| /* |
| ** 2016-06-07 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** |
| ** This is a utility program that computes an SHA1 hash on the content |
| ** of an SQLite database. |
| ** |
| ** The hash is computed over just the content of the database. Free |
| ** space inside of the database file, and alternative on-disk representations |
| ** of the same content (ex: UTF8 vs UTF16) do not affect the hash. So, |
| ** for example, the database file page size, encoding, and auto_vacuum setting |
| ** can all be changed without changing the hash. |
| */ |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <stdarg.h> |
| #include <ctype.h> |
| #include <string.h> |
| #include <assert.h> |
| #include "sqlite3.h" |
| |
| /* Context for the SHA1 hash */ |
| typedef struct SHA1Context SHA1Context; |
| struct SHA1Context { |
| unsigned int state[5]; |
| unsigned int count[2]; |
| unsigned char buffer[64]; |
| }; |
| |
| /* |
| ** All global variables are gathered into the "g" singleton. |
| */ |
| struct GlobalVars { |
| const char *zArgv0; /* Name of program */ |
| unsigned fDebug; /* Debug flags */ |
| sqlite3 *db; /* The database connection */ |
| SHA1Context cx; /* SHA1 hash context */ |
| } g; |
| |
| /* |
| ** Debugging flags |
| */ |
| #define DEBUG_FULLTRACE 0x00000001 /* Trace hash to stderr */ |
| |
| /****************************************************************************** |
| ** The Hash Engine |
| ** |
| ** Modify these routines (and appropriate state fields in global variable 'g') |
| ** in order to compute a different (better?) hash of the database. |
| */ |
| /* |
| * blk0() and blk() perform the initial expand. |
| * I got the idea of expanding during the round function from SSLeay |
| * |
| * blk0le() for little-endian and blk0be() for big-endian. |
| */ |
| #define SHA_ROT(x,l,r) ((x) << (l) | (x) >> (r)) |
| #define rol(x,k) SHA_ROT(x,k,32-(k)) |
| #define ror(x,k) SHA_ROT(x,32-(k),k) |
| |
| #define blk0le(i) (block[i] = (ror(block[i],8)&0xFF00FF00) \ |
| |(rol(block[i],8)&0x00FF00FF)) |
| #define blk0be(i) block[i] |
| #define blk(i) (block[i&15] = rol(block[(i+13)&15]^block[(i+8)&15] \ |
| ^block[(i+2)&15]^block[i&15],1)) |
| |
| /* |
| * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1 |
| * |
| * Rl0() for little-endian and Rb0() for big-endian. Endianness is |
| * determined at run-time. |
| */ |
| #define Rl0(v,w,x,y,z,i) \ |
| z+=((w&(x^y))^y)+blk0le(i)+0x5A827999+rol(v,5);w=ror(w,2); |
| #define Rb0(v,w,x,y,z,i) \ |
| z+=((w&(x^y))^y)+blk0be(i)+0x5A827999+rol(v,5);w=ror(w,2); |
| #define R1(v,w,x,y,z,i) \ |
| z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=ror(w,2); |
| #define R2(v,w,x,y,z,i) \ |
| z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=ror(w,2); |
| #define R3(v,w,x,y,z,i) \ |
| z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=ror(w,2); |
| #define R4(v,w,x,y,z,i) \ |
| z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=ror(w,2); |
| |
| /* |
| * Hash a single 512-bit block. This is the core of the algorithm. |
| */ |
| #define a qq[0] |
| #define b qq[1] |
| #define c qq[2] |
| #define d qq[3] |
| #define e qq[4] |
| |
| void SHA1Transform(unsigned int state[5], const unsigned char buffer[64]){ |
| unsigned int qq[5]; /* a, b, c, d, e; */ |
| static int one = 1; |
| unsigned int block[16]; |
| memcpy(block, buffer, 64); |
| memcpy(qq,state,5*sizeof(unsigned int)); |
| |
| /* Copy g.cx.state[] to working vars */ |
| /* |
| a = state[0]; |
| b = state[1]; |
| c = state[2]; |
| d = state[3]; |
| e = state[4]; |
| */ |
| |
| /* 4 rounds of 20 operations each. Loop unrolled. */ |
| if( 1 == *(unsigned char*)&one ){ |
| Rl0(a,b,c,d,e, 0); Rl0(e,a,b,c,d, 1); Rl0(d,e,a,b,c, 2); Rl0(c,d,e,a,b, 3); |
| Rl0(b,c,d,e,a, 4); Rl0(a,b,c,d,e, 5); Rl0(e,a,b,c,d, 6); Rl0(d,e,a,b,c, 7); |
| Rl0(c,d,e,a,b, 8); Rl0(b,c,d,e,a, 9); Rl0(a,b,c,d,e,10); Rl0(e,a,b,c,d,11); |
| Rl0(d,e,a,b,c,12); Rl0(c,d,e,a,b,13); Rl0(b,c,d,e,a,14); Rl0(a,b,c,d,e,15); |
| }else{ |
| Rb0(a,b,c,d,e, 0); Rb0(e,a,b,c,d, 1); Rb0(d,e,a,b,c, 2); Rb0(c,d,e,a,b, 3); |
| Rb0(b,c,d,e,a, 4); Rb0(a,b,c,d,e, 5); Rb0(e,a,b,c,d, 6); Rb0(d,e,a,b,c, 7); |
| Rb0(c,d,e,a,b, 8); Rb0(b,c,d,e,a, 9); Rb0(a,b,c,d,e,10); Rb0(e,a,b,c,d,11); |
| Rb0(d,e,a,b,c,12); Rb0(c,d,e,a,b,13); Rb0(b,c,d,e,a,14); Rb0(a,b,c,d,e,15); |
| } |
| R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); |
| R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); |
| R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); |
| R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); |
| R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); |
| R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); |
| R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); |
| R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); |
| R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); |
| R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); |
| R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); |
| R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); |
| R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); |
| R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); |
| R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); |
| R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); |
| |
| /* Add the working vars back into context.state[] */ |
| state[0] += a; |
| state[1] += b; |
| state[2] += c; |
| state[3] += d; |
| state[4] += e; |
| } |
| |
| |
| /* Initialize the SHA1 hash */ |
| static void hash_init(void){ |
| /* SHA1 initialization constants */ |
| g.cx.state[0] = 0x67452301; |
| g.cx.state[1] = 0xEFCDAB89; |
| g.cx.state[2] = 0x98BADCFE; |
| g.cx.state[3] = 0x10325476; |
| g.cx.state[4] = 0xC3D2E1F0; |
| g.cx.count[0] = g.cx.count[1] = 0; |
| } |
| |
| /* Add new content to the SHA1 hash */ |
| static void hash_step(const unsigned char *data, unsigned int len){ |
| unsigned int i, j; |
| |
| j = g.cx.count[0]; |
| if( (g.cx.count[0] += len << 3) < j ){ |
| g.cx.count[1] += (len>>29)+1; |
| } |
| j = (j >> 3) & 63; |
| if( (j + len) > 63 ){ |
| (void)memcpy(&g.cx.buffer[j], data, (i = 64-j)); |
| SHA1Transform(g.cx.state, g.cx.buffer); |
| for(; i + 63 < len; i += 64){ |
| SHA1Transform(g.cx.state, &data[i]); |
| } |
| j = 0; |
| }else{ |
| i = 0; |
| } |
| (void)memcpy(&g.cx.buffer[j], &data[i], len - i); |
| } |
| |
| |
| /* Add padding and compute and output the message digest. */ |
| static void hash_finish(const char *zName){ |
| unsigned int i; |
| unsigned char finalcount[8]; |
| unsigned char digest[20]; |
| static const char zEncode[] = "0123456789abcdef"; |
| char zOut[41]; |
| |
| for (i = 0; i < 8; i++){ |
| finalcount[i] = (unsigned char)((g.cx.count[(i >= 4 ? 0 : 1)] |
| >> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */ |
| } |
| hash_step((const unsigned char *)"\200", 1); |
| while ((g.cx.count[0] & 504) != 448){ |
| hash_step((const unsigned char *)"\0", 1); |
| } |
| hash_step(finalcount, 8); /* Should cause a SHA1Transform() */ |
| for (i = 0; i < 20; i++){ |
| digest[i] = (unsigned char)((g.cx.state[i>>2] >> ((3-(i & 3)) * 8) ) & 255); |
| } |
| for(i=0; i<20; i++){ |
| zOut[i*2] = zEncode[(digest[i]>>4)&0xf]; |
| zOut[i*2+1] = zEncode[digest[i] & 0xf]; |
| } |
| zOut[i*2]= 0; |
| printf("%s %s\n", zOut, zName); |
| } |
| /* End of the hashing logic |
| *******************************************************************************/ |
| |
| /* |
| ** Print an error resulting from faulting command-line arguments and |
| ** abort the program. |
| */ |
| static void cmdlineError(const char *zFormat, ...){ |
| va_list ap; |
| fprintf(stderr, "%s: ", g.zArgv0); |
| va_start(ap, zFormat); |
| vfprintf(stderr, zFormat, ap); |
| va_end(ap); |
| fprintf(stderr, "\n\"%s --help\" for more help\n", g.zArgv0); |
| exit(1); |
| } |
| |
| /* |
| ** Print an error message for an error that occurs at runtime, then |
| ** abort the program. |
| */ |
| static void runtimeError(const char *zFormat, ...){ |
| va_list ap; |
| fprintf(stderr, "%s: ", g.zArgv0); |
| va_start(ap, zFormat); |
| vfprintf(stderr, zFormat, ap); |
| va_end(ap); |
| fprintf(stderr, "\n"); |
| exit(1); |
| } |
| |
| /* |
| ** Prepare a new SQL statement. Print an error and abort if anything |
| ** goes wrong. |
| */ |
| static sqlite3_stmt *db_vprepare(const char *zFormat, va_list ap){ |
| char *zSql; |
| int rc; |
| sqlite3_stmt *pStmt; |
| |
| zSql = sqlite3_vmprintf(zFormat, ap); |
| if( zSql==0 ) runtimeError("out of memory"); |
| rc = sqlite3_prepare_v2(g.db, zSql, -1, &pStmt, 0); |
| if( rc ){ |
| runtimeError("SQL statement error: %s\n\"%s\"", sqlite3_errmsg(g.db), |
| zSql); |
| } |
| sqlite3_free(zSql); |
| return pStmt; |
| } |
| static sqlite3_stmt *db_prepare(const char *zFormat, ...){ |
| va_list ap; |
| sqlite3_stmt *pStmt; |
| va_start(ap, zFormat); |
| pStmt = db_vprepare(zFormat, ap); |
| va_end(ap); |
| return pStmt; |
| } |
| |
| /* |
| ** Compute the hash for all rows of the query formed from the printf-style |
| ** zFormat and its argument. |
| */ |
| static void hash_one_query(const char *zFormat, ...){ |
| va_list ap; |
| sqlite3_stmt *pStmt; /* The query defined by zFormat and "..." */ |
| int nCol; /* Number of columns in the result set */ |
| int i; /* Loop counter */ |
| |
| /* Prepare the query defined by zFormat and "..." */ |
| va_start(ap, zFormat); |
| pStmt = db_vprepare(zFormat, ap); |
| va_end(ap); |
| nCol = sqlite3_column_count(pStmt); |
| |
| /* Compute a hash over the result of the query */ |
| while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| for(i=0; i<nCol; i++){ |
| switch( sqlite3_column_type(pStmt,i) ){ |
| case SQLITE_NULL: { |
| hash_step((const unsigned char*)"0",1); |
| if( g.fDebug & DEBUG_FULLTRACE ) fprintf(stderr, "NULL\n"); |
| break; |
| } |
| case SQLITE_INTEGER: { |
| sqlite3_uint64 u; |
| int j; |
| unsigned char x[8]; |
| sqlite3_int64 v = sqlite3_column_int64(pStmt,i); |
| memcpy(&u, &v, 8); |
| for(j=7; j>=0; j--){ |
| x[j] = u & 0xff; |
| u >>= 8; |
| } |
| hash_step((const unsigned char*)"1",1); |
| hash_step(x,8); |
| if( g.fDebug & DEBUG_FULLTRACE ){ |
| fprintf(stderr, "INT %s\n", sqlite3_column_text(pStmt,i)); |
| } |
| break; |
| } |
| case SQLITE_FLOAT: { |
| sqlite3_uint64 u; |
| int j; |
| unsigned char x[8]; |
| double r = sqlite3_column_double(pStmt,i); |
| memcpy(&u, &r, 8); |
| for(j=7; j>=0; j--){ |
| x[j] = u & 0xff; |
| u >>= 8; |
| } |
| hash_step((const unsigned char*)"2",1); |
| hash_step(x,8); |
| if( g.fDebug & DEBUG_FULLTRACE ){ |
| fprintf(stderr, "FLOAT %s\n", sqlite3_column_text(pStmt,i)); |
| } |
| break; |
| } |
| case SQLITE_TEXT: { |
| int n = sqlite3_column_bytes(pStmt, i); |
| const unsigned char *z = sqlite3_column_text(pStmt, i); |
| hash_step((const unsigned char*)"3", 1); |
| hash_step(z, n); |
| if( g.fDebug & DEBUG_FULLTRACE ){ |
| fprintf(stderr, "TEXT '%s'\n", sqlite3_column_text(pStmt,i)); |
| } |
| break; |
| } |
| case SQLITE_BLOB: { |
| int n = sqlite3_column_bytes(pStmt, i); |
| const unsigned char *z = sqlite3_column_blob(pStmt, i); |
| hash_step((const unsigned char*)"4", 1); |
| hash_step(z, n); |
| if( g.fDebug & DEBUG_FULLTRACE ){ |
| fprintf(stderr, "BLOB (%d bytes)\n", n); |
| } |
| break; |
| } |
| } |
| } |
| } |
| sqlite3_finalize(pStmt); |
| } |
| |
| |
| /* |
| ** Print sketchy documentation for this utility program |
| */ |
| static void showHelp(void){ |
| printf("Usage: %s [options] FILE ...\n", g.zArgv0); |
| printf( |
| "Compute a SHA1 hash on the content of database FILE. System tables such as\n" |
| "sqlite_stat1, sqlite_stat4, and sqlite_sequence are omitted from the hash.\n" |
| "Options:\n" |
| " --debug N Set debugging flags to N (experts only)\n" |
| " --like PATTERN Only hash tables whose name is LIKE the pattern\n" |
| " --schema-only Only hash the schema - omit table content\n" |
| " --without-schema Only hash table content - omit the schema\n" |
| ); |
| } |
| |
| int main(int argc, char **argv){ |
| const char *zDb = 0; /* Name of the database currently being hashed */ |
| int i; /* Loop counter */ |
| int rc; /* Subroutine return code */ |
| char *zErrMsg; /* Error message when opening database */ |
| sqlite3_stmt *pStmt; /* An SQLite query */ |
| const char *zLike = 0; /* LIKE pattern of tables to hash */ |
| int omitSchema = 0; /* True to compute hash on content only */ |
| int omitContent = 0; /* True to compute hash on schema only */ |
| int nFile = 0; /* Number of input filenames seen */ |
| |
| g.zArgv0 = argv[0]; |
| sqlite3_config(SQLITE_CONFIG_SINGLETHREAD); |
| for(i=1; i<argc; i++){ |
| const char *z = argv[i]; |
| if( z[0]=='-' ){ |
| z++; |
| if( z[0]=='-' ) z++; |
| if( strcmp(z,"debug")==0 ){ |
| if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]); |
| g.fDebug = strtol(argv[++i], 0, 0); |
| }else |
| if( strcmp(z,"help")==0 ){ |
| showHelp(); |
| return 0; |
| }else |
| if( strcmp(z,"like")==0 ){ |
| if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]); |
| if( zLike!=0 ) cmdlineError("only one --like allowed"); |
| zLike = argv[++i]; |
| }else |
| if( strcmp(z,"schema-only")==0 ){ |
| omitContent = 1; |
| }else |
| if( strcmp(z,"without-schema")==0 ){ |
| omitSchema = 1; |
| }else |
| { |
| cmdlineError("unknown option: %s", argv[i]); |
| } |
| }else{ |
| nFile++; |
| if( nFile<i ) argv[nFile] = argv[i]; |
| } |
| } |
| if( nFile==0 ){ |
| cmdlineError("no input files specified - nothing to do"); |
| } |
| if( omitSchema && omitContent ){ |
| cmdlineError("only one of --without-schema and --omit-schema allowed"); |
| } |
| if( zLike==0 ) zLike = "%"; |
| |
| for(i=1; i<=nFile; i++){ |
| static const int openFlags = |
| SQLITE_OPEN_READWRITE | /* Read/write so hot journals can recover */ |
| SQLITE_OPEN_URI |
| ; |
| zDb = argv[i]; |
| rc = sqlite3_open_v2(zDb, &g.db, openFlags, 0); |
| if( rc ){ |
| fprintf(stderr, "cannot open database file '%s'\n", zDb); |
| continue; |
| } |
| rc = sqlite3_exec(g.db, "SELECT * FROM sqlite_schema", 0, 0, &zErrMsg); |
| if( rc || zErrMsg ){ |
| sqlite3_close(g.db); |
| g.db = 0; |
| fprintf(stderr, "'%s' is not a valid SQLite database\n", zDb); |
| continue; |
| } |
| |
| /* Start the hash */ |
| hash_init(); |
| |
| /* Hash table content */ |
| if( !omitContent ){ |
| pStmt = db_prepare( |
| "SELECT name FROM sqlite_schema\n" |
| " WHERE type='table' AND sql NOT LIKE 'CREATE VIRTUAL%%'\n" |
| " AND name NOT LIKE 'sqlite_%%'\n" |
| " AND name LIKE '%q'\n" |
| " ORDER BY name COLLATE nocase;\n", |
| zLike |
| ); |
| while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| /* We want rows of the table to be hashed in PRIMARY KEY order. |
| ** Technically, an ORDER BY clause is required to guarantee that |
| ** order. However, though not guaranteed by the documentation, every |
| ** historical version of SQLite has always output rows in PRIMARY KEY |
| ** order when there is no WHERE or GROUP BY clause, so the ORDER BY |
| ** can be safely omitted. */ |
| hash_one_query("SELECT * FROM \"%w\"", sqlite3_column_text(pStmt,0)); |
| } |
| sqlite3_finalize(pStmt); |
| } |
| |
| /* Hash the database schema */ |
| if( !omitSchema ){ |
| hash_one_query( |
| "SELECT type, name, tbl_name, sql FROM sqlite_schema\n" |
| " WHERE tbl_name LIKE '%q'\n" |
| " ORDER BY name COLLATE nocase;\n", |
| zLike |
| ); |
| } |
| |
| /* Finish and output the hash and close the database connection. */ |
| hash_finish(zDb); |
| sqlite3_close(g.db); |
| } |
| return 0; |
| } |