile*)id; |
| |
| SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); |
| |
| assert( pFile ); |
| assert( pFile->eFileLock<=SHARED_LOCK ); |
| sqlite3_mutex_enter(pFile->pInode->pLockMutex); |
| |
| /* Check if a thread in this process holds such a lock */ |
| if( pFile->pInode->eFileLock>SHARED_LOCK ){ |
| reserved = 1; |
| } |
| |
| /* Otherwise see if some other process holds it. |
| */ |
| #ifndef __DJGPP__ |
| if( !reserved && !pFile->pInode->bProcessLock ){ |
| struct flock lock; |
| lock.l_whence = SEEK_SET; |
| lock.l_start = RESERVED_BYTE; |
| lock.l_len = 1; |
| lock.l_type = F_WRLCK; |
| if( osFcntl(pFile->h, F_GETLK, &lock) ){ |
| rc = SQLITE_IOERR_CHECKRESERVEDLOCK; |
| storeLastErrno(pFile, errno); |
| } else if( lock.l_type!=F_UNLCK ){ |
| reserved = 1; |
| } |
| } |
| #endif |
| |
| sqlite3_mutex_leave(pFile->pInode->pLockMutex); |
| OSTRACE(("TEST WR-LOCK %d %d %d (unix)\n", pFile->h, rc, reserved)); |
| |
| *pResOut = reserved; |
| return rc; |
| } |
| |
| /* Forward declaration*/ |
| static int unixSleep(sqlite3_vfs*,int); |
| |
| /* |
| ** Set a posix-advisory-lock. |
| ** |
| ** There are two versions of this routine. If compiled with |
| ** SQLITE_ENABLE_SETLK_TIMEOUT then the routine has an extra parameter |
| ** which is a pointer to a unixFile. If the unixFile->iBusyTimeout |
| ** value is set, then it is the number of milliseconds to wait before |
| ** failing the lock. The iBusyTimeout value is always reset back to |
| ** zero on each call. |
| ** |
| ** If SQLITE_ENABLE_SETLK_TIMEOUT is not defined, then do a non-blocking |
| ** attempt to set the lock. |
| */ |
| #ifndef SQLITE_ENABLE_SETLK_TIMEOUT |
| # define osSetPosixAdvisoryLock(h,x,t) osFcntl(h,F_SETLK,x) |
| #else |
| static int osSetPosixAdvisoryLock( |
| int h, /* The file descriptor on which to take the lock */ |
| struct flock *pLock, /* The description of the lock */ |
| unixFile *pFile /* Structure holding timeout value */ |
| ){ |
| int tm = pFile->iBusyTimeout; |
| int rc = osFcntl(h,F_SETLK,pLock); |
| while( rc<0 && tm>0 ){ |
| /* On systems that support some kind of blocking file lock with a timeout, |
| ** make appropriate changes here to invoke that blocking file lock. On |
| ** generic posix, however, there is no such API. So we simply try the |
| ** lock once every millisecond until either the timeout expires, or until |
| ** the lock is obtained. */ |
| unixSleep(0,1000); |
| rc = osFcntl(h,F_SETLK,pLock); |
| tm--; |
| } |
| return rc; |
| } |
| #endif /* SQLITE_ENABLE_SETLK_TIMEOUT */ |
| |
| |
| /* |
| ** Attempt to set a system-lock on the file pFile. The lock is |
| ** described by pLock. |
| ** |
| ** If the pFile was opened read/write from unix-excl, then the only lock |
| ** ever obtained is an exclusive lock, and it is obtained exactly once |
| ** the first time any lock is attempted. All subsequent system locking |
| ** operations become no-ops. Locking operations still happen internally, |
| ** in order to coordinate access between separate database connections |
| ** within this process, but all of that is handled in memory and the |
| ** operating system does not participate. |
| ** |
| ** This function is a pass-through to fcntl(F_SETLK) if pFile is using |
| ** any VFS other than "unix-excl" or if pFile is opened on "unix-excl" |
| ** and is read-only. |
| ** |
| ** Zero is returned if the call completes successfully, or -1 if a call |
| ** to fcntl() fails. In this case, errno is set appropriately (by fcntl()). |
| */ |
| static int unixFileLock(unixFile *pFile, struct flock *pLock){ |
| int rc; |
| unixInodeInfo *pInode = pFile->pInode; |
| assert( pInode!=0 ); |
| assert( sqlite3_mutex_held(pInode->pLockMutex) ); |
| if( (pFile->ctrlFlags & (UNIXFILE_EXCL|UNIXFILE_RDONLY))==UNIXFILE_EXCL ){ |
| if( pInode->bProcessLock==0 ){ |
| struct flock lock; |
| assert( pInode->nLock==0 ); |
| lock.l_whence = SEEK_SET; |
| lock.l_start = SHARED_FIRST; |
| lock.l_len = SHARED_SIZE; |
| lock.l_type = F_WRLCK; |
| rc = osSetPosixAdvisoryLock(pFile->h, &lock, pFile); |
| if( rc<0 ) return rc; |
| pInode->bProcessLock = 1; |
| pInode->nLock++; |
| }else{ |
| rc = 0; |
| } |
| }else{ |
| rc = osSetPosixAdvisoryLock(pFile->h, pLock, pFile); |
| } |
| return rc; |
| } |
| |
| /* |
| ** Lock the file with the lock specified by parameter eFileLock - one |
| ** of the following: |
| ** |
| ** (1) SHARED_LOCK |
| ** (2) RESERVED_LOCK |
| ** (3) PENDING_LOCK |
| ** (4) EXCLUSIVE_LOCK |
| ** |
| ** Sometimes when requesting one lock state, additional lock states |
| ** are inserted in between. The locking might fail on one of the later |
| ** transitions leaving the lock state different from what it started but |
| ** still short of its goal. The following chart shows the allowed |
| ** transitions and the inserted intermediate states: |
| ** |
| ** UNLOCKED -> SHARED |
| ** SHARED -> RESERVED |
| ** SHARED -> (PENDING) -> EXCLUSIVE |
| ** RESERVED -> (PENDING) -> EXCLUSIVE |
| ** PENDING -> EXCLUSIVE |
| ** |
| ** This routine will only increase a lock. Use the sqlite3OsUnlock() |
| ** routine to lower a locking level. |
| */ |
| static int unixLock(sqlite3_file *id, int eFileLock){ |
| /* The following describes the implementation of the various locks and |
| ** lock transitions in terms of the POSIX advisory shared and exclusive |
| ** lock primitives (called read-locks and write-locks below, to avoid |
| ** confusion with SQLite lock names). The algorithms are complicated |
| ** slightly in order to be compatible with Windows95 systems simultaneously |
| ** accessing the same database file, in case that is ever required. |
| ** |
| ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved |
| ** byte', each single bytes at well known offsets, and the 'shared byte |
| ** range', a range of 510 bytes at a well known offset. |
| ** |
| ** To obtain a SHARED lock, a read-lock is obtained on the 'pending |
| ** byte'. If this is successful, 'shared byte range' is read-locked |
| ** and the lock on the 'pending byte' released. (Legacy note: When |
| ** SQLite was first developed, Windows95 systems were still very common, |
| ** and Widnows95 lacks a shared-lock capability. So on Windows95, a |
| ** single randomly selected by from the 'shared byte range' is locked. |
| ** Windows95 is now pretty much extinct, but this work-around for the |
| ** lack of shared-locks on Windows95 lives on, for backwards |
| ** compatibility.) |
| ** |
| ** A process may only obtain a RESERVED lock after it has a SHARED lock. |
| ** A RESERVED lock is implemented by grabbing a write-lock on the |
| ** 'reserved byte'. |
| ** |
| ** A process may only obtain a PENDING lock after it has obtained a |
| ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock |
| ** on the 'pending byte'. This ensures that no new SHARED locks can be |
| ** obtained, but existing SHARED locks are allowed to persist. A process |
| ** does not have to obtain a RESERVED lock on the way to a PENDING lock. |
| ** This property is used by the algorithm for rolling back a journal file |
| ** after a crash. |
| ** |
| ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is |
| ** implemented by obtaining a write-lock on the entire 'shared byte |
| ** range'. Since all other locks require a read-lock on one of the bytes |
| ** within this range, this ensures that no other locks are held on the |
| ** database. |
| */ |
| int rc = SQLITE_OK; |
| unixFile *pFile = (unixFile*)id; |
| unixInodeInfo *pInode; |
| struct flock lock; |
| int tErrno = 0; |
| |
| assert( pFile ); |
| OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h, |
| azFileLock(eFileLock), azFileLock(pFile->eFileLock), |
| azFileLock(pFile->pInode->eFileLock), pFile->pInode->nShared, |
| osGetpid(0))); |
| |
| /* If there is already a lock of this type or more restrictive on the |
| ** unixFile, do nothing. Don't use the end_lock: exit path, as |
| ** unixEnterMutex() hasn't been called yet. |
| */ |
| if( pFile->eFileLock>=eFileLock ){ |
| OSTRACE(("LOCK %d %s ok (already held) (unix)\n", pFile->h, |
| azFileLock(eFileLock))); |
| return SQLITE_OK; |
| } |
| |
| /* Make sure the locking sequence is correct. |
| ** (1) We never move from unlocked to anything higher than shared lock. |
| ** (2) SQLite never explicitly requests a pendig lock. |
| ** (3) A shared lock is always held when a reserve lock is requested. |
| */ |
| assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK ); |
| assert( eFileLock!=PENDING_LOCK ); |
| assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK ); |
| |
| /* This mutex is needed because pFile->pInode is shared across threads |
| */ |
| pInode = pFile->pInode; |
| sqlite3_mutex_enter(pInode->pLockMutex); |
| |
| /* If some thread using this PID has a lock via a different unixFile* |
| ** handle that precludes the requested lock, return BUSY. |
| */ |
| if( (pFile->eFileLock!=pInode->eFileLock && |
| (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK)) |
| ){ |
| rc = SQLITE_BUSY; |
| goto end_lock; |
| } |
| |
| /* If a SHARED lock is requested, and some thread using this PID already |
| ** has a SHARED or RESERVED lock, then increment reference counts and |
| ** return SQLITE_OK. |
| */ |
| if( eFileLock==SHARED_LOCK && |
| (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){ |
| assert( eFileLock==SHARED_LOCK ); |
| assert( pFile->eFileLock==0 ); |
| assert( pInode->nShared>0 ); |
| pFile->eFileLock = SHARED_LOCK; |
| pInode->nShared++; |
| pInode->nLock++; |
| goto end_lock; |
| } |
| |
| |
| /* A PENDING lock is needed before acquiring a SHARED lock and before |
| ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will |
| ** be released. |
| */ |
| lock.l_len = 1L; |
| lock.l_whence = SEEK_SET; |
| if( eFileLock==SHARED_LOCK |
| || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK) |
| ){ |
| lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK); |
| lock.l_start = PENDING_BYTE; |
| if( unixFileLock(pFile, &lock) ){ |
| tErrno = errno; |
| rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); |
| if( rc!=SQLITE_BUSY ){ |
| storeLastErrno(pFile, tErrno); |
| } |
| goto end_lock; |
| } |
| } |
| |
| |
| /* If control gets to this point, then actually go ahead and make |
| ** operating system calls for the specified lock. |
| */ |
| if( eFileLock==SHARED_LOCK ){ |
| assert( pInode->nShared==0 ); |
| assert( pInode->eFileLock==0 ); |
| assert( rc==SQLITE_OK ); |
| |
| /* Now get the read-lock */ |
| lock.l_start = SHARED_FIRST; |
| lock.l_len = SHARED_SIZE; |
| if( unixFileLock(pFile, &lock) ){ |
| tErrno = errno; |
| rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); |
| } |
| |
| /* Drop the temporary PENDING lock */ |
| lock.l_start = PENDING_BYTE; |
| lock.l_len = 1L; |
| lock.l_type = F_UNLCK; |
| if( unixFileLock(pFile, &lock) && rc==SQLITE_OK ){ |
| /* This could happen with a network mount */ |
| tErrno = errno; |
| rc = SQLITE_IOERR_UNLOCK; |
| } |
| |
| if( rc ){ |
| if( rc!=SQLITE_BUSY ){ |
| storeLastErrno(pFile, tErrno); |
| } |
| goto end_lock; |
| }else{ |
| pFile->eFileLock = SHARED_LOCK; |
| pInode->nLock++; |
| pInode->nShared = 1; |
| } |
| }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){ |
| /* We are trying for an exclusive lock but another thread in this |
| ** same process is still holding a shared lock. */ |
| rc = SQLITE_BUSY; |
| }else{ |
| /* The request was for a RESERVED or EXCLUSIVE lock. It is |
| ** assumed that there is a SHARED or greater lock on the file |
| ** already. |
| */ |
| assert( 0!=pFile->eFileLock ); |
| lock.l_type = F_WRLCK; |
| |
| assert( eFileLock==RESERVED_LOCK || eFileLock==EXCLUSIVE_LOCK ); |
| if( eFileLock==RESERVED_LOCK ){ |
| lock.l_start = RESERVED_BYTE; |
| lock.l_len = 1L; |
| }else{ |
| lock.l_start = SHARED_FIRST; |
| lock.l_len = SHARED_SIZE; |
| } |
| |
| if( unixFileLock(pFile, &lock) ){ |
| tErrno = errno; |
| rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); |
| if( rc!=SQLITE_BUSY ){ |
| storeLastErrno(pFile, tErrno); |
| } |
| } |
| } |
| |
| |
| #ifdef SQLITE_DEBUG |
| /* Set up the transaction-counter change checking flags when |
| ** transitioning from a SHARED to a RESERVED lock. The change |
| ** from SHARED to RESERVED marks the beginning of a normal |
| ** write operation (not a hot journal rollback). |
| */ |
| if( rc==SQLITE_OK |
| && pFile->eFileLock<=SHARED_LOCK |
| && eFileLock==RESERVED_LOCK |
| ){ |
| pFile->transCntrChng = 0; |
| pFile->dbUpdate = 0; |
| pFile->inNormalWrite = 1; |
| } |
| #endif |
| |
| |
| if( rc==SQLITE_OK ){ |
| pFile->eFileLock = eFileLock; |
| pInode->eFileLock = eFileLock; |
| }else if( eFileLock==EXCLUSIVE_LOCK ){ |
| pFile->eFileLock = PENDING_LOCK; |
| pInode->eFileLock = PENDING_LOCK; |
| } |
| |
| end_lock: |
| sqlite3_mutex_leave(pInode->pLockMutex); |
| OSTRACE(("LOCK %d %s %s (unix)\n", pFile->h, azFileLock(eFileLock), |
| rc==SQLITE_OK ? "ok" : "failed")); |
| return rc; |
| } |
| |
| /* |
| ** Add the file descriptor used by file handle pFile to the corresponding |
| ** pUnused list. |
| */ |
| static void setPendingFd(unixFile *pFile){ |
| unixInodeInfo *pInode = pFile->pInode; |
| UnixUnusedFd *p = pFile->pPreallocatedUnused; |
| assert( unixFileMutexHeld(pFile) ); |
| p->pNext = pInode->pUnused; |
| pInode->pUnused = p; |
| pFile->h = -1; |
| pFile->pPreallocatedUnused = 0; |
| } |
| |
| /* |
| ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
| ** must be either NO_LOCK or SHARED_LOCK. |
| ** |
| ** If the locking level of the file descriptor is already at or below |
| ** the requested locking level, this routine is a no-op. |
| ** |
| ** If handleNFSUnlock is true, then on downgrading an EXCLUSIVE_LOCK to SHARED |
| ** the byte range is divided into 2 parts and the first part is unlocked then |
| ** set to a read lock, then the other part is simply unlocked. This works |
| ** around a bug in BSD NFS lockd (also seen on MacOSX 10.3+) that fails to |
| ** remove the write lock on a region when a read lock is set. |
| */ |
| static int posixUnlock(sqlite3_file *id, int eFileLock, int handleNFSUnlock){ |
| unixFile *pFile = (unixFile*)id; |
| unixInodeInfo *pInode; |
| struct flock lock; |
| int rc = SQLITE_OK; |
| |
| assert( pFile ); |
| OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock, |
| pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared, |
| osGetpid(0))); |
| |
| assert( eFileLock<=SHARED_LOCK ); |
| if( pFile->eFileLock<=eFileLock ){ |
| return SQLITE_OK; |
| } |
| pInode = pFile->pInode; |
| sqlite3_mutex_enter(pInode->pLockMutex); |
| assert( pInode->nShared!=0 ); |
| if( pFile->eFileLock>SHARED_LOCK ){ |
| assert( pInode->eFileLock==pFile->eFileLock ); |
| |
| #ifdef SQLITE_DEBUG |
| /* When reducing a lock such that other processes can start |
| ** reading the database file again, make sure that the |
| ** transaction counter was updated if any part of the database |
| ** file changed. If the transaction counter is not updated, |
| ** other connections to the same file might not realize that |
| ** the file has changed and hence might not know to flush their |
| ** cache. The use of a stale cache can lead to database corruption. |
| */ |
| pFile->inNormalWrite = 0; |
| #endif |
| |
| /* downgrading to a shared lock on NFS involves clearing the write lock |
| ** before establishing the readlock - to avoid a race condition we downgrade |
| ** the lock in 2 blocks, so that part of the range will be covered by a |
| ** write lock until the rest is covered by a read lock: |
| ** 1: [WWWWW] |
| ** 2: [....W] |
| ** 3: [RRRRW] |
| ** 4: [RRRR.] |
| */ |
| if( eFileLock==SHARED_LOCK ){ |
| #if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE |
| (void)handleNFSUnlock; |
| assert( handleNFSUnlock==0 ); |
| #endif |
| #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
| if( handleNFSUnlock ){ |
| int tErrno; /* Error code from system call errors */ |
| off_t divSize = SHARED_SIZE - 1; |
| |
| lock.l_type = F_UNLCK; |
| lock.l_whence = SEEK_SET; |
| lock.l_start = SHARED_FIRST; |
| lock.l_len = divSize; |
| if( unixFileLock(pFile, &lock)==(-1) ){ |
| tErrno = errno; |
| rc = SQLITE_IOERR_UNLOCK; |
| storeLastErrno(pFile, tErrno); |
| goto end_unlock; |
| } |
| lock.l_type = F_RDLCK; |
| lock.l_whence = SEEK_SET; |
| lock.l_start = SHARED_FIRST; |
| lock.l_len = divSize; |
| if( unixFileLock(pFile, &lock)==(-1) ){ |
| tErrno = errno; |
| rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK); |
| if( IS_LOCK_ERROR(rc) ){ |
| storeLastErrno(pFile, tErrno); |
| } |
| goto end_unlock; |
| } |
| lock.l_type = F_UNLCK; |
| lock.l_whence = SEEK_SET; |
| lock.l_start = SHARED_FIRST+divSize; |
| lock.l_len = SHARED_SIZE-divSize; |
| if( unixFileLock(pFile, &lock)==(-1) ){ |
| tErrno = errno; |
| rc = SQLITE_IOERR_UNLOCK; |
| storeLastErrno(pFile, tErrno); |
| goto end_unlock; |
| } |
| }else |
| #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ |
| { |
| lock.l_type = F_RDLCK; |
| lock.l_whence = SEEK_SET; |
| lock.l_start = SHARED_FIRST; |
| lock.l_len = SHARED_SIZE; |
| if( unixFileLock(pFile, &lock) ){ |
| /* In theory, the call to unixFileLock() cannot fail because another |
| ** process is holding an incompatible lock. If it does, this |
| ** indicates that the other process is not following the locking |
| ** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning |
| ** SQLITE_BUSY would confuse the upper layer (in practice it causes |
| ** an assert to fail). */ |
| rc = SQLITE_IOERR_RDLOCK; |
| storeLastErrno(pFile, errno); |
| goto end_unlock; |
| } |
| } |
| } |
| lock.l_type = F_UNLCK; |
| lock.l_whence = SEEK_SET; |
| lock.l_start = PENDING_BYTE; |
| lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE ); |
| if( unixFileLock(pFile, &lock)==0 ){ |
| pInode->eFileLock = SHARED_LOCK; |
| }else{ |
| rc = SQLITE_IOERR_UNLOCK; |
| storeLastErrno(pFile, errno); |
| goto end_unlock; |
| } |
| } |
| if( eFileLock==NO_LOCK ){ |
| /* Decrement the shared lock counter. Release the lock using an |
| ** OS call only when all threads in this same process have released |
| ** the lock. |
| */ |
| pInode->nShared--; |
| if( pInode->nShared==0 ){ |
| lock.l_type = F_UNLCK; |
| lock.l_whence = SEEK_SET; |
| lock.l_start = lock.l_len = 0L; |
| if( unixFileLock(pFile, &lock)==0 ){ |
| pInode->eFileLock = NO_LOCK; |
| }else{ |
| rc = SQLITE_IOERR_UNLOCK; |
| storeLastErrno(pFile, errno); |
| pInode->eFileLock = NO_LOCK; |
| pFile->eFileLock = NO_LOCK; |
| } |
| } |
| |
| /* Decrement the count of locks against this same file. When the |
| ** count reaches zero, close any other file descriptors whose close |
| ** was deferred because of outstanding locks. |
| */ |
| pInode->nLock--; |
| assert( pInode->nLock>=0 ); |
| if( pInode->nLock==0 ) closePendingFds(pFile); |
| } |
| |
| end_unlock: |
| sqlite3_mutex_leave(pInode->pLockMutex); |
| if( rc==SQLITE_OK ){ |
| pFile->eFileLock = eFileLock; |
| } |
| return rc; |
| } |
| |
| /* |
| ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
| ** must be either NO_LOCK or SHARED_LOCK. |
| ** |
| ** If the locking level of the file descriptor is already at or below |
| ** the requested locking level, this routine is a no-op. |
| */ |
| static int unixUnlock(sqlite3_file *id, int eFileLock){ |
| #if SQLITE_MAX_MMAP_SIZE>0 |
| assert( eFileLock==SHARED_LOCK || ((unixFile *)id)->nFetchOut==0 ); |
| #endif |
| return posixUnlock(id, eFileLock, 0); |
| } |
| |
| #if SQLITE_MAX_MMAP_SIZE>0 |
| static int unixMapfile(unixFile *pFd, i64 nByte); |
| static void unixUnmapfile(unixFile *pFd); |
| #endif |
| |
| /* |
| ** This function performs the parts of the "close file" operation |
| ** common to all locking schemes. It closes the directory and file |
| ** handles, if they are valid, and sets all fields of the unixFile |
| ** structure to 0. |
| ** |
| ** It is *not* necessary to hold the mutex when this routine is called, |
| ** even on VxWorks. A mutex will be acquired on VxWorks by the |
| ** vxworksReleaseFileId() routine. |
| */ |
| static int closeUnixFile(sqlite3_file *id){ |
| unixFile *pFile = (unixFile*)id; |
| #if SQLITE_MAX_MMAP_SIZE>0 |
| unixUnmapfile(pFile); |
| #endif |
| if( pFile->h>=0 ){ |
| robust_close(pFile, pFile->h, __LINE__); |
| pFile->h = -1; |
| } |
| #if OS_VXWORKS |
| if( pFile->pId ){ |
| if( pFile->ctrlFlags & UNIXFILE_DELETE ){ |
| osUnlink(pFile->pId->zCanonicalName); |
| } |
| vxworksReleaseFileId(pFile->pId); |
| pFile->pId = 0; |
| } |
| #endif |
| #ifdef SQLITE_UNLINK_AFTER_CLOSE |
| if( pFile->ctrlFlags & UNIXFILE_DELETE ){ |
| osUnlink(pFile->zPath); |
| sqlite3_free(*(char**)&pFile->zPath); |
| pFile->zPath = 0; |
| } |
| #endif |
| OSTRACE(("CLOSE %-3d\n", pFile->h)); |
| OpenCounter(-1); |
| sqlite3_free(pFile->pPreallocatedUnused); |
| memset(pFile, 0, sizeof(unixFile)); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Close a file. |
| */ |
| static int unixClose(sqlite3_file *id){ |
| int rc = SQLITE_OK; |
| unixFile *pFile = (unixFile *)id; |
| unixInodeInfo *pInode = pFile->pInode; |
| |
| assert( pInode!=0 ); |
| verifyDbFile(pFile); |
| unixUnlock(id, NO_LOCK); |
| assert( unixFileMutexNotheld(pFile) ); |
| unixEnterMutex(); |
| |
| /* unixFile.pInode is always valid here. Otherwise, a different close |
| ** routine (e.g. nolockClose()) would be called instead. |
| */ |
| assert( pFile->pInode->nLock>0 || pFile->pInode->bProcessLock==0 ); |
| sqlite3_mutex_enter(pInode->pLockMutex); |
| if( pInode->nLock ){ |
| /* If there are outstanding locks, do not actually close the file just |
| ** yet because that would clear those locks. Instead, add the file |
| ** descriptor to pInode->pUnused list. It will be automatically closed |
| ** when the last lock is cleared. |
| */ |
| setPendingFd(pFile); |
| } |
| sqlite3_mutex_leave(pInode->pLockMutex); |
| releaseInodeInfo(pFile); |
| assert( pFile->pShm==0 ); |
| rc = closeUnixFile(id); |
| unixLeaveMutex(); |
| return rc; |
| } |
| |
| /************** End of the posix advisory lock implementation ***************** |
| ******************************************************************************/ |
| |
| /****************************************************************************** |
| ****************************** No-op Locking ********************************** |
| ** |
| ** Of the various locking implementations available, this is by far the |
| ** simplest: locking is ignored. No attempt is made to lock the database |
| ** file for reading or writing. |
| ** |
| ** This locking mode is appropriate for use on read-only databases |
| ** (ex: databases that are burned into CD-ROM, for example.) It can |
| ** also be used if the application employs some external mechanism to |
| ** prevent simultaneous access of the same database by two or more |
| ** database connections. But there is a serious risk of database |
| ** corruption if this locking mode is used in situations where multiple |
| ** database connections are accessing the same database file at the same |
| ** time and one or more of those connections are writing. |
| */ |
| |
| static int nolockCheckReservedLock(sqlite3_file *NotUsed, int *pResOut){ |
| UNUSED_PARAMETER(NotUsed); |
| *pResOut = 0; |
| return SQLITE_OK; |
| } |
| static int nolockLock(sqlite3_file *NotUsed, int NotUsed2){ |
| UNUSED_PARAMETER2(NotUsed, NotUsed2); |
| return SQLITE_OK; |
| } |
| static int nolockUnlock(sqlite3_file *NotUsed, int NotUsed2){ |
| UNUSED_PARAMETER2(NotUsed, NotUsed2); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Close the file. |
| */ |
| static int nolockClose(sqlite3_file *id) { |
| return closeUnixFile(id); |
| } |
| |
| /******************* End of the no-op lock implementation ********************* |
| ******************************************************************************/ |
| |
| /****************************************************************************** |
| ************************* Begin dot-file Locking ****************************** |
| ** |
| ** The dotfile locking implementation uses the existence of separate lock |
| ** files (really a directory) to control access to the database. This works |
| ** on just about every filesystem imaginable. But there are serious downsides: |
| ** |
| ** (1) There is zero concurrency. A single reader blocks all other |
| ** connections from reading or writing the database. |
| ** |
| ** (2) An application crash or power loss can leave stale lock files |
| ** sitting around that need to be cleared manually. |
| ** |
| ** Nevertheless, a dotlock is an appropriate locking mode for use if no |
| ** other locking strategy is available. |
| ** |
| ** Dotfile locking works by creating a subdirectory in the same directory as |
| ** the database and with the same name but with a ".lock" extension added. |
| ** The existence of a lock directory implies an EXCLUSIVE lock. All other |
| ** lock types (SHARED, RESERVED, PENDING) are mapped into EXCLUSIVE. |
| */ |
| |
| /* |
| ** The file suffix added to the data base filename in order to create the |
| ** lock directory. |
| */ |
| #define DOTLOCK_SUFFIX ".lock" |
| |
| /* |
| ** This routine checks if there is a RESERVED lock held on the specified |
| ** file by this or any other process. If such a lock is held, set *pResOut |
| ** to a non-zero value otherwise *pResOut is set to zero. The return value |
| ** is set to SQLITE_OK unless an I/O error occurs during lock checking. |
| ** |
| ** In dotfile locking, either a lock exists or it does not. So in this |
| ** variation of CheckReservedLock(), *pResOut is set to true if any lock |
| ** is held on the file and false if the file is unlocked. |
| */ |
| static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) { |
| int rc = SQLITE_OK; |
| int reserved = 0; |
| unixFile *pFile = (unixFile*)id; |
| |
| SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); |
| |
| assert( pFile ); |
| reserved = osAccess((const char*)pFile->lockingContext, 0)==0; |
| OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile->h, rc, reserved)); |
| *pResOut = reserved; |
| return rc; |
| } |
| |
| /* |
| ** Lock the file with the lock specified by parameter eFileLock - one |
| ** of the following: |
| ** |
| ** (1) SHARED_LOCK |
| ** (2) RESERVED_LOCK |
| ** (3) PENDING_LOCK |
| ** (4) EXCLUSIVE_LOCK |
| ** |
| ** Sometimes when requesting one lock state, additional lock states |
| ** are inserted in between. The locking might fail on one of the later |
| ** transitions leaving the lock state different from what it started but |
| ** still short of its goal. The following chart shows the allowed |
| ** transitions and the inserted intermediate states: |
| ** |
| ** UNLOCKED -> SHARED |
| ** SHARED -> RESERVED |
| ** SHARED -> (PENDING) -> EXCLUSIVE |
| ** RESERVED -> (PENDING) -> EXCLUSIVE |
| ** PENDING -> EXCLUSIVE |
| ** |
| ** This routine will only increase a lock. Use the sqlite3OsUnlock() |
| ** routine to lower a locking level. |
| ** |
| ** With dotfile locking, we really only support state (4): EXCLUSIVE. |
| ** But we track the other locking levels internally. |
| */ |
| static int dotlockLock(sqlite3_file *id, int eFileLock) { |
| unixFile *pFile = (unixFile*)id; |
| char *zLockFile = (char *)pFile->lockingContext; |
| int rc = SQLITE_OK; |
| |
| |
| /* If we have any lock, then the lock file already exists. All we have |
| ** to do is adjust our internal record of the lock level. |
| */ |
| if( pFile->eFileLock > NO_LOCK ){ |
| pFile->eFileLock = eFileLock; |
| /* Always update the timestamp on the old file */ |
| #ifdef HAVE_UTIME |
| utime(zLockFile, NULL); |
| #else |
| utimes(zLockFile, NULL); |
| #endif |
| return SQLITE_OK; |
| } |
| |
| /* grab an exclusive lock */ |
| rc = osMkdir(zLockFile, 0777); |
| if( rc<0 ){ |
| /* failed to open/create the lock directory */ |
| int tErrno = errno; |
| if( EEXIST == tErrno ){ |
| rc = SQLITE_BUSY; |
| } else { |
| rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); |
| if( rc!=SQLITE_BUSY ){ |
| storeLastErrno(pFile, tErrno); |
| } |
| } |
| return rc; |
| } |
| |
| /* got it, set the type and return ok */ |
| pFile->eFileLock = eFileLock; |
| return rc; |
| } |
| |
| /* |
| ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
| ** must be either NO_LOCK or SHARED_LOCK. |
| ** |
| ** If the locking level of the file descriptor is already at or below |
| ** the requested locking level, this routine is a no-op. |
| ** |
| ** When the locking level reaches NO_LOCK, delete the lock file. |
| */ |
| static int dotlockUnlock(sqlite3_file *id, int eFileLock) { |
| unixFile *pFile = (unixFile*)id; |
| char *zLockFile = (char *)pFile->lockingContext; |
| int rc; |
| |
| assert( pFile ); |
| OSTRACE(("UNLOCK %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock, |
| pFile->eFileLock, osGetpid(0))); |
| assert( eFileLock<=SHARED_LOCK ); |
| |
| /* no-op if possible */ |
| if( pFile->eFileLock==eFileLock ){ |
| return SQLITE_OK; |
| } |
| |
| /* To downgrade to shared, simply update our internal notion of the |
| ** lock state. No need to mess with the file on disk. |
| */ |
| if( eFileLock==SHARED_LOCK ){ |
| pFile->eFileLock = SHARED_LOCK; |
| return SQLITE_OK; |
| } |
| |
| /* To fully unlock the database, delete the lock file */ |
| assert( eFileLock==NO_LOCK ); |
| rc = osRmdir(zLockFile); |
| if( rc<0 ){ |
| int tErrno = errno; |
| if( tErrno==ENOENT ){ |
| rc = SQLITE_OK; |
| }else{ |
| rc = SQLITE_IOERR_UNLOCK; |
| storeLastErrno(pFile, tErrno); |
| } |
| return rc; |
| } |
| pFile->eFileLock = NO_LOCK; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Close a file. Make sure the lock has been released before closing. |
| */ |
| static int dotlockClose(sqlite3_file *id) { |
| unixFile *pFile = (unixFile*)id; |
| assert( id!=0 ); |
| dotlockUnlock(id, NO_LOCK); |
| sqlite3_free(pFile->lockingContext); |
| return closeUnixFile(id); |
| } |
| /****************** End of the dot-file lock implementation ******************* |
| ******************************************************************************/ |
| |
| /****************************************************************************** |
| ************************** Begin flock Locking ******************************** |
| ** |
| ** Use the flock() system call to do file locking. |
| ** |
| ** flock() locking is like dot-file locking in that the various |
| ** fine-grain locking levels supported by SQLite are collapsed into |
| ** a single exclusive lock. In other words, SHARED, RESERVED, and |
| ** PENDING locks are the same thing as an EXCLUSIVE lock. SQLite |
| ** still works when you do this, but concurrency is reduced since |
| ** only a single process can be reading the database at a time. |
| ** |
| ** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off |
| */ |
| #if SQLITE_ENABLE_LOCKING_STYLE |
| |
| /* |
| ** Retry flock() calls that fail with EINTR |
| */ |
| #ifdef EINTR |
| static int robust_flock(int fd, int op){ |
| int rc; |
| do{ rc = flock(fd,op); }while( rc<0 && errno==EINTR ); |
| return rc; |
| } |
| #else |
| # define robust_flock(a,b) flock(a,b) |
| #endif |
| |
| |
| /* |
| ** This routine checks if there is a RESERVED lock held on the specified |
| ** file by this or any other process. If such a lock is held, set *pResOut |
| ** to a non-zero value otherwise *pResOut is set to zero. The return value |
| ** is set to SQLITE_OK unless an I/O error occurs during lock checking. |
| */ |
| static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){ |
| int rc = SQLITE_OK; |
| int reserved = 0; |
| unixFile *pFile = (unixFile*)id; |
| |
| SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); |
| |
| assert( pFile ); |
| |
| /* Check if a thread in this process holds such a lock */ |
| if( pFile->eFileLock>SHARED_LOCK ){ |
| reserved = 1; |
| } |
| |
| /* Otherwise see if some other process holds it. */ |
| if( !reserved ){ |
| /* attempt to get the lock */ |
| int lrc = robust_flock(pFile->h, LOCK_EX | LOCK_NB); |
| if( !lrc ){ |
| /* got the lock, unlock it */ |
| lrc = robust_flock(pFile->h, LOCK_UN); |
| if ( lrc ) { |
| int tErrno = errno; |
| /* unlock failed with an error */ |
| lrc = SQLITE_IOERR_UNLOCK; |
| storeLastErrno(pFile, tErrno); |
| rc = lrc; |
| } |
| } else { |
| int tErrno = errno; |
| reserved = 1; |
| /* someone else might have it reserved */ |
| lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); |
| if( IS_LOCK_ERROR(lrc) ){ |
| storeLastErrno(pFile, tErrno); |
| rc = lrc; |
| } |
| } |
| } |
| OSTRACE(("TEST WR-LOCK %d %d %d (flock)\n", pFile->h, rc, reserved)); |
| |
| #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS |
| if( (rc & 0xff) == SQLITE_IOERR ){ |
| rc = SQLITE_OK; |
| reserved=1; |
| } |
| #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ |
| *pResOut = reserved; |
| return rc; |
| } |
| |
| /* |
| ** Lock the file with the lock specified by parameter eFileLock - one |
| ** of the following: |
| ** |
| ** (1) SHARED_LOCK |
| ** (2) RESERVED_LOCK |
| ** (3) PENDING_LOCK |
| ** (4) EXCLUSIVE_LOCK |
| ** |
| ** Sometimes when requesting one lock state, additional lock states |
| ** are inserted in between. The locking might fail on one of the later |
| ** transitions leaving the lock state different from what it started but |
| ** still short of its goal. The following chart shows the allowed |
| ** transitions and the inserted intermediate states: |
| ** |
| ** UNLOCKED -> SHARED |
| ** SHARED -> RESERVED |
| ** SHARED -> (PENDING) -> EXCLUSIVE |
| ** RESERVED -> (PENDING) -> EXCLUSIVE |
| ** PENDING -> EXCLUSIVE |
| ** |
| ** flock() only really support EXCLUSIVE locks. We track intermediate |
| ** lock states in the sqlite3_file structure, but all locks SHARED or |
| ** above are really EXCLUSIVE locks and exclude all other processes from |
| ** access the file. |
| ** |
| ** This routine will only increase a lock. Use the sqlite3OsUnlock() |
| ** routine to lower a locking level. |
| */ |
| static int flockLock(sqlite3_file *id, int eFileLock) { |
| int rc = SQLITE_OK; |
| unixFile *pFile = (unixFile*)id; |
| |
| assert( pFile ); |
| |
| /* if we already have a lock, it is exclusive. |
| ** Just adjust level and punt on outta here. */ |
| if (pFile->eFileLock > NO_LOCK) { |
| pFile->eFileLock = eFileLock; |
| return SQLITE_OK; |
| } |
| |
| /* grab an exclusive lock */ |
| |
| if (robust_flock(pFile->h, LOCK_EX | LOCK_NB)) { |
| int tErrno = errno; |
| /* didn't get, must be busy */ |
| rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); |
| if( IS_LOCK_ERROR(rc) ){ |
| storeLastErrno(pFile, tErrno); |
| } |
| } else { |
| /* got it, set the type and return ok */ |
| pFile->eFileLock = eFileLock; |
| } |
| OSTRACE(("LOCK %d %s %s (flock)\n", pFile->h, azFileLock(eFileLock), |
| rc==SQLITE_OK ? "ok" : "failed")); |
| #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS |
| if( (rc & 0xff) == SQLITE_IOERR ){ |
| rc = SQLITE_BUSY; |
| } |
| #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ |
| return rc; |
| } |
| |
| |
| /* |
| ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
| ** must be either NO_LOCK or SHARED_LOCK. |
| ** |
| ** If the locking level of the file descriptor is already at or below |
| ** the requested locking level, this routine is a no-op. |
| */ |
| static int flockUnlock(sqlite3_file *id, int eFileLock) { |
| unixFile *pFile = (unixFile*)id; |
| |
| assert( pFile ); |
| OSTRACE(("UNLOCK %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock, |
| pFile->eFileLock, osGetpid(0))); |
| assert( eFileLock<=SHARED_LOCK ); |
| |
| /* no-op if possible */ |
| if( pFile->eFileLock==eFileLock ){ |
| return SQLITE_OK; |
| } |
| |
| /* shared can just be set because we always have an exclusive */ |
| if (eFileLock==SHARED_LOCK) { |
| pFile->eFileLock = eFileLock; |
| return SQLITE_OK; |
| } |
| |
| /* no, really, unlock. */ |
| if( robust_flock(pFile->h, LOCK_UN) ){ |
| #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS |
| return SQLITE_OK; |
| #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ |
| return SQLITE_IOERR_UNLOCK; |
| }else{ |
| pFile->eFileLock = NO_LOCK; |
| return SQLITE_OK; |
| } |
| } |
| |
| /* |
| ** Close a file. |
| */ |
| static int flockClose(sqlite3_file *id) { |
| assert( id!=0 ); |
| flockUnlock(id, NO_LOCK); |
| return closeUnixFile(id); |
| } |
| |
| #endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */ |
| |
| /******************* End of the flock lock implementation ********************* |
| ******************************************************************************/ |
| |
| /****************************************************************************** |
| ************************ Begin Named Semaphore Locking ************************ |
| ** |
| ** Named semaphore locking is only supported on VxWorks. |
| ** |
| ** Semaphore locking is like dot-lock and flock in that it really only |
| ** supports EXCLUSIVE locking. Only a single process can read or write |
| ** the database file at a time. This reduces potential concurrency, but |
| ** makes the lock implementation much easier. |
| */ |
| #if OS_VXWORKS |
| |
| /* |
| ** This routine checks if there is a RESERVED lock held on the specified |
| ** file by this or any other process. If such a lock is held, set *pResOut |
| ** to a non-zero value otherwise *pResOut is set to zero. The return value |
| ** is set to SQLITE_OK unless an I/O error occurs during lock checking. |
| */ |
| static int semXCheckReservedLock(sqlite3_file *id, int *pResOut) { |
| int rc = SQLITE_OK; |
| int reserved = 0; |
| unixFile *pFile = (unixFile*)id; |
| |
| SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); |
| |
| assert( pFile ); |
| |
| /* Check if a thread in this process holds such a lock */ |
| if( pFile->eFileLock>SHARED_LOCK ){ |
| reserved = 1; |
| } |
| |
| /* Otherwise see if some other process holds it. */ |
| if( !reserved ){ |
| sem_t *pSem = pFile->pInode->pSem; |
| |
| if( sem_trywait(pSem)==-1 ){ |
| int tErrno = errno; |
| if( EAGAIN != tErrno ){ |
| rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK); |
| storeLastErrno(pFile, tErrno); |
| } else { |
| /* someone else has the lock when we are in NO_LOCK */ |
| reserved = (pFile->eFileLock < SHARED_LOCK); |
| } |
| }else{ |
| /* we could have it if we want it */ |
| sem_post(pSem); |
| } |
| } |
| OSTRACE(("TEST WR-LOCK %d %d %d (sem)\n", pFile->h, rc, reserved)); |
| |
| *pResOut = reserved; |
| return rc; |
| } |
| |
| /* |
| ** Lock the file with the lock specified by parameter eFileLock - one |
| ** of the following: |
| ** |
| ** (1) SHARED_LOCK |
| ** (2) RESERVED_LOCK |
| ** (3) PENDING_LOCK |
| ** (4) EXCLUSIVE_LOCK |
| ** |
| ** Sometimes when requesting one lock state, additional lock states |
| ** are inserted in between. The locking might fail on one of the later |
| ** transitions leaving the lock state different from what it started but |
| ** still short of its goal. The following chart shows the allowed |
| ** transitions and the inserted intermediate states: |
| ** |
| ** UNLOCKED -> SHARED |
| ** SHARED -> RESERVED |
| ** SHARED -> (PENDING) -> EXCLUSIVE |
| ** RESERVED -> (PENDING) -> EXCLUSIVE |
| ** PENDING -> EXCLUSIVE |
| ** |
| ** Semaphore locks only really support EXCLUSIVE locks. We track intermediate |
| ** lock states in the sqlite3_file structure, but all locks SHARED or |
| ** above are really EXCLUSIVE locks and exclude all other processes from |
| ** access the file. |
| ** |
| ** This routine will only increase a lock. Use the sqlite3OsUnlock() |
| ** routine to lower a locking level. |
| */ |
| static int semXLock(sqlite3_file *id, int eFileLock) { |
| unixFile *pFile = (unixFile*)id; |
| sem_t *pSem = pFile->pInode->pSem; |
| int rc = SQLITE_OK; |
| |
| /* if we already have a lock, it is exclusive. |
| ** Just adjust level and punt on outta here. */ |
| if (pFile->eFileLock > NO_LOCK) { |
| pFile->eFileLock = eFileLock; |
| rc = SQLITE_OK; |
| goto sem_end_lock; |
| } |
| |
| /* lock semaphore now but bail out when already locked. */ |
| if( sem_trywait(pSem)==-1 ){ |
| rc = SQLITE_BUSY; |
| goto sem_end_lock; |
| } |
| |
| /* got it, set the type and return ok */ |
| pFile->eFileLock = eFileLock; |
| |
| sem_end_lock: |
| return rc; |
| } |
| |
| /* |
| ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
| ** must be either NO_LOCK or SHARED_LOCK. |
| ** |
| ** If the locking level of the file descriptor is already at or below |
| ** the requested locking level, this routine is a no-op. |
| */ |
| static int semXUnlock(sqlite3_file *id, int eFileLock) { |
| unixFile *pFile = (unixFile*)id; |
| sem_t *pSem = pFile->pInode->pSem; |
| |
| assert( pFile ); |
| assert( pSem ); |
| OSTRACE(("UNLOCK %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock, |
| pFile->eFileLock, osGetpid(0))); |
| assert( eFileLock<=SHARED_LOCK ); |
| |
| /* no-op if possible */ |
| if( pFile->eFileLock==eFileLock ){ |
| return SQLITE_OK; |
| } |
| |
| /* shared can just be set because we always have an exclusive */ |
| if (eFileLock==SHARED_LOCK) { |
| pFile->eFileLock = eFileLock; |
| return SQLITE_OK; |
| } |
| |
| /* no, really unlock. */ |
| if ( sem_post(pSem)==-1 ) { |
| int rc, tErrno = errno; |
| rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); |
| if( IS_LOCK_ERROR(rc) ){ |
| storeLastErrno(pFile, tErrno); |
| } |
| return rc; |
| } |
| pFile->eFileLock = NO_LOCK; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Close a file. |
| */ |
| static int semXClose(sqlite3_file *id) { |
| if( id ){ |
| unixFile *pFile = (unixFile*)id; |
| semXUnlock(id, NO_LOCK); |
| assert( pFile ); |
| assert( unixFileMutexNotheld(pFile) ); |
| unixEnterMutex(); |
| releaseInodeInfo(pFile); |
| unixLeaveMutex(); |
| closeUnixFile(id); |
| } |
| return SQLITE_OK; |
| } |
| |
| #endif /* OS_VXWORKS */ |
| /* |
| ** Named semaphore locking is only available on VxWorks. |
| ** |
| *************** End of the named semaphore lock implementation **************** |
| ******************************************************************************/ |
| |
| |
| /****************************************************************************** |
| *************************** Begin AFP Locking ********************************* |
| ** |
| ** AFP is the Apple Filing Protocol. AFP is a network filesystem found |
| ** on Apple Macintosh computers - both OS9 and OSX. |
| ** |
| ** Third-party implementations of AFP are available. But this code here |
| ** only works on OSX. |
| */ |
| |
| #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
| /* |
| ** The afpLockingContext structure contains all afp lock specific state |
| */ |
| typedef struct afpLockingContext afpLockingContext; |
| struct afpLockingContext { |
| int reserved; |
| const char *dbPath; /* Name of the open file */ |
| }; |
| |
| struct ByteRangeLockPB2 |
| { |
| unsigned long long offset; /* offset to first byte to lock */ |
| unsigned long long length; /* nbr of bytes to lock */ |
| unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */ |
| unsigned char unLockFlag; /* 1 = unlock, 0 = lock */ |
| unsigned char startEndFlag; /* 1=rel to end of fork, 0=rel to start */ |
| int fd; /* file desc to assoc this lock with */ |
| }; |
| |
| #define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2) |
| |
| /* |
| ** This is a utility for setting or clearing a bit-range lock on an |
| ** AFP filesystem. |
| ** |
| ** Return SQLITE_OK on success, SQLITE_BUSY on failure. |
| */ |
| static int afpSetLock( |
| const char *path, /* Name of the file to be locked or unlocked */ |
| unixFile *pFile, /* Open file descriptor on path */ |
| unsigned long long offset, /* First byte to be locked */ |
| unsigned long long length, /* Number of bytes to lock */ |
| int setLockFlag /* True to set lock. False to clear lock */ |
| ){ |
| struct ByteRangeLockPB2 pb; |
| int err; |
| |
| pb.unLockFlag = setLockFlag ? 0 : 1; |
| pb.startEndFlag = 0; |
| pb.offset = offset; |
| pb.length = length; |
| pb.fd = pFile->h; |
| |
| OSTRACE(("AFPSETLOCK [%s] for %d%s in range %llx:%llx\n", |
| (setLockFlag?"ON":"OFF"), pFile->h, (pb.fd==-1?"[testval-1]":""), |
| offset, length)); |
| err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0); |
| if ( err==-1 ) { |
| int rc; |
| int tErrno = errno; |
| OSTRACE(("AFPSETLOCK failed to fsctl() '%s' %d %s\n", |
| path, tErrno, strerror(tErrno))); |
| #ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS |
| rc = SQLITE_BUSY; |
| #else |
| rc = sqliteErrorFromPosixError(tErrno, |
| setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK); |
| #endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */ |
| if( IS_LOCK_ERROR(rc) ){ |
| storeLastErrno(pFile, tErrno); |
| } |
| return rc; |
| } else { |
| return SQLITE_OK; |
| } |
| } |
| |
| /* |
| ** This routine checks if there is a RESERVED lock held on the specified |
| ** file by this or any other process. If such a lock is held, set *pResOut |
| ** to a non-zero value otherwise *pResOut is set to zero. The return value |
| ** is set to SQLITE_OK unless an I/O error occurs during lock checking. |
| */ |
| static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){ |
| int rc = SQLITE_OK; |
| int reserved = 0; |
| unixFile *pFile = (unixFile*)id; |
| afpLockingContext *context; |
| |
| SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); |
| |
| assert( pFile ); |
| context = (afpLockingContext *) pFile->lockingContext; |
| if( context->reserved ){ |
| *pResOut = 1; |
| return SQLITE_OK; |
| } |
| sqlite3_mutex_enter(pFile->pInode->pLockMutex); |
| /* Check if a thread in this process holds such a lock */ |
| if( pFile->pInode->eFileLock>SHARED_LOCK ){ |
| reserved = 1; |
| } |
| |
| /* Otherwise see if some other process holds it. |
| */ |
| if( !reserved ){ |
| /* lock the RESERVED byte */ |
| int lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1); |
| if( SQLITE_OK==lrc ){ |
| /* if we succeeded in taking the reserved lock, unlock it to restore |
| ** the original state */ |
| lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0); |
| } else { |
| /* if we failed to get the lock then someone else must have it */ |
| reserved = 1; |
| } |
| if( IS_LOCK_ERROR(lrc) ){ |
| rc=lrc; |
| } |
| } |
| |
| sqlite3_mutex_leave(pFile->pInode->pLockMutex); |
| OSTRACE(("TEST WR-LOCK %d %d %d (afp)\n", pFile->h, rc, reserved)); |
| |
| *pResOut = reserved; |
| return rc; |
| } |
| |
| /* |
| ** Lock the file with the lock specified by parameter eFileLock - one |
| ** of the following: |
| ** |
| ** (1) SHARED_LOCK |
| ** (2) RESERVED_LOCK |
| ** (3) PENDING_LOCK |
| ** (4) EXCLUSIVE_LOCK |
| ** |
| ** Sometimes when requesting one lock state, additional lock states |
| ** are inserted in between. The locking might fail on one of the later |
| ** transitions leaving the lock state different from what it started but |
| ** still short of its goal. The following chart shows the allowed |
| ** transitions and the inserted intermediate states: |
| ** |
| ** UNLOCKED -> SHARED |
| ** SHARED -> RESERVED |
| ** SHARED -> (PENDING) -> EXCLUSIVE |
| ** RESERVED -> (PENDING) -> EXCLUSIVE |
| ** PENDING -> EXCLUSIVE |
| ** |
| ** This routine will only increase a lock. Use the sqlite3OsUnlock() |
| ** routine to lower a locking level. |
| */ |
| static int afpLock(sqlite3_file *id, int eFileLock){ |
| int rc = SQLITE_OK; |
| unixFile *pFile = (unixFile*)id; |
| unixInodeInfo *pInode = pFile->pInode; |
| afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; |
| |
| assert( pFile ); |
| OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h, |
| azFileLock(eFileLock), azFileLock(pFile->eFileLock), |
| azFileLock(pInode->eFileLock), pInode->nShared , osGetpid(0))); |
| |
| /* If there is already a lock of this type or more restrictive on the |
| ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as |
| ** unixEnterMutex() hasn't been called yet. |
| */ |
| if( pFile->eFileLock>=eFileLock ){ |
| OSTRACE(("LOCK %d %s ok (already held) (afp)\n", pFile->h, |
| azFileLock(eFileLock))); |
| return SQLITE_OK; |
| } |
| |
| /* Make sure the locking sequence is correct |
| ** (1) We never move from unlocked to anything higher than shared lock. |
| ** (2) SQLite never explicitly requests a pendig lock. |
| ** (3) A shared lock is always held when a reserve lock is requested. |
| */ |
| assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK ); |
| assert( eFileLock!=PENDING_LOCK ); |
| assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK ); |
| |
| /* This mutex is needed because pFile->pInode is shared across threads |
| */ |
| pInode = pFile->pInode; |
| sqlite3_mutex_enter(pInode->pLockMutex); |
| |
| /* If some thread using this PID has a lock via a different unixFile* |
| ** handle that precludes the requested lock, return BUSY. |
| */ |
| if( (pFile->eFileLock!=pInode->eFileLock && |
| (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK)) |
| ){ |
| rc = SQLITE_BUSY; |
| goto afp_end_lock; |
| } |
| |
| /* If a SHARED lock is requested, and some thread using this PID already |
| ** has a SHARED or RESERVED lock, then increment reference counts and |
| ** return SQLITE_OK. |
| */ |
| if( eFileLock==SHARED_LOCK && |
| (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){ |
| assert( eFileLock==SHARED_LOCK ); |
| assert( pFile->eFileLock==0 ); |
| assert( pInode->nShared>0 ); |
| pFile->eFileLock = SHARED_LOCK; |
| pInode->nShared++; |
| pInode->nLock++; |
| goto afp_end_lock; |
| } |
| |
| /* A PENDING lock is needed before acquiring a SHARED lock and before |
| ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will |
| ** be released. |
| */ |
| if( eFileLock==SHARED_LOCK |
| || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK) |
| ){ |
| int failed; |
| failed = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 1); |
| if (failed) { |
| rc = failed; |
| goto afp_end_lock; |
| } |
| } |
| |
| /* If control gets to this point, then actually go ahead and make |
| ** operating system calls for the specified lock. |
| */ |
| if( eFileLock==SHARED_LOCK ){ |
| int lrc1, lrc2, lrc1Errno = 0; |
| long lk, mask; |
| |
| assert( pInode->nShared==0 ); |
| assert( pInode->eFileLock==0 ); |
| |
| mask = (sizeof(long)==8) ? LARGEST_INT64 : 0x7fffffff; |
| /* Now get the read-lock SHARED_LOCK */ |
| /* note that the quality of the randomness doesn't matter that much */ |
| lk = random(); |
| pInode->sharedByte = (lk & mask)%(SHARED_SIZE - 1); |
| lrc1 = afpSetLock(context->dbPath, pFile, |
| SHARED_FIRST+pInode->sharedByte, 1, 1); |
| if( IS_LOCK_ERROR(lrc1) ){ |
| lrc1Errno = pFile->lastErrno; |
| } |
| /* Drop the temporary PENDING lock */ |
| lrc2 = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0); |
| |
| if( IS_LOCK_ERROR(lrc1) ) { |
| storeLastErrno(pFile, lrc1Errno); |
| rc = lrc1; |
| goto afp_end_lock; |
| } else if( IS_LOCK_ERROR(lrc2) ){ |
| rc = lrc2; |
| goto afp_end_lock; |
| } else if( lrc1 != SQLITE_OK ) { |
| rc = lrc1; |
| } else { |
| pFile->eFileLock = SHARED_LOCK; |
| pInode->nLock++; |
| pInode->nShared = 1; |
| } |
| }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){ |
| /* We are trying for an exclusive lock but another thread in this |
| ** same process is still holding a shared lock. */ |
| rc = SQLITE_BUSY; |
| }else{ |
| /* The request was for a RESERVED or EXCLUSIVE lock. It is |
| ** assumed that there is a SHARED or greater lock on the file |
| ** already. |
| */ |
| int failed = 0; |
| assert( 0!=pFile->eFileLock ); |
| if (eFileLock >= RESERVED_LOCK && pFile->eFileLock < RESERVED_LOCK) { |
| /* Acquire a RESERVED lock */ |
| failed = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1); |
| if( !failed ){ |
| context->reserved = 1; |
| } |
| } |
| if (!failed && eFileLock == EXCLUSIVE_LOCK) { |
| /* Acquire an EXCLUSIVE lock */ |
| |
| /* Remove the shared lock before trying the range. we'll need to |
| ** reestablish the shared lock if we can't get the afpUnlock |
| */ |
| if( !(failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST + |
| pInode->sharedByte, 1, 0)) ){ |
| int failed2 = SQLITE_OK; |
| /* now attemmpt to get the exclusive lock range */ |
| failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST, |
| SHARED_SIZE, 1); |
| if( failed && (failed2 = afpSetLock(context->dbPath, pFile, |
| SHARED_FIRST + pInode->sharedByte, 1, 1)) ){ |
| /* Can't reestablish the shared lock. Sqlite can't deal, this is |
| ** a critical I/O error |
| */ |
| rc = ((failed & 0xff) == SQLITE_IOERR) ? failed2 : |
| SQLITE_IOERR_LOCK; |
| goto afp_end_lock; |
| } |
| }else{ |
| rc = failed; |
| } |
| } |
| if( failed ){ |
| rc = failed; |
| } |
| } |
| |
| if( rc==SQLITE_OK ){ |
| pFile->eFileLock = eFileLock; |
| pInode->eFileLock = eFileLock; |
| }else if( eFileLock==EXCLUSIVE_LOCK ){ |
| pFile->eFileLock = PENDING_LOCK; |
| pInode->eFileLock = PENDING_LOCK; |
| } |
| |
| afp_end_lock: |
| sqlite3_mutex_leave(pInode->pLockMutex); |
| OSTRACE(("LOCK %d %s %s (afp)\n", pFile->h, azFileLock(eFileLock), |
| rc==SQLITE_OK ? "ok" : "failed")); |
| return rc; |
| } |
| |
| /* |
| ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
| ** must be either NO_LOCK or SHARED_LOCK. |
| ** |
| ** If the locking level of the file descriptor is already at or below |
| ** the requested locking level, this routine is a no-op. |
| */ |
| static int afpUnlock(sqlite3_file *id, int eFileLock) { |
| int rc = SQLITE_OK; |
| unixFile *pFile = (unixFile*)id; |
| unixInodeInfo *pInode; |
| afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; |
| int skipShared = 0; |
| #ifdef SQLITE_TEST |
| int h = pFile->h; |
| #endif |
| |
| assert( pFile ); |
| OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock, |
| pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared, |
| osGetpid(0))); |
| |
| assert( eFileLock<=SHARED_LOCK ); |
| if( pFile->eFileLock<=eFileLock ){ |
| return SQLITE_OK; |
| } |
| pInode = pFile->pInode; |
| sqlite3_mutex_enter(pInode->pLockMutex); |
| assert( pInode->nShared!=0 ); |
| if( pFile->eFileLock>SHARED_LOCK ){ |
| assert( pInode->eFileLock==pFile->eFileLock ); |
| SimulateIOErrorBenign(1); |
| SimulateIOError( h=(-1) ) |
| SimulateIOErrorBenign(0); |
| |
| #ifdef SQLITE_DEBUG |
| /* When reducing a lock such that other processes can start |
| ** reading the database file again, make sure that the |
| ** transaction counter was updated if any part of the database |
| ** file changed. If the transaction counter is not updated, |
| ** other connections to the same file might not realize that |
| ** the file has changed and hence might not know to flush their |
| ** cache. The use of a stale cache can lead to database corruption. |
| */ |
| assert( pFile->inNormalWrite==0 |
| || pFile->dbUpdate==0 |
| || pFile->transCntrChng==1 ); |
| pFile->inNormalWrite = 0; |
| #endif |
| |
| if( pFile->eFileLock==EXCLUSIVE_LOCK ){ |
| rc = afpSetLock(context->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 0); |
| if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1) ){ |
| /* only re-establish the shared lock if necessary */ |
| int sharedLockByte = SHARED_FIRST+pInode->sharedByte; |
| rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 1); |
| } else { |
| skipShared = 1; |
| } |
| } |
| if( rc==SQLITE_OK && pFile->eFileLock>=PENDING_LOCK ){ |
| rc = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0); |
| } |
| if( rc==SQLITE_OK && pFile->eFileLock>=RESERVED_LOCK && context->reserved ){ |
| rc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0); |
| if( !rc ){ |
| context->reserved = 0; |
| } |
| } |
| if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1)){ |
| pInode->eFileLock = SHARED_LOCK; |
| } |
| } |
| if( rc==SQLITE_OK && eFileLock==NO_LOCK ){ |
| |
| /* Decrement the shared lock counter. Release the lock using an |
| ** OS call only when all threads in this same process have released |
| ** the lock. |
| */ |
| unsigned long long sharedLockByte = SHARED_FIRST+pInode->sharedByte; |
| pInode->nShared--; |
| if( pInode->nShared==0 ){ |
| SimulateIOErrorBenign(1); |
| SimulateIOError( h=(-1) ) |
| SimulateIOErrorBenign(0); |
| if( !skipShared ){ |
| rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 0); |
| } |
| if( !rc ){ |
| pInode->eFileLock = NO_LOCK; |
| pFile->eFileLock = NO_LOCK; |
| } |
| } |
| if( rc==SQLITE_OK ){ |
| pInode->nLock--; |
| assert( pInode->nLock>=0 ); |
| if( pInode->nLock==0 ) closePendingFds(pFile); |
| } |
| } |
| |
| sqlite3_mutex_leave(pInode->pLockMutex); |
| if( rc==SQLITE_OK ){ |
| pFile->eFileLock = eFileLock; |
| } |
| return rc; |
| } |
| |
| /* |
| ** Close a file & cleanup AFP specific locking context |
| */ |
| static int afpClose(sqlite3_file *id) { |
| int rc = SQLITE_OK; |
| unixFile *pFile = (unixFile*)id; |
| assert( id!=0 ); |
| afpUnlock(id, NO_LOCK); |
| assert( unixFileMutexNotheld(pFile) ); |
| unixEnterMutex(); |
| if( pFile->pInode ){ |
| unixInodeInfo *pInode = pFile->pInode; |
| sqlite3_mutex_enter(pInode->pLockMutex); |
| if( pInode->nLock ){ |
| /* If there are outstanding locks, do not actually close the file just |
| ** yet because that would clear those locks. Instead, add the file |
| ** descriptor to pInode->aPending. It will be automatically closed when |
| ** the last lock is cleared. |
| */ |
| setPendingFd(pFile); |
| } |
| sqlite3_mutex_leave(pInode->pLockMutex); |
| } |
| releaseInodeInfo(pFile); |
| sqlite3_free(pFile->lockingContext); |
| rc = closeUnixFile(id); |
| unixLeaveMutex(); |
| return rc; |
| } |
| |
| #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ |
| /* |
| ** The code above is the AFP lock implementation. The code is specific |
| ** to MacOSX and does not work on other unix platforms. No alternative |
| ** is available. If you don't compile for a mac, then the "unix-afp" |
| ** VFS is not available. |
| ** |
| ********************* End of the AFP lock implementation ********************** |
| ******************************************************************************/ |
| |
| /****************************************************************************** |
| *************************** Begin NFS Locking ********************************/ |
| |
| #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
| /* |
| ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
| ** must be either NO_LOCK or SHARED_LOCK. |
| ** |
| ** If the locking level of the file descriptor is already at or below |
| ** the requested locking level, this routine is a no-op. |
| */ |
| static int nfsUnlock(sqlite3_file *id, int eFileLock){ |
| return posixUnlock(id, eFileLock, 1); |
| } |
| |
| #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ |
| /* |
| ** The code above is the NFS lock implementation. The code is specific |
| ** to MacOSX and does not work on other unix platforms. No alternative |
| ** is available. |
| ** |
| ********************* End of the NFS lock implementation ********************** |
| ******************************************************************************/ |
| |
| /****************************************************************************** |
| **************** Non-locking sqlite3_file methods ***************************** |
| ** |
| ** The next division contains implementations for all methods of the |
| ** sqlite3_file object other than the locking methods. The locking |
| ** methods were defined in divisions above (one locking method per |
| ** division). Those methods that are common to all locking modes |
| ** are gather together into this division. |
| */ |
| |
| /* |
| ** Seek to the offset passed as the second argument, then read cnt |
| ** bytes into pBuf. Return the number of bytes actually read. |
| ** |
| ** NB: If you define USE_PREAD or USE_PREAD64, then it might also |
| ** be necessary to define _XOPEN_SOURCE to be 500. This varies from |
| ** one system to another. Since SQLite does not define USE_PREAD |
| ** in any form by default, we will not attempt to define _XOPEN_SOURCE. |
| ** See tickets #2741 and #2681. |
| ** |
| ** To avoid stomping the errno value on a failed read the lastErrno value |
| ** is set before returning. |
| */ |
| static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){ |
| int got; |
| int prior = 0; |
| #if (!defined(USE_PREAD) && !defined(USE_PREAD64)) |
| i64 newOffset; |
| #endif |
| TIMER_START; |
| assert( cnt==(cnt&0x1ffff) ); |
| assert( id->h>2 ); |
| do{ |
| #if defined(USE_PREAD) |
| got = osPread(id->h, pBuf, cnt, offset); |
| SimulateIOError( got = -1 ); |
| #elif defined(USE_PREAD64) |
| got = osPread64(id->h, pBuf, cnt, offset); |
| SimulateIOError( got = -1 ); |
| #else |
| newOffset = lseek(id->h, offset, SEEK_SET); |
| SimulateIOError( newOffset = -1 ); |
| if( newOffset<0 ){ |
| storeLastErrno((unixFile*)id, errno); |
| return -1; |
| } |
| got = osRead(id->h, pBuf, cnt); |
| #endif |
| if( got==cnt ) break; |
| if( got<0 ){ |
| if( errno==EINTR ){ got = 1; continue; } |
| prior = 0; |
| storeLastErrno((unixFile*)id, errno); |
| break; |
| }else if( got>0 ){ |
| cnt -= got; |
| offset += got; |
| prior += got; |
| pBuf = (void*)(got + (char*)pBuf); |
| } |
| }while( got>0 ); |
| TIMER_END; |
| OSTRACE(("READ %-3d %5d %7lld %llu\n", |
| id->h, got+prior, offset-prior, TIMER_ELAPSED)); |
| return got+prior; |
| } |
| |
| /* |
| ** Read data from a file into a buffer. Return SQLITE_OK if all |
| ** bytes were read successfully and SQLITE_IOERR if anything goes |
| ** wrong. |
| */ |
| static int unixRead( |
| sqlite3_file *id, |
| void *pBuf, |
| int amt, |
| sqlite3_int64 offset |
| ){ |
| unixFile *pFile = (unixFile *)id; |
| int got; |
| assert( id ); |
| assert( offset>=0 ); |
| assert( amt>0 ); |
| |
| /* If this is a database file (not a journal, super-journal or temp |
| ** file), the bytes in the locking range should never be read or written. */ |
| #if 0 |
| assert( pFile->pPreallocatedUnused==0 |
| || offset>=PENDING_BYTE+512 |
| || offset+amt<=PENDING_BYTE |
| ); |
| #endif |
| |
| #if SQLITE_MAX_MMAP_SIZE>0 |
| /* Deal with as much of this read request as possible by transfering |
| ** data from the memory mapping using memcpy(). */ |
| if( offset<pFile->mmapSize ){ |
| if( offset+amt <= pFile->mmapSize ){ |
| memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], amt); |
| return SQLITE_OK; |
| }else{ |
| int nCopy = pFile->mmapSize - offset; |
| memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], nCopy); |
| pBuf = &((u8 *)pBuf)[nCopy]; |
| amt -= nCopy; |
| offset += nCopy; |
| } |
| } |
| #endif |
| |
| got = seekAndRead(pFile, offset, pBuf, amt); |
| if( got==amt ){ |
| return SQLITE_OK; |
| }else if( got<0 ){ |
| /* pFile->lastErrno has been set by seekAndRead(). |
| ** Usually we return SQLITE_IOERR_READ here, though for some |
| ** kinds of errors we return SQLITE_IOERR_CORRUPTFS. The |
| ** SQLITE_IOERR_CORRUPTFS will be converted into SQLITE_CORRUPT |
| ** prior to returning to the application by the sqlite3ApiExit() |
| ** routine. |
| */ |
| switch( pFile->lastErrno ){ |
| case ERANGE: |
| case EIO: |
| #ifdef ENXIO |
| case ENXIO: |
| #endif |
| #ifdef EDEVERR |
| case EDEVERR: |
| #endif |
| return SQLITE_IOERR_CORRUPTFS; |
| } |
| return SQLITE_IOERR_READ; |
| }else{ |
| storeLastErrno(pFile, 0); /* not a system error */ |
| /* Unread parts of the buffer must be zero-filled */ |
| memset(&((char*)pBuf)[got], 0, amt-got); |
| return SQLITE_IOERR_SHORT_READ; |
| } |
| } |
| |
| /* |
| ** Attempt to seek the file-descriptor passed as the first argument to |
| ** absolute offset iOff, then attempt to write nBuf bytes of data from |
| ** pBuf to it. If an error occurs, return -1 and set *piErrno. Otherwise, |
| ** return the actual number of bytes written (which may be less than |
| ** nBuf). |
| */ |
| static int seekAndWriteFd( |
| int fd, /* File descriptor to write to */ |
| i64 iOff, /* File offset to begin writing at */ |
| const void *pBuf, /* Copy data from this buffer to the file */ |
| int nBuf, /* Size of buffer pBuf in bytes */ |
| int *piErrno /* OUT: Error number if error occurs */ |
| ){ |
| int rc = 0; /* Value returned by system call */ |
| |
| assert( nBuf==(nBuf&0x1ffff) ); |
| assert( fd>2 ); |
| assert( piErrno!=0 ); |
| nBuf &= 0x1ffff; |
| TIMER_START; |
| |
| #if defined(USE_PREAD) |
| do{ rc = (int)osPwrite(fd, pBuf, nBuf, iOff); }while( rc<0 && errno==EINTR ); |
| #elif defined(USE_PREAD64) |
| do{ rc = (int)osPwrite64(fd, pBuf, nBuf, iOff);}while( rc<0 && errno==EINTR); |
| #else |
| do{ |
| i64 iSeek = lseek(fd, iOff, SEEK_SET); |
| SimulateIOError( iSeek = -1 ); |
| if( iSeek<0 ){ |
| rc = -1; |
| break; |
| } |
| rc = osWrite(fd, pBuf, nBuf); |
| }while( rc<0 && errno==EINTR ); |
| #endif |
| |
| TIMER_END; |
| OSTRACE(("WRITE %-3d %5d %7lld %llu\n", fd, rc, iOff, TIMER_ELAPSED)); |
| |
| if( rc<0 ) *piErrno = errno; |
| return rc; |
| } |
| |
| |
| /* |
| ** Seek to the offset in id->offset then read cnt bytes into pBuf. |
| ** Return the number of bytes actually read. Update the offset. |
| ** |
| ** To avoid stomping the errno value on a failed write the lastErrno value |
| ** is set before returning. |
| */ |
| static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){ |
| return seekAndWriteFd(id->h, offset, pBuf, cnt, &id->lastErrno); |
| } |
| |
| |
| /* |
| ** Write data from a buffer into a file. Return SQLITE_OK on success |
| ** or some other error code on failure. |
| */ |
| static int unixWrite( |
| sqlite3_file *id, |
| const void *pBuf, |
| int amt, |
| sqlite3_int64 offset |
| ){ |
| unixFile *pFile = (unixFile*)id; |
| int wrote = 0; |
| assert( id ); |
| assert( amt>0 ); |
| |
| /* If this is a database file (not a journal, super-journal or temp |
| ** file), the bytes in the locking range should never be read or written. */ |
| #if 0 |
| assert( pFile->pPreallocatedUnused==0 |
| || offset>=PENDING_BYTE+512 |
| || offset+amt<=PENDING_BYTE |
| ); |
| #endif |
| |
| #ifdef SQLITE_DEBUG |
| /* If we are doing a normal write to a database file (as opposed to |
| ** doing a hot-journal rollback or a write to some file other than a |
| ** normal database file) then record the fact that the database |
| ** has changed. If the transaction counter is modified, record that |
| ** fact too. |
| */ |
| if( pFile->inNormalWrite ){ |
| pFile->dbUpdate = 1; /* The database has been modified */ |
| if( offset<=24 && offset+amt>=27 ){ |
| int rc; |
| char oldCntr[4]; |
| SimulateIOErrorBenign(1); |
| rc = seekAndRead(pFile, 24, oldCntr, 4); |
| SimulateIOErrorBenign(0); |
| if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){ |
| pFile->transCntrChng = 1; /* The transaction counter has changed */ |
| } |
| } |
| } |
| #endif |
| |
| #if defined(SQLITE_MMAP_READWRITE) && SQLITE_MAX_MMAP_SIZE>0 |
| /* Deal with as much of this write request as possible by transfering |
| ** data from the memory mapping using memcpy(). */ |
| if( offset<pFile->mmapSize ){ |
| if( offset+amt <= pFile->mmapSize ){ |
| memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, amt); |
| return SQLITE_OK; |
| }else{ |
| int nCopy = pFile->mmapSize - offset; |
| memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, nCopy); |
| pBuf = &((u8 *)pBuf)[nCopy]; |
| amt -= nCopy; |
| offset += nCopy; |
| } |
| } |
| #endif |
| |
| while( (wrote = seekAndWrite(pFile, offset, pBuf, amt))<amt && wrote>0 ){ |
| amt -= wrote; |
| offset += wrote; |
| pBuf = &((char*)pBuf)[wrote]; |
| } |
| SimulateIOError(( wrote=(-1), amt=1 )); |
| SimulateDiskfullError(( wrote=0, amt=1 )); |
| |
| if( amt>wrote ){ |
| if( wrote<0 && pFile->lastErrno!=ENOSPC ){ |
| /* lastErrno set by seekAndWrite */ |
| return SQLITE_IOERR_WRITE; |
| }else{ |
| storeLastErrno(pFile, 0); /* not a system error */ |
| return SQLITE_FULL; |
| } |
| } |
| |
| return SQLITE_OK; |
| } |
| |
| #ifdef SQLITE_TEST |
| /* |
| ** Count the number of fullsyncs and normal syncs. This is used to test |
| ** that syncs and fullsyncs are occurring at the right times. |
| */ |
| int sqlite3_sync_count = 0; |
| int sqlite3_fullsync_count = 0; |
| #endif |
| |
| /* |
| ** We do not trust systems to provide a working fdatasync(). Some do. |
| ** Others do no. To be safe, we will stick with the (slightly slower) |
| ** fsync(). If you know that your system does support fdatasync() correctly, |
| ** then simply compile with -Dfdatasync=fdatasync or -DHAVE_FDATASYNC |
| */ |
| #if !defined(fdatasync) && !HAVE_FDATASYNC |
| # define fdatasync fsync |
| #endif |
| |
| /* |
| ** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not |
| ** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently |
| ** only available on Mac OS X. But that could change. |
| */ |
| #ifdef F_FULLFSYNC |
| # define HAVE_FULLFSYNC 1 |
| #else |
| # define HAVE_FULLFSYNC 0 |
| #endif |
| |
| |
| /* |
| ** The fsync() system call does not work as advertised on many |
| ** unix systems. The following procedure is an attempt to make |
| ** it work better. |
| ** |
| ** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful |
| ** for testing when we want to run through the test suite quickly. |
| ** You are strongly advised *not* to deploy with SQLITE_NO_SYNC |
| ** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash |
| ** or power failure will likely corrupt the database file. |
| ** |
| ** SQLite sets the dataOnly flag if the size of the file is unchanged. |
| ** The idea behind dataOnly is that it should only write the file content |
| ** to disk, not the inode. We only set dataOnly if the file size is |
| ** unchanged since the file size is part of the inode. However, |
| ** Ted Ts'o tells us that fdatasync() will also write the inode if the |
| ** file size has changed. The only real difference between fdatasync() |
| ** and fsync(), Ted tells us, is that fdatasync() will not flush the |
| ** inode if the mtime or owner or other inode attributes have changed. |
| ** We only care about the file size, not the other file attributes, so |
| ** as far as SQLite is concerned, an fdatasync() is always adequate. |
| ** So, we always use fdatasync() if it is available, regardless of |
| ** the value of the dataOnly flag. |
| */ |
| static int full_fsync(int fd, int fullSync, int dataOnly){ |
| int rc; |
| |
| /* The following "ifdef/elif/else/" block has the same structure as |
| ** the one below. It is replicated here solely to avoid cluttering |
| ** up the real code with the UNUSED_PARAMETER() macros. |
| */ |
| #ifdef SQLITE_NO_SYNC |
| UNUSED_PARAMETER(fd); |
| UNUSED_PARAMETER(fullSync); |
| UNUSED_PARAMETER(dataOnly); |
| #elif HAVE_FULLFSYNC |
| UNUSED_PARAMETER(dataOnly); |
| #else |
| UNUSED_PARAMETER(fullSync); |
| UNUSED_PARAMETER(dataOnly); |
| #endif |
| |
| /* Record the number of times that we do a normal fsync() and |
| ** FULLSYNC. This is used during testing to verify that this procedure |
| ** gets called with the correct arguments. |
| */ |
| #ifdef SQLITE_TEST |
| if( fullSync ) sqlite3_fullsync_count++; |
| sqlite3_sync_count++; |
| #endif |
| |
| /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a |
| ** no-op. But go ahead and call fstat() to validate the file |
| ** descriptor as we need a method to provoke a failure during |
| ** coverate testing. |
| */ |
| #ifdef SQLITE_NO_SYNC |
| { |
| struct stat buf; |
| rc = osFstat(fd, &buf); |
| } |
| #elif HAVE_FULLFSYNC |
| if( fullSync ){ |
| rc = osFcntl(fd, F_FULLFSYNC, 0); |
| }else{ |
| rc = 1; |
| } |
| /* If the FULLFSYNC failed, fall back to attempting an fsync(). |
| ** It shouldn't be possible for fullfsync to fail on the local |
| ** file system (on OSX), so failure indicates that FULLFSYNC |
| ** isn't supported for this file system. So, attempt an fsync |
| ** and (for now) ignore the overhead of a superfluous fcntl call. |
| ** It'd be better to detect fullfsync support once and avoid |
| ** the fcntl call every time sync is called. |
| */ |
| if( rc ) rc = fsync(fd); |
| |
| #elif defined(__APPLE__) |
| /* fdatasync() on HFS+ doesn't yet flush the file size if it changed correctly |
| ** so currently we default to the macro that redefines fdatasync to fsync |
| */ |
| rc = fsync(fd); |
| #else |
| rc = fdatasync(fd); |
| #if OS_VXWORKS |
| if( rc==-1 && errno==ENOTSUP ){ |
| rc = fsync(fd); |
| } |
| #endif /* OS_VXWORKS */ |
| #endif /* ifdef SQLITE_NO_SYNC elif HAVE_FULLFSYNC */ |
| |
| if( OS_VXWORKS && rc!= -1 ){ |
| rc = 0; |
| } |
| return rc; |
| } |
| |
| /* |
| ** Open a file descriptor to the directory containing file zFilename. |
| ** If successful, *pFd is set to the opened file descriptor and |
| ** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM |
| ** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined |
| ** value. |
| ** |
| ** The directory file descriptor is used for only one thing - to |
| ** fsync() a directory to make sure file creation and deletion events |
| ** are flushed to disk. Such fsyncs are not needed on newer |
| ** journaling filesystems, but are required on older filesystems. |
| ** |
| ** This routine can be overridden using the xSetSysCall interface. |
| ** The ability to override this routine was added in support of the |
| ** chromium sandbox. Opening a directory is a security risk (we are |
| ** told) so making it overrideable allows the chromium sandbox to |
| ** replace this routine with a harmless no-op. To make this routine |
| ** a no-op, replace it with a stub that returns SQLITE_OK but leaves |
| ** *pFd set to a negative number. |
| ** |
| ** If SQLITE_OK is returned, the caller is responsible for closing |
| ** the file descriptor *pFd using close(). |
| */ |
| static int openDirectory(const char *zFilename, int *pFd){ |
| int ii; |
| int fd = -1; |
| char zDirname[MAX_PATHNAME+1]; |
| |
| sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename); |
| for(ii=(int)strlen(zDirname); ii>0 && zDirname[ii]!='/'; ii--); |
| if( ii>0 ){ |
| zDirname[ii] = '\0'; |
| }else{ |
| if( zDirname[0]!='/' ) zDirname[0] = '.'; |
| zDirname[1] = 0; |
| } |
| fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0); |
| if( fd>=0 ){ |
| OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname)); |
| } |
| *pFd = fd; |
| if( fd>=0 ) return SQLITE_OK; |
| return unixLogError(SQLITE_CANTOPEN_BKPT, "openDirectory", zDirname); |
| } |
| |
| /* |
| ** Make sure all writes to a particular file are committed to disk. |
| ** |
| ** If dataOnly==0 then both the file itself and its metadata (file |
| ** size, access time, etc) are synced. If dataOnly!=0 then only the |
| ** file data is synced. |
| ** |
| ** Under Unix, also make sure that the directory entry for the file |
| ** has been created by fsync-ing the directory that contains the file. |
| ** If we do not do this and we encounter a power failure, the directory |
| ** entry for the journal might not exist after we reboot. The next |
| ** SQLite to access the file will not know that the journal exists (because |
| ** the directory entry for the journal was never created) and the transaction |
| ** will not roll back - possibly leading to database corruption. |
| */ |
| static int unixSync(sqlite3_file *id, int flags){ |
| int rc; |
| unixFile *pFile = (unixFile*)id; |
| |
| int isDataOnly = (flags&SQLITE_SYNC_DATAONLY); |
| int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL; |
| |
| /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */ |
| assert((flags&0x0F)==SQLITE_SYNC_NORMAL |
| || (flags&0x0F)==SQLITE_SYNC_FULL |
| ); |
| |
| /* Unix cannot, but some systems may return SQLITE_FULL from here. This |
| ** line is to test that doing so does not cause any problems. |
| */ |
| SimulateDiskfullError( return SQLITE_FULL ); |
| |
| assert( pFile ); |
| OSTRACE(("SYNC %-3d\n", pFile->h)); |
| rc = full_fsync(pFile->h, isFullsync, isDataOnly); |
| SimulateIOError( rc=1 ); |
| if( rc ){ |
| storeLastErrno(pFile, errno); |
| return unixLogError(SQLITE_IOERR_FSYNC, "full_fsync", pFile->zPath); |
| } |
| |
| /* Also fsync the directory containing the file if the DIRSYNC flag |
| ** is set. This is a one-time occurrence. Many systems (examples: AIX) |
| ** are unable to fsync a directory, so ignore errors on the fsync. |
| */ |
| if( pFile->ctrlFlags & UNIXFILE_DIRSYNC ){ |
| int dirfd; |
| OSTRACE(("DIRSYNC %s (have_fullfsync=%d fullsync=%d)\n", pFile->zPath, |
| HAVE_FULLFSYNC, isFullsync)); |
| rc = osOpenDirectory(pFile->zPath, &dirfd); |
| if( rc==SQLITE_OK ){ |
| full_fsync(dirfd, 0, 0); |
| robust_close(pFile, dirfd, __LINE__); |
| }else{ |
| assert( rc==SQLITE_CANTOPEN ); |
| rc = SQLITE_OK; |
| } |
| pFile->ctrlFlags &= ~UNIXFILE_DIRSYNC; |
| } |
| return rc; |
| } |
| |
| /* |
| ** Truncate an open file to a specified size |
| */ |
| static int unixTruncate(sqlite3_file *id, i64 nByte){ |
| unixFile *pFile = (unixFile *)id; |
| int rc; |
| assert( pFile ); |
| SimulateIOError( return SQLITE_IOERR_TRUNCATE ); |
| |
| /* If the user has configured a chunk-size for this file, truncate the |
| ** file so that it consists of an integer number of chunks (i.e. the |
| ** actual file size after the operation may be larger than the requested |
| ** size). |
| */ |
| if( pFile->szChunk>0 ){ |
| nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk; |
| } |
| |
| rc = robust_ftruncate(pFile->h, nByte); |
| if( rc ){ |
| storeLastErrno(pFile, errno); |
| return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath); |
| }else{ |
| #ifdef SQLITE_DEBUG |
| /* If we are doing a normal write to a database file (as opposed to |
| ** doing a hot-journal rollback or a write to some file other than a |
| ** normal database file) and we truncate the file to zero length, |
| ** that effectively updates the change counter. This might happen |
| ** when restoring a database using the backup API from a zero-length |
| ** source. |
| */ |
| if( pFile->inNormalWrite && nByte==0 ){ |
| pFile->transCntrChng = 1; |
| } |
| #endif |
| |
| #if SQLITE_MAX_MMAP_SIZE>0 |
| /* If the file was just truncated to a size smaller than the currently |
| ** mapped region, reduce the effective mapping size as well. SQLite will |
| ** use read() and write() to access data beyond this point from now on. |
| */ |
| if( nByte<pFile->mmapSize ){ |
| pFile->mmapSize = nByte; |
| } |
| #endif |
| |
| return SQLITE_OK; |
| } |
| } |
| |
| /* |
| ** Determine the current size of a file in bytes |
| */ |
| static int unixFileSize(sqlite3_file *id, i64 *pSize){ |
| int rc; |
| struct stat buf; |
| assert( id ); |
| rc = osFstat(((unixFile*)id)->h, &buf); |
| SimulateIOError( rc=1 ); |
| if( rc!=0 ){ |
| storeLastErrno((unixFile*)id, errno); |
| return SQLITE_IOERR_FSTAT; |
| } |
| *pSize = buf.st_size; |
| |
| /* When opening a zero-size database, the findInodeInfo() procedure |
| ** writes a single byte into that file in order to work around a bug |
| ** in the OS-X msdos filesystem. In order to avoid problems with upper |
| ** layers, we need to report this file size as zero even though it is |
| ** really 1. Ticket #3260. |
| */ |
| if( *pSize==1 ) *pSize = 0; |
| |
| |
| return SQLITE_OK; |
| } |
| |
| #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) |
| /* |
| ** Handler for proxy-locking file-control verbs. Defined below in the |
| ** proxying locking division. |
| */ |
| static int proxyFileControl(sqlite3_file*,int,void*); |
| #endif |
| |
| /* |
| ** This function is called to handle the SQLITE_FCNTL_SIZE_HINT |
| ** file-control operation. Enlarge the database to nBytes in size |
| ** (rounded up to the next chunk-size). If the database is already |
| ** nBytes or larger, this routine is a no-op. |
| */ |
| static int fcntlSizeHint(unixFile *pFile, i64 nByte){ |
| if( pFile->szChunk>0 ){ |
| i64 nSize; /* Required file size */ |
| struct stat buf; /* Used to hold return values of fstat() */ |
| |
| if( osFstat(pFile->h, &buf) ){ |
| return SQLITE_IOERR_FSTAT; |
| } |
| |
| nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk; |
| if( nSize>(i64)buf.st_size ){ |
| |
| #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE |
| /* The code below is handling the return value of osFallocate() |
| ** correctly. posix_fallocate() is defined to "returns zero on success, |
| ** or an error number on failure". See the manpage for details. */ |
| int err; |
| do{ |
| err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size); |
| }while( err==EINTR ); |
| if( err && err!=EINVAL ) return SQLITE_IOERR_WRITE; |
| #else |
| /* If the OS does not have posix_fallocate(), fake it. Write a |
| ** single byte to the last byte in each block that falls entirely |
| ** within the extended region. Then, if required, a single byte |
| ** at offset (nSize-1), to set the size of the file correctly. |
| ** This is a similar technique to that used by glibc on systems |
| ** that do not have a real fallocate() call. |
| */ |
| int nBlk = buf.st_blksize; /* File-system block size */ |
| int nWrite = 0; /* Number of bytes written by seekAndWrite */ |
| i64 iWrite; /* Next offset to write to */ |
| |
| iWrite = (buf.st_size/nBlk)*nBlk + nBlk - 1; |
| assert( iWrite>=buf.st_size ); |
| assert( ((iWrite+1)%nBlk)==0 ); |
| for(/*no-op*/; iWrite<nSize+nBlk-1; iWrite+=nBlk ){ |
| if( iWrite>=nSize ) iWrite = nSize - 1; |
| nWrite = seekAndWrite(pFile, iWrite, "", 1); |
| if( nWrite!=1 ) return SQLITE_IOERR_WRITE; |
| } |
| #endif |
| } |
| } |
| |
| #if SQLITE_MAX_MMAP_SIZE>0 |
| if( pFile->mmapSizeMax>0 && nByte>pFile->mmapSize ){ |
| int rc; |
| if( pFile->szChunk<=0 ){ |
| if( robust_ftruncate(pFile->h, nByte) ){ |
| storeLastErrno(pFile, errno); |
| return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath); |
| } |
| } |
| |
| rc = unixMapfile(pFile, nByte); |
| return rc; |
| } |
| #endif |
| |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** If *pArg is initially negative then this is a query. Set *pArg to |
| ** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set. |
| ** |
| ** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags. |
| */ |
| static void unixModeBit(unixFile *pFile, unsigned char mask, int *pArg){ |
| if( *pArg<0 ){ |
| *pArg = (pFile->ctrlFlags & mask)!=0; |
| }else if( (*pArg)==0 ){ |
| pFile->ctrlFlags &= ~mask; |
| }else{ |
| pFile->ctrlFlags |= mask; |
| } |
| } |
| |
| /* Forward declaration */ |
| static int unixGetTempname(int nBuf, char *zBuf); |
| #ifndef SQLITE_OMIT_WAL |
| static int unixFcntlExternalReader(unixFile*, int*); |
| #endif |
| |
| /* |
| ** Information and control of an open file handle. |
| */ |
| static int unixFileControl(sqlite3_file *id, int op, void *pArg){ |
| unixFile *pFile = (unixFile*)id; |
| switch( op ){ |
| #if defined(__linux__) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) |
| case SQLITE_FCNTL_BEGIN_ATOMIC_WRITE: { |
| int rc = osIoctl(pFile->h, F2FS_IOC_START_ATOMIC_WRITE); |
| return rc ? SQLITE_IOERR_BEGIN_ATOMIC : SQLITE_OK; |
| } |
| case SQLITE_FCNTL_COMMIT_ATOMIC_WRITE: { |
| int rc = osIoctl(pFile->h, F2FS_IOC_COMMIT_ATOMIC_WRITE); |
| return rc ? SQLITE_IOERR_COMMIT_ATOMIC : SQLITE_OK; |
| } |
| case SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE: { |
| int rc = osIoctl(pFile->h, F2FS_IOC_ABORT_VOLATILE_WRITE); |
| return rc ? SQLITE_IOERR_ROLLBACK_ATOMIC : SQLITE_OK; |
| } |
| #endif /* __linux__ && SQLITE_ENABLE_BATCH_ATOMIC_WRITE */ |
| |
| case SQLITE_FCNTL_LOCKSTATE: { |
| *(int*)pArg = pFile->eFileLock; |
| return SQLITE_OK; |
| } |
| case SQLITE_FCNTL_LAST_ERRNO: { |
| *(int*)pArg = pFile->lastErrno; |
| return SQLITE_OK; |
| } |
| case SQLITE_FCNTL_CHUNK_SIZE: { |
| pFile->szChunk = *(int *)pArg; |
| return SQLITE_OK; |
| } |
| case SQLITE_FCNTL_SIZE_HINT: { |
| int rc; |
| SimulateIOErrorBenign(1); |
| rc = fcntlSizeHint(pFile, *(i64 *)pArg); |
| SimulateIOErrorBenign(0); |
| return rc; |
| } |
| case SQLITE_FCNTL_PERSIST_WAL: { |
| unixModeBit(pFile, UNIXFILE_PERSIST_WAL, (int*)pArg); |
| return SQLITE_OK; |
| } |
| case SQLITE_FCNTL_POWERSAFE_OVERWRITE: { |
| unixModeBit(pFile, UNIXFILE_PSOW, (int*)pArg); |
| return SQLITE_OK; |
| } |
| case SQLITE_FCNTL_VFSNAME: { |
| *(char**)pArg = sqlite3_mprintf("%s", pFile->pVfs->zName); |
| return SQLITE_OK; |
| } |
| case SQLITE_FCNTL_TEMPFILENAME: { |
| char *zTFile = sqlite3_malloc64( pFile->pVfs->mxPathname ); |
| if( zTFile ){ |
| unixGetTempname(pFile->pVfs->mxPathname, zTFile); |
| *(char**)pArg = zTFile; |
| } |
| return SQLITE_OK; |
| } |
| case SQLITE_FCNTL_HAS_MOVED: { |
| *(int*)pArg = fileHasMoved(pFile); |
| return SQLITE_OK; |
| } |
| #ifdef SQLITE_ENABLE_SETLK_TIMEOUT |
| case SQLITE_FCNTL_LOCK_TIMEOUT: { |
| int iOld = pFile->iBusyTimeout; |
| pFile->iBusyTimeout = *(int*)pArg; |
| *(int*)pArg = iOld; |
| return SQLITE_OK; |
| } |
| #endif |
| #if SQLITE_MAX_MMAP_SIZE>0 |
| case SQLITE_FCNTL_MMAP_SIZE: { |
| i64 newLimit = *(i64*)pArg; |
| int rc = SQLITE_OK; |
| if( newLimit>sqlite3GlobalConfig.mxMmap ){ |
| newLimit = sqlite3GlobalConfig.mxMmap; |
| } |
| |
| /* The value of newLimit may be eventually cast to (size_t) and passed |
| ** to mmap(). Restrict its value to 2GB if (size_t) is not at least a |
| ** 64-bit type. */ |
| if( newLimit>0 && sizeof(size_t)<8 ){ |
| newLimit = (newLimit & 0x7FFFFFFF); |
| } |
| |
| *(i64*)pArg = pFile->mmapSizeMax; |
| if( newLimit>=0 && newLimit!=pFile->mmapSizeMax && pFile->nFetchOut==0 ){ |
| pFile->mmapSizeMax = newLimit; |
| if( pFile->mmapSize>0 ){ |
| unixUnmapfile(pFile); |
| rc = unixMapfile(pFile, -1); |
| } |
| } |
| return rc; |
| } |
| #endif |
| #ifdef SQLITE_DEBUG |
| /* The pager calls this method to signal that it has done |
| ** a rollback and that the database is therefore unchanged and |
| ** it hence it is OK for the transaction change counter to be |
| ** unchanged. |
| */ |
| case SQLITE_FCNTL_DB_UNCHANGED: { |
| ((unixFile*)id)->dbUpdate = 0; |
| return SQLITE_OK; |
| } |
| #endif |
| #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) |
| case SQLITE_FCNTL_SET_LOCKPROXYFILE: |
| case SQLITE_FCNTL_GET_LOCKPROXYFILE: { |
| return proxyFileControl(id,op,pArg); |
| } |
| #endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */ |
| |
| case SQLITE_FCNTL_EXTERNAL_READER: { |
| #ifndef SQLITE_OMIT_WAL |
| return unixFcntlExternalReader((unixFile*)id, (int*)pArg); |
| #else |
| *(int*)pArg = 0; |
| return SQLITE_OK; |
| #endif |
| } |
| } |
| return SQLITE_NOTFOUND; |
| } |
| |
| /* |
| ** If pFd->sectorSize is non-zero when this function is called, it is a |
| ** no-op. Otherwise, the values of pFd->sectorSize and |
| ** pFd->deviceCharacteristics are set according to the file-system |
| ** characteristics. |
| ** |
| ** There are two versions of this function. One for QNX and one for all |
| ** other systems. |
| */ |
| #ifndef __QNXNTO__ |
| static void setDeviceCharacteristics(unixFile *pFd){ |
| assert( pFd->deviceCharacteristics==0 || pFd->sectorSize!=0 ); |
| if( pFd->sectorSize==0 ){ |
| #if defined(__linux__) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) |
| int res; |
| u32 f = 0; |
| |
| /* Check for support for F2FS atomic batch writes. */ |
| res = osIoctl(pFd->h, F2FS_IOC_GET_FEATURES, &f); |
| if( res==0 && (f & F2FS_FEATURE_ATOMIC_WRITE) ){ |
| pFd->deviceCharacteristics = SQLITE_IOCAP_BATCH_ATOMIC; |
| } |
| #endif /* __linux__ && SQLITE_ENABLE_BATCH_ATOMIC_WRITE */ |
| |
| /* Set the POWERSAFE_OVERWRITE flag if requested. */ |
| if( pFd->ctrlFlags & UNIXFILE_PSOW ){ |
| pFd->deviceCharacteristics |= SQLITE_IOCAP_POWERSAFE_OVERWRITE; |
| } |
| |
| pFd->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE; |
| } |
| } |
| #else |
| #include <sys/dcmd_blk.h> |
| #include <sys/statvfs.h> |
| static void setDeviceCharacteristics(unixFile *pFile){ |
| if( pFile->sectorSize == 0 ){ |
| struct statvfs fsInfo; |
| |
| /* Set defaults for non-supported filesystems */ |
| pFile->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE; |
| pFile->deviceCharacteristics = 0; |
| if( fstatvfs(pFile->h, &fsInfo) == -1 ) { |
| return; |
| } |
| |
| if( !strcmp(fsInfo.f_basetype, "tmp") ) { |
| pFile->sectorSize = fsInfo.f_bsize; |
| pFile->deviceCharacteristics = |
| SQLITE_IOCAP_ATOMIC4K | /* All ram filesystem writes are atomic */ |
| SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until |
| ** the write succeeds */ |
| SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind |
| ** so it is ordered */ |
| 0; |
| }else if( strstr(fsInfo.f_basetype, "etfs") ){ |
| pFile->sectorSize = fsInfo.f_bsize; |
| pFile->deviceCharacteristics = |
| /* etfs cluster size writes are atomic */ |
| (pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) | |
| SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until |
| ** the write succeeds */ |
| SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind |
| ** so it is ordered */ |
| 0; |
| }else if( !strcmp(fsInfo.f_basetype, "qnx6") ){ |
| pFile->sectorSize = fsInfo.f_bsize; |
| pFile->deviceCharacteristics = |
| SQLITE_IOCAP_ATOMIC | /* All filesystem writes are atomic */ |
| SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until |
| ** the write succeeds */ |
| SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind |
| ** so it is ordered */ |
| 0; |
| }else if( !strcmp(fsInfo.f_basetype, "qnx4") ){ |
| pFile->sectorSize = fsInfo.f_bsize; |
| pFile->deviceCharacteristics = |
| /* full bitset of atomics from max sector size and smaller */ |
| ((pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) << 1) - 2 | |
| SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind |
| ** so it is ordered */ |
| 0; |
| }else if( strstr(fsInfo.f_basetype, "dos") ){ |
| pFile->sectorSize = fsInfo.f_bsize; |
| pFile->deviceCharacteristics = |
| /* full bitset of atomics from max sector size and smaller */ |
| ((pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) << 1) - 2 | |
| SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind |
| ** so it is ordered */ |
| 0; |
| }else{ |
| pFile->deviceCharacteristics = |
| SQLITE_IOCAP_ATOMIC512 | /* blocks are atomic */ |
| SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until |
| ** the write succeeds */ |
| 0; |
| } |
| } |
| /* Last chance verification. If the sector size isn't a multiple of 512 |
| ** then it isn't valid.*/ |
| if( pFile->sectorSize % 512 != 0 ){ |
| pFile->deviceCharacteristics = 0; |
| pFile->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE; |
| } |
| } |
| #endif |
| |
| /* |
| ** Return the sector size in bytes of the underlying block device for |
| ** the specified file. This is almost always 512 bytes, but may be |
| ** larger for some devices. |
| ** |
| ** SQLite code assumes this function cannot fail. It also assumes that |
| ** if two files are created in the same file-system directory (i.e. |
| ** a database and its journal file) that the sector size will be the |
| ** same for both. |
| */ |
| static int unixSectorSize(sqlite3_file *id){ |
| unixFile *pFd = (unixFile*)id; |
| setDeviceCharacteristics(pFd); |
| return pFd->sectorSize; |
| } |
| |
| /* |
| ** Return the device characteristics for the file. |
| ** |
| ** This VFS is set up to return SQLITE_IOCAP_POWERSAFE_OVERWRITE by default. |
| ** However, that choice is controversial since technically the underlying |
| ** file system does not always provide powersafe overwrites. (In other |
| ** words, after a power-loss event, parts of the file that were never |
| ** written might end up being altered.) However, non-PSOW behavior is very, |
| ** very rare. And asserting PSOW makes a large reduction in the amount |
| ** of required I/O for journaling, since a lot of padding is eliminated. |
| ** Hence, while POWERSAFE_OVERWRITE is on by default, there is a file-control |
| ** available to turn it off and URI query parameter available to turn it off. |
| */ |
| static int unixDeviceCharacteristics(sqlite3_file *id){ |
| unixFile *pFd = (unixFile*)id; |
| setDeviceCharacteristics(pFd); |
| return pFd->deviceCharacteristics; |
| } |
| |
| #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 |
| |
| /* |
| ** Return the system page size. |
| ** |
| ** This function should not be called directly by other code in this file. |
| ** Instead, it should be called via macro osGetpagesize(). |
| */ |
| static int unixGetpagesize(void){ |
| #if OS_VXWORKS |
| return 1024; |
| #elif defined(_BSD_SOURCE) |
| return getpagesize(); |
| #else |
| return (int)sysconf(_SC_PAGESIZE); |
| #endif |
| } |
| |
| #endif /* !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 */ |
| |
| #ifndef SQLITE_OMIT_WAL |
| |
| /* |
| ** Object used to represent an shared memory buffer. |
| ** |
| ** When multiple threads all reference the same wal-index, each thread |
| ** has its own unixShm object, but they all point to a single instance |
| ** of this unixShmNode object. In other words, each wal-index is opened |
| ** only once per process. |
| ** |
| ** Each unixShmNode object is connected to a single unixInodeInfo object. |
| ** We could coalesce this object into unixInodeInfo, but that would mean |
| ** every open file that does not use shared memory (in other words, most |
| ** open files) would have to carry around this extra information. So |
| ** the unixInodeInfo object contains a pointer to this unixShmNode object |
| ** and the unixShmNode object is created only when needed. |
| ** |
| ** unixMutexHeld() must be true when creating or destroying |
| ** this object or while reading or writing the following fields: |
| ** |
| ** nRef |
| ** |
| ** The following fields are read-only after the object is created: |
| ** |
| ** hShm |
| ** zFilename |
| ** |
| ** Either unixShmNode.pShmMutex must be held or unixShmNode.nRef==0 and |
| ** unixMutexHeld() is true when reading or writing any other field |
| ** in this structure. |
| */ |
| struct unixShmNode { |
| unixInodeInfo *pInode; /* unixInodeInfo that owns this SHM node */ |
| sqlite3_mutex *pShmMutex; /* Mutex to access this object */ |
| char *zFilename; /* Name of the mmapped file */ |
| int hShm; /* Open file descriptor */ |
| int szRegion; /* Size of shared-memory regions */ |
| u16 nRegion; /* Size of array apRegion */ |
| u8 isReadonly; /* True if read-only */ |
| u8 isUnlocked; /* True if no DMS lock held */ |
| char **apRegion; /* Array of mapped shared-memory regions */ |
| int nRef; /* Number of unixShm objects pointing to this */ |
| unixShm *pFirst; /* All unixShm objects pointing to this */ |
| int aLock[SQLITE_SHM_NLOCK]; /* # shared locks on slot, -1==excl lock */ |
| #ifdef SQLITE_DEBUG |
| u8 exclMask; /* Mask of exclusive locks held */ |
| u8 sharedMask; /* Mask of shared locks held */ |
| u8 nextShmId; /* Next available unixShm.id value */ |
| #endif |
| }; |
| |
| /* |
| ** Structure used internally by this VFS to record the state of an |
| ** open shared memory connection. |
| ** |
| ** The following fields are initialized when this object is created and |
| ** are read-only thereafter: |
| ** |
| ** unixShm.pShmNode |
| ** unixShm.id |
| ** |
| ** All other fields are read/write. The unixShm.pShmNode->pShmMutex must |
| ** be held while accessing any read/write fields. |
| */ |
| struct unixShm { |
| unixShmNode *pShmNode; /* The underlying unixShmNode object */ |
| unixShm *pNext; /* Next unixShm with the same unixShmNode */ |
| u8 hasMutex; /* True if holding the unixShmNode->pShmMutex */ |
| u8 id; /* Id of this connection within its unixShmNode */ |
| u16 sharedMask; /* Mask of shared locks held */ |
| u16 exclMask; /* Mask of exclusive locks held */ |
| }; |
| |
| /* |
| ** Constants used for locking |
| */ |
| #define UNIX_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */ |
| #define UNIX_SHM_DMS (UNIX_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */ |
| |
| /* |
| ** Use F_GETLK to check whether or not there are any readers with open |
| ** wal-mode transactions in other processes on database file pFile. If |
| ** no error occurs, return SQLITE_OK and set (*piOut) to 1 if there are |
| ** such transactions, or 0 otherwise. If an error occurs, return an |
| ** SQLite error code. The final value of *piOut is undefined in this |
| ** case. |
| */ |
| static int unixFcntlExternalReader(unixFile *pFile, int *piOut){ |
| int rc = SQLITE_OK; |
| *piOut = 0; |
| if( pFile->pShm){ |
| unixShmNode *pShmNode = pFile->pShm->pShmNode; |
| struct flock f; |
| |
| memset(&f, 0, sizeof(f)); |
| f.l_type = F_WRLCK; |
| f.l_whence = SEEK_SET; |
| f.l_start = UNIX_SHM_BASE + 3; |
| f.l_len = SQLITE_SHM_NLOCK - 3; |
| |
| sqlite3_mutex_enter(pShmNode->pShmMutex); |
| if( osFcntl(pShmNode->hShm, F_GETLK, &f)<0 ){ |
| rc = SQLITE_IOERR_LOCK; |
| }else{ |
| *piOut = (f.l_type!=F_UNLCK); |
| } |
| sqlite3_mutex_leave(pShmNode->pShmMutex); |
| } |
| |
| return rc; |
| } |
| |
| |
| /* |
| ** Apply posix advisory locks for all bytes from ofst through ofst+n-1. |
| ** |
| ** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking |
| ** otherwise. |
| */ |
| static int unixShmSystemLock( |
| unixFile *pFile, /* Open connection to the WAL file */ |
| int lockType, /* F_UNLCK, F_RDLCK, or F_WRLCK */ |
| int ofst, /* First byte of the locking range */ |
| int n /* Number of bytes to lock */ |
| ){ |
| unixShmNode *pShmNode; /* Apply locks to this open shared-memory segment */ |
| struct flock f; /* The posix advisory locking structure */ |
| int rc = SQLITE_OK; /* Result code form fcntl() */ |
| |
| /* Access to the unixShmNode object is serialized by the caller */ |
| pShmNode = pFile->pInode->pShmNode; |
| assert( pShmNode->nRef==0 || sqlite3_mutex_held(pShmNode->pShmMutex) ); |
| assert( pShmNode->nRef>0 || unixMutexHeld() ); |
| |
| /* Shared locks never span more than one byte */ |
| assert( n==1 || lockType!=F_RDLCK ); |
| |
| /* Locks are within range */ |
| assert( n>=1 && n<=SQLITE_SHM_NLOCK ); |
| |
| if( pShmNode->hShm>=0 ){ |
| int res; |
| /* Initialize the locking parameters */ |
| f.l_type = lockType; |
| f.l_whence = SEEK_SET; |
| f.l_start = ofst; |
| f.l_len = n; |
| res = osSetPosixAdvisoryLock(pShmNode->hShm, &f, pFile); |
| if( res==-1 ){ |
| #ifdef SQLITE_ENABLE_SETLK_TIMEOUT |
| rc = (pFile->iBusyTimeout ? SQLITE_BUSY_TIMEOUT : SQLITE_BUSY); |
| #else |
| rc = SQLITE_BUSY; |
| #endif |
| } |
| } |
| |
| /* Update the global lock state and do debug tracing */ |
| #ifdef SQLITE_DEBUG |
| { u16 mask; |
| OSTRACE(("SHM-LOCK ")); |
| mask = ofst>31 ? 0xffff : (1<<(ofst+n)) - (1<<ofst); |
| if( rc==SQLITE_OK ){ |
| if( lockType==F_UNLCK ){ |
| OSTRACE(("unlock %d ok", ofst)); |
| pShmNode->exclMask &= ~mask; |
| pShmNode->sharedMask &= ~mask; |
| }else if( lockType==F_RDLCK ){ |
| OSTRACE(("read-lock %d ok", ofst)); |
| pShmNode->exclMask &= ~mask; |
| pShmNode->sharedMask |= mask; |
| }else{ |
| assert( lockType==F_WRLCK ); |
| OSTRACE(("write-lock %d ok", ofst)); |
| pShmNode->exclMask |= mask; |
| pShmNode->sharedMask &= ~mask; |
| } |
| }else{ |
| if( lockType==F_UNLCK ){ |
| OSTRACE(("unlock %d failed", ofst)); |
| }else if( lockType==F_RDLCK ){ |
| OSTRACE(("read-lock failed")); |
| }else{ |
| assert( lockType==F_WRLCK ); |
| OSTRACE(("write-lock %d failed", ofst)); |
| } |
| } |
| OSTRACE((" - afterwards %03x,%03x\n", |
| pShmNode->sharedMask, pShmNode->exclMask)); |
| } |
| #endif |
| |
| return rc; |
| } |
| |
| /* |
| ** Return the minimum number of 32KB shm regions that should be mapped at |
| ** a time, assuming that each mapping must be an integer multiple of the |
| ** current system page-size. |
| ** |
| ** Usually, this is 1. The exception seems to be systems that are configured |
| ** to use 64KB pages - in this case each mapping must cover at least two |
| ** shm regions. |
| */ |
| static int unixShmRegionPerMap(void){ |
| int shmsz = 32*1024; /* SHM region size */ |
| int pgsz = osGetpagesize(); /* System page size */ |
| assert( ((pgsz-1)&pgsz)==0 ); /* Page size must be a power of 2 */ |
| if( pgsz<shmsz ) return 1; |
| return pgsz/shmsz; |
| } |
| |
| /* |
| ** Purge the unixShmNodeList list of all entries with unixShmNode.nRef==0. |
| ** |
| ** This is not a VFS shared-memory method; it is a utility function called |
| ** by VFS shared-memory methods. |
| */ |
| static void unixShmPurge(unixFile *pFd){ |
| unixShmNode *p = pFd->pInode->pShmNode; |
| assert( unixMutexHeld() ); |
| if( p && ALWAYS(p->nRef==0) ){ |
| int nShmPerMap = unixShmRegionPerMap(); |
| int i; |
| assert( p->pInode==pFd->pInode ); |
| sqlite3_mutex_free(p->pShmMutex); |
| for(i=0; i<p->nRegion; i+=nShmPerMap){ |
| if( p->hShm>=0 ){ |
| osMunmap(p->apRegion[i], p->szRegion); |
| }else{ |
| sqlite3_free(p->apRegion[i]); |
| } |
| } |
| sqlite3_free(p->apRegion); |
| if( p->hShm>=0 ){ |
| robust_close(pFd, p->hShm, __LINE__); |
| p->hShm = -1; |
| } |
| p->pInode->pShmNode = 0; |
| sqlite3_free(p); |
| } |
| } |
| |
| /* |
| ** The DMS lock has not yet been taken on shm file pShmNode. Attempt to |
| ** take it now. Return SQLITE_OK if successful, or an SQLite error |
| ** code otherwise. |
| ** |
| ** If the DMS cannot be locked because this is a readonly_shm=1 |
| ** connection and no other process already holds a lock, return |
| ** SQLITE_READONLY_CANTINIT and set pShmNode->isUnlocked=1. |
| */ |
| static int unixLockSharedMemory(unixFile *pDbFd, unixShmNode *pShmNode){ |
| struct flock lock; |
| int rc = SQLITE_OK; |
| |
| /* Use F_GETLK to determine the locks other processes are holding |
| ** on the DMS byte. If it indicates that another process is holding |
| ** a SHARED lock, then this process may also take a SHARED lock |
| ** and proceed with opening the *-shm file. |
| ** |
| ** Or, if no other process is holding any lock, then this process |
| ** is the first to open it. In this case take an EXCLUSIVE lock on the |
| ** DMS byte and truncate the *-shm file to zero bytes in size. Then |
| ** downgrade to a SHARED lock on the DMS byte. |
| ** |
| ** If another process is holding an EXCLUSIVE lock on the DMS byte, |
| ** return SQLITE_BUSY to the caller (it will try again). An earlier |
| ** version of this code attempted the SHARED lock at this point. But |
| ** this introduced a subtle race condition: if the process holding |
| ** EXCLUSIVE failed just before truncating the *-shm file, then this |
| ** process might open and use the *-shm file without truncating it. |
| ** And if the *-shm file has been corrupted by a power failure or |
| ** system crash, the database itself may also become corrupt. */ |
| lock.l_whence = SEEK_SET; |
| lock.l_start = UNIX_SHM_DMS; |
| lock.l_len = 1; |
| lock.l_type = F_WRLCK; |
| if( osFcntl(pShmNode->hShm, F_GETLK, &lock)!=0 ) { |
| rc = SQLITE_IOERR_LOCK; |
| }else if( lock.l_type==F_UNLCK ){ |
| if( pShmNode->isReadonly ){ |
| pShmNode->isUnlocked = 1; |
| rc = SQLITE_READONLY_CANTINIT; |
| }else{ |
| rc = unixShmSystemLock(pDbFd, F_WRLCK, UNIX_SHM_DMS, 1); |
| /* The first connection to attach must truncate the -shm file. We |
| ** truncate to 3 bytes (an arbitrary small number, less than the |
| ** -shm header size) rather than 0 as a system debugging aid, to |
| ** help detect if a -shm file truncation is legitimate or is the work |
| ** or a rogue process. */ |
| if( rc==SQLITE_OK && robust_ftruncate(pShmNode->hShm, 3) ){ |
| rc = unixLogError(SQLITE_IOERR_SHMOPEN,"ftruncate",pShmNode->zFilename); |
| } |
| } |
| }else if( lock.l_type==F_WRLCK ){ |
| rc = SQLITE_BUSY; |
| } |
| |
| if( rc==SQLITE_OK ){ |
| assert( lock.l_type==F_UNLCK || lock.l_type==F_RDLCK ); |
| rc = unixShmSystemLock(pDbFd, F_RDLCK, UNIX_SHM_DMS, 1); |
| } |
| return rc; |
| } |
| |
| /* |
| ** Open a shared-memory area associated with open database file pDbFd. |
| ** This particular implementation uses mmapped files. |
| ** |
| ** The file used to implement shared-memory is in the same directory |
| ** as the open database file and has the same name as the open database |
| ** file with the "-shm" suffix added. For example, if the database file |
| ** is "/home/user1/config.db" then the file that is created and mmapped |
| ** for shared memory will be called "/home/user1/config.db-shm". |
| ** |
| ** Another approach to is to use files in /dev/shm or /dev/tmp or an |
| ** some other tmpfs mount. But if a file in a different directory |
| ** from the database file is used, then differing access permissions |
| ** or a chroot() might cause two different processes on the same |
| ** database to end up using different files for shared memory - |
| ** meaning that their memory would not really be shared - resulting |
| ** in database corruption. Nevertheless, this tmpfs file usage |
| ** can be enabled at compile-time using -DSQLITE_SHM_DIRECTORY="/dev/shm" |
| ** or the equivalent. The use of the SQLITE_SHM_DIRECTORY compile-time |
| ** option results in an incompatible build of SQLite; builds of SQLite |
| ** that with differing SQLITE_SHM_DIRECTORY settings attempt to use the |
| ** same database file at the same time, database corruption will likely |
| ** result. The SQLITE_SHM_DIRECTORY compile-time option is considered |
| ** "unsupported" and may go away in a future SQLite release. |
| ** |
| ** When opening a new shared-memory file, if no other instances of that |
| ** file are currently open, in this process or in other processes, then |
| ** the file must be truncated to zero length or have its header cleared. |
| ** |
| ** If the original database file (pDbFd) is using the "unix-excl" VFS |
| ** that means that an exclusive lock is held on the database file and |
| ** that no other processes are able to read or write the database. In |
| ** that case, we do not really need shared memory. No shared memory |
| ** file is created. The shared memory will be simulated with heap memory. |
| */ |
| static int unixOpenSharedMemory(unixFile *pDbFd){ |
| struct unixShm *p = 0; /* The connection to be opened */ |
| struct unixShmNode *pShmNode; /* The underlying mmapped file */ |
| int rc = SQLITE_OK; /* Result code */ |
| unixInodeInfo *pInode; /* The inode of fd */ |
| char *zShm; /* Name of the file used for SHM */ |
| int nShmFilename; /* Size of the SHM filename in bytes */ |
| |
| /* Allocate space for the new unixShm object. */ |
| p = sqlite3_malloc64( sizeof(*p) ); |
| if( p==0 ) return SQLITE_NOMEM_BKPT; |
| memset(p, 0, sizeof(*p)); |
| assert( pDbFd->pShm==0 ); |
| |
| /* Check to see if a unixShmNode object already exists. Reuse an existing |
| ** one if present. Create a new one if necessary. |
| */ |
| assert( unixFileMutexNotheld(pDbFd) ); |
| unixEnterMutex(); |
| pInode = pDbFd->pInode; |
| pShmNode = pInode->pShmNode; |
| if( pShmNode==0 ){ |
| struct stat sStat; /* fstat() info for database file */ |
| #ifndef SQLITE_SHM_DIRECTORY |
| const char *zBasePath = pDbFd->zPath; |
| #endif |
| |
| /* Call fstat() to figure out the permissions on the database file. If |
| ** a new *-shm file is created, an attempt will be made to create it |
| ** with the same permissions. |
| */ |
| if( osFstat(pDbFd->h, &sStat) ){ |
| rc = SQLITE_IOERR_FSTAT; |
| goto shm_open_err; |
| } |
| |
| #ifdef SQLITE_SHM_DIRECTORY |
| nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 31; |
| #else |
| nShmFilename = 6 + (int)strlen(zBasePath); |
| #endif |
| pShmNode = sqlite3_malloc64( sizeof(*pShmNode) + nShmFilename ); |
| if( pShmNode==0 ){ |
| rc = SQLITE_NOMEM_BKPT; |
| goto shm_open_err; |
| } |
| memset(pShmNode, 0, sizeof(*pShmNode)+nShmFilename); |
| zShm = pShmNode->zFilename = (char*)&pShmNode[1]; |
| #ifdef SQLITE_SHM_DIRECTORY |
| sqlite3_snprintf(nShmFilename, zShm, |
| SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x", |
| (u32)sStat.st_ino, (u32)sStat.st_dev); |
| #else |
| sqlite3_snprintf(nShmFilename, zShm, "%s-shm", zBasePath); |
| sqlite3FileSuffix3(pDbFd->zPath, zShm); |
| #endif |
| pShmNode->hShm = -1; |
| pDbFd->pInode->pShmNode = pShmNode; |
| pShmNode->pInode = pDbFd->pInode; |
| if( sqlite3GlobalConfig.bCoreMutex ){ |
| pShmNode->pShmMutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); |
| if( pShmNode->pShmMutex==0 ){ |
| rc = SQLITE_NOMEM_BKPT; |
| goto shm_open_err; |
| } |
| } |
| |
| if( pInode->bProcessLock==0 ){ |
| if( 0==sqlite3_uri_boolean(pDbFd->zPath, "readonly_shm", 0) ){ |
| pShmNode->hShm = robust_open(zShm, O_RDWR|O_CREAT|O_NOFOLLOW, |
| (sStat.st_mode&0777)); |
| } |
| if( pShmNode->hShm<0 ){ |
| pShmNode->hShm = robust_open(zShm, O_RDONLY|O_NOFOLLOW, |
| (sStat.st_mode&0777)); |
| if( pShmNode->hShm<0 ){ |
| rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShm); |
| goto shm_open_err; |
| } |
| pShmNode->isReadonly = 1; |
| } |
| |
| /* If this process is running as root, make sure that the SHM file |
| ** is owned by the same user that owns the original database. Otherwise, |
| ** the original owner will not be able to connect. |
| */ |
| robustFchown(pShmNode->hShm, sStat.st_uid, sStat.st_gid); |
| |
| rc = unixLockSharedMemory(pDbFd, pShmNode); |
| if( rc!=SQLITE_OK && rc!=SQLITE_READONLY_CANTINIT ) goto shm_open_err; |
| } |
| } |
| |
| /* Make the new connection a child of the unixShmNode */ |
| p->pShmNode = pShmNode; |
| #ifdef SQLITE_DEBUG |
| p->id = pShmNode->nextShmId++; |
| #endif |
| pShmNode->nRef++; |
| pDbFd->pShm = p; |
| unixLeaveMutex(); |
| |
| /* The reference count on pShmNode has already been incremented under |
| ** the cover of the unixEnterMutex() mutex and the pointer from the |
| ** new (struct unixShm) object to the pShmNode has been set. All that is |
| ** left to do is to link the new object into the linked list starting |
| ** at pShmNode->pFirst. This must be done while holding the |
| ** pShmNode->pShmMutex. |
| */ |
| sqlite3_mutex_enter(pShmNode->pShmMutex); |
| p->pNext = pShmNode->pFirst; |
| pShmNode->pFirst = p; |
| sqlite3_mutex_leave(pShmNode->pShmMutex); |
| return rc; |
| |
| /* Jump here on any error */ |
| shm_open_err: |
| unixShmPurge(pDbFd); /* This call frees pShmNode if required */ |
| sqlite3_free(p); |
| unixLeaveMutex(); |
| return rc; |
| } |
| |
| /* |
| ** This function is called to obtain a pointer to region iRegion of the |
| ** shared-memory associated with the database file fd. Shared-memory regions |
| ** are numbered starting from zero. Each shared-memory region is szRegion |
| ** bytes in size. |
| ** |
| ** If an error occurs, an error code is returned and *pp is set to NULL. |
| ** |
| ** Otherwise, if the bExtend parameter is 0 and the requested shared-memory |
| ** region has not been allocated (by any client, including one running in a |
| ** separate process), then *pp is set to NULL and SQLITE_OK returned. If |
| ** bExtend is non-zero and the requested shared-memory region has not yet |
| ** been allocated, it is allocated by this function. |
| ** |
| ** If the shared-memory region has already been allocated or is allocated by |
| ** this call as described above, then it is mapped into this processes |
| ** address space (if it is not already), *pp is set to point to the mapped |
| ** memory and SQLITE_OK returned. |
| */ |
| static int unixShmMap( |
| sqlite3_file *fd, /* Handle open on database file */ |
| int iRegion, /* Region to retrieve */ |
| int szRegion, /* Size of regions */ |
| int bExtend, /* True to extend file if necessary */ |
| void volatile **pp /* OUT: Mapped memory */ |
| ){ |
| unixFile *pDbFd = (unixFile*)fd; |
| unixShm *p; |
| unixShmNode *pShmNode; |
| int rc = SQLITE_OK; |
| int nShmPerMap = unixShmRegionPerMap(); |
| int nReqRegion; |
| |
| /* If the shared-memory file has not yet been opened, open it now. */ |
| if( pDbFd->pShm==0 ){ |
| rc = unixOpenSharedMemory(pDbFd); |
| if( rc!=SQLITE_OK ) return rc; |
| } |
| |
| p = pDbFd->pShm; |
| pShmNode = p->pShmNode; |
| sqlite3_mutex_enter(pShmNode->pShmMutex); |
| if( pShmNode->isUnlocked ){ |
| rc = unixLockSharedMemory(pDbFd, pShmNode); |
| if( rc!=SQLITE_OK ) goto shmpage_out; |
| pShmNode->isUnlocked = 0; |
| } |
| assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 ); |
| assert( pShmNode->pInode==pDbFd->pInode ); |
| assert( pShmNode->hShm>=0 || pDbFd->pInode->bProcessLock==1 ); |
| assert( pShmNode->hShm<0 || pDbFd->pInode->bProcessLock==0 ); |
| |
| /* Minimum number of regions required to be mapped. */ |
| nReqRegion = ((iRegion+nShmPerMap) / nShmPerMap) * nShmPerMap; |
| |
| if( pShmNode->nRegion<nReqRegion ){ |
| char **apNew; /* New apRegion[] array */ |
| int nByte = nReqRegion*szRegion; /* Minimum required file size */ |
| struct stat sStat; /* Used by fstat() */ |
| |
| pShmNode->szRegion = szRegion; |
| |
| if( pShmNode->hShm>=0 ){ |
| /* The requested region is not mapped into this processes address space. |
| ** Check to see if it has been allocated (i.e. if the wal-index file is |
| ** large enough to contain the requested region). |
| */ |
| if( osFstat(pShmNode->hShm, &sStat) ){ |
| rc = SQLITE_IOERR_SHMSIZE; |
| goto shmpage_out; |
| } |
| |
| if( sStat.st_size<nByte ){ |
| /* The requested memory region does not exist. If bExtend is set to |
| ** false, exit early. *pp will be set to NULL and SQLITE_OK returned. |
| */ |
| if( !bExtend ){ |
| goto shmpage_out; |
| } |
| |
| /* Alternatively, if bExtend is true, extend the file. Do this by |
| ** writing a single byte to the end of each (OS) page being |
| ** allocated or extended. Technically, we need only write to the |
| ** last page in order to extend the file. But writing to all new |
| ** pages forces the OS to allocate them immediately, which reduces |
| ** the chances of SIGBUS while accessing the mapped region later on. |
| */ |
| else{ |
| static const int pgsz = 4096; |
| int iPg; |
| |
| /* Write to the last byte of each newly allocated or extended page */ |
| assert( (nByte % pgsz)==0 ); |
| for(iPg=(sStat.st_size/pgsz); iPg<(nByte/pgsz); iPg++){ |
| int x = 0; |
| if( seekAndWriteFd(pShmNode->hShm, iPg*pgsz + pgsz-1,"",1,&x)!=1 ){ |
| const char *zFile = pShmNode->zFilename; |
| rc = unixLogError(SQLITE_IOERR_SHMSIZE, "write", zFile); |
| goto shmpage_out; |
| } |
| } |
| } |
| } |
| } |
| |
| /* Map the requested memory region into this processes address space. */ |
| apNew = (char **)sqlite3_realloc( |
| pShmNode->apRegion, nReqRegion*sizeof(char *) |
| ); |
| if( !apNew ){ |
| rc = SQLITE_IOERR_NOMEM_BKPT; |
| goto shmpage_out; |
| } |
| pShmNode->apRegion = apNew; |
| while( pShmNode->nRegion<nReqRegion ){ |
| int nMap = szRegion*nShmPerMap; |
| int i; |
| void *pMem; |
| if( pShmNode->hShm>=0 ){ |
| pMem = osMmap(0, nMap, |
| pShmNode->isReadonly ? PROT_READ : PROT_READ|PROT_WRITE, |
| MAP_SHARED, pShmNode->hShm, szRegion*(i64)pShmNode->nRegion |
| ); |
| if( pMem==MAP_FAILED ){ |
| rc = unixLogError(SQLITE_IOERR_SHMMAP, "mmap", pShmNode->zFilename); |
| goto shmpage_out; |
| } |
| }else{ |
| pMem = sqlite3_malloc64(nMap); |
| if( pMem==0 ){ |
| rc = SQLITE_NOMEM_BKPT; |
| goto shmpage_out; |
| } |
| memset(pMem, 0, nMap); |
| } |
| |
| for(i=0; i<nShmPerMap; i++){ |
| pShmNode->apRegion[pShmNode->nRegion+i] = &((char*)pMem)[szRegion*i]; |
| } |
| pShmNode->nRegion += nShmPerMap; |
| } |
| } |
| |
| shmpage_out: |
| if( pShmNode->nRegion>iRegion ){ |
| *pp = pShmNode->apRegion[iRegion]; |
| }else{ |
| *pp = 0; |
| } |
| if( pShmNode->isReadonly && rc==SQLITE_OK ) rc = SQLITE_READONLY; |
| sqlite3_mutex_leave(pShmNode->pShmMutex); |
| return rc; |
| } |
| |
| /* |
| ** Check that the pShmNode->aLock[] array comports with the locking bitmasks |
| ** held by each client. Return true if it does, or false otherwise. This |
| ** is to be used in an assert(). e.g. |
| ** |
| ** assert( assertLockingArrayOk(pShmNode) ); |
| */ |
| #ifdef SQLITE_DEBUG |
| static int assertLockingArrayOk(unixShmNode *pShmNode){ |
| unixShm *pX; |
| int aLock[SQLITE_SHM_NLOCK]; |
| assert( sqlite3_mutex_held(pShmNode->pShmMutex) ); |
| |
| memset(aLock, 0, sizeof(aLock)); |
| for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ |
| int i; |
| for(i=0; i<SQLITE_SHM_NLOCK; i++){ |
| if( pX->exclMask & (1<<i) ){ |
| assert( aLock[i]==0 ); |
| aLock[i] = -1; |
| }else if( pX->sharedMask & (1<<i) ){ |
| assert( aLock[i]>=0 ); |
| aLock[i]++; |
| } |
| } |
| } |
| |
| assert( 0==memcmp(pShmNode->aLock, aLock, sizeof(aLock)) ); |
| return (memcmp(pShmNode->aLock, aLock, sizeof(aLock))==0); |
| } |
| #endif |
| |
| /* |
| ** Change the lock state for a shared-memory segment. |
| ** |
| ** Note that the relationship between SHAREd and EXCLUSIVE locks is a little |
| ** different here than in posix. In xShmLock(), one can go from unlocked |
| ** to shared and back or from unlocked to exclusive and back. But one may |
| ** not go from shared to exclusive or from exclusive to shared. |
| */ |
| static int unixShmLock( |
| sqlite3_file *fd, /* Database file holding the shared memory */ |
| int ofst, /* First lock to acquire or release */ |
| int n, /* Number of locks to acquire or release */ |
| int flags /* What to do with the lock */ |
| ){ |
| unixFile *pDbFd = (unixFile*)fd; /* Connection holding shared memory */ |
| unixShm *p; /* The shared memory being locked */ |
| unixShmNode *pShmNode; /* The underlying file iNode */ |
| int rc = SQLITE_OK; /* Result code */ |
| u16 mask; /* Mask of locks to take or release */ |
| int *aLock; |
| |
| p = pDbFd->pShm; |
| if( p==0 ) return SQLITE_IOERR_SHMLOCK; |
| pShmNode = p->pShmNode; |
| if( NEVER(pShmNode==0) ) return SQLITE_IOERR_SHMLOCK; |
| aLock = pShmNode->aLock; |
| |
| assert( pShmNode==pDbFd->pInode->pShmNode ); |
| assert( pShmNode->pInode==pDbFd->pInode ); |
| assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK ); |
| assert( n>=1 ); |
| assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED) |
| || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE) |
| || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED) |
| || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) ); |
| assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 ); |
| assert( pShmNode->hShm>=0 || pDbFd->pInode->bProcessLock==1 ); |
| assert( pShmNode->hShm<0 || pDbFd->pInode->bProcessLock==0 ); |
| |
| /* Check that, if this to be a blocking lock, no locks that occur later |
| ** in the following list than the lock being obtained are already held: |
| ** |
| ** 1. Checkpointer lock (ofst==1). |
| ** 2. Write lock (ofst==0). |
| ** 3. Read locks (ofst>=3 && ofst<SQLITE_SHM_NLOCK). |
| ** |
| ** In other words, if this is a blocking lock, none of the locks that |
| ** occur later in the above list than the lock being obtained may be |
| ** held. |
| ** |
| ** It is not permitted to block on the RECOVER lock. |
| */ |
| #ifdef SQLITE_ENABLE_SETLK_TIMEOUT |
| assert( (flags & SQLITE_SHM_UNLOCK) || pDbFd->iBusyTimeout==0 || ( |
| (ofst!=2) /* not RECOVER */ |
| && (ofst!=1 || (p->exclMask|p->sharedMask)==0) |
| && (ofst!=0 || (p->exclMask|p->sharedMask)<3) |
| && (ofst<3 || (p->exclMask|p->sharedMask)<(1<<ofst)) |
| )); |
| #endif |
| |
| mask = (1<<(ofst+n)) - (1<<ofst); |
| assert( n>1 || mask==(1<<ofst) ); |
| sqlite3_mutex_enter(pShmNode->pShmMutex); |
| assert( assertLockingArrayOk(pShmNode) ); |
| if( flags & SQLITE_SHM_UNLOCK ){ |
| if( (p->exclMask|p->sharedMask) & mask ){ |
| int ii; |
| int bUnlock = 1; |
| |
| for(ii=ofst; ii<ofst+n; ii++){ |
| if( aLock[ii]>((p->sharedMask & (1<<ii)) ? 1 : 0) ){ |
| bUnlock = 0; |
| } |
| } |
| |
| if( bUnlock ){ |
| rc = unixShmSystemLock(pDbFd, F_UNLCK, ofst+UNIX_SHM_BASE, n); |
| if( rc==SQLITE_OK ){ |
| memset(&aLock[ofst], 0, sizeof(int)*n); |
| } |
| }else if( ALWAYS(p->sharedMask & (1<<ofst)) ){ |
| assert( n==1 && aLock[ofst]>1 ); |
| aLock[ofst]--; |
| } |
| |
| /* Undo the local locks */ |
| if( rc==SQLITE_OK ){ |
| p->exclMask &= ~mask; |
| p->sharedMask &= ~mask; |
| } |
| } |
| }else if( flags & SQLITE_SHM_SHARED ){ |
| assert( n==1 ); |
| assert( (p->exclMask & (1<<ofst))==0 ); |
| if( (p->sharedMask & mask)==0 ){ |
| if( aLock[ofst]<0 ){ |
| rc = SQLITE_BUSY; |
| }else if( aLock[ofst]==0 ){ |
| rc = unixShmSystemLock(pDbFd, F_RDLCK, ofst+UNIX_SHM_BASE, n); |
| } |
| |
| /* Get the local shared locks */ |
| if( rc==SQLITE_OK ){ |
| p->sharedMask |= mask; |
| aLock[ofst]++; |
| } |
| } |
| }else{ |
| /* Make sure no sibling connections hold locks that will block this |
| ** lock. If any do, return SQLITE_BUSY right away. */ |
| int ii; |
| for(ii=ofst; ii<ofst+n; ii++){ |
| assert( (p->sharedMask & mask)==0 ); |
| if( ALWAYS((p->exclMask & (1<<ii))==0) && aLock[ii] ){ |
| rc = SQLITE_BUSY; |
| break; |
| } |
| } |
| |
| /* Get the exclusive locks at the system level. Then if successful |
| ** also update the in-memory values. */ |
| if( rc==SQLITE_OK ){ |
| rc = unixShmSystemLock(pDbFd, F_WRLCK, ofst+UNIX_SHM_BASE, n); |
| if( rc==SQLITE_OK ){ |
| assert( (p->sharedMask & mask)==0 ); |
| p->exclMask |= mask; |
| for(ii=ofst; ii<ofst+n; ii++){ |
| aLock[ii] = -1; |
| } |
| } |
| } |
| } |
| assert( assertLockingArrayOk(pShmNode) ); |
| sqlite3_mutex_leave(pShmNode->pShmMutex); |
| OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n", |
| p->id, osGetpid(0), p->sharedMask, p->exclMask)); |
| return rc; |
| } |
| |
| /* |
| ** Implement a memory barrier or memory fence on shared memory. |
| ** |
| ** All loads and stores begun before the barrier must complete before |
| ** any load or store begun after the barrier. |
| */ |
| static void unixShmBarrier( |
| sqlite3_file *fd /* Database file holding the shared memory */ |
| ){ |
| UNUSED_PARAMETER(fd); |
| sqlite3MemoryBarrier(); /* compiler-defined memory barrier */ |
| assert( fd->pMethods->xLock==nolockLock |
| || unixFileMutexNotheld((unixFile*)fd) |
| ); |
| unixEnterMutex(); /* Also mutex, for redundancy */ |
| unixLeaveMutex(); |
| } |
| |
| /* |
| ** Close a connection to shared-memory. Delete the underlying |
| ** storage if deleteFlag is true. |
| ** |
| ** If there is no shared memory associated with the connection then this |
| ** routine is a harmless no-op. |
| */ |
| static int unixShmUnmap( |
| sqlite3_file *fd, /* The underlying database file */ |
| int deleteFlag /* Delete shared-memory if true */ |
| ){ |
| unixShm *p; /* The connection to be closed */ |
| unixShmNode *pShmNode; /* The underlying shared-memory file */ |
| unixShm **pp; /* For looping over sibling connections */ |
| unixFile *pDbFd; /* The underlying database file */ |
| |
| pDbFd = (unixFile*)fd; |
| p = pDbFd->pShm; |
| if( p==0 ) return SQLITE_OK; |
| pShmNode = p->pShmNode; |
| |
| assert( pShmNode==pDbFd->pInode->pShmNode ); |
| assert( pShmNode->pInode==pDbFd->pInode ); |
| |
| /* Remove connection p from the set of connections associated |
| ** with pShmNode */ |
| sqlite3_mutex_enter(pShmNode->pShmMutex); |
| for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){} |
| *pp = p->pNext; |
| |
| /* Free the connection p */ |
| sqlite3_free(p); |
| pDbFd->pShm = 0; |
| sqlite3_mutex_leave(pShmNode->pShmMutex); |
| |
| /* If pShmNode->nRef has reached 0, then close the underlying |
| ** shared-memory file, too */ |
| assert( unixFileMutexNotheld(pDbFd) ); |
| unixEnterMutex(); |
| assert( pShmNode->nRef>0 ); |
| pShmNode->nRef--; |
| if( pShmNode->nRef==0 ){ |
| if( deleteFlag && pShmNode->hShm>=0 ){ |
| osUnlink(pShmNode->zFilename); |
| } |
| unixShmPurge(pDbFd); |
| } |
| unixLeaveMutex(); |
| |
| return SQLITE_OK; |
| } |
| |
| |
| #else |
| # define unixShmMap 0 |
| # define unixShmLock 0 |
| # define unixShmBarrier 0 |
| # define unixShmUnmap 0 |
| #endif /* #ifndef SQLITE_OMIT_WAL */ |
| |
| #if SQLITE_MAX_MMAP_SIZE>0 |
| /* |
| ** If it is currently memory mapped, unmap file pFd. |
| */ |
| static void unixUnmapfile(unixFile *pFd){ |
| assert( pFd->nFetchOut==0 ); |
| if( pFd->pMapRegion ){ |
| osMunmap(pFd->pMapRegion, pFd->mmapSizeActual); |
| pFd->pMapRegion = 0; |
| pFd->mmapSize = 0; |
| pFd->mmapSizeActual = 0; |
| } |
| } |
| |
| /* |
| ** Attempt to set the size of the memory mapping maintained by file |
| ** descriptor pFd to nNew bytes. Any existing mapping is discarded. |
| ** |
| ** If successful, this function sets the following variables: |
| ** |
| ** unixFile.pMapRegion |
| ** unixFile.mmapSize |
| ** unixFile.mmapSizeActual |
| ** |
| ** If unsuccessful, an error message is logged via sqlite3_log() and |
| ** the three variables above are zeroed. In this case SQLite should |
| ** continue accessing the database using the xRead() and xWrite() |
| ** methods. |
| */ |
| static void unixRemapfile( |
| unixFile *pFd, /* File descriptor object */ |
| i64 nNew /* Required mapping size */ |
| ){ |
| const char *zErr = "mmap"; |
| int h = pFd->h; /* File descriptor open on db file */ |
| u8 *pOrig = (u8 *)pFd->pMapRegion; /* Pointer to current file mapping */ |
| i64 nOrig = pFd->mmapSizeActual; /* Size of pOrig region in bytes */ |
| u8 *pNew = 0; /* Location of new mapping */ |
| int flags = PROT_READ; /* Flags to pass to mmap() */ |
| |
| assert( pFd->nFetchOut==0 ); |
| assert( nNew>pFd->mmapSize ); |
| assert( nNew<=pFd->mmapSizeMax ); |
| assert( nNew>0 ); |
| assert( pFd->mmapSizeActual>=pFd->mmapSize ); |
| assert( MAP_FAILED!=0 ); |
| |
| #ifdef SQLITE_MMAP_READWRITE |
| if( (pFd->ctrlFlags & UNIXFILE_RDONLY)==0 ) flags |= PROT_WRITE; |
| #endif |
| |
| if( pOrig ){ |
| #if HAVE_MREMAP |
| i64 nReuse = pFd->mmapSize; |
| #else |
| const int szSyspage = osGetpagesize(); |
| i64 nReuse = (pFd->mmapSize & ~(szSyspage-1)); |
| #endif |
| u8 *pReq = &pOrig[nReuse]; |
| |
| /* Unmap any pages of the existing mapping that cannot be reused. */ |
| if( nReuse!=nOrig ){ |
| osMunmap(pReq, nOrig-nReuse); |
| } |
| |
| #if HAVE_MREMAP |
| pNew = osMremap(pOrig, nReuse, nNew, MREMAP_MAYMOVE); |
| zErr = "mremap"; |
| #else |
| pNew = osMmap(pReq, nNew-nReuse, flags, MAP_SHARED, h, nReuse); |
| if( pNew!=MAP_FAILED ){ |
| if( pNew!=pReq ){ |
| osMunmap(pNew, nNew - nReuse); |
| pNew = 0; |
| }else{ |
| pNew = pOrig; |
| } |
| } |
| #endif |
| |
| /* The attempt to extend the existing mapping failed. Free it. */ |
| if( pNew==MAP_FAILED || pNew==0 ){ |
| osMunmap(pOrig, nReuse); |
| } |
| } |
| |
| /* If pNew is still NULL, try to create an entirely new mapping. */ |
| if( pNew==0 ){ |
| pNew = osMmap(0, nNew, flags, MAP_SHARED, h, 0); |
| } |
| |
| if( pNew==MAP_FAILED ){ |
| pNew = 0; |
| nNew = 0; |
| unixLogError(SQLITE_OK, zErr, pFd->zPath); |
| |
| /* If the mmap() above failed, assume that all subsequent mmap() calls |
| ** will probably fail too. Fall back to using xRead/xWrite exclusively |
| ** in this case. */ |
| pFd->mmapSizeMax = 0; |
| } |
| pFd->pMapRegion = (void *)pNew; |
| pFd->mmapSize = pFd->mmapSizeActual = nNew; |
| } |
| |
| /* |
| ** Memory map or remap the file opened by file-descriptor pFd (if the file |
| ** is already mapped, the existing mapping is replaced by the new). Or, if |
| ** there already exists a mapping for this file, and there are still |
| ** outstanding xFetch() references to it, this function is a no-op. |
| ** |
| ** If parameter nByte is non-negative, then it is the requested size of |
| ** the mapping to create. Otherwise, if nByte is less than zero, then the |
| ** requested size is the size of the file on disk. The actual size of the |
| ** created mapping is either the requested size or the value configured |
| ** using SQLITE_FCNTL_MMAP_LIMIT, whichever is smaller. |
| ** |
| ** SQLITE_OK is returned if no error occurs (even if the mapping is not |
| ** recreated as a result of outstanding references) or an SQLite error |
| ** code otherwise. |
| */ |
| static int unixMapfile(unixFile *pFd, i64 nMap){ |
| assert( nMap>=0 || pFd->nFetchOut==0 ); |
| assert( nMap>0 || (pFd->mmapSize==0 && pFd->pMapRegion==0) ); |
| if( pFd->nFetchOut>0 ) return SQLITE_OK; |
| |
| if( nMap<0 ){ |
| struct stat statbuf; /* Low-level file information */ |
| if( osFstat(pFd->h, &statbuf) ){ |
| return SQLITE_IOERR_FSTAT; |
| } |
| nMap = statbuf.st_size; |
| } |
| if( nMap>pFd->mmapSizeMax ){ |
| nMap = pFd->mmapSizeMax; |
| } |
| |
| assert( nMap>0 || (pFd->mmapSize==0 && pFd->pMapRegion==0) ); |
| if( nMap!=pFd->mmapSize ){ |
| unixRemapfile(pFd, nMap); |
| } |
| |
| return SQLITE_OK; |
| } |
| #endif /* SQLITE_MAX_MMAP_SIZE>0 */ |
| |
| /* |
| ** If possible, return a pointer to a mapping of file fd starting at offset |
| ** iOff. The mapping must be valid for at least nAmt bytes. |
| ** |
| ** If such a pointer can be obtained, store it in *pp and return SQLITE_OK. |
| ** Or, if one cannot but no error occurs, set *pp to 0 and return SQLITE_OK. |
| ** Finally, if an error does occur, return an SQLite error code. The final |
| ** value of *pp is undefined in this case. |
| ** |
| ** If this function does return a pointer, the caller must eventually |
| ** release the reference by calling unixUnfetch(). |
| */ |
| static int unixFetch(sqlite3_file *fd, i64 iOff, int nAmt, void **pp){ |
| #if SQLITE_MAX_MMAP_SIZE>0 |
| unixFile *pFd = (unixFile *)fd; /* The underlying database file */ |
| #endif |
| *pp = 0; |
| |
| #if SQLITE_MAX_MMAP_SIZE>0 |
| if( pFd->mmapSizeMax>0 ){ |
| if( pFd->pMapRegion==0 ){ |
| int rc = unixMapfile(pFd, -1); |
| if( rc!=SQLITE_OK ) return rc; |
| } |
| if( pFd->mmapSize >= iOff+nAmt ){ |
| *pp = &((u8 *)pFd->pMapRegion)[iOff]; |
| pFd->nFetchOut++; |
| } |
| } |
| #endif |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** If the third argument is non-NULL, then this function releases a |
| ** reference obtained by an earlier call to unixFetch(). The second |
| ** argument passed to this function must be the same as the corresponding |
| ** argument that was passed to the unixFetch() invocation. |
| ** |
| ** Or, if the third argument is NULL, then this function is being called |
| ** to inform the VFS layer that, according to POSIX, any existing mapping |
| ** may now be invalid and should be unmapped. |
| */ |
| static int unixUnfetch(sqlite3_file *fd, i64 iOff, void *p){ |
| #if SQLITE_MAX_MMAP_SIZE>0 |
| unixFile *pFd = (unixFile *)fd; /* The underlying database file */ |
| UNUSED_PARAMETER(iOff); |
| |
| /* If p==0 (unmap the entire file) then there must be no outstanding |
| ** xFetch references. Or, if p!=0 (meaning it is an xFetch reference), |
| ** then there must be at least one outstanding. */ |
| assert( (p==0)==(pFd->nFetchOut==0) ); |
| |
| /* If p!=0, it must match the iOff value. */ |
| assert( p==0 || p==&((u8 *)pFd->pMapRegion)[iOff] ); |
| |
| if( p ){ |
| pFd->nFetchOut--; |
| }else{ |
| unixUnmapfile(pFd); |
| } |
| |
| assert( pFd->nFetchOut>=0 ); |
| #else |
| UNUSED_PARAMETER(fd); |
| UNUSED_PARAMETER(p); |
| UNUSED_PARAMETER(iOff); |
| #endif |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Here ends the implementation of all sqlite3_file methods. |
| ** |
| ********************** End sqlite3_file Methods ******************************* |
| ******************************************************************************/ |
| |
| /* |
| ** This division contains definitions of sqlite3_io_methods objects that |
| ** implement various file locking strategies. It also contains definitions |
| ** of "finder" functions. A finder-function is used to locate the appropriate |
| ** sqlite3_io_methods object for a particular database file. The pAppData |
| ** field of the sqlite3_vfs VFS objects are initialized to be pointers to |
| ** the correct finder-function for that VFS. |
| ** |
| ** Most finder functions return a pointer to a fixed sqlite3_io_methods |
| ** object. The only interesting finder-function is autolockIoFinder, which |
| ** looks at the filesystem type and tries to guess the best locking |
| ** strategy from that. |
| ** |
| ** For finder-function F, two objects are created: |
| ** |
| ** (1) The real finder-function named "FImpt()". |
| ** |
| ** (2) A constant pointer to this function named just "F". |
| ** |
| ** |
| ** A pointer to the F pointer is used as the pAppData value for VFS |
| ** objects. We have to do this instead of letting pAppData point |
| ** directly at the finder-function since C90 rules prevent a void* |
| ** from be cast into a function pointer. |
| ** |
| ** |
| ** Each instance of this macro generates two objects: |
| ** |
| ** * A constant sqlite3_io_methods object call METHOD that has locking |
| ** methods CLOSE, LOCK, UNLOCK, CKRESLOCK. |
| ** |
| ** * An I/O method finder function called FINDER that returns a pointer |
| ** to the METHOD object in the previous bullet. |
| */ |
| #define IOMETHODS(FINDER,METHOD,VERSION,CLOSE,LOCK,UNLOCK,CKLOCK,SHMMAP) \ |
| static const sqlite3_io_methods METHOD = { \ |
| VERSION, /* iVersion */ \ |
| CLOSE, /* xClose */ \ |
| unixRead, /* xRead */ \ |
| unixWrite, /* xWrite */ \ |
| unixTruncate, /* xTruncate */ \ |
| unixSync, /* xSync */ \ |
| unixFileSize, /* xFileSize */ \ |
| LOCK, /* xLock */ \ |
| UNLOCK, /* xUnlock */ \ |
| CKLOCK, /* xCheckReservedLock */ \ |
| unixFileControl, /* xFileControl */ \ |
| unixSectorSize, /* xSectorSize */ \ |
| unixDeviceCharacteristics, /* xDeviceCapabilities */ \ |
| SHMMAP, /* xShmMap */ \ |
| unixShmLock, /* xShmLock */ \ |
| unixShmBarrier, /* xShmBarrier */ \ |
| unixShmUnmap, /* xShmUnmap */ \ |
| unixFetch, /* xFetch */ \ |
| unixUnfetch, /* xUnfetch */ \ |
| }; \ |
| static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){ \ |
| UNUSED_PARAMETER(z); UNUSED_PARAMETER(p); \ |
| return &METHOD; \ |
| } \ |
| static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p) \ |
| = FINDER##Impl; |
| |
| /* |
| ** Here are all of the sqlite3_io_methods objects for each of the |
| ** locking strategies. Functions that return pointers to these methods |
| ** are also created. |
| */ |
| IOMETHODS( |
| posixIoFinder, /* Finder function name */ |
| posixIoMethods, /* sqlite3_io_methods object name */ |
| 3, /* shared memory and mmap are enabled */ |
| unixClose, /* xClose method */ |
| unixLock, /* xLock method */ |
| unixUnlock, /* xUnlock method */ |
| unixCheckReservedLock, /* xCheckReservedLock method */ |
| unixShmMap /* xShmMap method */ |
| ) |
| IOMETHODS( |
| nolockIoFinder, /* Finder function name */ |
| nolockIoMethods, /* sqlite3_io_methods object name */ |
| 3, /* shared memory and mmap are enabled */ |
| nolockClose, /* xClose method */ |
| nolockLock, /* xLock method */ |
| nolockUnlock, /* xUnlock method */ |
| nolockCheckReservedLock, /* xCheckReservedLock method */ |
| 0 /* xShmMap method */ |
| ) |
| IOMETHODS( |
| dotlockIoFinder, /* Finder function name */ |
| dotlockIoMethods, /* sqlite3_io_methods object name */ |
| 1, /* shared memory is disabled */ |
| dotlockClose, /* xClose method */ |
| dotlockLock, /* xLock method */ |
| dotlockUnlock, /* xUnlock method */ |
| dotlockCheckReservedLock, /* xCheckReservedLock method */ |
| 0 /* xShmMap method */ |
| ) |
| |
| #if SQLITE_ENABLE_LOCKING_STYLE |
| IOMETHODS( |
| flockIoFinder, /* Finder function name */ |
| flockIoMethods, /* sqlite3_io_methods object name */ |
| 1, /* shared memory is disabled */ |
| flockClose, /* xClose method */ |
| flockLock, /* xLock method */ |
| flockUnlock, /* xUnlock method */ |
| flockCheckReservedLock, /* xCheckReservedLock method */ |
| 0 /* xShmMap method */ |
| ) |
| #endif |
| |
| #if OS_VXWORKS |
| IOMETHODS( |
| semIoFinder, /* Finder function name */ |
| semIoMethods, /* sqlite3_io_methods object name */ |
| 1, /* shared memory is disabled */ |
| semXClose, /* xClose method */ |
| semXLock, /* xLock method */ |
| semXUnlock, /* xUnlock method */ |
| semXCheckReservedLock, /* xCheckReservedLock method */ |
| 0 /* xShmMap method */ |
| ) |
| #endif |
| |
| #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
| IOMETHODS( |
| afpIoFinder, /* Finder function name */ |
| afpIoMethods, /* sqlite3_io_methods object name */ |
| 1, /* shared memory is disabled */ |
| afpClose, /* xClose method */ |
| afpLock, /* xLock method */ |
| afpUnlock, /* xUnlock method */ |
| afpCheckReservedLock, /* xCheckReservedLock method */ |
| 0 /* xShmMap method */ |
| ) |
| #endif |
| |
| /* |
| ** The proxy locking method is a "super-method" in the sense that it |
| ** opens secondary file descriptors for the conch and lock files and |
| ** it uses proxy, dot-file, AFP, and flock() locking methods on those |
| ** secondary files. For this reason, the division that implements |
| ** proxy locking is located much further down in the file. But we need |
| ** to go ahead and define the sqlite3_io_methods and finder function |
| ** for proxy locking here. So we forward declare the I/O methods. |
| */ |
| #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
| static int proxyClose(sqlite3_file*); |
| static int proxyLock(sqlite3_file*, int); |
| static int proxyUnlock(sqlite3_file*, int); |
| static int proxyCheckReservedLock(sqlite3_file*, int*); |
| IOMETHODS( |
| proxyIoFinder, /* Finder function name */ |
| proxyIoMethods, /* sqlite3_io_methods object name */ |
| 1, /* shared memory is disabled */ |
| proxyClose, /* xClose method */ |
| proxyLock, /* xLock method */ |
| proxyUnlock, /* xUnlock method */ |
| proxyCheckReservedLock, /* xCheckReservedLock method */ |
| 0 /* xShmMap method */ |
| ) |
| #endif |
| |
| /* nfs lockd on OSX 10.3+ doesn't clear write locks when a read lock is set */ |
| #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
| IOMETHODS( |
| nfsIoFinder, /* Finder function name */ |
| nfsIoMethods, /* sqlite3_io_methods object name */ |
| 1, /* shared memory is disabled */ |
| unixClose, /* xClose method */ |
| unixLock, /* xLock method */ |
| nfsUnlock, /* xUnlock method */ |
| unixCheckReservedLock, /* xCheckReservedLock method */ |
| 0 /* xShmMap method */ |
| ) |
| #endif |
| |
| #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
| /* |
| ** This "finder" function attempts to determine the best locking strategy |
| ** for the database file "filePath". It then returns the sqlite3_io_methods |
| ** object that implements that strategy. |
| ** |
| ** This is for MacOSX only. |
| */ |
| static const sqlite3_io_methods *autolockIoFinderImpl( |
| const char *filePath, /* name of the database file */ |
| unixFile *pNew /* open file object for the database file */ |
| ){ |
| static const struct Mapping { |
| const char *zFilesystem; /* Filesystem type name */ |
| const sqlite3_io_methods *pMethods; /* Appropriate locking method */ |
| } aMap[] = { |
| { "hfs", &posixIoMethods }, |
| { "ufs", &posixIoMethods }, |
| { "afpfs", &afpIoMethods }, |
| { "smbfs", &afpIoMethods }, |
| { "webdav", &nolockIoMethods }, |
| { 0, 0 } |
| }; |
| int i; |
| struct statfs fsInfo; |
| struct flock lockInfo; |
| |
| if( !filePath ){ |
| /* If filePath==NULL that means we are dealing with a transient file |
| ** that does not need to be locked. */ |
| return &nolockIoMethods; |
| } |
| if( statfs(filePath, &fsInfo) != -1 ){ |
| if( fsInfo.f_flags & MNT_RDONLY ){ |
| return &nolockIoMethods; |
| } |
| for(i=0; aMap[i].zFilesystem; i++){ |
| if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){ |
| return aMap[i].pMethods; |
| } |
| } |
| } |
| |
| /* Default case. Handles, amongst others, "nfs". |
| ** Test byte-range lock using fcntl(). If the call succeeds, |
| ** assume that the file-system supports POSIX style locks. |
| */ |
| lockInfo.l_len = 1; |
| lockInfo.l_start = 0; |
| lockInfo.l_whence = SEEK_SET; |
| lockInfo.l_type = F_RDLCK; |
| if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) { |
| if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){ |
| return &nfsIoMethods; |
| } else { |
| return &posixIoMethods; |
| } |
| }else{ |
| return &dotlockIoMethods; |
| } |
| } |
| static const sqlite3_io_methods |
| *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl; |
| |
| #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ |
| |
| #if OS_VXWORKS |
| /* |
| ** This "finder" function for VxWorks checks to see if posix advisory |
| ** locking works. If it does, then that is what is used. If it does not |
| ** work, then fallback to named semaphore locking. |
| */ |
| static const sqlite3_io_methods *vxworksIoFinderImpl( |
| const char *filePath, /* name of the database file */ |
| unixFile *pNew /* the open file object */ |
| ){ |
| struct flock lockInfo; |
| |
| if( !filePath ){ |
| /* If filePath==NULL that means we are dealing with a transient file |
| ** that does not need to be locked. */ |
| return &nolockIoMethods; |
| } |
| |
| /* Test if fcntl() is supported and use POSIX style locks. |
| ** Otherwise fall back to the named semaphore method. |
| */ |
| lockInfo.l_len = 1; |
| lockInfo.l_start = 0; |
| lockInfo.l_whence = SEEK_SET; |
| lockInfo.l_type = F_RDLCK; |
| if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) { |
| return &posixIoMethods; |
| }else{ |
| return &semIoMethods; |
| } |
| } |
| static const sqlite3_io_methods |
| *(*const vxworksIoFinder)(const char*,unixFile*) = vxworksIoFinderImpl; |
| |
| #endif /* OS_VXWORKS */ |
| |
| /* |
| ** An abstract type for a pointer to an IO method finder function: |
| */ |
| typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*); |
| |
| |
| /**************************************************************************** |
| **************************** sqlite3_vfs methods **************************** |
| ** |
| ** This division contains the implementation of methods on the |
| ** sqlite3_vfs object. |
| */ |
| |
| /* |
| ** Initialize the contents of the unixFile structure pointed to by pId. |
| */ |
| static int fillInUnixFile( |
| sqlite3_vfs *pVfs, /* Pointer to vfs object */ |
| int h, /* Open file descriptor of file being opened */ |
| sqlite3_file *pId, /* Write to the unixFile structure here */ |
| const char *zFilename, /* Name of the file being opened */ |
| int ctrlFlags /* Zero or more UNIXFILE_* values */ |
| ){ |
| const sqlite3_io_methods *pLockingStyle; |
| unixFile *pNew = (unixFile *)pId; |
| int rc = SQLITE_OK; |
| |
| assert( pNew->pInode==NULL ); |
| |
| /* No locking occurs in temporary files */ |
| assert( zFilename!=0 || (ctrlFlags & UNIXFILE_NOLOCK)!=0 ); |
| |
| OSTRACE(("OPEN %-3d %s\n", h, zFilename)); |
| pNew->h = h; |
| pNew->pVfs = pVfs; |
| pNew->zPath = zFilename; |
| pNew->ctrlFlags = (u8)ctrlFlags; |
| #if SQLITE_MAX_MMAP_SIZE>0 |
| pNew->mmapSizeMax = sqlite3GlobalConfig.szMmap; |
| #endif |
| if( sqlite3_uri_boolean(((ctrlFlags & UNIXFILE_URI) ? zFilename : 0), |
| "psow", SQLITE_POWERSAFE_OVERWRITE) ){ |
| pNew->ctrlFlags |= UNIXFILE_PSOW; |
| } |
| if( strcmp(pVfs->zName,"unix-excl")==0 ){ |
| pNew->ctrlFlags |= UNIXFILE_EXCL; |
| } |
| |
| #if OS_VXWORKS |
| pNew->pId = vxworksFindFileId(zFilename); |
| if( pNew->pId==0 ){ |
| ctrlFlags |= UNIXFILE_NOLOCK; |
| rc = SQLITE_NOMEM_BKPT; |
| } |
| #endif |
| |
| if( ctrlFlags & UNIXFILE_NOLOCK ){ |
| pLockingStyle = &nolockIoMethods; |
| }else{ |
| pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, pNew); |
| #if SQLITE_ENABLE_LOCKING_STYLE |
| /* Cache zFilename in the locking context (AFP and dotlock override) for |
| ** proxyLock activation is possible (remote proxy is based on db name) |
| ** zFilename remains valid until file is closed, to support */ |
| pNew->lockingContext = (void*)zFilename; |
| #endif |
| } |
| |
| if( pLockingStyle == &posixIoMethods |
| #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
| || pLockingStyle == &nfsIoMethods |
| #endif |
| ){ |
| unixEnterMutex(); |
| rc = findInodeInfo(pNew, &pNew->pInode); |
| if( rc!=SQLITE_OK ){ |
| /* If an error occurred in findInodeInfo(), close the file descriptor |
| ** immediately, before releasing the mutex. findInodeInfo() may fail |
| ** in two scenarios: |
| ** |
| ** (a) A call to fstat() failed. |
| ** (b) A malloc failed. |
| ** |
| ** Scenario (b) may only occur if the process is holding no other |
| ** file descriptors open on the same file. If there were other file |
| ** descriptors on this file, then no malloc would be required by |
| ** findInodeInfo(). If this is the case, it is quite safe to close |
| ** handle h - as it is guaranteed that no posix locks will be released |
| ** by doing so. |
| ** |
| ** If scenario (a) caused the error then things are not so safe. The |
| ** implicit assumption here is that if fstat() fails, things are in |
| ** such bad shape that dropping a lock or two doesn't matter much. |
| */ |
| robust_close(pNew, h, __LINE__); |
| h = -1; |
| } |
| unixLeaveMutex(); |
| } |
| |
| #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) |
| else if( pLockingStyle == &afpIoMethods ){ |
| /* AFP locking uses the file path so it needs to be included in |
| ** the afpLockingContext. |
| */ |
| afpLockingContext *pCtx; |
| pNew->lockingContext = pCtx = sqlite3_malloc64( sizeof(*pCtx) ); |
| if( pCtx==0 ){ |
| rc = SQLITE_NOMEM_BKPT; |
| }else{ |
| /* NB: zFilename exists and remains valid until the file is closed |
| ** according to requirement F11141. So we do not need to make a |
| ** copy of the filename. */ |
| pCtx->dbPath = zFilename; |
| pCtx->reserved = 0; |
| srandomdev(); |
| unixEnterMutex(); |
| rc = findInodeInfo(pNew, &pNew->pInode); |
| if( rc!=SQLITE_OK ){ |
| sqlite3_free(pNew->lockingContext); |
| robust_close(pNew, h, __LINE__); |
| h = -1; |
| } |
| unixLeaveMutex(); |
| } |
| } |
| #endif |
| |
| else if( pLockingStyle == &dotlockIoMethods ){ |
| /* Dotfile locking uses the file path so it needs to be included in |
| ** the dotlockLockingContext |
| */ |
| char *zLockFile; |
| int nFilename; |
| assert( zFilename!=0 ); |
| nFilename = (int)strlen(zFilename) + 6; |
| zLockFile = (char *)sqlite3_malloc64(nFilename); |
| if( zLockFile==0 ){ |
| rc = SQLITE_NOMEM_BKPT; |
| }else{ |
| sqlite3_snprintf(nFilename, zLockFile, "%s" DOTLOCK_SUFFIX, zFilename); |
| } |
| pNew->lockingContext = zLockFile; |
| } |
| |
| #if OS_VXWORKS |
| else if( pLockingStyle == &semIoMethods ){ |
| /* Named semaphore locking uses the file path so it needs to be |
| ** included in the semLockingContext |
| */ |
| unixEnterMutex(); |
| rc = findInodeInfo(pNew, &pNew->pInode); |
| if( (rc==SQLITE_OK) && (pNew->pInode->pSem==NULL) ){ |
| char *zSemName = pNew->pInode->aSemName; |
| int n; |
| sqlite3_snprintf(MAX_PATHNAME, zSemName, "/%s.sem", |
| pNew->pId->zCanonicalName); |
| for( n=1; zSemName[n]; n++ ) |
| if( zSemName[n]=='/' ) zSemName[n] = '_'; |
| pNew->pInode->pSem = sem_open(zSemName, O_CREAT, 0666, 1); |
| if( pNew->pInode->pSem == SEM_FAILED ){ |
| rc = SQLITE_NOMEM_BKPT; |
| pNew->pInode->aSemName[0] = '\0'; |
| } |
| } |
| unixLeaveMutex(); |
| } |
| #endif |
| |
| storeLastErrno(pNew, 0); |
| #if OS_VXWORKS |
| if( rc!=SQLITE_OK ){ |
| if( h>=0 ) robust_close(pNew, h, __LINE__); |
| h = -1; |
| osUnlink(zFilename); |
| pNew->ctrlFlags |= UNIXFILE_DELETE; |
| } |
| #endif |
| if( rc!=SQLITE_OK ){ |
| if( h>=0 ) robust_close(pNew, h, __LINE__); |
| }else{ |
| pId->pMethods = pLockingStyle; |
| OpenCounter(+1); |
| verifyDbFile(pNew); |
| } |
| return rc; |
| } |
| |
| /* |
| ** Directories to consider for temp files. |
| */ |
| static const char *azTempDirs[] = { |
| 0, |
| 0, |
| "/var/tmp", |
| "/usr/tmp", |
| "/tmp", |
| "." |
| }; |
| |
| /* |
| ** Initialize first two members of azTempDirs[] array. |
| */ |
| static void unixTempFileInit(void){ |
| azTempDirs[0] = getenv("SQLITE_TMPDIR"); |
| azTempDirs[1] = getenv("TMPDIR"); |
| } |
| |
| /* |
| ** Return the name of a directory in which to put temporary files. |
| ** If no suitable temporary file directory can be found, return NULL. |
| */ |
| static const char *unixTempFileDir(void){ |
| unsigned int i = 0; |
| struct stat buf; |
| const char *zDir = sqlite3_temp_directory; |
| |
| while(1){ |
| if( zDir!=0 |
| && osStat(zDir, &buf)==0 |
| && S_ISDIR(buf.st_mode) |
| && osAccess(zDir, 03)==0 |
| ){ |
| return zDir; |
| } |
| if( i>=sizeof(azTempDirs)/sizeof(azTempDirs[0]) ) break; |
| zDir = azTempDirs[i++]; |
| } |
| return 0; |
| } |
| |
| /* |
| ** Create a temporary file name in zBuf. zBuf must be allocated |
| ** by the calling process and must be big enough to hold at least |
| ** pVfs->mxPathname bytes. |
| */ |
| static int unixGetTempname(int nBuf, char *zBuf){ |
| const char *zDir; |
| int iLimit = 0; |
| |
| /* It's odd to simulate an io-error here, but really this is just |
| ** using the io-error infrastructure to test that SQLite handles this |
| ** function failing. |
| */ |
| zBuf[0] = 0; |
| SimulateIOError( return SQLITE_IOERR ); |
| |
| zDir = unixTempFileDir(); |
| if( zDir==0 ) return SQLITE_IOERR_GETTEMPPATH; |
| do{ |
| u64 r; |
| sqlite3_randomness(sizeof(r), &r); |
| assert( nBuf>2 ); |
| zBuf[nBuf-2] = 0; |
| sqlite3_snprintf(nBuf, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX"%llx%c", |
| zDir, r, 0); |
| if( zBuf[nBuf-2]!=0 || (iLimit++)>10 ) return SQLITE_ERROR; |
| }while( osAccess(zBuf,0)==0 ); |
| return SQLITE_OK; |
| } |
| |
| #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) |
| /* |
| ** Routine to transform a unixFile into a proxy-locking unixFile. |
| ** Implementation in the proxy-lock division, but used by unixOpen() |
| ** if SQLITE_PREFER_PROXY_LOCKING is defined. |
| */ |
| static int proxyTransformUnixFile(unixFile*, const char*); |
| #endif |
| |
| /* |
| ** Search for an unused file descriptor that was opened on the database |
| ** file (not a journal or super-journal file) identified by pathname |
| ** zPath with SQLITE_OPEN_XXX flags matching those passed as the second |
| ** argument to this function. |
| ** |
| ** Such a file descriptor may exist if a database connection was closed |
| ** but the associated file descriptor could not be closed because some |
| ** other file descriptor open on the same file is holding a file-lock. |
| ** Refer to comments in the unixClose() function and the lengthy comment |
| ** describing "Posix Advisory Locking" at the start of this file for |
| ** further details. Also, ticket #4018. |
| ** |
| ** If a suitable file descriptor is found, then it is returned. If no |
| ** such file descriptor is located, -1 is returned. |
| */ |
| static UnixUnusedFd *findReusableFd(const char *zPath, int flags){ |
| UnixUnusedFd *pUnused = 0; |
| |
| /* Do not search for an unused file descriptor on vxworks. Not because |
| ** vxworks would not benefit from the change (it might, we're not sure), |
| ** but because no way to test it is currently available. It is better |
| ** not to risk breaking vxworks support for the sake of such an obscure |
| ** feature. */ |
| #if !OS_VXWORKS |
| struct stat sStat; /* Results of stat() call */ |
| |
| unixEnterMutex(); |
| |
| /* A stat() call may fail for various reasons. If this happens, it is |
| ** almost certain that an open() call on the same path will also fail. |
| ** For this reason, if an error occurs in the stat() call here, it is |
| ** ignored and -1 is returned. The caller will try to open a new file |
| ** descriptor on the same path, fail, and return an error to SQLite. |
| ** |
| ** Even if a subsequent open() call does succeed, the consequences of |
| ** not searching for a reusable file descriptor are not dire. */ |
| if( inodeList!=0 && 0==osStat(zPath, &sStat) ){ |
| unixInodeInfo *pInode; |
| |
| pInode = inodeList; |
| while( pInode && (pInode->fileId.dev!=sStat.st_dev |
| || pInode->fileId.ino!=(u64)sStat.st_ino) ){ |
| pInode = pInode->pNext; |
| } |
| if( pInode ){ |
| UnixUnusedFd **pp; |
| assert( sqlite3_mutex_notheld(pInode->pLockMutex) ); |
| sqlite3_mutex_enter(pInode->pLockMutex); |
| flags &= (SQLITE_OPEN_READONLY|SQLITE_OPEN_READWRITE); |
| for(pp=&pInode->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext)); |
| pUnused = *pp; |
| if( pUnused ){ |
| *pp = pUnused->pNext; |
| } |
| sqlite3_mutex_leave(pInode->pLockMutex); |
| } |
| } |
| unixLeaveMutex(); |
| #endif /* if !OS_VXWORKS */ |
| return pUnused; |
| } |
| |
| /* |
| ** Find the mode, uid and gid of file zFile. |
| */ |
| static int getFileMode( |
| const char *zFile, /* File name */ |
| mode_t *pMode, /* OUT: Permissions of zFile */ |
| uid_t *pUid, /* OUT: uid of zFile. */ |
| gid_t *pGid /* OUT: gid of zFile. */ |
| ){ |
| struct stat sStat; /* Output of stat() on database file */ |
| int rc = SQLITE_OK; |
| if( 0==osStat(zFile, &sStat) ){ |
| *pMode = sStat.st_mode & 0777; |
| *pUid = sStat.st_uid; |
| *pGid = sStat.st_gid; |
| }else{ |
| rc = SQLITE_IOERR_FSTAT; |
| } |
| return rc; |
| } |
| |
| /* |
| ** This function is called by unixOpen() to determine the unix permissions |
| ** to create new files with. If no error occurs, then SQLITE_OK is returned |
| ** and a value suitable for passing as the third argument to open(2) is |
| ** written to *pMode. If an IO error occurs, an SQLite error code is |
| ** returned and the value of *pMode is not modified. |
| ** |
| ** In most cases, this routine sets *pMode to 0, which will become |
| ** an indication to robust_open() to create the file using |
| ** SQLITE_DEFAULT_FILE_PERMISSIONS adjusted by the umask. |
| ** But if the file being opened is a WAL or regular journal file, then |
| ** this function queries the file-system for the permissions on the |
| ** corresponding database file and sets *pMode to this value. Whenever |
| ** possible, WAL and journal files are created using the same permissions |
| ** as the associated database file. |
| ** |
| ** If the SQLITE_ENABLE_8_3_NAMES option is enabled, then the |
| ** original filename is unavailable. But 8_3_NAMES is only used for |
| ** FAT filesystems and permissions do not matter there, so just use |
| ** the default permissions. In 8_3_NAMES mode, leave *pMode set to zero. |
| */ |
| static int findCreateFileMode( |
| const char *zPath, /* Path of file (possibly) being created */ |
| int flags, /* Flags passed as 4th argument to xOpen() */ |
| mode_t *pMode, /* OUT: Permissions to open file with */ |
| uid_t *pUid, /* OUT: uid to set on the file */ |
| gid_t *pGid /* OUT: gid to set on the file */ |
| ){ |
| int rc = SQLITE_OK; /* Return Code */ |
| *pMode = 0; |
| *pUid = 0; |
| *pGid = 0; |
| if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){ |
| char zDb[MAX_PATHNAME+1]; /* Database file path */ |
| int nDb; /* Number of valid bytes in zDb */ |
| |
| /* zPath is a path to a WAL or journal file. The following block derives |
| ** the path to the associated database file from zPath. This block handles |
| ** the following naming conventions: |
| ** |
| ** "<path to db>-journal" |
| ** "<path to db>-wal" |
| ** "<path to db>-journalNN" |
| ** "<path to db>-walNN" |
| ** |
| ** where NN is a decimal number. The NN naming schemes are |
| ** used by the test_multiplex.c module. |
| ** |
| ** In normal operation, the journal file name will always contain |
| ** a '-' character. However in 8+3 filename mode, or if a corrupt |
| ** rollback journal specifies a super-journal with a goofy name, then |
| ** the '-' might be missing or the '-' might be the first character in |
| ** the filename. In that case, just return SQLITE_OK with *pMode==0. |
| */ |
| nDb = sqlite3Strlen30(zPath) - 1; |
| while( nDb>0 && zPath[nDb]!='.' ){ |
| if( zPath[nDb]=='-' ){ |
| memcpy(zDb, zPath, nDb); |
| zDb[nDb] = '\0'; |
| rc = getFileMode(zDb, pMode, pUid, pGid); |
| break; |
| } |
| nDb--; |
| } |
| }else if( flags & SQLITE_OPEN_DELETEONCLOSE ){ |
| *pMode = 0600; |
| }else if( flags & SQLITE_OPEN_URI ){ |
| /* If this is a main database file and the file was opened using a URI |
| ** filename, check for the "modeof" parameter. If present, interpret |
| ** its value as a filename and try to copy the mode, uid and gid from |
| ** that file. */ |
| const char *z = sqlite3_uri_parameter(zPath, "modeof"); |
| if( z ){ |
| rc = getFileMode(z, pMode, pUid, pGid); |
| } |
| } |
| return rc; |
| } |
| |
| /* |
| ** Open the file zPath. |
| ** |
| ** Previously, the SQLite OS layer used three functions in place of this |
| ** one: |
| ** |
| ** sqlite3OsOpenReadWrite(); |
| ** sqlite3OsOpenReadOnly(); |
| ** sqlite3OsOpenExclusive(); |
| ** |
| ** These calls correspond to the following combinations of flags: |
| ** |
| ** ReadWrite() -> (READWRITE | CREATE) |
| ** ReadOnly() -> (READONLY) |
| ** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE) |
| ** |
| ** The old OpenExclusive() accepted a boolean argument - "delFlag". If |
| ** true, the file was configured to be automatically deleted when the |
| ** file handle closed. To achieve the same effect using this new |
| ** interface, add the DELETEONCLOSE flag to those specified above for |
| ** OpenExclusive(). |
| */ |
| static int unixOpen( |
| sqlite3_vfs *pVfs, /* The VFS for which this is the xOpen method */ |
| const char *zPath, /* Pathname of file to be opened */ |
| sqlite3_file *pFile, /* The file descriptor to be filled in */ |
| int flags, /* Input flags to control the opening */ |
| int *pOutFlags /* Output flags returned to SQLite core */ |
| ){ |
| unixFile *p = (unixFile *)pFile; |
| int fd = -1; /* File descriptor returned by open() */ |
| int openFlags = 0; /* Flags to pass to open() */ |
| int eType = flags&0x0FFF00; /* Type of file to open */ |
| int noLock; /* True to omit locking primitives */ |
| int rc = SQLITE_OK; /* Function Return Code */ |
| int ctrlFlags = 0; /* UNIXFILE_* flags */ |
| |
| int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE); |
| int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE); |
| int isCreate = (flags & SQLITE_OPEN_CREATE); |
| int isReadonly = (flags & SQLITE_OPEN_READONLY); |
| int isReadWrite = (flags & SQLITE_OPEN_READWRITE); |
| #if SQLITE_ENABLE_LOCKING_STYLE |
| int isAutoProxy = (flags & SQLITE_OPEN_AUTOPROXY); |
| #endif |
| #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE |
| struct statfs fsInfo; |
| #endif |
| |
| /* If creating a super- or main-file journal, this function will open |
| ** a file-descriptor on the directory too. The first time unixSync() |
| ** is called the directory file descriptor will be fsync()ed and close()d. |
| */ |
| int isNewJrnl = (isCreate && ( |
| eType==SQLITE_OPEN_SUPER_JOURNAL |
| || eType==SQLITE_OPEN_MAIN_JOURNAL |
| || eType==SQLITE_OPEN_WAL |
| )); |
| |
| /* If argument zPath is a NULL pointer, this function is required to open |
| ** a temporary file. Use this buffer to store the file name in. |
| */ |
| char zTmpname[MAX_PATHNAME+2]; |
| const char *zName = zPath; |
| |
| /* Check the following statements are true: |
| ** |
| ** (a) Exactly one of the READWRITE and READONLY flags must be set, and |
| ** (b) if CREATE is set, then READWRITE must also be set, and |
| ** (c) if EXCLUSIVE is set, then CREATE must also be set. |
| ** (d) if DELETEONCLOSE is set, then CREATE must also be set. |
| */ |
| assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly)); |
| assert(isCreate==0 || isReadWrite); |
| assert(isExclusive==0 || isCreate); |
| assert(isDelete==0 || isCreate); |
| |
| /* The main DB, main journal, WAL file and super-journal are never |
| ** automatically deleted. Nor are they ever temporary files. */ |
| assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB ); |
| assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL ); |
| assert( (!isDelete && zName) || eType!=SQLITE_OPEN_SUPER_JOURNAL ); |
| assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL ); |
| |
| /* Assert that the upper layer has set one of the "file-type" flags. */ |
| assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB |
| || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL |
| || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_SUPER_JOURNAL |
| || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL |
| ); |
| |
| /* Detect a pid change and reset the PRNG. There is a race condition |
| ** here such that two or more threads all trying to open databases at |
| ** the same instant might all reset the PRNG. But multiple resets |
| ** are harmless. |
| */ |
| if( randomnessPid!=osGetpid(0) ){ |
| randomnessPid = osGetpid(0); |
| sqlite3_randomness(0,0); |
| } |
| memset(p, 0, sizeof(unixFile)); |
| |
| #ifdef SQLITE_ASSERT_NO_FILES |
| /* Applications that never read or write a persistent disk files */ |
| assert( zName==0 ); |
| #endif |
| |
| if( eType==SQLITE_OPEN_MAIN_DB ){ |
| UnixUnusedFd *pUnused; |
| pUnused = findReusableFd(zName, flags); |
| if( pUnused ){ |
| fd = pUnused->fd; |
| }else{ |
| pUnused = sqlite3_malloc64(sizeof(*pUnused)); |
| if( !pUnused ){ |
| return SQLITE_NOMEM_BKPT; |
| } |
| } |
| p->pPreallocatedUnused = pUnused; |
| |
| /* Database filenames are double-zero terminated if they are not |
| ** URIs with parameters. Hence, they can always be passed into |
| ** sqlite3_uri_parameter(). */ |
| assert( (flags & SQLITE_OPEN_URI) || zName[strlen(zName)+1]==0 ); |
| |
| }else if( !zName ){ |
| /* If zName is NULL, the upper layer is requesting a temp file. */ |
| assert(isDelete && !isNewJrnl); |
| rc = unixGetTempname(pVfs->mxPathname, zTmpname); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| zName = zTmpname; |
| |
| /* Generated temporary filenames are always double-zero terminated |
| ** for use by sqlite3_uri_parameter(). */ |
| assert( zName[strlen(zName)+1]==0 ); |
| } |
| |
| /* Determine the value of the flags parameter passed to POSIX function |
| ** open(). These must be calculated even if open() is not called, as |
| ** they may be stored as part of the file handle and used by the |
| ** 'conch file' locking functions later on. */ |
| if( isReadonly ) openFlags |= O_RDONLY; |
| if( isReadWrite ) openFlags |= O_RDWR; |
| if( isCreate ) openFlags |= O_CREAT; |
| if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW); |
| openFlags |= (O_LARGEFILE|O_BINARY|O_NOFOLLOW); |
| |
| if( fd<0 ){ |
| mode_t openMode; /* Permissions to create file with */ |
| uid_t uid; /* Userid for the file */ |
| gid_t gid; /* Groupid for the file */ |
| rc = findCreateFileMode(zName, flags, &openMode, &uid, &gid); |
| if( rc!=SQLITE_OK ){ |
| assert( !p->pPreallocatedUnused ); |
| assert( eType==SQLITE_OPEN_WAL || eType==SQLITE_OPEN_MAIN_JOURNAL ); |
| return rc; |
| } |
| fd = robust_open(zName, openFlags, openMode); |
| OSTRACE(("OPENX %-3d %s 0%o\n", fd, zName, openFlags)); |
| assert( !isExclusive || (openFlags & O_CREAT)!=0 ); |
| if( fd<0 ){ |
| if( isNewJrnl && errno==EACCES && osAccess(zName, F_OK) ){ |
| /* If unable to create a journal because the directory is not |
| ** writable, change the error code to indicate that. */ |
| rc = SQLITE_READONLY_DIRECTORY; |
| }else if( errno!=EISDIR && isReadWrite ){ |
| /* Failed to open the file for read/write access. Try read-only. */ |
| flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE); |
| openFlags &= ~(O_RDWR|O_CREAT); |
| flags |= SQLITE_OPEN_READONLY; |
| openFlags |= O_RDONLY; |
| isReadonly = 1; |
| fd = robust_open(zName, openFlags, openMode); |
| } |
| } |
| if( fd<0 ){ |
| int rc2 = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zName); |
| if( rc==SQLITE_OK ) rc = rc2; |
| goto open_finished; |
| } |
| |
| /* The owner of the rollback journal or WAL file should always be the |
| ** same as the owner of the database file. Try to ensure that this is |
| ** the case. The chown() system call will be a no-op if the current |
| ** process lacks root privileges, be we should at least try. Without |
| ** this step, if a root process opens a database file, it can leave |
| ** behinds a journal/WAL that is owned by root and hence make the |
| ** database inaccessible to unprivileged processes. |
| ** |
| ** If openMode==0, then that means uid and gid are not set correctly |
| ** (probably because SQLite is configured to use 8+3 filename mode) and |
| ** in that case we do not want to attempt the chown(). |
| */ |
| if( openMode && (flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL))!=0 ){ |
| robustFchown(fd, uid, gid); |
| } |
| } |
| assert( fd>=0 ); |
| if( pOutFlags ){ |
| *pOutFlags = flags; |
| } |
| |
| if( p->pPreallocatedUnused ){ |
| p->pPreallocatedUnused->fd = fd; |
| p->pPreallocatedUnused->flags = |
| flags & (SQLITE_OPEN_READONLY|SQLITE_OPEN_READWRITE); |
| } |
| |
| if( isDelete ){ |
| #if OS_VXWORKS |
| zPath = zName; |
| #elif defined(SQLITE_UNLINK_AFTER_CLOSE) |
| zPath = sqlite3_mprintf("%s", zName); |
| if( zPath==0 ){ |
| robust_close(p, fd, __LINE__); |
| return SQLITE_NOMEM_BKPT; |
| } |
| #else |
| osUnlink(zName); |
| #endif |
| } |
| #if SQLITE_ENABLE_LOCKING_STYLE |
| else{ |
| p->openFlags = openFlags; |
| } |
| #endif |
| |
| #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE |
| if( fstatfs(fd, &fsInfo) == -1 ){ |
| storeLastErrno(p, errno); |
| robust_close(p, fd, __LINE__); |
| return SQLITE_IOERR_ACCESS; |
| } |
| if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) { |
| ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS; |
| } |
| if (0 == strncmp("exfat", fsInfo.f_fstypename, 5)) { |
| ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS; |
| } |
| #endif |
| |
| /* Set up appropriate ctrlFlags */ |
| if( isDelete ) ctrlFlags |= UNIXFILE_DELETE; |
| if( isReadonly ) ctrlFlags |= UNIXFILE_RDONLY; |
| noLock = eType!=SQLITE_OPEN_MAIN_DB; |
| if( noLock ) ctrlFlags |= UNIXFILE_NOLOCK; |
| if( isNewJrnl ) ctrlFlags |= UNIXFILE_DIRSYNC; |
| if( flags & SQLITE_OPEN_URI ) ctrlFlags |= UNIXFILE_URI; |
| |
| #if SQLITE_ENABLE_LOCKING_STYLE |
| #if SQLITE_PREFER_PROXY_LOCKING |
| isAutoProxy = 1; |
| #endif |
| if( isAutoProxy && (zPath!=NULL) && (!noLock) && pVfs->xOpen ){ |
| char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING"); |
| int useProxy = 0; |
| |
| /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means |
| ** never use proxy, NULL means use proxy for non-local files only. */ |
| if( envforce!=NULL ){ |
| useProxy = atoi(envforce)>0; |
| }else{ |
| useProxy = !(fsInfo.f_flags&MNT_LOCAL); |
| } |
| if( useProxy ){ |
| rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags); |
| if( rc==SQLITE_OK ){ |
| rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:"); |
| if( rc!=SQLITE_OK ){ |
| /* Use unixClose to clean up the resources added in fillInUnixFile |
| ** and clear all the structure's references. Specifically, |
| ** pFile->pMethods will be NULL so sqlite3OsClose will be a no-op |
| */ |
| unixClose(pFile); |
| return rc; |
| } |
| } |
| goto open_finished; |
| } |
| } |
| #endif |
| |
| assert( zPath==0 || zPath[0]=='/' |
| || eType==SQLITE_OPEN_SUPER_JOURNAL || eType==SQLITE_OPEN_MAIN_JOURNAL |
| ); |
| rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags); |
| |
| open_finished: |
| if( rc!=SQLITE_OK ){ |
| sqlite3_free(p->pPreallocatedUnused); |
| } |
| return rc; |
| } |
| |
| |
| /* |
| ** Delete the file at zPath. If the dirSync argument is true, fsync() |
| ** the directory after deleting the file. |
| */ |
| static int unixDelete( |
| sqlite3_vfs *NotUsed, /* VFS containing this as the xDelete method */ |
| const char *zPath, /* Name of file to be deleted */ |
| int dirSync /* If true, fsync() directory after deleting file */ |
| ){ |
| int rc = SQLITE_OK; |
| UNUSED_PARAMETER(NotUsed); |
| SimulateIOError(return SQLITE_IOERR_DELETE); |
| if( osUnlink(zPath)==(-1) ){ |
| if( errno==ENOENT |
| #if OS_VXWORKS |
| || osAccess(zPath,0)!=0 |
| #endif |
| ){ |
| rc = SQLITE_IOERR_DELETE_NOENT; |
| }else{ |
| rc = unixLogError(SQLITE_IOERR_DELETE, "unlink", zPath); |
| } |
| return rc; |
| } |
| #ifndef SQLITE_DISABLE_DIRSYNC |
| if( (dirSync & 1)!=0 ){ |
| int fd; |
| rc = osOpenDirectory(zPath, &fd); |
| if( rc==SQLITE_OK ){ |
| if( full_fsync(fd,0,0) ){ |
| rc = unixLogError(SQLITE_IOERR_DIR_FSYNC, "fsync", zPath); |
| } |
| robust_close(0, fd, __LINE__); |
| }else{ |
| assert( rc==SQLITE_CANTOPEN ); |
| rc = SQLITE_OK; |
| } |
| } |
| #endif |
| return rc; |
| } |
| |
| /* |
| ** Test the existence of or access permissions of file zPath. The |
| ** test performed depends on the value of flags: |
| ** |
| ** SQLITE_ACCESS_EXISTS: Return 1 if the file exists |
| ** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable. |
| ** SQLITE_ACCESS_READONLY: Return 1 if the file is readable. |
| ** |
| ** Otherwise return 0. |
| */ |
| static int unixAccess( |
| sqlite3_vfs *NotUsed, /* The VFS containing this xAccess method */ |
| const char *zPath, /* Path of the file to examine */ |
| int flags, /* What do we want to learn about the zPath file? */ |
| int *pResOut /* Write result boolean here */ |
| ){ |
| UNUSED_PARAMETER(NotUsed); |
| SimulateIOError( return SQLITE_IOERR_ACCESS; ); |
| assert( pResOut!=0 ); |
| |
| /* The spec says there are three possible values for flags. But only |
| ** two of them are actually used */ |
| assert( flags==SQLITE_ACCESS_EXISTS || flags==SQLITE_ACCESS_READWRITE ); |
| |
| if( flags==SQLITE_ACCESS_EXISTS ){ |
| struct stat buf; |
| *pResOut = 0==osStat(zPath, &buf) && |
| (!S_ISREG(buf.st_mode) || buf.st_size>0); |
| }else{ |
| *pResOut = osAccess(zPath, W_OK|R_OK)==0; |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** A pathname under construction |
| */ |
| typedef struct DbPath DbPath; |
| struct DbPath { |
| int rc; /* Non-zero following any error */ |
| int nSymlink; /* Number of symlinks resolved */ |
| char *zOut; /* Write the pathname here */ |
| int nOut; /* Bytes of space available to zOut[] */ |
| int nUsed; /* Bytes of zOut[] currently being used */ |
| }; |
| |
| /* Forward reference */ |
| static void appendAllPathElements(DbPath*,const char*); |
| |
| /* |
| ** Append a single path element to the DbPath under construction |
| */ |
| static void appendOnePathElement( |
| DbPath *pPath, /* Path under construction, to which to append zName */ |
| const char *zName, /* Name to append to pPath. Not zero-terminated */ |
| int nName /* Number of significant bytes in zName */ |
| ){ |
| assert( nName>0 ); |
| assert( zName!=0 ); |
| if( zName[0]=='.' ){ |
| if( nName==1 ) return; |
| if( zName[1]=='.' && nName==2 ){ |
| if( pPath->nUsed<=1 ){ |
| pPath->rc = SQLITE_ERROR; |
| return; |
| } |
| assert( pPath->zOut[0]=='/' ); |
| while( pPath->zOut[--pPath->nUsed]!='/' ){} |
| return; |
| } |
| } |
| if( pPath->nUsed + nName + 2 >= pPath->nOut ){ |
| pPath->rc = SQLITE_ERROR; |
| return; |
| } |
| pPath->zOut[pPath->nUsed++] = '/'; |
| memcpy(&pPath->zOut[pPath->nUsed], zName, nName); |
| pPath->nUsed += nName; |
| #if defined(HAVE_READLINK) && defined(HAVE_LSTAT) |
| if( pPath->rc==SQLITE_OK ){ |
| const char *zIn; |
| struct stat buf; |
| pPath->zOut[pPath->nUsed] = 0; |
| zIn = pPath->zOut; |
| if( osLstat(zIn, &buf)!=0 ){ |
| if( errno!=ENOENT ){ |
| pPath->rc = unixLogError(SQLITE_CANTOPEN_BKPT, "lstat", zIn); |
| } |
| }else if( S_ISLNK(buf.st_mode) ){ |
| ssize_t got; |
| char zLnk[SQLITE_MAX_PATHLEN+2]; |
| if( pPath->nSymlink++ > SQLITE_MAX_SYMLINK ){ |
| pPath->rc = SQLITE_CANTOPEN_BKPT; |
| return; |
| } |
| got = osReadlink(zIn, zLnk, sizeof(zLnk)-2); |
| if( got<=0 || got>=(ssize_t)sizeof(zLnk)-2 ){ |
| pPath->rc = unixLogError(SQLITE_CANTOPEN_BKPT, "readlink", zIn); |
| return; |
| } |
| zLnk[got] = 0; |
| if( zLnk[0]=='/' ){ |
| pPath->nUsed = 0; |
| }else{ |
| pPath->nUsed -= nName + 1; |
| } |
| appendAllPathElements(pPath, zLnk); |
| } |
| } |
| #endif |
| } |
| |
| /* |
| ** Append all path elements in zPath to the DbPath under construction. |
| */ |
| static void appendAllPathElements( |
| DbPath *pPath, /* Path under construction, to which to append zName */ |
| const char *zPath /* Path to append to pPath. Is zero-terminated */ |
| ){ |
| int i = 0; |
| int j = 0; |
| do{ |
| while( zPath[i] && zPath[i]!='/' ){ i++; } |
| if( i>j ){ |
| appendOnePathElement(pPath, &zPath[j], i-j); |
| } |
| j = i+1; |
| }while( zPath[i++] ); |
| } |
| |
| /* |
| ** Turn a relative pathname into a full pathname. The relative path |
| ** is stored as a nul-terminated string in the buffer pointed to by |
| ** zPath. |
| ** |
| ** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes |
| ** (in this case, MAX_PATHNAME bytes). The full-path is written to |
| ** this buffer before returning. |
| */ |
| static int unixFullPathname( |
| sqlite3_vfs *pVfs, /* Pointer to vfs object */ |
| const char *zPath, /* Possibly relative input path */ |
| int nOut, /* Size of output buffer in bytes */ |
| char *zOut /* Output buffer */ |
| ){ |
| DbPath path; |
| UNUSED_PARAMETER(pVfs); |
| path.rc = 0; |
| path.nUsed = 0; |
| path.nSymlink = 0; |
| path.nOut = nOut; |
| path.zOut = zOut; |
| if( zPath[0]!='/' ){ |
| char zPwd[SQLITE_MAX_PATHLEN+2]; |
| if( osGetcwd(zPwd, sizeof(zPwd)-2)==0 ){ |
| return unixLogError(SQLITE_CANTOPEN_BKPT, "getcwd", zPath); |
| } |
| appendAllPathElements(&path, zPwd); |
| } |
| appendAllPathElements(&path, zPath); |
| zOut[path.nUsed] = 0; |
| if( path.rc || path.nUsed<2 ) return SQLITE_CANTOPEN_BKPT; |
| if( path.nSymlink ) return SQLITE_OK_SYMLINK; |
| return SQLITE_OK; |
| } |
| |
| #ifndef SQLITE_OMIT_LOAD_EXTENSION |
| /* |
| ** Interfaces for opening a shared library, finding entry points |
| ** within the shared library, and closing the shared library. |
| */ |
| #include <dlfcn.h> |
| static void *unixDlOpen(sqlite3_vfs *NotUsed, const char *zFilename){ |
| UNUSED_PARAMETER(NotUsed); |
| return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL); |
| } |
| |
| /* |
| ** SQLite calls this function immediately after a call to unixDlSym() or |
| ** unixDlOpen() fails (returns a null pointer). If a more detailed error |
| ** message is available, it is written to zBufOut. If no error message |
| ** is available, zBufOut is left unmodified and SQLite uses a default |
| ** error message. |
| */ |
| static void unixDlError(sqlite3_vfs *NotUsed, int nBuf, char *zBufOut){ |
| const char *zErr; |
| UNUSED_PARAMETER(NotUsed); |
| unixEnterMutex(); |
| zErr = dlerror(); |
| if( zErr ){ |
| sqlite3_snprintf(nBuf, zBufOut, "%s", zErr); |
| } |
| unixLeaveMutex(); |
| } |
| static void (*unixDlSym(sqlite3_vfs *NotUsed, void *p, const char*zSym))(void){ |
| /* |
| ** GCC with -pedantic-errors says that C90 does not allow a void* to be |
| ** cast into a pointer to a function. And yet the library dlsym() routine |
| ** returns a void* which is really a pointer to a function. So how do we |
| ** use dlsym() with -pedantic-errors? |
| ** |
| ** Variable x below is defined to be a pointer to a function taking |
| ** parameters void* and const char* and returning a pointer to a function. |
| ** We initialize x by assigning it a pointer to the dlsym() function. |
| ** (That assignment requires a cast.) Then we call the function that |
| ** x points to. |
| ** |
| ** This work-around is unlikely to work correctly on any system where |
| ** you really cannot cast a function pointer into void*. But then, on the |
| ** other hand, dlsym() will not work on such a system either, so we have |
| ** not really lost anything. |
| */ |
| void (*(*x)(void*,const char*))(void); |
| UNUSED_PARAMETER(NotUsed); |
| x = (void(*(*)(void*,const char*))(void))dlsym; |
| return (*x)(p, zSym); |
| } |
| static void unixDlClose(sqlite3_vfs *NotUsed, void *pHandle){ |
| UNUSED_PARAMETER(NotUsed); |
| dlclose(pHandle); |
| } |
| #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */ |
| #define unixDlOpen 0 |
| #define unixDlError 0 |
| #define unixDlSym 0 |
| #define unixDlClose 0 |
| #endif |
| |
| /* |
| ** Write nBuf bytes of random data to the supplied buffer zBuf. |
| */ |
| static int unixRandomness(sqlite3_vfs *NotUsed, int nBuf, char *zBuf){ |
| UNUSED_PARAMETER(NotUsed); |
| assert((size_t)nBuf>=(sizeof(time_t)+sizeof(int))); |
| |
| /* We have to initialize zBuf to prevent valgrind from reporting |
| ** errors. The reports issued by valgrind are incorrect - we would |
| ** prefer that the randomness be increased by making use of the |
| ** uninitialized space in zBuf - but valgrind errors tend to worry |
| ** some users. Rather than argue, it seems easier just to initialize |
| ** the whole array and silence valgrind, even if that means less randomness |
| ** in the random seed. |
| ** |
| ** When testing, initializing zBuf[] to zero is all we do. That means |
| ** that we always use the same random number sequence. This makes the |
| ** tests repeatable. |
| */ |
| memset(zBuf, 0, nBuf); |
| randomnessPid = osGetpid(0); |
| #if !defined(SQLITE_TEST) && !defined(SQLITE_OMIT_RANDOMNESS) |
| { |
| int fd, got; |
| fd = robust_open("/dev/urandom", O_RDONLY, 0); |
| if( fd<0 ){ |
| time_t t; |
| time(&t); |
| memcpy(zBuf, &t, sizeof(t)); |
| memcpy(&zBuf[sizeof(t)], &randomnessPid, sizeof(randomnessPid)); |
| assert( sizeof(t)+sizeof(randomnessPid)<=(size_t)nBuf ); |
| nBuf = sizeof(t) + sizeof(randomnessPid); |
| }else{ |
| do{ got = osRead(fd, zBuf, nBuf); }while( got<0 && errno==EINTR ); |
| robust_close(0, fd, __LINE__); |
| } |
| } |
| #endif |
| return nBuf; |
| } |
| |
| |
| /* |
| ** Sleep for a little while. Return the amount of time slept. |
| ** The argument is the number of microseconds we want to sleep. |
| ** The return value is the number of microseconds of sleep actually |
| ** requested from the underlying operating system, a number which |
| ** might be greater than or equal to the argument, but not less |
| ** than the argument. |
| */ |
| static int unixSleep(sqlite3_vfs *NotUsed, int microseconds){ |
| #if OS_VXWORKS |
| struct timespec sp; |
| |
| sp.tv_sec = microseconds / 1000000; |
| sp.tv_nsec = (microseconds % 1000000) * 1000; |
| nanosleep(&sp, NULL); |
| UNUSED_PARAMETER(NotUsed); |
| return microseconds; |
| #elif defined(HAVE_USLEEP) && HAVE_USLEEP |
| if( microseconds>=1000000 ) sleep(microseconds/1000000); |
| if( microseconds%1000000 ) usleep(microseconds%1000000); |
| UNUSED_PARAMETER(NotUsed); |
| return microseconds; |
| #else |
| int seconds = (microseconds+999999)/1000000; |
| sleep(seconds); |
| UNUSED_PARAMETER(NotUsed); |
| return seconds*1000000; |
| #endif |
| } |
| |
| /* |
| ** The following variable, if set to a non-zero value, is interpreted as |
| ** the number of seconds since 1970 and is used to set the result of |
| ** sqlite3OsCurrentTime() during testing. |
| */ |
| #ifdef SQLITE_TEST |
| int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */ |
| #endif |
| |
| /* |
| ** Find the current time (in Universal Coordinated Time). Write into *piNow |
| ** the current time and date as a Julian Day number times 86_400_000. In |
| ** other words, write into *piNow the number of milliseconds since the Julian |
| ** epoch of noon in Greenwich on November 24, 4714 B.C according to the |
| ** proleptic Gregorian calendar. |
| ** |
| ** On success, return SQLITE_OK. Return SQLITE_ERROR if the time and date |
| ** cannot be found. |
| */ |
| static int unixCurrentTimeInt64(sqlite3_vfs *NotUsed, sqlite3_int64 *piNow){ |
| static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000; |
| int rc = SQLITE_OK; |
| #if defined(NO_GETTOD) |
| time_t t; |
| time(&t); |
| *piNow = ((sqlite3_int64)t)*1000 + unixEpoch; |
| #elif OS_VXWORKS |
| struct timespec sNow; |
| clock_gettime(CLOCK_REALTIME, &sNow); |
| *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_nsec/1000000; |
| #else |
| struct timeval sNow; |
| (void)gettimeofday(&sNow, 0); /* Cannot fail given valid arguments */ |
| *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000; |
| #endif |
| |
| #ifdef SQLITE_TEST |
| if( sqlite3_current_time ){ |
| *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch; |
| } |
| #endif |
| UNUSED_PARAMETER(NotUsed); |
| return rc; |
| } |
| |
| #ifndef SQLITE_OMIT_DEPRECATED |
| /* |
| ** Find the current time (in Universal Coordinated Time). Write the |
| ** current time and date as a Julian Day number into *prNow and |
| ** return 0. Return 1 if the time and date cannot be found. |
| */ |
| static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){ |
| sqlite3_int64 i = 0; |
| int rc; |
| UNUSED_PARAMETER(NotUsed); |
| rc = unixCurrentTimeInt64(0, &i); |
| *prNow = i/86400000.0; |
| return rc; |
| } |
| #else |
| # define unixCurrentTime 0 |
| #endif |
| |
| /* |
| ** The xGetLastError() method is designed to return a better |
| ** low-level error message when operating-system problems come up |
| ** during SQLite operation. Only the integer return code is currently |
| ** used. |
| */ |
| static int unixGetLastError(sqlite3_vfs *NotUsed, int NotUsed2, char *NotUsed3){ |
| UNUSED_PARAMETER(NotUsed); |
| UNUSED_PARAMETER(NotUsed2); |
| UNUSED_PARAMETER(NotUsed3); |
| return errno; |
| } |
| |
| |
| /* |
| ************************ End of sqlite3_vfs methods *************************** |
| ******************************************************************************/ |
| |
| /****************************************************************************** |
| ************************** Begin Proxy Locking ******************************** |
| ** |
| ** Proxy locking is a "uber-locking-method" in this sense: It uses the |
| ** other locking methods on secondary lock files. Proxy locking is a |
| ** meta-layer over top of the primitive locking implemented above. For |
| ** this reason, the division that implements of proxy locking is deferred |
| ** until late in the file (here) after all of the other I/O methods have |
| ** been defined - so that the primitive locking methods are available |
| ** as services to help with the implementation of proxy locking. |
| ** |
| **** |
| ** |
| ** The default locking schemes in SQLite use byte-range locks on the |
| ** database file to coordinate safe, concurrent access by multiple readers |
| ** and writers [http://sqlite.org/lockingv3.html]. The five file locking |
| ** states (UNLOCKED, PENDING, SHARED, RESERVED, EXCLUSIVE) are implemented |
| ** as POSIX read & write locks over fixed set of locations (via fsctl), |
| ** on AFP and SMB only exclusive byte-range locks are available via fsctl |
| ** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states. |
| ** To simulate a F_RDLCK on the shared range, on AFP a randomly selected |
| ** address in the shared range is taken for a SHARED lock, the entire |
| ** shared range is taken for an EXCLUSIVE lock): |
| ** |
| ** PENDING_BYTE 0x40000000 |
| ** RESERVED_BYTE 0x40000001 |
| ** SHARED_RANGE 0x40000002 -> 0x40000200 |
| ** |
| ** This works well on the local file system, but shows a nearly 100x |
| ** slowdown in read performance on AFP because the AFP client disables |
| ** the read cache when byte-range locks are present. Enabling the read |
| ** cache exposes a cache coherency problem that is present on all OS X |
| ** supported network file systems. NFS and AFP both observe the |
| ** close-to-open semantics for ensuring cache coherency |
| ** [http://nfs.sourceforge.net/#faq_a8], which does not effectively |
| ** address the requirements for concurrent database access by multiple |
| ** readers and writers |
| ** [http://www.nabble.com/SQLite-on-NFS-cache-coherency-td15655701.html]. |
| ** |
| ** To address the performance and cache coherency issues, proxy file locking |
| ** changes the way database access is controlled by limiting access to a |
| ** single host at a time and moving file locks off of the database file |
| ** and onto a proxy file on the local file system. |
| ** |
| ** |
| ** Using proxy locks |
| ** ----------------- |
| ** |
| ** C APIs |
| ** |
| ** sqlite3_file_control(db, dbname, SQLITE_FCNTL_SET_LOCKPROXYFILE, |
| ** <proxy_path> | ":auto:"); |
| ** sqlite3_file_control(db, dbname, SQLITE_FCNTL_GET_LOCKPROXYFILE, |
| ** &<proxy_path>); |
| ** |
| ** |
| ** SQL pragmas |
| ** |
| ** PRAGMA [database.]lock_proxy_file=<proxy_path> | :auto: |
| ** PRAGMA [database.]lock_proxy_file |
| ** |
| ** Specifying ":auto:" means that if there is a conch file with a matching |
| ** host ID in it, the proxy path in the conch file will be used, otherwise |
| ** a proxy path based on the user's temp dir |
| ** (via confstr(_CS_DARWIN_USER_TEMP_DIR,...)) will be used and the |
| ** actual proxy file name is generated from the name and path of the |
| ** database file. For example: |
| ** |
| ** For database path "/Users/me/foo.db" |
| ** The lock path will be "<tmpdir>/sqliteplocks/_Users_me_foo.db:auto:") |
| ** |
| ** Once a lock proxy is configured for a database connection, it can not |
| ** be removed, however it may be switched to a different proxy path via |
| ** the above APIs (assuming the conch file is not being held by another |
| ** connection or process). |
| ** |
| ** |
| ** How proxy locking works |
| ** ----------------------- |
| ** |
| ** Proxy file locking relies primarily on two new supporting files: |
| ** |
| ** * conch file to limit access to the database file to a single host |
| ** at a time |
| ** |
| ** * proxy file to act as a proxy for the advisory locks normally |
| ** taken on the database |
| ** |
| ** The conch file - to use a proxy file, sqlite must first "hold the conch" |
| ** by taking an sqlite-style shared lock on the conch file, reading the |
| ** contents and comparing the host's unique host ID (see below) and lock |
| ** proxy path against the values stored in the conch. The conch file is |
| ** stored in the same directory as the database file and the file name |
| ** is patterned after the database file name as ".<databasename>-conch". |
| ** If the conch file does not exist, or its contents do not match the |
| ** host ID and/or proxy path, then the lock is escalated to an exclusive |
| ** lock and the conch file contents is updated with the host ID and proxy |
| ** path and the lock is downgraded to a shared lock again. If the conch |
| ** is held by another process (with a shared lock), the exclusive lock |
| ** will fail and SQLITE_BUSY is returned. |
| ** |
| ** The proxy file - a single-byte file used for all advisory file locks |
| ** normally taken on the database file. This allows for safe sharing |
| ** of the database file for multiple readers and writers on the same |
| ** host (the conch ensures that they all use the same local lock file). |
| ** |
| ** Requesting the lock proxy does not immediately take the conch, it is |
| ** only taken when the first request to lock database file is made. |
| ** This matches the semantics of the traditional locking behavior, where |
| ** opening a connection to a database file does not take a lock on it. |
| ** The shared lock and an open file descriptor are maintained until |
| ** the connection to the database is closed. |
| ** |
| ** The proxy file and the lock file are never deleted so they only need |
| ** to be created the first time they are used. |
| ** |
| ** Configuration options |
| ** --------------------- |
| ** |
| ** SQLITE_PREFER_PROXY_LOCKING |
| ** |
| ** Database files accessed on non-local file systems are |
| ** automatically configured for proxy locking, lock files are |
| ** named automatically using the same logic as |
| ** PRAGMA lock_proxy_file=":auto:" |
| ** |
| ** SQLITE_PROXY_DEBUG |
| ** |
| ** Enables the logging of error messages during host id file |
| ** retrieval and creation |
| ** |
| ** LOCKPROXYDIR |
| ** |
| ** Overrides the default directory used for lock proxy files that |
| ** are named automatically via the ":auto:" setting |
| ** |
| ** SQLITE_DEFAULT_PROXYDIR_PERMISSIONS |
| ** |
| ** Permissions to use when creating a directory for storing the |
| ** lock proxy files, only used when LOCKPROXYDIR is not set. |
| ** |
| ** |
| ** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING, |
| ** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will |
| ** force proxy locking to be used for every database file opened, and 0 |
| ** will force automatic proxy locking to be disabled for all database |
| ** files (explicitly calling the SQLITE_FCNTL_SET_LOCKPROXYFILE pragma or |
| ** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING). |
| */ |
| |
| /* |
| ** Proxy locking is only available on MacOSX |
| */ |
| #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
| |
| /* |
| ** The proxyLockingContext has the path and file structures for the remote |
| ** and local proxy files in it |
| */ |
| typedef struct proxyLockingContext proxyLockingContext; |
| struct proxyLockingContext { |
| unixFile *conchFile; /* Open conch file */ |
| char *conchFilePath; /* Name of the conch file */ |
| unixFile *lockProxy; /* Open proxy lock file */ |
| char *lockProxyPath; /* Name of the proxy lock file */ |
| char *dbPath; /* Name of the open file */ |
| int conchHeld; /* 1 if the conch is held, -1 if lockless */ |
| int nFails; /* Number of conch taking failures */ |
| void *oldLockingContext; /* Original lockingcontext to restore on close */ |
| sqlite3_io_methods const *pOldMethod; /* Original I/O methods for close */ |
| }; |
| |
| /* |
| ** The proxy lock file path for the database at dbPath is written into lPath, |
| ** which must point to valid, writable memory large enough for a maxLen length |
| ** file path. |
| */ |
| static int proxyGetLockPath(const char *dbPath, char *lPath, size_t maxLen){ |
| int len; |
| int dbLen; |
| int i; |
| |
| #ifdef LOCKPROXYDIR |
| len = strlcpy(lPath, LOCKPROXYDIR, maxLen); |
| #else |
| # ifdef _CS_DARWIN_USER_TEMP_DIR |
| { |
| if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){ |
| OSTRACE(("GETLOCKPATH failed %s errno=%d pid=%d\n", |
| lPath, errno, osGetpid(0))); |
| return SQLITE_IOERR_LOCK; |
| } |
| len = strlcat(lPath, "sqliteplocks", maxLen); |
| } |
| # else |
| len = strlcpy(lPath, "/tmp/", maxLen); |
| # endif |
| #endif |
| |
| if( lPath[len-1]!='/' ){ |
| len = strlcat(lPath, "/", maxLen); |
| } |
| |
| /* transform the db path to a unique cache name */ |
| dbLen = (int)strlen(dbPath); |
| for( i=0; i<dbLen && (i+len+7)<(int)maxLen; i++){ |
| char c = dbPath[i]; |
| lPath[i+len] = (c=='/')?'_':c; |
| } |
| lPath[i+len]='\0'; |
| strlcat(lPath, ":auto:", maxLen); |
| OSTRACE(("GETLOCKPATH proxy lock path=%s pid=%d\n", lPath, osGetpid(0))); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Creates the lock file and any missing directories in lockPath |
| */ |
| static int proxyCreateLockPath(const char *lockPath){ |
| int i, len; |
| char buf[MAXPATHLEN]; |
| int start = 0; |
| |
| assert(lockPath!=NULL); |
| /* try to create all the intermediate directories */ |
| len = (int)strlen(lockPath); |
| buf[0] = lockPath[0]; |
| for( i=1; i<len; i++ ){ |
| if( lockPath[i] == '/' && (i - start > 0) ){ |
| /* only mkdir if leaf dir != "." or "/" or ".." */ |
| if( i-start>2 || (i-start==1 && buf[start] != '.' && buf[start] != '/') |
| || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){ |
| buf[i]='\0'; |
| if( osMkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){ |
| int err=errno; |
| if( err!=EEXIST ) { |
| OSTRACE(("CREATELOCKPATH FAILED creating %s, " |
| "'%s' proxy lock path=%s pid=%d\n", |
| buf, strerror(err), lockPath, osGetpid(0))); |
| return err; |
| } |
| } |
| } |
| start=i+1; |
| } |
| buf[i] = lockPath[i]; |
| } |
| OSTRACE(("CREATELOCKPATH proxy lock path=%s pid=%d\n",lockPath,osGetpid(0))); |
| return 0; |
| } |
| |
| /* |
| ** Create a new VFS file descriptor (stored in memory obtained from |
| ** sqlite3_malloc) and open the file named "path" in the file descriptor. |
| ** |
| ** The caller is responsible not only for closing the file descriptor |
| ** but also for freeing the memory associated with the file descriptor. |
| */ |
| static int proxyCreateUnixFile( |
| const char *path, /* path for the new unixFile */ |
| unixFile **ppFile, /* unixFile created and returned by ref */ |
| int islockfile /* if non zero missing dirs will be created */ |
| ) { |
| int fd = -1; |
| unixFile *pNew; |
| int rc = SQLITE_OK; |
| int openFlags = O_RDWR | O_CREAT | O_NOFOLLOW; |
| sqlite3_vfs dummyVfs; |
| int terrno = 0; |
| UnixUnusedFd *pUnused = NULL; |
| |
| /* 1. first try to open/create the file |
| ** 2. if that fails, and this is a lock file (not-conch), try creating |
| ** the parent directories and then try again. |
| ** 3. if that fails, try to open the file read-only |
| ** otherwise return BUSY (if lock file) or CANTOPEN for the conch file |
| */ |
| pUnused = findReusableFd(path, openFlags); |
| if( pUnused ){ |
| fd = pUnused->fd; |
| }else{ |
| pUnused = sqlite3_malloc64(sizeof(*pUnused)); |
| if( !pUnused ){ |
| return SQLITE_NOMEM_BKPT; |
| } |
| } |
| if( fd<0 ){ |
| fd = robust_open(path, openFlags, 0); |
| terrno = errno; |
| if( fd<0 && errno==ENOENT && islockfile ){ |
| if( proxyCreateLockPath(path) == SQLITE_OK ){ |
| fd = robust_open(path, openFlags, 0); |
| } |
| } |
| } |
| if( fd<0 ){ |
| openFlags = O_RDONLY | O_NOFOLLOW; |
| fd = robust_open(path, openFlags, 0); |
| terrno = errno; |
| } |
| if( fd<0 ){ |
| if( islockfile ){ |
| return SQLITE_BUSY; |
| } |
| switch (terrno) { |
| case EACCES: |
| return SQLITE_PERM; |
| case EIO: |
| return SQLITE_IOERR_LOCK; /* even though it is the conch */ |
| default: |
| return SQLITE_CANTOPEN_BKPT; |
| } |
| } |
| |
| pNew = (unixFile *)sqlite3_malloc64(sizeof(*pNew)); |
| if( pNew==NULL ){ |
| rc = SQLITE_NOMEM_BKPT; |
| goto end_create_proxy; |
| } |
| memset(pNew, 0, sizeof(unixFile)); |
| pNew->openFlags = openFlags; |
| memset(&dummyVfs, 0, sizeof(dummyVfs)); |
| dummyVfs.pAppData = (void*)&autolockIoFinder; |
| dummyVfs.zName = "dummy"; |
| pUnused->fd = fd; |
| pUnused->flags = openFlags; |
| pNew->pPreallocatedUnused = pUnused; |
| |
| rc = fillInUnixFile(&dummyVfs, fd, (sqlite3_file*)pNew, path, 0); |
| if( rc==SQLITE_OK ){ |
| *ppFile = pNew; |
| return SQLITE_OK; |
| } |
| end_create_proxy: |
| robust_close(pNew, fd, __LINE__); |
| sqlite3_free(pNew); |
| sqlite3_free(pUnused); |
| return rc; |
| } |
| |
| #ifdef SQLITE_TEST |
| /* simulate multiple hosts by creating unique hostid file paths */ |
| int sqlite3_hostid_num = 0; |
| #endif |
| |
| #define PROXY_HOSTIDLEN 16 /* conch file host id length */ |
| |
| #if HAVE_GETHOSTUUID |
| /* Not always defined in the headers as it ought to be */ |
| extern int gethostuuid(uuid_t id, const struct timespec *wait); |
| #endif |
| |
| /* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN |
| ** bytes of writable memory. |
| */ |
| static int proxyGetHostID(unsigned char *pHostID, int *pError){ |
| assert(PROXY_HOSTIDLEN == sizeof(uuid_t)); |
| memset(pHostID, 0, PROXY_HOSTIDLEN); |
| #if HAVE_GETHOSTUUID |
| { |
| struct timespec timeout = {1, 0}; /* 1 sec timeout */ |
| if( gethostuuid(pHostID, &timeout) ){ |
| int err = errno; |
| if( pError ){ |
| *pError = err; |
| } |
| return SQLITE_IOERR; |
| } |
| } |
| #else |
| UNUSED_PARAMETER(pError); |
| #endif |
| #ifdef SQLITE_TEST |
| /* simulate multiple hosts by creating unique hostid file paths */ |
| if( sqlite3_hostid_num != 0){ |
| pHostID[0] = (char)(pHostID[0] + (char)(sqlite3_hostid_num & 0xFF)); |
| } |
| #endif |
| |
| return SQLITE_OK; |
| } |
| |
| /* The conch file contains the header, host id and lock file path |
| */ |
| #define PROXY_CONCHVERSION 2 /* 1-byte header, 16-byte host id, path */ |
| #define PROXY_HEADERLEN 1 /* conch file header length */ |
| #define PROXY_PATHINDEX (PROXY_HEADERLEN+PROXY_HOSTIDLEN) |
| #define PROXY_MAXCONCHLEN (PROXY_HEADERLEN+PROXY_HOSTIDLEN+MAXPATHLEN) |
| |
| /* |
| ** Takes an open conch file, copies the contents to a new path and then moves |
| ** it back. The newly created file's file descriptor is assigned to the |
| ** conch file structure and finally the original conch file descriptor is |
| ** closed. Returns zero if successful. |
| */ |
| static int proxyBreakConchLock(unixFile *pFile, uuid_t myHostID){ |
| proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; |
| unixFile *conchFile = pCtx->conchFile; |
| char tPath[MAXPATHLEN]; |
| char buf[PROXY_MAXCONCHLEN]; |
| char *cPath = pCtx->conchFilePath; |
| size_t readLen = 0; |
| size_t pathLen = 0; |
| char errmsg[64] = ""; |
| int fd = -1; |
| int rc = -1; |
| UNUSED_PARAMETER(myHostID); |
| |
| /* create a new path by replace the trailing '-conch' with '-break' */ |
| pathLen = strlcpy(tPath, cPath, MAXPATHLEN); |
| if( pathLen>MAXPATHLEN || pathLen<6 || |
| (strlcpy(&tPath[pathLen-5], "break", 6) != 5) ){ |
| sqlite3_snprintf(sizeof(errmsg),errmsg,"path error (len %d)",(int)pathLen); |
| goto end_breaklock; |
| } |
| /* read the conch content */ |
| readLen = osPread(conchFile->h, buf, PROXY_MAXCONCHLEN, 0); |
| if( readLen<PROXY_PATHINDEX ){ |
| sqlite3_snprintf(sizeof(errmsg),errmsg,"read error (len %d)",(int)readLen); |
| goto end_breaklock; |
| } |
| /* write it out to the temporary break file */ |
| fd = robust_open(tPath, (O_RDWR|O_CREAT|O_EXCL|O_NOFOLLOW), 0); |
| if( fd<0 ){ |
| sqlite3_snprintf(sizeof(errmsg), errmsg, "create failed (%d)", errno); |
| goto end_breaklock; |
| } |
| if( osPwrite(fd, buf, readLen, 0) != (ssize_t)readLen ){ |
| sqlite3_snprintf(sizeof(errmsg), errmsg, "write failed (%d)", errno); |
| goto end_breaklock; |
| } |
| if( rename(tPath, cPath) ){ |
| sqlite3_snprintf(sizeof(errmsg), errmsg, "rename failed (%d)", errno); |
| goto end_breaklock; |
| } |
| rc = 0; |
| fprintf(stderr, "broke stale lock on %s\n", cPath); |
| robust_close(pFile, conchFile->h, __LINE__); |
| conchFile->h = fd; |
| conchFile->openFlags = O_RDWR | O_CREAT; |
| |
| end_breaklock: |
| if( rc ){ |
| if( fd>=0 ){ |
| osUnlink(tPath); |
| robust_close(pFile, fd, __LINE__); |
| } |
| fprintf(stderr, "failed to break stale lock on %s, %s\n", cPath, errmsg); |
| } |
| return rc; |
| } |
| |
| /* Take the requested lock on the conch file and break a stale lock if the |
| ** host id matches. |
| */ |
| static int proxyConchLock(unixFile *pFile, uuid_t myHostID, int lockType){ |
| proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; |
| unixFile *conchFile = pCtx->conchFile; |
| int rc = SQLITE_OK; |
| int nTries = 0; |
| struct timespec conchModTime; |
| |
| memset(&conchModTime, 0, sizeof(conchModTime)); |
| do { |
| rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType); |
| nTries ++; |
| if( rc==SQLITE_BUSY ){ |
| /* If the lock failed (busy): |
| * 1st try: get the mod time of the conch, wait 0.5s and try again. |
| * 2nd try: fail if the mod time changed or host id is different, wait |
| * 10 sec and try again |
| * 3rd try: break the lock unless the mod time has changed. |
| */ |
| struct stat buf; |
| if( osFstat(conchFile->h, &buf) ){ |
| storeLastErrno(pFile, errno); |
| return SQLITE_IOERR_LOCK; |
| } |
| |
| if( nTries==1 ){ |
| conchModTime = buf.st_mtimespec; |
| unixSleep(0,500000); /* wait 0.5 sec and try the lock again*/ |
| continue; |
| } |
| |
| assert( nTries>1 ); |
| if( conchModTime.tv_sec != buf.st_mtimespec.tv_sec || |
| conchModTime.tv_nsec != buf.st_mtimespec.tv_nsec ){ |
| return SQLITE_BUSY; |
| } |
| |
| if( nTries==2 ){ |
| char tBuf[PROXY_MAXCONCHLEN]; |
| int len = osPread(conchFile->h, tBuf, PROXY_MAXCONCHLEN, 0); |
| if( len<0 ){ |
| storeLastErrno(pFile, errno); |
| return SQLITE_IOERR_LOCK; |
| } |
| if( len>PROXY_PATHINDEX && tBuf[0]==(char)PROXY_CONCHVERSION){ |
| /* don't break the lock if the host id doesn't match */ |
| if( 0!=memcmp(&tBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN) ){ |
| return SQLITE_BUSY; |
| } |
| }else{ |
| /* don't break the lock on short read or a version mismatch */ |
| return SQLITE_BUSY; |
| } |
| unixSleep(0,10000000); /* wait 10 sec and try the lock again */ |
| continue; |
| } |
| |
| assert( nTries==3 ); |
| if( 0==proxyBreakConchLock(pFile, myHostID) ){ |
| rc = SQLITE_OK; |
| if( lockType==EXCLUSIVE_LOCK ){ |
| rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, SHARED_LOCK); |
| } |
| if( !rc ){ |
| rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType); |
| } |
| } |
| } |
| } while( rc==SQLITE_BUSY && nTries<3 ); |
| |
| return rc; |
| } |
| |
| /* Takes the conch by taking a shared lock and read the contents conch, if |
| ** lockPath is non-NULL, the host ID and lock file path must match. A NULL |
| ** lockPath means that the lockPath in the conch file will be used if the |
| ** host IDs match, or a new lock path will be generated automatically |
| ** and written to the conch file. |
| */ |
| static int proxyTakeConch(unixFile *pFile){ |
| proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; |
| |
| if( pCtx->conchHeld!=0 ){ |
| return SQLITE_OK; |
| }else{ |
| unixFile *conchFile = pCtx->conchFile; |
| uuid_t myHostID; |
| int pError = 0; |
| char readBuf[PROXY_MAXCONCHLEN]; |
| char lockPath[MAXPATHLEN]; |
| char *tempLockPath = NULL; |
| int rc = SQLITE_OK; |
| int createConch = 0; |
| int hostIdMatch = 0; |
| int readLen = 0; |
| int tryOldLockPath = 0; |
| int forceNewLockPath = 0; |
| |
| OSTRACE(("TAKECONCH %d for %s pid=%d\n", conchFile->h, |
| (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), |
| osGetpid(0))); |
| |
| rc = proxyGetHostID(myHostID, &pError); |
| if( (rc&0xff)==SQLITE_IOERR ){ |
| storeLastErrno(pFile, pError); |
| goto end_takeconch; |
| } |
| rc = proxyConchLock(pFile, myHostID, SHARED_LOCK); |
| if( rc!=SQLITE_OK ){ |
| goto end_takeconch; |
| } |
| /* read the existing conch file */ |
| readLen = seekAndRead((unixFile*)conchFile, 0, readBuf, PROXY_MAXCONCHLEN); |
| if( readLen<0 ){ |
| /* I/O error: lastErrno set by seekAndRead */ |
| storeLastErrno(pFile, conchFile->lastErrno); |
| rc = SQLITE_IOERR_READ; |
| goto end_takeconch; |
| }else if( readLen<=(PROXY_HEADERLEN+PROXY_HOSTIDLEN) || |
| readBuf[0]!=(char)PROXY_CONCHVERSION ){ |
| /* a short read or version format mismatch means we need to create a new |
| ** conch file. |
| */ |
| createConch = 1; |
| } |
| /* if the host id matches and the lock path already exists in the conch |
| ** we'll try to use the path there, if we can't open that path, we'll |
| ** retry with a new auto-generated path |
| */ |
| do { /* in case we need to try again for an :auto: named lock file */ |
| |
| if( !createConch && !forceNewLockPath ){ |
| hostIdMatch = !memcmp(&readBuf[PROXY_HEADERLEN], myHostID, |
| PROXY_HOSTIDLEN); |
| /* if the conch has data compare the contents */ |
| if( !pCtx->lockProxyPath ){ |
| /* for auto-named local lock file, just check the host ID and we'll |
| ** use the local lock file path that's already in there |
| */ |
| if( hostIdMatch ){ |
| size_t pathLen = (readLen - PROXY_PATHINDEX); |
| |
| if( pathLen>=MAXPATHLEN ){ |
| pathLen=MAXPATHLEN-1; |
| } |
| memcpy(lockPath, &readBuf[PROXY_PATHINDEX], pathLen); |
| lockPath[pathLen] = 0; |
| tempLockPath = lockPath; |
| tryOldLockPath = 1; |
| /* create a copy of the lock path if the conch is taken */ |
| goto end_takeconch; |
| } |
| }else if( hostIdMatch |
| && !strncmp(pCtx->lockProxyPath, &readBuf[PROXY_PATHINDEX], |
| readLen-PROXY_PATHINDEX) |
| ){ |
| /* conch host and lock path match */ |
| goto end_takeconch; |
| } |
| } |
| |
| /* if the conch isn't writable and doesn't match, we can't take it */ |
| if( (conchFile->openFlags&O_RDWR) == 0 ){ |
| rc = SQLITE_BUSY; |
| goto end_takeconch; |
| } |
| |
| /* either the conch didn't match or we need to create a new one */ |
| if( !pCtx->lockProxyPath ){ |
| proxyGetLockPath(pCtx->dbPath, lockPath, MAXPATHLEN); |
| tempLockPath = lockPath; |
| /* create a copy of the lock path _only_ if the conch is taken */ |
| } |
| |
| /* update conch with host and path (this will fail if other process |
| ** has a shared lock already), if the host id matches, use the big |
| ** stick. |
| */ |
| futimes(conchFile->h, NULL); |
| if( hostIdMatch && !createConch ){ |
| if( conchFile->pInode && conchFile->pInode->nShared>1 ){ |
| /* We are trying for an exclusive lock but another thread in this |
| ** same process is still holding a shared lock. */ |
| rc = SQLITE_BUSY; |
| } else { |
| rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK); |
| } |
| }else{ |
| rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK); |
| } |
| if( rc==SQLITE_OK ){ |
| char writeBuffer[PROXY_MAXCONCHLEN]; |
| int writeSize = 0; |
| |
| writeBuffer[0] = (char)PROXY_CONCHVERSION; |
| memcpy(&writeBuffer[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN); |
| if( pCtx->lockProxyPath!=NULL ){ |
| strlcpy(&writeBuffer[PROXY_PATHINDEX], pCtx->lockProxyPath, |
| MAXPATHLEN); |
| }else{ |
| strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN); |
| } |
| writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]); |
| robust_ftruncate(conchFile->h, writeSize); |
| rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0); |
| full_fsync(conchFile->h,0,0); |
| /* If we created a new conch file (not just updated the contents of a |
| ** valid conch file), try to match the permissions of the database |
| */ |
| if( rc==SQLITE_OK && createConch ){ |
| struct stat buf; |
| int err = osFstat(pFile->h, &buf); |
| if( err==0 ){ |
| mode_t cmode = buf.st_mode&(S_IRUSR|S_IWUSR | S_IRGRP|S_IWGRP | |
| S_IROTH|S_IWOTH); |
| /* try to match the database file R/W permissions, ignore failure */ |
| #ifndef SQLITE_PROXY_DEBUG |
| osFchmod(conchFile->h, cmode); |
| #else |
| do{ |
| rc = osFchmod(conchFile->h, cmode); |
| }while( rc==(-1) && errno==EINTR ); |
| if( rc!=0 ){ |
| int code = errno; |
| fprintf(stderr, "fchmod %o FAILED with %d %s\n", |
| cmode, code, strerror(code)); |
| } else { |
| fprintf(stderr, "fchmod %o SUCCEDED\n",cmode); |
| } |
| }else{ |
| int code = errno; |
| fprintf(stderr, "STAT FAILED[%d] with %d %s\n", |
| err, code, strerror(code)); |
| #endif |
| } |
| } |
| } |
| conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK); |
| |
| end_takeconch: |
| OSTRACE(("TRANSPROXY: CLOSE %d\n", pFile->h)); |
| if( rc==SQLITE_OK && pFile->openFlags ){ |
| int fd; |
| if( pFile->h>=0 ){ |
| robust_close(pFile, pFile->h, __LINE__); |
| } |
| pFile->h = -1; |
| fd = robust_open(pCtx->dbPath, pFile->openFlags, 0); |
| OSTRACE(("TRANSPROXY: OPEN %d\n", fd)); |
| if( fd>=0 ){ |
| pFile->h = fd; |
| }else{ |
| rc=SQLITE_CANTOPEN_BKPT; /* SQLITE_BUSY? proxyTakeConch called |
| during locking */ |
| } |
| } |
| if( rc==SQLITE_OK && !pCtx->lockProxy ){ |
| char *path = tempLockPath ? tempLockPath : pCtx->lockProxyPath; |
| rc = proxyCreateUnixFile(path, &pCtx->lockProxy, 1); |
| if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && tryOldLockPath ){ |
| /* we couldn't create the proxy lock file with the old lock file path |
| ** so try again via auto-naming |
| */ |
| forceNewLockPath = 1; |
| tryOldLockPath = 0; |
| continue; /* go back to the do {} while start point, try again */ |
| } |
| } |
| if( rc==SQLITE_OK ){ |
| /* Need to make a copy of path if we extracted the value |
| ** from the conch file or the path was allocated on the stack |
| */ |
| if( tempLockPath ){ |
| pCtx->lockProxyPath = sqlite3DbStrDup(0, tempLockPath); |
| if( !pCtx->lockProxyPath ){ |
| rc = SQLITE_NOMEM_BKPT; |
| } |
| } |
| } |
| if( rc==SQLITE_OK ){ |
| pCtx->conchHeld = 1; |
| |
| if( pCtx->lockProxy->pMethod == &afpIoMethods ){ |
| afpLockingContext *afpCtx; |
| afpCtx = (afpLockingContext *)pCtx->lockProxy->lockingContext; |
| afpCtx->dbPath = pCtx->lockProxyPath; |
| } |
| } else { |
| conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK); |
| } |
| OSTRACE(("TAKECONCH %d %s\n", conchFile->h, |
| rc==SQLITE_OK?"ok":"failed")); |
| return rc; |
| } while (1); /* in case we need to retry the :auto: lock file - |
| ** we should never get here except via the 'continue' call. */ |
| } |
| } |
| |
| /* |
| ** If pFile holds a lock on a conch file, then release that lock. |
| */ |
| static int proxyReleaseConch(unixFile *pFile){ |
| int rc = SQLITE_OK; /* Subroutine return code */ |
| proxyLockingContext *pCtx; /* The locking context for the proxy lock */ |
| unixFile *conchFile; /* Name of the conch file */ |
| |
| pCtx = (proxyLockingContext *)pFile->lockingContext; |
| conchFile = pCtx->conchFile; |
| OSTRACE(("RELEASECONCH %d for %s pid=%d\n", conchFile->h, |
| (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), |
| osGetpid(0))); |
| if( pCtx->conchHeld>0 ){ |
| rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK); |
| } |
| pCtx->conchHeld = 0; |
| OSTRACE(("RELEASECONCH %d %s\n", conchFile->h, |
| (rc==SQLITE_OK ? "ok" : "failed"))); |
| return rc; |
| } |
| |
| /* |
| ** Given the name of a database file, compute the name of its conch file. |
| ** Store the conch filename in memory obtained from sqlite3_malloc64(). |
| ** Make *pConchPath point to the new name. Return SQLITE_OK on success |
| ** or SQLITE_NOMEM if unable to obtain memory. |
| ** |
| ** The caller is responsible for ensuring that the allocated memory |
| ** space is eventually freed. |
| ** |
| ** *pConchPath is set to NULL if a memory allocation error occurs. |
| */ |
| static int proxyCreateConchPathname(char *dbPath, char **pConchPath){ |
| int i; /* Loop counter */ |
| int len = (int)strlen(dbPath); /* Length of database filename - dbPath */ |
| char *conchPath; /* buffer in which to construct conch name */ |
| |
| /* Allocate space for the conch filename and initialize the name to |
| ** the name of the original database file. */ |
| *pConchPath = conchPath = (char *)sqlite3_malloc64(len + 8); |
| if( conchPath==0 ){ |
| return SQLITE_NOMEM_BKPT; |
| } |
| memcpy(conchPath, dbPath, len+1); |
| |
| /* now insert a "." before the last / character */ |
| for( i=(len-1); i>=0; i-- ){ |
| if( conchPath[i]=='/' ){ |
| i++; |
| break; |
| } |
| } |
| conchPath[i]='.'; |
| while ( i<len ){ |
| conchPath[i+1]=dbPath[i]; |
| i++; |
| } |
| |
| /* append the "-conch" suffix to the file */ |
| memcpy(&conchPath[i+1], "-conch", 7); |
| assert( (int)strlen(conchPath) == len+7 ); |
| |
| return SQLITE_OK; |
| } |
| |
| |
| /* Takes a fully configured proxy locking-style unix file and switches |
| ** the local lock file path |
| */ |
| static int switchLockProxyPath(unixFile *pFile, const char *path) { |
| proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext; |
| char *oldPath = pCtx->lockProxyPath; |
| int rc = SQLITE_OK; |
| |
| if( pFile->eFileLock!=NO_LOCK ){ |
| return SQLITE_BUSY; |
| } |
| |
| /* nothing to do if the path is NULL, :auto: or matches the existing path */ |
| if( !path || path[0]=='\0' || !strcmp(path, ":auto:") || |
| (oldPath && !strncmp(oldPath, path, MAXPATHLEN)) ){ |
| return SQLITE_OK; |
| }else{ |
| unixFile *lockProxy = pCtx->lockProxy; |
| pCtx->lockProxy=NULL; |
| pCtx->conchHeld = 0; |
| if( lockProxy!=NULL ){ |
| rc=lockProxy->pMethod->xClose((sqlite3_file *)lockProxy); |
| if( rc ) return rc; |
| sqlite3_free(lockProxy); |
| } |
| sqlite3_free(oldPath); |
| pCtx->lockProxyPath = sqlite3DbStrDup(0, path); |
| } |
| |
| return rc; |
| } |
| |
| /* |
| ** pFile is a file that has been opened by a prior xOpen call. dbPath |
| ** is a string buffer at least MAXPATHLEN+1 characters in size. |
| ** |
| ** This routine find the filename associated with pFile and writes it |
| ** int dbPath. |
| */ |
| static int proxyGetDbPathForUnixFile(unixFile *pFile, char *dbPath){ |
| #if defined(__APPLE__) |
| if( pFile->pMethod == &afpIoMethods ){ |
| /* afp style keeps a reference to the db path in the filePath field |
| ** of the struct */ |
| assert( (int)strlen((char*)pFile->lockingContext)<=MAXPATHLEN ); |
| strlcpy(dbPath, ((afpLockingContext *)pFile->lockingContext)->dbPath, |
| MAXPATHLEN); |
| } else |
| #endif |
| if( pFile->pMethod == &dotlockIoMethods ){ |
| /* dot lock style uses the locking context to store the dot lock |
| ** file path */ |
| int len = strlen((char *)pFile->lockingContext) - strlen(DOTLOCK_SUFFIX); |
| memcpy(dbPath, (char *)pFile->lockingContext, len + 1); |
| }else{ |
| /* all other styles use the locking context to store the db file path */ |
| assert( strlen((char*)pFile->lockingContext)<=MAXPATHLEN ); |
| strlcpy(dbPath, (char *)pFile->lockingContext, MAXPATHLEN); |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Takes an already filled in unix file and alters it so all file locking |
| ** will be performed on the local proxy lock file. The following fields |
| ** are preserved in the locking context so that they can be restored and |
| ** the unix structure properly cleaned up at close time: |
| ** ->lockingContext |
| ** ->pMethod |
| */ |
| static int proxyTransformUnixFile(unixFile *pFile, const char *path) { |
| proxyLockingContext *pCtx; |
| char dbPath[MAXPATHLEN+1]; /* Name of the database file */ |
| char *lockPath=NULL; |
| int rc = SQLITE_OK; |
| |
| if( pFile->eFileLock!=NO_LOCK ){ |
| return SQLITE_BUSY; |
| } |
| proxyGetDbPathForUnixFile(pFile, dbPath); |
| if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){ |
| lockPath=NULL; |
| }else{ |
| lockPath=(char *)path; |
| } |
| |
| OSTRACE(("TRANSPROXY %d for %s pid=%d\n", pFile->h, |
| (lockPath ? lockPath : ":auto:"), osGetpid(0))); |
| |
| pCtx = sqlite3_malloc64( sizeof(*pCtx) ); |
| if( pCtx==0 ){ |
| return SQLITE_NOMEM_BKPT; |
| } |
| memset(pCtx, 0, sizeof(*pCtx)); |
| |
| rc = proxyCreateConchPathname(dbPath, &pCtx->conchFilePath); |
| if( rc==SQLITE_OK ){ |
| rc = proxyCreateUnixFile(pCtx->conchFilePath, &pCtx->conchFile, 0); |
| if( rc==SQLITE_CANTOPEN && ((pFile->openFlags&O_RDWR) == 0) ){ |
| /* if (a) the open flags are not O_RDWR, (b) the conch isn't there, and |
| ** (c) the file system is read-only, then enable no-locking access. |
| ** Ugh, since O_RDONLY==0x0000 we test for !O_RDWR since unixOpen asserts |
| ** that openFlags will have only one of O_RDONLY or O_RDWR. |
| */ |
| struct statfs fsInfo; |
| struct stat conchInfo; |
| int goLockless = 0; |
| |
| if( osStat(pCtx->conchFilePath, &conchInfo) == -1 ) { |
| int err = errno; |
| if( (err==ENOENT) && (statfs(dbPath, &fsInfo) != -1) ){ |
| goLockless = (fsInfo.f_flags&MNT_RDONLY) == MNT_RDONLY; |
| } |
| } |
| if( goLockless ){ |
| pCtx->conchHeld = -1; /* read only FS/ lockless */ |
| rc = SQLITE_OK; |
| } |
| } |
| } |
| if( rc==SQLITE_OK && lockPath ){ |
| pCtx->lockProxyPath = sqlite3DbStrDup(0, lockPath); |
| } |
| |
| if( rc==SQLITE_OK ){ |
| pCtx->dbPath = sqlite3DbStrDup(0, dbPath); |
| if( pCtx->dbPath==NULL ){ |
| rc = SQLITE_NOMEM_BKPT; |
| } |
| } |
| if( rc==SQLITE_OK ){ |
| /* all memory is allocated, proxys are created and assigned, |
| ** switch the locking context and pMethod then return. |
| */ |
| pCtx->oldLockingContext = pFile->lockingContext; |
| pFile->lockingContext = pCtx; |
| pCtx->pOldMethod = pFile->pMethod; |
| pFile->pMethod = &proxyIoMethods; |
| }else{ |
| if( pCtx->conchFile ){ |
| pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile); |
| sqlite3_free(pCtx->conchFile); |
| } |
| sqlite3DbFree(0, pCtx->lockProxyPath); |
| sqlite3_free(pCtx->conchFilePath); |
| sqlite3_free(pCtx); |
| } |
| OSTRACE(("TRANSPROXY %d %s\n", pFile->h, |
| (rc==SQLITE_OK ? "ok" : "failed"))); |
| return rc; |
| } |
| |
| |
| /* |
| ** This routine handles sqlite3_file_control() calls that are specific |
| ** to proxy locking. |
| */ |
| static int proxyFileControl(sqlite3_file *id, int op, void *pArg){ |
| switch( op ){ |
| case SQLITE_FCNTL_GET_LOCKPROXYFILE: { |
| unixFile *pFile = (unixFile*)id; |
| if( pFile->pMethod == &proxyIoMethods ){ |
| proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext; |
| proxyTakeConch(pFile); |
| if( pCtx->lockProxyPath ){ |
| *(const char **)pArg = pCtx->lockProxyPath; |
| }else{ |
| *(const char **)pArg = ":auto: (not held)"; |
| } |
| } else { |
| *(const char **)pArg = NULL; |
| } |
| return SQLITE_OK; |
| } |
| case SQLITE_FCNTL_SET_LOCKPROXYFILE: { |
| unixFile *pFile = (unixFile*)id; |
| int rc = SQLITE_OK; |
| int isProxyStyle = (pFile->pMethod == &proxyIoMethods); |
| if( pArg==NULL || (const char *)pArg==0 ){ |
| if( isProxyStyle ){ |
| /* turn off proxy locking - not supported. If support is added for |
| ** switching proxy locking mode off then it will need to fail if |
| ** the journal mode is WAL mode. |
| */ |
| rc = SQLITE_ERROR /*SQLITE_PROTOCOL? SQLITE_MISUSE?*/; |
| }else{ |
| /* turn off proxy locking - already off - NOOP */ |
| rc = SQLITE_OK; |
| } |
| }else{ |
| const char *proxyPath = (const char *)pArg; |
| if( isProxyStyle ){ |
| proxyLockingContext *pCtx = |
| (proxyLockingContext*)pFile->lockingContext; |
| if( !strcmp(pArg, ":auto:") |
| || (pCtx->lockProxyPath && |
| !strncmp(pCtx->lockProxyPath, proxyPath, MAXPATHLEN)) |
| ){ |
| rc = SQLITE_OK; |
| }else{ |
| rc = switchLockProxyPath(pFile, proxyPath); |
| } |
| }else{ |
| /* turn on proxy file locking */ |
| rc = proxyTransformUnixFile(pFile, proxyPath); |
| } |
| } |
| return rc; |
| } |
| default: { |
| assert( 0 ); /* The call assures that only valid opcodes are sent */ |
| } |
| } |
| /*NOTREACHED*/ assert(0); |
| return SQLITE_ERROR; |
| } |
| |
| /* |
| ** Within this division (the proxying locking implementation) the procedures |
| ** above this point are all utilities. The lock-related methods of the |
| ** proxy-locking sqlite3_io_method object follow. |
| */ |
| |
| |
| /* |
| ** This routine checks if there is a RESERVED lock held on the specified |
| ** file by this or any other process. If such a lock is held, set *pResOut |
| ** to a non-zero value otherwise *pResOut is set to zero. The return value |
| ** is set to SQLITE_OK unless an I/O error occurs during lock checking. |
| */ |
| static int proxyCheckReservedLock(sqlite3_file *id, int *pResOut) { |
| unixFile *pFile = (unixFile*)id; |
| int rc = proxyTakeConch(pFile); |
| if( rc==SQLITE_OK ){ |
| proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; |
| if( pCtx->conchHeld>0 ){ |
| unixFile *proxy = pCtx->lockProxy; |
| return proxy->pMethod->xCheckReservedLock((sqlite3_file*)proxy, pResOut); |
| }else{ /* conchHeld < 0 is lockless */ |
| pResOut=0; |
| } |
| } |
| return rc; |
| } |
| |
| /* |
| ** Lock the file with the lock specified by parameter eFileLock - one |
| ** of the following: |
| ** |
| ** (1) SHARED_LOCK |
| ** (2) RESERVED_LOCK |
| ** (3) PENDING_LOCK |
| ** (4) EXCLUSIVE_LOCK |
| ** |
| ** Sometimes when requesting one lock state, additional lock states |
| ** are inserted in between. The locking might fail on one of the later |
| ** transitions leaving the lock state different from what it started but |
| ** still short of its goal. The following chart shows the allowed |
| ** transitions and the inserted intermediate states: |
| ** |
| ** UNLOCKED -> SHARED |
| ** SHARED -> RESERVED |
| ** SHARED -> (PENDING) -> EXCLUSIVE |
| ** RESERVED -> (PENDING) -> EXCLUSIVE |
| ** PENDING -> EXCLUSIVE |
| ** |
| ** This routine will only increase a lock. Use the sqlite3OsUnlock() |
| ** routine to lower a locking level. |
| */ |
| static int proxyLock(sqlite3_file *id, int eFileLock) { |
| unixFile *pFile = (unixFile*)id; |
| int rc = proxyTakeConch(pFile); |
| if( rc==SQLITE_OK ){ |
| proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; |
| if( pCtx->conchHeld>0 ){ |
| unixFile *proxy = pCtx->lockProxy; |
| rc = proxy->pMethod->xLock((sqlite3_file*)proxy, eFileLock); |
| pFile->eFileLock = proxy->eFileLock; |
| }else{ |
| /* conchHeld < 0 is lockless */ |
| } |
| } |
| return rc; |
| } |
| |
| |
| /* |
| ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
| ** must be either NO_LOCK or SHARED_LOCK. |
| ** |
| ** If the locking level of the file descriptor is already at or below |
| ** the requested locking level, this routine is a no-op. |
| */ |
| static int proxyUnlock(sqlite3_file *id, int eFileLock) { |
| unixFile *pFile = (unixFile*)id; |
| int rc = proxyTakeConch(pFile); |
| if( rc==SQLITE_OK ){ |
| proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; |
| if( pCtx->conchHeld>0 ){ |
| unixFile *proxy = pCtx->lockProxy; |
| rc = proxy->pMethod->xUnlock((sqlite3_file*)proxy, eFileLock); |
| pFile->eFileLock = proxy->eFileLock; |
| }else{ |
| /* conchHeld < 0 is lockless */ |
| } |
| } |
| return rc; |
| } |
| |
| /* |
| ** Close a file that uses proxy locks. |
| */ |
| static int proxyClose(sqlite3_file *id) { |
| if( ALWAYS(id) ){ |
| unixFile *pFile = (unixFile*)id; |
| proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; |
| unixFile *lockProxy = pCtx->lockProxy; |
| unixFile *conchFile = pCtx->conchFile; |
| int rc = SQLITE_OK; |
| |
| if( lockProxy ){ |
| rc = lockProxy->pMethod->xUnlock((sqlite3_file*)lockProxy, NO_LOCK); |
| if( rc ) return rc; |
| rc = lockProxy->pMethod->xClose((sqlite3_file*)lockProxy); |
| if( rc ) return rc; |
| sqlite3_free(lockProxy); |
| pCtx->lockProxy = 0; |
| } |
| if( conchFile ){ |
| if( pCtx->conchHeld ){ |
| rc = proxyReleaseConch(pFile); |
| if( rc ) return rc; |
| } |
| rc = conchFile->pMethod->xClose((sqlite3_file*)conchFile); |
| if( rc ) return rc; |
| sqlite3_free(conchFile); |
| } |
| sqlite3DbFree(0, pCtx->lockProxyPath); |
| sqlite3_free(pCtx->conchFilePath); |
| sqlite3DbFree(0, pCtx->dbPath); |
| /* restore the original locking context and pMethod then close it */ |
| pFile->lockingContext = pCtx->oldLockingContext; |
| pFile->pMethod = pCtx->pOldMethod; |
| sqlite3_free(pCtx); |
| return pFile->pMethod->xClose(id); |
| } |
| return SQLITE_OK; |
| } |
| |
| |
| |
| #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ |
| /* |
| ** The proxy locking style is intended for use with AFP filesystems. |
| ** And since AFP is only supported on MacOSX, the proxy locking is also |
| ** restricted to MacOSX. |
| ** |
| ** |
| ******************* End of the proxy lock implementation ********************** |
| ******************************************************************************/ |
| |
| /* |
| ** Initialize the operating system interface. |
| ** |
| ** This routine registers all VFS implementations for unix-like operating |
| ** systems. This routine, and the sqlite3_os_end() routine that follows, |
| ** should be the only routines in this file that are visible from other |
| ** files. |
| ** |
| ** This routine is called once during SQLite initialization and by a |
| ** single thread. The memory allocation and mutex subsystems have not |
| ** necessarily been initialized when this routine is called, and so they |
| ** should not be used. |
| */ |
| int sqlite3_os_init(void){ |
| /* |
| ** The following macro defines an initializer for an sqlite3_vfs object. |
| ** The name of the VFS is NAME. The pAppData is a pointer to a pointer |
| ** to the "finder" function. (pAppData is a pointer to a pointer because |
| ** silly C90 rules prohibit a void* from being cast to a function pointer |
| ** and so we have to go through the intermediate pointer to avoid problems |
| ** when compiling with -pedantic-errors on GCC.) |
| ** |
| ** The FINDER parameter to this macro is the name of the pointer to the |
| ** finder-function. The finder-function returns a pointer to the |
| ** sqlite_io_methods object that implements the desired locking |
| ** behaviors. See the division above that contains the IOMETHODS |
| ** macro for addition information on finder-functions. |
| ** |
| ** Most finders simply return a pointer to a fixed sqlite3_io_methods |
| ** object. But the "autolockIoFinder" available on MacOSX does a little |
| ** more than that; it looks at the filesystem type that hosts the |
| ** database file and tries to choose an locking method appropriate for |
| ** that filesystem time. |
| */ |
| #define UNIXVFS(VFSNAME, FINDER) { \ |
| 3, /* iVersion */ \ |
| sizeof(unixFile), /* szOsFile */ \ |
| MAX_PATHNAME, /* mxPathname */ \ |
| 0, /* pNext */ \ |
| VFSNAME, /* zName */ \ |
| (void*)&FINDER, /* pAppData */ \ |
| unixOpen, /* xOpen */ \ |
| unixDelete, /* xDelete */ \ |
| unixAccess, /* xAccess */ \ |
| unixFullPathname, /* xFullPathname */ \ |
| unixDlOpen, /* xDlOpen */ \ |
| unixDlError, /* xDlError */ \ |
| unixDlSym, /* xDlSym */ \ |
| unixDlClose, /* xDlClose */ \ |
| unixRandomness, /* xRandomness */ \ |
| unixSleep, /* xSleep */ \ |
| unixCurrentTime, /* xCurrentTime */ \ |
| unixGetLastError, /* xGetLastError */ \ |
| unixCurrentTimeInt64, /* xCurrentTimeInt64 */ \ |
| unixSetSystemCall, /* xSetSystemCall */ \ |
| unixGetSystemCall, /* xGetSystemCall */ \ |
| unixNextSystemCall, /* xNextSystemCall */ \ |
| } |
| |
| /* |
| ** All default VFSes for unix are contained in the following array. |
| ** |
| ** Note that the sqlite3_vfs.pNext field of the VFS object is modified |
| ** by the SQLite core when the VFS is registered. So the following |
| ** array cannot be const. |
| */ |
| static sqlite3_vfs aVfs[] = { |
| #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) |
| UNIXVFS("unix", autolockIoFinder ), |
| #elif OS_VXWORKS |
| UNIXVFS("unix", vxworksIoFinder ), |
| #else |
| UNIXVFS("unix", posixIoFinder ), |
| #endif |
| UNIXVFS("unix-none", nolockIoFinder ), |
| UNIXVFS("unix-dotfile", dotlockIoFinder ), |
| UNIXVFS("unix-excl", posixIoFinder ), |
| #if OS_VXWORKS |
| UNIXVFS("unix-namedsem", semIoFinder ), |
| #endif |
| #if SQLITE_ENABLE_LOCKING_STYLE || OS_VXWORKS |
| UNIXVFS("unix-posix", posixIoFinder ), |
| #endif |
| #if SQLITE_ENABLE_LOCKING_STYLE |
| UNIXVFS("unix-flock", flockIoFinder ), |
| #endif |
| #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) |
| UNIXVFS("unix-afp", afpIoFinder ), |
| UNIXVFS("unix-nfs", nfsIoFinder ), |
| UNIXVFS("unix-proxy", proxyIoFinder ), |
| #endif |
| }; |
| unsigned int i; /* Loop counter */ |
| |
| /* Double-check that the aSyscall[] array has been constructed |
| ** correctly. See ticket [bb3a86e890c8e96ab] */ |
| assert( ArraySize(aSyscall)==29 ); |
| |
| /* Register all VFSes defined in the aVfs[] array */ |
| for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){ |
| sqlite3_vfs_register(&aVfs[i], i==0); |
| } |
| unixBigLock = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1); |
| |
| #ifndef SQLITE_OMIT_WAL |
| /* Validate lock assumptions */ |
| assert( SQLITE_SHM_NLOCK==8 ); /* Number of available locks */ |
| assert( UNIX_SHM_BASE==120 ); /* Start of locking area */ |
| /* Locks: |
| ** WRITE UNIX_SHM_BASE 120 |
| ** CKPT UNIX_SHM_BASE+1 121 |
| ** RECOVER UNIX_SHM_BASE+2 122 |
| ** READ-0 UNIX_SHM_BASE+3 123 |
| ** READ-1 UNIX_SHM_BASE+4 124 |
| ** READ-2 UNIX_SHM_BASE+5 125 |
| ** READ-3 UNIX_SHM_BASE+6 126 |
| ** READ-4 UNIX_SHM_BASE+7 127 |
| ** DMS UNIX_SHM_BASE+8 128 |
| */ |
| assert( UNIX_SHM_DMS==128 ); /* Byte offset of the deadman-switch */ |
| #endif |
| |
| /* Initialize temp file dir array. */ |
| unixTempFileInit(); |
| |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Shutdown the operating system interface. |
| ** |
| ** Some operating systems might need to do some cleanup in this routine, |
| ** to release dynamically allocated objects. But not on unix. |
| ** This routine is a no-op for unix. |
| */ |
| int sqlite3_os_end(void){ |
| unixBigLock = 0; |
| return SQLITE_OK; |
| } |
| |
| #endif /* SQLITE_OS_UNIX */ |