| /* |
| ** 2010 August 28 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** Code for testing all sorts of SQLite interfaces. This code |
| ** is not included in the SQLite library. |
| */ |
| |
| #include "sqlite3.h" |
| #if defined(INCLUDE_SQLITE_TCL_H) |
| # include "sqlite_tcl.h" |
| #else |
| # include "tcl.h" |
| #endif |
| |
| /* Solely for the UNUSED_PARAMETER() macro. */ |
| #include "sqliteInt.h" |
| |
| #ifdef SQLITE_ENABLE_RTREE |
| /* |
| ** Type used to cache parameter information for the "circle" r-tree geometry |
| ** callback. |
| */ |
| typedef struct Circle Circle; |
| struct Circle { |
| struct Box { |
| double xmin; |
| double xmax; |
| double ymin; |
| double ymax; |
| } aBox[2]; |
| double centerx; |
| double centery; |
| double radius; |
| double mxArea; |
| int eScoreType; |
| }; |
| |
| /* |
| ** Destructor function for Circle objects allocated by circle_geom(). |
| */ |
| static void circle_del(void *p){ |
| sqlite3_free(p); |
| } |
| |
| /* |
| ** Implementation of "circle" r-tree geometry callback. |
| */ |
| static int circle_geom( |
| sqlite3_rtree_geometry *p, |
| int nCoord, |
| sqlite3_rtree_dbl *aCoord, |
| int *pRes |
| ){ |
| int i; /* Iterator variable */ |
| Circle *pCircle; /* Structure defining circular region */ |
| double xmin, xmax; /* X dimensions of box being tested */ |
| double ymin, ymax; /* X dimensions of box being tested */ |
| |
| xmin = aCoord[0]; |
| xmax = aCoord[1]; |
| ymin = aCoord[2]; |
| ymax = aCoord[3]; |
| pCircle = (Circle *)p->pUser; |
| if( pCircle==0 ){ |
| /* If pUser is still 0, then the parameter values have not been tested |
| ** for correctness or stored into a Circle structure yet. Do this now. */ |
| |
| /* This geometry callback is for use with a 2-dimensional r-tree table. |
| ** Return an error if the table does not have exactly 2 dimensions. */ |
| if( nCoord!=4 ) return SQLITE_ERROR; |
| |
| /* Test that the correct number of parameters (3) have been supplied, |
| ** and that the parameters are in range (that the radius of the circle |
| ** radius is greater than zero). */ |
| if( p->nParam!=3 || p->aParam[2]<0.0 ) return SQLITE_ERROR; |
| |
| /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM |
| ** if the allocation fails. */ |
| pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle))); |
| if( !pCircle ) return SQLITE_NOMEM; |
| p->xDelUser = circle_del; |
| |
| /* Record the center and radius of the circular region. One way that |
| ** tested bounding boxes that intersect the circular region are detected |
| ** is by testing if each corner of the bounding box lies within radius |
| ** units of the center of the circle. */ |
| pCircle->centerx = p->aParam[0]; |
| pCircle->centery = p->aParam[1]; |
| pCircle->radius = p->aParam[2]; |
| |
| /* Define two bounding box regions. The first, aBox[0], extends to |
| ** infinity in the X dimension. It covers the same range of the Y dimension |
| ** as the circular region. The second, aBox[1], extends to infinity in |
| ** the Y dimension and is constrained to the range of the circle in the |
| ** X dimension. |
| ** |
| ** Then imagine each box is split in half along its short axis by a line |
| ** that intersects the center of the circular region. A bounding box |
| ** being tested can be said to intersect the circular region if it contains |
| ** points from each half of either of the two infinite bounding boxes. |
| */ |
| pCircle->aBox[0].xmin = pCircle->centerx; |
| pCircle->aBox[0].xmax = pCircle->centerx; |
| pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius; |
| pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius; |
| pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius; |
| pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius; |
| pCircle->aBox[1].ymin = pCircle->centery; |
| pCircle->aBox[1].ymax = pCircle->centery; |
| pCircle->mxArea = (xmax - xmin)*(ymax - ymin) + 1.0; |
| } |
| |
| /* Check if any of the 4 corners of the bounding-box being tested lie |
| ** inside the circular region. If they do, then the bounding-box does |
| ** intersect the region of interest. Set the output variable to true and |
| ** return SQLITE_OK in this case. */ |
| for(i=0; i<4; i++){ |
| double x = (i&0x01) ? xmax : xmin; |
| double y = (i&0x02) ? ymax : ymin; |
| double d2; |
| |
| d2 = (x-pCircle->centerx)*(x-pCircle->centerx); |
| d2 += (y-pCircle->centery)*(y-pCircle->centery); |
| if( d2<(pCircle->radius*pCircle->radius) ){ |
| *pRes = 1; |
| return SQLITE_OK; |
| } |
| } |
| |
| /* Check if the bounding box covers any other part of the circular region. |
| ** See comments above for a description of how this test works. If it does |
| ** cover part of the circular region, set the output variable to true |
| ** and return SQLITE_OK. */ |
| for(i=0; i<2; i++){ |
| if( xmin<=pCircle->aBox[i].xmin |
| && xmax>=pCircle->aBox[i].xmax |
| && ymin<=pCircle->aBox[i].ymin |
| && ymax>=pCircle->aBox[i].ymax |
| ){ |
| *pRes = 1; |
| return SQLITE_OK; |
| } |
| } |
| |
| /* The specified bounding box does not intersect the circular region. Set |
| ** the output variable to zero and return SQLITE_OK. */ |
| *pRes = 0; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Implementation of "circle" r-tree geometry callback using the |
| ** 2nd-generation interface that allows scoring. |
| ** |
| ** Two calling forms: |
| ** |
| ** Qcircle(X,Y,Radius,eType) -- All values are doubles |
| ** Qcircle('x:X y:Y r:R e:ETYPE') -- Single string parameter |
| */ |
| static int circle_query_func(sqlite3_rtree_query_info *p){ |
| int i; /* Iterator variable */ |
| Circle *pCircle; /* Structure defining circular region */ |
| double xmin, xmax; /* X dimensions of box being tested */ |
| double ymin, ymax; /* X dimensions of box being tested */ |
| int nWithin = 0; /* Number of corners inside the circle */ |
| |
| xmin = p->aCoord[0]; |
| xmax = p->aCoord[1]; |
| ymin = p->aCoord[2]; |
| ymax = p->aCoord[3]; |
| pCircle = (Circle *)p->pUser; |
| if( pCircle==0 ){ |
| /* If pUser is still 0, then the parameter values have not been tested |
| ** for correctness or stored into a Circle structure yet. Do this now. */ |
| |
| /* This geometry callback is for use with a 2-dimensional r-tree table. |
| ** Return an error if the table does not have exactly 2 dimensions. */ |
| if( p->nCoord!=4 ) return SQLITE_ERROR; |
| |
| /* Test that the correct number of parameters (1 or 4) have been supplied. |
| */ |
| if( p->nParam!=4 && p->nParam!=1 ) return SQLITE_ERROR; |
| |
| /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM |
| ** if the allocation fails. */ |
| pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle))); |
| if( !pCircle ) return SQLITE_NOMEM; |
| p->xDelUser = circle_del; |
| |
| /* Record the center and radius of the circular region. One way that |
| ** tested bounding boxes that intersect the circular region are detected |
| ** is by testing if each corner of the bounding box lies within radius |
| ** units of the center of the circle. */ |
| if( p->nParam==4 ){ |
| pCircle->centerx = p->aParam[0]; |
| pCircle->centery = p->aParam[1]; |
| pCircle->radius = p->aParam[2]; |
| pCircle->eScoreType = (int)p->aParam[3]; |
| }else{ |
| const char *z = (const char*)sqlite3_value_text(p->apSqlParam[0]); |
| pCircle->centerx = 0.0; |
| pCircle->centery = 0.0; |
| pCircle->radius = 0.0; |
| pCircle->eScoreType = 0; |
| while( z && z[0] ){ |
| if( z[0]=='r' && z[1]==':' ){ |
| pCircle->radius = atof(&z[2]); |
| }else if( z[0]=='x' && z[1]==':' ){ |
| pCircle->centerx = atof(&z[2]); |
| }else if( z[0]=='y' && z[1]==':' ){ |
| pCircle->centery = atof(&z[2]); |
| }else if( z[0]=='e' && z[1]==':' ){ |
| pCircle->eScoreType = (int)atof(&z[2]); |
| }else if( z[0]==' ' ){ |
| z++; |
| continue; |
| } |
| while( z[0]!=0 && z[0]!=' ' ) z++; |
| while( z[0]==' ' ) z++; |
| } |
| } |
| if( pCircle->radius<0.0 ){ |
| sqlite3_free(pCircle); |
| return SQLITE_NOMEM; |
| } |
| |
| /* Define two bounding box regions. The first, aBox[0], extends to |
| ** infinity in the X dimension. It covers the same range of the Y dimension |
| ** as the circular region. The second, aBox[1], extends to infinity in |
| ** the Y dimension and is constrained to the range of the circle in the |
| ** X dimension. |
| ** |
| ** Then imagine each box is split in half along its short axis by a line |
| ** that intersects the center of the circular region. A bounding box |
| ** being tested can be said to intersect the circular region if it contains |
| ** points from each half of either of the two infinite bounding boxes. |
| */ |
| pCircle->aBox[0].xmin = pCircle->centerx; |
| pCircle->aBox[0].xmax = pCircle->centerx; |
| pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius; |
| pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius; |
| pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius; |
| pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius; |
| pCircle->aBox[1].ymin = pCircle->centery; |
| pCircle->aBox[1].ymax = pCircle->centery; |
| pCircle->mxArea = 200.0*200.0; |
| } |
| |
| /* Check if any of the 4 corners of the bounding-box being tested lie |
| ** inside the circular region. If they do, then the bounding-box does |
| ** intersect the region of interest. Set the output variable to true and |
| ** return SQLITE_OK in this case. */ |
| for(i=0; i<4; i++){ |
| double x = (i&0x01) ? xmax : xmin; |
| double y = (i&0x02) ? ymax : ymin; |
| double d2; |
| |
| d2 = (x-pCircle->centerx)*(x-pCircle->centerx); |
| d2 += (y-pCircle->centery)*(y-pCircle->centery); |
| if( d2<(pCircle->radius*pCircle->radius) ) nWithin++; |
| } |
| |
| /* Check if the bounding box covers any other part of the circular region. |
| ** See comments above for a description of how this test works. If it does |
| ** cover part of the circular region, set the output variable to true |
| ** and return SQLITE_OK. */ |
| if( nWithin==0 ){ |
| for(i=0; i<2; i++){ |
| if( xmin<=pCircle->aBox[i].xmin |
| && xmax>=pCircle->aBox[i].xmax |
| && ymin<=pCircle->aBox[i].ymin |
| && ymax>=pCircle->aBox[i].ymax |
| ){ |
| nWithin = 1; |
| break; |
| } |
| } |
| } |
| |
| if( pCircle->eScoreType==1 ){ |
| /* Depth first search */ |
| p->rScore = p->iLevel; |
| }else if( pCircle->eScoreType==2 ){ |
| /* Breadth first search */ |
| p->rScore = 100 - p->iLevel; |
| }else if( pCircle->eScoreType==3 ){ |
| /* Depth-first search, except sort the leaf nodes by area with |
| ** the largest area first */ |
| if( p->iLevel==1 ){ |
| p->rScore = 1.0 - (xmax-xmin)*(ymax-ymin)/pCircle->mxArea; |
| if( p->rScore<0.01 ) p->rScore = 0.01; |
| }else{ |
| p->rScore = 0.0; |
| } |
| }else if( pCircle->eScoreType==4 ){ |
| /* Depth-first search, except exclude odd rowids */ |
| p->rScore = p->iLevel; |
| if( p->iRowid&1 ) nWithin = 0; |
| }else{ |
| /* Breadth-first search, except exclude odd rowids */ |
| p->rScore = 100 - p->iLevel; |
| if( p->iRowid&1 ) nWithin = 0; |
| } |
| if( nWithin==0 ){ |
| p->eWithin = NOT_WITHIN; |
| }else if( nWithin>=4 ){ |
| p->eWithin = FULLY_WITHIN; |
| }else{ |
| p->eWithin = PARTLY_WITHIN; |
| } |
| return SQLITE_OK; |
| } |
| /* |
| ** Implementation of "breadthfirstsearch" r-tree geometry callback using the |
| ** 2nd-generation interface that allows scoring. |
| ** |
| ** ... WHERE id MATCH breadthfirstsearch($x0,$x1,$y0,$y1) ... |
| ** |
| ** It returns all entries whose bounding boxes overlap with $x0,$x1,$y0,$y1. |
| */ |
| static int bfs_query_func(sqlite3_rtree_query_info *p){ |
| double x0,x1,y0,y1; /* Dimensions of box being tested */ |
| double bx0,bx1,by0,by1; /* Boundary of the query function */ |
| |
| if( p->nParam!=4 ) return SQLITE_ERROR; |
| x0 = p->aCoord[0]; |
| x1 = p->aCoord[1]; |
| y0 = p->aCoord[2]; |
| y1 = p->aCoord[3]; |
| bx0 = p->aParam[0]; |
| bx1 = p->aParam[1]; |
| by0 = p->aParam[2]; |
| by1 = p->aParam[3]; |
| p->rScore = 100 - p->iLevel; |
| if( p->eParentWithin==FULLY_WITHIN ){ |
| p->eWithin = FULLY_WITHIN; |
| }else if( x0>=bx0 && x1<=bx1 && y0>=by0 && y1<=by1 ){ |
| p->eWithin = FULLY_WITHIN; |
| }else if( x1>=bx0 && x0<=bx1 && y1>=by0 && y0<=by1 ){ |
| p->eWithin = PARTLY_WITHIN; |
| }else{ |
| p->eWithin = NOT_WITHIN; |
| } |
| return SQLITE_OK; |
| } |
| |
| /* END of implementation of "circle" geometry callback. |
| ************************************************************************** |
| *************************************************************************/ |
| |
| #include <assert.h> |
| #if defined(INCLUDE_SQLITE_TCL_H) |
| # include "sqlite_tcl.h" |
| #else |
| # include "tcl.h" |
| #endif |
| |
| typedef struct Cube Cube; |
| struct Cube { |
| double x; |
| double y; |
| double z; |
| double width; |
| double height; |
| double depth; |
| }; |
| |
| static void cube_context_free(void *p){ |
| sqlite3_free(p); |
| } |
| |
| /* |
| ** The context pointer registered along with the 'cube' callback is |
| ** always ((void *)&gHere). This is just to facilitate testing, it is not |
| ** actually used for anything. |
| */ |
| static int gHere = 42; |
| |
| /* |
| ** Implementation of a simple r-tree geom callback to test for intersection |
| ** of r-tree rows with a "cube" shape. Cubes are defined by six scalar |
| ** coordinates as follows: |
| ** |
| ** cube(x, y, z, width, height, depth) |
| ** |
| ** The width, height and depth parameters must all be greater than zero. |
| */ |
| static int cube_geom( |
| sqlite3_rtree_geometry *p, |
| int nCoord, |
| sqlite3_rtree_dbl *aCoord, |
| int *piRes |
| ){ |
| Cube *pCube = (Cube *)p->pUser; |
| |
| assert( p->pContext==(void *)&gHere ); |
| |
| if( pCube==0 ){ |
| if( p->nParam!=6 || nCoord!=6 |
| || p->aParam[3]<=0.0 || p->aParam[4]<=0.0 || p->aParam[5]<=0.0 |
| ){ |
| return SQLITE_ERROR; |
| } |
| pCube = (Cube *)sqlite3_malloc(sizeof(Cube)); |
| if( !pCube ){ |
| return SQLITE_NOMEM; |
| } |
| pCube->x = p->aParam[0]; |
| pCube->y = p->aParam[1]; |
| pCube->z = p->aParam[2]; |
| pCube->width = p->aParam[3]; |
| pCube->height = p->aParam[4]; |
| pCube->depth = p->aParam[5]; |
| |
| p->pUser = (void *)pCube; |
| p->xDelUser = cube_context_free; |
| } |
| |
| assert( nCoord==6 ); |
| *piRes = 0; |
| if( aCoord[0]<=(pCube->x+pCube->width) |
| && aCoord[1]>=pCube->x |
| && aCoord[2]<=(pCube->y+pCube->height) |
| && aCoord[3]>=pCube->y |
| && aCoord[4]<=(pCube->z+pCube->depth) |
| && aCoord[5]>=pCube->z |
| ){ |
| *piRes = 1; |
| } |
| |
| return SQLITE_OK; |
| } |
| #endif /* SQLITE_ENABLE_RTREE */ |
| |
| static int SQLITE_TCLAPI register_cube_geom( |
| void * clientData, |
| Tcl_Interp *interp, |
| int objc, |
| Tcl_Obj *CONST objv[] |
| ){ |
| #ifndef SQLITE_ENABLE_RTREE |
| UNUSED_PARAMETER(clientData); |
| UNUSED_PARAMETER(interp); |
| UNUSED_PARAMETER(objc); |
| UNUSED_PARAMETER(objv); |
| #else |
| extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**); |
| extern const char *sqlite3ErrName(int); |
| sqlite3 *db; |
| int rc; |
| |
| if( objc!=2 ){ |
| Tcl_WrongNumArgs(interp, 1, objv, "DB"); |
| return TCL_ERROR; |
| } |
| if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; |
| rc = sqlite3_rtree_geometry_callback(db, "cube", cube_geom, (void *)&gHere); |
| Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC); |
| #endif |
| return TCL_OK; |
| } |
| |
| static int SQLITE_TCLAPI register_circle_geom( |
| void * clientData, |
| Tcl_Interp *interp, |
| int objc, |
| Tcl_Obj *CONST objv[] |
| ){ |
| #ifndef SQLITE_ENABLE_RTREE |
| UNUSED_PARAMETER(clientData); |
| UNUSED_PARAMETER(interp); |
| UNUSED_PARAMETER(objc); |
| UNUSED_PARAMETER(objv); |
| #else |
| extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**); |
| extern const char *sqlite3ErrName(int); |
| sqlite3 *db; |
| int rc; |
| |
| if( objc!=2 ){ |
| Tcl_WrongNumArgs(interp, 1, objv, "DB"); |
| return TCL_ERROR; |
| } |
| if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; |
| rc = sqlite3_rtree_geometry_callback(db, "circle", circle_geom, 0); |
| if( rc==SQLITE_OK ){ |
| rc = sqlite3_rtree_query_callback(db, "Qcircle", |
| circle_query_func, 0, 0); |
| } |
| if( rc==SQLITE_OK ){ |
| rc = sqlite3_rtree_query_callback(db, "breadthfirstsearch", |
| bfs_query_func, 0, 0); |
| } |
| Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC); |
| #endif |
| return TCL_OK; |
| } |
| |
| int Sqlitetestrtree_Init(Tcl_Interp *interp){ |
| Tcl_CreateObjCommand(interp, "register_cube_geom", register_cube_geom, 0, 0); |
| Tcl_CreateObjCommand(interp, "register_circle_geom",register_circle_geom,0,0); |
| return TCL_OK; |
| } |