blob: 92c1fefa0a906a4e702fbe86f220a7e083af4ece [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_ARM64
#include "src/api/api-arguments.h"
#include "src/codegen/code-factory.h"
// For interpreter_entry_return_pc_offset. TODO(jkummerow): Drop.
#include "src/codegen/macro-assembler-inl.h"
#include "src/codegen/register-configuration.h"
#include "src/debug/debug.h"
#include "src/deoptimizer/deoptimizer.h"
#include "src/execution/frame-constants.h"
#include "src/execution/frames.h"
#include "src/heap/heap-inl.h"
#include "src/logging/counters.h"
#include "src/objects/cell.h"
#include "src/objects/foreign.h"
#include "src/objects/heap-number.h"
#include "src/objects/js-generator.h"
#include "src/objects/objects-inl.h"
#include "src/objects/smi.h"
#include "src/runtime/runtime.h"
#include "src/wasm/wasm-linkage.h"
#include "src/wasm/wasm-objects.h"
#if defined(V8_OS_WIN)
#include "src/diagnostics/unwinding-info-win64.h"
#endif // V8_OS_WIN
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address) {
__ CodeEntry();
__ Mov(kJavaScriptCallExtraArg1Register, ExternalReference::Create(address));
__ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame),
RelocInfo::CODE_TARGET);
}
static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
Runtime::FunctionId function_id) {
// ----------- S t a t e -------------
// -- x0 : actual argument count
// -- x1 : target function (preserved for callee)
// -- x3 : new target (preserved for callee)
// -----------------------------------
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Push a copy of the target function, the new target and the actual
// argument count.
__ SmiTag(kJavaScriptCallArgCountRegister);
__ Push(kJavaScriptCallTargetRegister, kJavaScriptCallNewTargetRegister,
kJavaScriptCallArgCountRegister, padreg);
// Push another copy as a parameter to the runtime call.
__ PushArgument(kJavaScriptCallTargetRegister);
__ CallRuntime(function_id, 1);
__ Mov(x2, x0);
// Restore target function, new target and actual argument count.
__ Pop(padreg, kJavaScriptCallArgCountRegister,
kJavaScriptCallNewTargetRegister, kJavaScriptCallTargetRegister);
__ SmiUntag(kJavaScriptCallArgCountRegister);
}
static_assert(kJavaScriptCallCodeStartRegister == x2, "ABI mismatch");
__ JumpCodeObject(x2);
}
namespace {
void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : number of arguments
// -- x1 : constructor function
// -- x3 : new target
// -- cp : context
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
ASM_LOCATION("Builtins::Generate_JSConstructStubHelper");
Label stack_overflow;
__ StackOverflowCheck(x0, &stack_overflow);
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
Label already_aligned;
Register argc = x0;
if (__ emit_debug_code()) {
// Check that FrameScope pushed the context on to the stack already.
__ Peek(x2, 0);
__ Cmp(x2, cp);
__ Check(eq, AbortReason::kUnexpectedValue);
}
// Push number of arguments.
__ SmiTag(x11, argc);
__ Push(x11, padreg);
// Add a slot for the receiver, and round up to maintain alignment.
Register slot_count = x2;
Register slot_count_without_rounding = x12;
__ Add(slot_count_without_rounding, argc, 2);
__ Bic(slot_count, slot_count_without_rounding, 1);
__ Claim(slot_count);
// Preserve the incoming parameters on the stack.
__ LoadRoot(x4, RootIndex::kTheHoleValue);
// Compute a pointer to the slot immediately above the location on the
// stack to which arguments will be later copied.
__ SlotAddress(x2, argc);
// Store padding, if needed.
__ Tbnz(slot_count_without_rounding, 0, &already_aligned);
__ Str(padreg, MemOperand(x2, 1 * kSystemPointerSize));
__ Bind(&already_aligned);
// TODO(victorgomes): When the arguments adaptor is completely removed, we
// should get the formal parameter count and copy the arguments in its
// correct position (including any undefined), instead of delaying this to
// InvokeFunction.
// Copy arguments to the expression stack.
{
Register count = x2;
Register dst = x10;
Register src = x11;
__ SlotAddress(dst, 0);
// Poke the hole (receiver).
__ Str(x4, MemOperand(dst));
__ Add(dst, dst, kSystemPointerSize); // Skip receiver.
__ Add(src, fp,
StandardFrameConstants::kCallerSPOffset +
kSystemPointerSize); // Skip receiver.
__ Mov(count, argc);
__ CopyDoubleWords(dst, src, count);
}
// ----------- S t a t e -------------
// -- x0: number of arguments (untagged)
// -- x1: constructor function
// -- x3: new target
// If argc is odd:
// -- sp[0*kSystemPointerSize]: the hole (receiver)
// -- sp[1*kSystemPointerSize]: argument 1
// -- ...
// -- sp[(n-1)*kSystemPointerSize]: argument (n - 1)
// -- sp[(n+0)*kSystemPointerSize]: argument n
// -- sp[(n+1)*kSystemPointerSize]: padding
// -- sp[(n+2)*kSystemPointerSize]: padding
// -- sp[(n+3)*kSystemPointerSize]: number of arguments (tagged)
// -- sp[(n+4)*kSystemPointerSize]: context (pushed by FrameScope)
// If argc is even:
// -- sp[0*kSystemPointerSize]: the hole (receiver)
// -- sp[1*kSystemPointerSize]: argument 1
// -- ...
// -- sp[(n-1)*kSystemPointerSize]: argument (n - 1)
// -- sp[(n+0)*kSystemPointerSize]: argument n
// -- sp[(n+1)*kSystemPointerSize]: padding
// -- sp[(n+2)*kSystemPointerSize]: number of arguments (tagged)
// -- sp[(n+3)*kSystemPointerSize]: context (pushed by FrameScope)
// -----------------------------------
// Call the function.
__ InvokeFunctionWithNewTarget(x1, x3, argc, CALL_FUNCTION);
// Restore the context from the frame.
__ Ldr(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
// Restore smi-tagged arguments count from the frame. Use fp relative
// addressing to avoid the circular dependency between padding existence and
// argc parity.
__ SmiUntag(x1, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
// Leave construct frame.
}
// Remove caller arguments from the stack and return.
__ DropArguments(x1, TurboAssembler::kCountExcludesReceiver);
__ Ret();
__ Bind(&stack_overflow);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ Unreachable();
}
}
} // namespace
// The construct stub for ES5 constructor functions and ES6 class constructors.
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : number of arguments
// -- x1 : constructor function
// -- x3 : new target
// -- lr : return address
// -- cp : context pointer
// -- sp[...]: constructor arguments
// -----------------------------------
ASM_LOCATION("Builtins::Generate_JSConstructStubGeneric");
FrameScope scope(masm, StackFrame::MANUAL);
// Enter a construct frame.
__ EnterFrame(StackFrame::CONSTRUCT);
Label post_instantiation_deopt_entry, not_create_implicit_receiver;
if (__ emit_debug_code()) {
// Check that FrameScope pushed the context on to the stack already.
__ Peek(x2, 0);
__ Cmp(x2, cp);
__ Check(eq, AbortReason::kUnexpectedValue);
}
// Preserve the incoming parameters on the stack.
__ SmiTag(x0);
__ Push(x0, x1, padreg, x3);
// ----------- S t a t e -------------
// -- sp[0*kSystemPointerSize]: new target
// -- sp[1*kSystemPointerSize]: padding
// -- x1 and sp[2*kSystemPointerSize]: constructor function
// -- sp[3*kSystemPointerSize]: number of arguments (tagged)
// -- sp[4*kSystemPointerSize]: context (pushed by FrameScope)
// -----------------------------------
__ LoadTaggedPointerField(
x4, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(w4, FieldMemOperand(x4, SharedFunctionInfo::kFlagsOffset));
__ DecodeField<SharedFunctionInfo::FunctionKindBits>(w4);
__ JumpIfIsInRange(w4, kDefaultDerivedConstructor, kDerivedConstructor,
&not_create_implicit_receiver);
// If not derived class constructor: Allocate the new receiver object.
__ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1, x4,
x5);
__ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), RelocInfo::CODE_TARGET);
__ B(&post_instantiation_deopt_entry);
// Else: use TheHoleValue as receiver for constructor call
__ Bind(&not_create_implicit_receiver);
__ LoadRoot(x0, RootIndex::kTheHoleValue);
// ----------- S t a t e -------------
// -- x0: receiver
// -- Slot 4 / sp[0*kSystemPointerSize]: new target
// -- Slot 3 / sp[1*kSystemPointerSize]: padding
// -- Slot 2 / sp[2*kSystemPointerSize]: constructor function
// -- Slot 1 / sp[3*kSystemPointerSize]: number of arguments (tagged)
// -- Slot 0 / sp[4*kSystemPointerSize]: context
// -----------------------------------
// Deoptimizer enters here.
masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
masm->pc_offset());
__ Bind(&post_instantiation_deopt_entry);
// Restore new target from the top of the stack.
__ Peek(x3, 0 * kSystemPointerSize);
// Restore constructor function and argument count.
__ Ldr(x1, MemOperand(fp, ConstructFrameConstants::kConstructorOffset));
__ SmiUntag(x12, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
// Copy arguments to the expression stack. The called function pops the
// receiver along with its arguments, so we need an extra receiver on the
// stack, in case we have to return it later.
// Overwrite the new target with a receiver.
__ Poke(x0, 0);
// Push two further copies of the receiver. One will be popped by the called
// function. The second acts as padding if the number of arguments plus
// receiver is odd - pushing receiver twice avoids branching. It also means
// that we don't have to handle the even and odd cases specially on
// InvokeFunction's return, as top of stack will be the receiver in either
// case.
__ Push(x0, x0);
// ----------- S t a t e -------------
// -- x3: new target
// -- x12: number of arguments (untagged)
// -- sp[0*kSystemPointerSize]: implicit receiver (overwrite if argc
// odd)
// -- sp[1*kSystemPointerSize]: implicit receiver
// -- sp[2*kSystemPointerSize]: implicit receiver
// -- sp[3*kSystemPointerSize]: padding
// -- x1 and sp[4*kSystemPointerSize]: constructor function
// -- sp[5*kSystemPointerSize]: number of arguments (tagged)
// -- sp[6*kSystemPointerSize]: context
// -----------------------------------
// Round the number of arguments down to the next even number, and claim
// slots for the arguments. If the number of arguments was odd, the last
// argument will overwrite one of the receivers pushed above.
__ Bic(x10, x12, 1);
// Check if we have enough stack space to push all arguments.
Label stack_overflow;
__ StackOverflowCheck(x10, &stack_overflow);
__ Claim(x10);
// TODO(victorgomes): When the arguments adaptor is completely removed, we
// should get the formal parameter count and copy the arguments in its
// correct position (including any undefined), instead of delaying this to
// InvokeFunction.
// Copy the arguments.
{
Register count = x2;
Register dst = x10;
Register src = x11;
__ Mov(count, x12);
__ Poke(x0, 0); // Add the receiver.
__ SlotAddress(dst, 1); // Skip receiver.
__ Add(src, fp,
StandardFrameConstants::kCallerSPOffset + kSystemPointerSize);
__ CopyDoubleWords(dst, src, count);
}
// Call the function.
__ Mov(x0, x12);
__ InvokeFunctionWithNewTarget(x1, x3, x0, CALL_FUNCTION);
// ----------- S t a t e -------------
// -- sp[0*kSystemPointerSize]: implicit receiver
// -- sp[1*kSystemPointerSize]: padding
// -- sp[2*kSystemPointerSize]: constructor function
// -- sp[3*kSystemPointerSize]: number of arguments
// -- sp[4*kSystemPointerSize]: context
// -----------------------------------
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
masm->pc_offset());
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, do_throw, leave_and_return, check_receiver;
// If the result is undefined, we jump out to using the implicit receiver.
__ CompareRoot(x0, RootIndex::kUndefinedValue);
__ B(ne, &check_receiver);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ Bind(&use_receiver);
__ Peek(x0, 0 * kSystemPointerSize);
__ CompareRoot(x0, RootIndex::kTheHoleValue);
__ B(eq, &do_throw);
__ Bind(&leave_and_return);
// Restore smi-tagged arguments count from the frame.
__ SmiUntag(x1, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
// Leave construct frame.
__ LeaveFrame(StackFrame::CONSTRUCT);
// Remove caller arguments from the stack and return.
__ DropArguments(x1, TurboAssembler::kCountExcludesReceiver);
__ Ret();
// Otherwise we do a smi check and fall through to check if the return value
// is a valid receiver.
__ bind(&check_receiver);
// If the result is a smi, it is *not* an object in the ECMA sense.
__ JumpIfSmi(x0, &use_receiver);
// If the type of the result (stored in its map) is less than
// FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ JumpIfObjectType(x0, x4, x5, FIRST_JS_RECEIVER_TYPE, &leave_and_return,
ge);
__ B(&use_receiver);
__ Bind(&do_throw);
// Restore the context from the frame.
__ Ldr(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
__ CallRuntime(Runtime::kThrowConstructorReturnedNonObject);
__ Unreachable();
__ Bind(&stack_overflow);
// Restore the context from the frame.
__ Ldr(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
__ CallRuntime(Runtime::kThrowStackOverflow);
__ Unreachable();
}
void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
Generate_JSBuiltinsConstructStubHelper(masm);
}
void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
FrameScope scope(masm, StackFrame::INTERNAL);
__ PushArgument(x1);
__ CallRuntime(Runtime::kThrowConstructedNonConstructable);
}
static void GetSharedFunctionInfoBytecode(MacroAssembler* masm,
Register sfi_data,
Register scratch1) {
Label done;
__ CompareObjectType(sfi_data, scratch1, scratch1, INTERPRETER_DATA_TYPE);
__ B(ne, &done);
__ LoadTaggedPointerField(
sfi_data,
FieldMemOperand(sfi_data, InterpreterData::kBytecodeArrayOffset));
__ Bind(&done);
}
// static
void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : the value to pass to the generator
// -- x1 : the JSGeneratorObject to resume
// -- lr : return address
// -----------------------------------
__ AssertGeneratorObject(x1);
// Store input value into generator object.
__ StoreTaggedField(
x0, FieldMemOperand(x1, JSGeneratorObject::kInputOrDebugPosOffset));
__ RecordWriteField(x1, JSGeneratorObject::kInputOrDebugPosOffset, x0,
kLRHasNotBeenSaved, kDontSaveFPRegs);
// Load suspended function and context.
__ LoadTaggedPointerField(
x4, FieldMemOperand(x1, JSGeneratorObject::kFunctionOffset));
__ LoadTaggedPointerField(cp,
FieldMemOperand(x4, JSFunction::kContextOffset));
// Flood function if we are stepping.
Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
Label stepping_prepared;
ExternalReference debug_hook =
ExternalReference::debug_hook_on_function_call_address(masm->isolate());
__ Mov(x10, debug_hook);
__ Ldrsb(x10, MemOperand(x10));
__ CompareAndBranch(x10, Operand(0), ne, &prepare_step_in_if_stepping);
// Flood function if we need to continue stepping in the suspended generator.
ExternalReference debug_suspended_generator =
ExternalReference::debug_suspended_generator_address(masm->isolate());
__ Mov(x10, debug_suspended_generator);
__ Ldr(x10, MemOperand(x10));
__ CompareAndBranch(x10, Operand(x1), eq,
&prepare_step_in_suspended_generator);
__ Bind(&stepping_prepared);
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label stack_overflow;
__ LoadStackLimit(x10, StackLimitKind::kRealStackLimit);
__ Cmp(sp, x10);
__ B(lo, &stack_overflow);
// Get number of arguments for generator function.
__ LoadTaggedPointerField(
x10, FieldMemOperand(x4, JSFunction::kSharedFunctionInfoOffset));
__ Ldrh(w10, FieldMemOperand(
x10, SharedFunctionInfo::kFormalParameterCountOffset));
// Claim slots for arguments and receiver (rounded up to a multiple of two).
__ Add(x11, x10, 2);
__ Bic(x11, x11, 1);
__ Claim(x11);
// Store padding (which might be replaced by the receiver).
__ Sub(x11, x11, 1);
__ Poke(padreg, Operand(x11, LSL, kSystemPointerSizeLog2));
// Poke receiver into highest claimed slot.
__ LoadTaggedPointerField(
x5, FieldMemOperand(x1, JSGeneratorObject::kReceiverOffset));
__ Poke(x5, __ ReceiverOperand(x10));
// ----------- S t a t e -------------
// -- x1 : the JSGeneratorObject to resume
// -- x4 : generator function
// -- x10 : argument count
// -- cp : generator context
// -- lr : return address
// -- sp[0 .. arg count] : claimed for receiver and args
// -----------------------------------
// Copy the function arguments from the generator object's register file.
__ LoadTaggedPointerField(
x5,
FieldMemOperand(x1, JSGeneratorObject::kParametersAndRegistersOffset));
{
Label loop, done;
__ Cbz(x10, &done);
__ SlotAddress(x12, x10);
__ Add(x5, x5, Operand(x10, LSL, kTaggedSizeLog2));
__ Add(x5, x5, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ Bind(&loop);
__ Sub(x10, x10, 1);
__ LoadAnyTaggedField(x11, MemOperand(x5, -kTaggedSize, PreIndex));
__ Str(x11, MemOperand(x12, -kSystemPointerSize, PostIndex));
__ Cbnz(x10, &loop);
__ Bind(&done);
}
// Underlying function needs to have bytecode available.
if (FLAG_debug_code) {
__ LoadTaggedPointerField(
x3, FieldMemOperand(x4, JSFunction::kSharedFunctionInfoOffset));
__ LoadTaggedPointerField(
x3, FieldMemOperand(x3, SharedFunctionInfo::kFunctionDataOffset));
GetSharedFunctionInfoBytecode(masm, x3, x0);
__ CompareObjectType(x3, x3, x3, BYTECODE_ARRAY_TYPE);
__ Assert(eq, AbortReason::kMissingBytecodeArray);
}
// Resume (Ignition/TurboFan) generator object.
{
__ LoadTaggedPointerField(
x0, FieldMemOperand(x4, JSFunction::kSharedFunctionInfoOffset));
__ Ldrh(w0, FieldMemOperand(
x0, SharedFunctionInfo::kFormalParameterCountOffset));
// We abuse new.target both to indicate that this is a resume call and to
// pass in the generator object. In ordinary calls, new.target is always
// undefined because generator functions are non-constructable.
__ Mov(x3, x1);
__ Mov(x1, x4);
static_assert(kJavaScriptCallCodeStartRegister == x2, "ABI mismatch");
__ LoadTaggedPointerField(x2, FieldMemOperand(x1, JSFunction::kCodeOffset));
__ JumpCodeObject(x2);
}
__ Bind(&prepare_step_in_if_stepping);
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Push hole as receiver since we do not use it for stepping.
__ LoadRoot(x5, RootIndex::kTheHoleValue);
__ Push(x1, padreg, x4, x5);
__ CallRuntime(Runtime::kDebugOnFunctionCall);
__ Pop(padreg, x1);
__ LoadTaggedPointerField(
x4, FieldMemOperand(x1, JSGeneratorObject::kFunctionOffset));
}
__ B(&stepping_prepared);
__ Bind(&prepare_step_in_suspended_generator);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(x1, padreg);
__ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
__ Pop(padreg, x1);
__ LoadTaggedPointerField(
x4, FieldMemOperand(x1, JSGeneratorObject::kFunctionOffset));
}
__ B(&stepping_prepared);
__ bind(&stack_overflow);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ Unreachable(); // This should be unreachable.
}
}
namespace {
// Called with the native C calling convention. The corresponding function
// signature is either:
//
// using JSEntryFunction = GeneratedCode<Address(
// Address root_register_value, Address new_target, Address target,
// Address receiver, intptr_t argc, Address** argv)>;
// or
// using JSEntryFunction = GeneratedCode<Address(
// Address root_register_value, MicrotaskQueue* microtask_queue)>;
//
// Input is either:
// x0: root_register_value.
// x1: new_target.
// x2: target.
// x3: receiver.
// x4: argc.
// x5: argv.
// or
// x0: root_register_value.
// x1: microtask_queue.
// Output:
// x0: result.
void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type,
Builtins::Name entry_trampoline) {
Label invoke, handler_entry, exit;
{
NoRootArrayScope no_root_array(masm);
#if defined(V8_OS_WIN)
// Windows ARM64 relies on a frame pointer (fp/x29 which are aliases to each
// other) chain to do stack unwinding, but JSEntry breaks that by setting fp
// to point to bad_frame_pointer below. To fix unwind information for this
// case, JSEntry registers the offset (from current fp to the caller's fp
// saved by PushCalleeSavedRegisters on stack) to xdata_encoder which then
// emits the offset value as part of result unwind data accordingly.
win64_unwindinfo::XdataEncoder* xdata_encoder = masm->GetXdataEncoder();
if (xdata_encoder) {
xdata_encoder->onFramePointerAdjustment(
EntryFrameConstants::kDirectCallerFPOffset,
EntryFrameConstants::kDirectCallerSPOffset);
}
#endif
__ PushCalleeSavedRegisters();
// Set up the reserved register for 0.0.
__ Fmov(fp_zero, 0.0);
// Initialize the root register.
// C calling convention. The first argument is passed in x0.
__ Mov(kRootRegister, x0);
}
// Build an entry frame (see layout below).
int64_t bad_frame_pointer = -1L; // Bad frame pointer to fail if it is used.
__ Mov(x13, bad_frame_pointer);
__ Mov(x12, StackFrame::TypeToMarker(type));
__ Mov(x11, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress,
masm->isolate()));
__ Ldr(x10, MemOperand(x11));
// x13 (the bad frame pointer) is the first item pushed.
STATIC_ASSERT(EntryFrameConstants::kOffsetToCalleeSavedRegisters ==
1 * kSystemPointerSize);
__ Push(x13, x12, xzr, x10);
// Set up fp.
__ Sub(fp, sp, EntryFrameConstants::kCallerFPOffset);
// Push the JS entry frame marker. Also set js_entry_sp if this is the
// outermost JS call.
Label done;
ExternalReference js_entry_sp = ExternalReference::Create(
IsolateAddressId::kJSEntrySPAddress, masm->isolate());
__ Mov(x10, js_entry_sp);
__ Ldr(x11, MemOperand(x10));
// Select between the inner and outermost frame marker, based on the JS entry
// sp. We assert that the inner marker is zero, so we can use xzr to save a
// move instruction.
DCHECK_EQ(StackFrame::INNER_JSENTRY_FRAME, 0);
__ Cmp(x11, 0); // If x11 is zero, this is the outermost frame.
__ Csel(x12, xzr, StackFrame::OUTERMOST_JSENTRY_FRAME, ne);
__ B(ne, &done);
__ Str(fp, MemOperand(x10));
__ Bind(&done);
__ Push(x12, padreg);
// The frame set up looks like this:
// sp[0] : padding.
// sp[1] : JS entry frame marker.
// sp[2] : C entry FP.
// sp[3] : stack frame marker.
// sp[4] : stack frame marker.
// sp[5] : bad frame pointer 0xFFF...FF <- fp points here.
// Jump to a faked try block that does the invoke, with a faked catch
// block that sets the pending exception.
__ B(&invoke);
// Prevent the constant pool from being emitted between the record of the
// handler_entry position and the first instruction of the sequence here.
// There is no risk because Assembler::Emit() emits the instruction before
// checking for constant pool emission, but we do not want to depend on
// that.
{
Assembler::BlockPoolsScope block_pools(masm);
// Store the current pc as the handler offset. It's used later to create the
// handler table.
__ BindExceptionHandler(&handler_entry);
masm->isolate()->builtins()->SetJSEntryHandlerOffset(handler_entry.pos());
// Caught exception: Store result (exception) in the pending exception
// field in the JSEnv and return a failure sentinel. Coming in here the
// fp will be invalid because the PushTryHandler below sets it to 0 to
// signal the existence of the JSEntry frame.
__ Mov(x10,
ExternalReference::Create(IsolateAddressId::kPendingExceptionAddress,
masm->isolate()));
}
__ Str(x0, MemOperand(x10));
__ LoadRoot(x0, RootIndex::kException);
__ B(&exit);
// Invoke: Link this frame into the handler chain.
__ Bind(&invoke);
// Push new stack handler.
static_assert(StackHandlerConstants::kSize == 2 * kSystemPointerSize,
"Unexpected offset for StackHandlerConstants::kSize");
static_assert(StackHandlerConstants::kNextOffset == 0 * kSystemPointerSize,
"Unexpected offset for StackHandlerConstants::kNextOffset");
// Link the current handler as the next handler.
__ Mov(x11, ExternalReference::Create(IsolateAddressId::kHandlerAddress,
masm->isolate()));
__ Ldr(x10, MemOperand(x11));
__ Push(padreg, x10);
// Set this new handler as the current one.
{
UseScratchRegisterScope temps(masm);
Register scratch = temps.AcquireX();
__ Mov(scratch, sp);
__ Str(scratch, MemOperand(x11));
}
// If an exception not caught by another handler occurs, this handler
// returns control to the code after the B(&invoke) above, which
// restores all callee-saved registers (including cp and fp) to their
// saved values before returning a failure to C.
//
// Invoke the function by calling through JS entry trampoline builtin and
// pop the faked function when we return.
Handle<Code> trampoline_code =
masm->isolate()->builtins()->builtin_handle(entry_trampoline);
__ Call(trampoline_code, RelocInfo::CODE_TARGET);
// Pop the stack handler and unlink this frame from the handler chain.
static_assert(StackHandlerConstants::kNextOffset == 0 * kSystemPointerSize,
"Unexpected offset for StackHandlerConstants::kNextOffset");
__ Pop(x10, padreg);
__ Mov(x11, ExternalReference::Create(IsolateAddressId::kHandlerAddress,
masm->isolate()));
__ Drop(StackHandlerConstants::kSlotCount - 2);
__ Str(x10, MemOperand(x11));
__ Bind(&exit);
// x0 holds the result.
// The stack pointer points to the top of the entry frame pushed on entry from
// C++ (at the beginning of this stub):
// sp[0] : padding.
// sp[1] : JS entry frame marker.
// sp[2] : C entry FP.
// sp[3] : stack frame marker.
// sp[4] : stack frame marker.
// sp[5] : bad frame pointer 0xFFF...FF <- fp points here.
// Check if the current stack frame is marked as the outermost JS frame.
Label non_outermost_js_2;
{
Register c_entry_fp = x11;
__ PeekPair(x10, c_entry_fp, 1 * kSystemPointerSize);
__ Cmp(x10, StackFrame::OUTERMOST_JSENTRY_FRAME);
__ B(ne, &non_outermost_js_2);
__ Mov(x12, js_entry_sp);
__ Str(xzr, MemOperand(x12));
__ Bind(&non_outermost_js_2);
// Restore the top frame descriptors from the stack.
__ Mov(x12, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress,
masm->isolate()));
__ Str(c_entry_fp, MemOperand(x12));
}
// Reset the stack to the callee saved registers.
static_assert(
EntryFrameConstants::kFixedFrameSize % (2 * kSystemPointerSize) == 0,
"Size of entry frame is not a multiple of 16 bytes");
__ Drop(EntryFrameConstants::kFixedFrameSize / kSystemPointerSize);
// Restore the callee-saved registers and return.
__ PopCalleeSavedRegisters();
__ Ret();
}
} // namespace
void Builtins::Generate_JSEntry(MacroAssembler* masm) {
Generate_JSEntryVariant(masm, StackFrame::ENTRY,
Builtins::kJSEntryTrampoline);
}
void Builtins::Generate_JSConstructEntry(MacroAssembler* masm) {
Generate_JSEntryVariant(masm, StackFrame::CONSTRUCT_ENTRY,
Builtins::kJSConstructEntryTrampoline);
}
void Builtins::Generate_JSRunMicrotasksEntry(MacroAssembler* masm) {
Generate_JSEntryVariant(masm, StackFrame::ENTRY,
Builtins::kRunMicrotasksTrampoline);
}
// Input:
// x1: new.target.
// x2: function.
// x3: receiver.
// x4: argc.
// x5: argv.
// Output:
// x0: result.
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
Register new_target = x1;
Register function = x2;
Register receiver = x3;
Register argc = x4;
Register argv = x5;
Register scratch = x10;
Register slots_to_claim = x11;
{
// Enter an internal frame.
FrameScope scope(masm, StackFrame::INTERNAL);
// Setup the context (we need to use the caller context from the isolate).
__ Mov(scratch, ExternalReference::Create(IsolateAddressId::kContextAddress,
masm->isolate()));
__ Ldr(cp, MemOperand(scratch));
// Claim enough space for the arguments, the receiver and the function,
// including an optional slot of padding.
__ Add(slots_to_claim, argc, 3);
__ Bic(slots_to_claim, slots_to_claim, 1);
// Check if we have enough stack space to push all arguments.
Label enough_stack_space, stack_overflow;
__ StackOverflowCheck(slots_to_claim, &stack_overflow);
__ B(&enough_stack_space);
__ Bind(&stack_overflow);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ Unreachable();
__ Bind(&enough_stack_space);
__ Claim(slots_to_claim);
// Store padding (which might be overwritten).
__ SlotAddress(scratch, slots_to_claim);
__ Str(padreg, MemOperand(scratch, -kSystemPointerSize));
// Store receiver on the stack.
__ Poke(receiver, 0);
// Store function on the stack.
__ SlotAddress(scratch, argc);
__ Str(function, MemOperand(scratch, kSystemPointerSize));
// Copy arguments to the stack in a loop, in reverse order.
// x4: argc.
// x5: argv.
Label loop, done;
// Skip the argument set up if we have no arguments.
__ Cbz(argc, &done);
// scratch has been set to point to the location of the function, which
// marks the end of the argument copy.
__ SlotAddress(x0, 1); // Skips receiver.
__ Bind(&loop);
// Load the handle.
__ Ldr(x11, MemOperand(argv, kSystemPointerSize, PostIndex));
// Dereference the handle.
__ Ldr(x11, MemOperand(x11));
// Poke the result into the stack.
__ Str(x11, MemOperand(x0, kSystemPointerSize, PostIndex));
// Loop if we've not reached the end of copy marker.
__ Cmp(x0, scratch);
__ B(le, &loop);
__ Bind(&done);
__ Mov(x0, argc);
__ Mov(x3, new_target);
__ Mov(x1, function);
// x0: argc.
// x1: function.
// x3: new.target.
// Initialize all JavaScript callee-saved registers, since they will be seen
// by the garbage collector as part of handlers.
// The original values have been saved in JSEntry.
__ LoadRoot(x19, RootIndex::kUndefinedValue);
__ Mov(x20, x19);
__ Mov(x21, x19);
__ Mov(x22, x19);
__ Mov(x23, x19);
__ Mov(x24, x19);
__ Mov(x25, x19);
__ Mov(x28, x19);
// Don't initialize the reserved registers.
// x26 : root register (kRootRegister).
// x27 : context pointer (cp).
// x29 : frame pointer (fp).
Handle<Code> builtin = is_construct
? BUILTIN_CODE(masm->isolate(), Construct)
: masm->isolate()->builtins()->Call();
__ Call(builtin, RelocInfo::CODE_TARGET);
// Exit the JS internal frame and remove the parameters (except function),
// and return.
}
// Result is in x0. Return.
__ Ret();
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
void Builtins::Generate_RunMicrotasksTrampoline(MacroAssembler* masm) {
// This expects two C++ function parameters passed by Invoke() in
// execution.cc.
// x0: root_register_value
// x1: microtask_queue
__ Mov(RunMicrotasksDescriptor::MicrotaskQueueRegister(), x1);
__ Jump(BUILTIN_CODE(masm->isolate(), RunMicrotasks), RelocInfo::CODE_TARGET);
}
static void ReplaceClosureCodeWithOptimizedCode(MacroAssembler* masm,
Register optimized_code,
Register closure) {
// Store code entry in the closure.
__ StoreTaggedField(optimized_code,
FieldMemOperand(closure, JSFunction::kCodeOffset));
__ RecordWriteField(closure, JSFunction::kCodeOffset, optimized_code,
kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
}
static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1,
Register scratch2) {
Register params_size = scratch1;
// Get the size of the formal parameters + receiver (in bytes).
__ Ldr(params_size,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ Ldr(params_size.W(),
FieldMemOperand(params_size, BytecodeArray::kParameterSizeOffset));
#ifdef V8_NO_ARGUMENTS_ADAPTOR
Register actual_params_size = scratch2;
// Compute the size of the actual parameters + receiver (in bytes).
__ Ldr(actual_params_size,
MemOperand(fp, StandardFrameConstants::kArgCOffset));
__ lsl(actual_params_size, actual_params_size, kSystemPointerSizeLog2);
__ Add(actual_params_size, actual_params_size, Operand(kSystemPointerSize));
// If actual is bigger than formal, then we should use it to free up the stack
// arguments.
Label corrected_args_count;
__ Cmp(params_size, actual_params_size);
__ B(ge, &corrected_args_count);
__ Mov(params_size, actual_params_size);
__ Bind(&corrected_args_count);
#endif
// Leave the frame (also dropping the register file).
__ LeaveFrame(StackFrame::INTERPRETED);
// Drop receiver + arguments.
if (__ emit_debug_code()) {
__ Tst(params_size, kSystemPointerSize - 1);
__ Check(eq, AbortReason::kUnexpectedValue);
}
__ Lsr(params_size, params_size, kSystemPointerSizeLog2);
__ DropArguments(params_size);
}
// Tail-call |function_id| if |actual_marker| == |expected_marker|
static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm,
Register actual_marker,
OptimizationMarker expected_marker,
Runtime::FunctionId function_id) {
Label no_match;
__ CompareAndBranch(actual_marker, Operand(expected_marker), ne, &no_match);
GenerateTailCallToReturnedCode(masm, function_id);
__ bind(&no_match);
}
static void TailCallOptimizedCodeSlot(MacroAssembler* masm,
Register optimized_code_entry,
Register scratch) {
// ----------- S t a t e -------------
// -- x0 : actual argument count
// -- x3 : new target (preserved for callee if needed, and caller)
// -- x1 : target function (preserved for callee if needed, and caller)
// -----------------------------------
DCHECK(!AreAliased(x1, x3, optimized_code_entry, scratch));
Register closure = x1;
Label heal_optimized_code_slot;
// If the optimized code is cleared, go to runtime to update the optimization
// marker field.
__ LoadWeakValue(optimized_code_entry, optimized_code_entry,
&heal_optimized_code_slot);
// Check if the optimized code is marked for deopt. If it is, call the
// runtime to clear it.
__ LoadTaggedPointerField(
scratch,
FieldMemOperand(optimized_code_entry, Code::kCodeDataContainerOffset));
__ Ldr(scratch.W(),
FieldMemOperand(scratch, CodeDataContainer::kKindSpecificFlagsOffset));
__ Tbnz(scratch.W(), Code::kMarkedForDeoptimizationBit,
&heal_optimized_code_slot);
// Optimized code is good, get it into the closure and link the closure into
// the optimized functions list, then tail call the optimized code.
ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure);
static_assert(kJavaScriptCallCodeStartRegister == x2, "ABI mismatch");
__ LoadCodeObjectEntry(x2, optimized_code_entry);
{
UseScratchRegisterScope temps(masm);
temps.Exclude(x17);
__ Mov(x17, x2);
__ Jump(x17);
}
// Optimized code slot contains deoptimized code or code is cleared and
// optimized code marker isn't updated. Evict the code, update the marker
// and re-enter the closure's code.
__ bind(&heal_optimized_code_slot);
GenerateTailCallToReturnedCode(masm, Runtime::kHealOptimizedCodeSlot);
}
static void MaybeOptimizeCode(MacroAssembler* masm, Register feedback_vector,
Register optimization_marker) {
// ----------- S t a t e -------------
// -- x0 : actual argument count
// -- x3 : new target (preserved for callee if needed, and caller)
// -- x1 : target function (preserved for callee if needed, and caller)
// -- feedback vector (preserved for caller if needed)
// -- optimization_marker : int32 containing non-zero optimization marker.
// -----------------------------------
DCHECK(!AreAliased(feedback_vector, x1, x3, optimization_marker));
// TODO(v8:8394): The logging of first execution will break if
// feedback vectors are not allocated. We need to find a different way of
// logging these events if required.
TailCallRuntimeIfMarkerEquals(masm, optimization_marker,
OptimizationMarker::kLogFirstExecution,
Runtime::kFunctionFirstExecution);
TailCallRuntimeIfMarkerEquals(masm, optimization_marker,
OptimizationMarker::kCompileOptimized,
Runtime::kCompileOptimized_NotConcurrent);
TailCallRuntimeIfMarkerEquals(masm, optimization_marker,
OptimizationMarker::kCompileOptimizedConcurrent,
Runtime::kCompileOptimized_Concurrent);
// Marker should be one of LogFirstExecution / CompileOptimized /
// CompileOptimizedConcurrent. InOptimizationQueue and None shouldn't reach
// here.
if (FLAG_debug_code) {
__ Unreachable();
}
}
// Advance the current bytecode offset. This simulates what all bytecode
// handlers do upon completion of the underlying operation. Will bail out to a
// label if the bytecode (without prefix) is a return bytecode. Will not advance
// the bytecode offset if the current bytecode is a JumpLoop, instead just
// re-executing the JumpLoop to jump to the correct bytecode.
static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm,
Register bytecode_array,
Register bytecode_offset,
Register bytecode, Register scratch1,
Register scratch2, Label* if_return) {
Register bytecode_size_table = scratch1;
// The bytecode offset value will be increased by one in wide and extra wide
// cases. In the case of having a wide or extra wide JumpLoop bytecode, we
// will restore the original bytecode. In order to simplify the code, we have
// a backup of it.
Register original_bytecode_offset = scratch2;
DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table,
bytecode, original_bytecode_offset));
__ Mov(bytecode_size_table, ExternalReference::bytecode_size_table_address());
__ Mov(original_bytecode_offset, bytecode_offset);
// Check if the bytecode is a Wide or ExtraWide prefix bytecode.
Label process_bytecode, extra_wide;
STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide));
STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide));
STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide));
STATIC_ASSERT(3 ==
static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide));
__ Cmp(bytecode, Operand(0x3));
__ B(hi, &process_bytecode);
__ Tst(bytecode, Operand(0x1));
// The code to load the next bytecode is common to both wide and extra wide.
// We can hoist them up here since they do not modify the flags after Tst.
__ Add(bytecode_offset, bytecode_offset, Operand(1));
__ Ldrb(bytecode, MemOperand(bytecode_array, bytecode_offset));
__ B(ne, &extra_wide);
// Update table to the wide scaled table.
__ Add(bytecode_size_table, bytecode_size_table,
Operand(kIntSize * interpreter::Bytecodes::kBytecodeCount));
__ B(&process_bytecode);
__ Bind(&extra_wide);
// Update table to the extra wide scaled table.
__ Add(bytecode_size_table, bytecode_size_table,
Operand(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount));
__ Bind(&process_bytecode);
// Bailout to the return label if this is a return bytecode.
#define JUMP_IF_EQUAL(NAME) \
__ Cmp(x1, Operand(static_cast<int>(interpreter::Bytecode::k##NAME))); \
__ B(if_return, eq);
RETURN_BYTECODE_LIST(JUMP_IF_EQUAL)
#undef JUMP_IF_EQUAL
// If this is a JumpLoop, re-execute it to perform the jump to the beginning
// of the loop.
Label end, not_jump_loop;
__ Cmp(bytecode, Operand(static_cast<int>(interpreter::Bytecode::kJumpLoop)));
__ B(ne, &not_jump_loop);
// We need to restore the original bytecode_offset since we might have
// increased it to skip the wide / extra-wide prefix bytecode.
__ Mov(bytecode_offset, original_bytecode_offset);
__ B(&end);
__ bind(&not_jump_loop);
// Otherwise, load the size of the current bytecode and advance the offset.
__ Ldr(scratch1.W(), MemOperand(bytecode_size_table, bytecode, LSL, 2));
__ Add(bytecode_offset, bytecode_offset, scratch1);
__ Bind(&end);
}
// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right.
//
// The live registers are:
// - x0: actual argument count (not including the receiver)
// - x1: the JS function object being called.
// - x3: the incoming new target or generator object
// - cp: our context.
// - fp: our caller's frame pointer.
// - lr: return address.
//
// The function builds an interpreter frame. See InterpreterFrameConstants in
// frames.h for its layout.
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
Register closure = x1;
Register feedback_vector = x2;
// Get the bytecode array from the function object and load it into
// kInterpreterBytecodeArrayRegister.
__ LoadTaggedPointerField(
x4, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
__ LoadTaggedPointerField(
kInterpreterBytecodeArrayRegister,
FieldMemOperand(x4, SharedFunctionInfo::kFunctionDataOffset));
GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, x11);
// The bytecode array could have been flushed from the shared function info,
// if so, call into CompileLazy.
Label compile_lazy;
__ CompareObjectType(kInterpreterBytecodeArrayRegister, x4, x4,
BYTECODE_ARRAY_TYPE);
__ B(ne, &compile_lazy);
// Load the feedback vector from the closure.
__ LoadTaggedPointerField(
feedback_vector,
FieldMemOperand(closure, JSFunction::kFeedbackCellOffset));
__ LoadTaggedPointerField(
feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset));
Label push_stack_frame;
// Check if feedback vector is valid. If valid, check for optimized code
// and update invocation count. Otherwise, setup the stack frame.
__ LoadTaggedPointerField(
x7, FieldMemOperand(feedback_vector, HeapObject::kMapOffset));
__ Ldrh(x7, FieldMemOperand(x7, Map::kInstanceTypeOffset));
__ Cmp(x7, FEEDBACK_VECTOR_TYPE);
__ B(ne, &push_stack_frame);
// Read off the optimized state in the feedback vector, and if there
// is optimized code or an optimization marker, call that instead.
Register optimization_state = w7;
__ Ldr(optimization_state,
FieldMemOperand(feedback_vector, FeedbackVector::kFlagsOffset));
// Check if there is optimized code or a optimization marker that needes to be
// processed.
Label has_optimized_code_or_marker;
__ TestAndBranchIfAnySet(
optimization_state,
FeedbackVector::kHasOptimizedCodeOrCompileOptimizedMarkerMask,
&has_optimized_code_or_marker);
Label not_optimized;
__ bind(&not_optimized);
// Increment invocation count for the function.
__ Ldr(w10, FieldMemOperand(feedback_vector,
FeedbackVector::kInvocationCountOffset));
__ Add(w10, w10, Operand(1));
__ Str(w10, FieldMemOperand(feedback_vector,
FeedbackVector::kInvocationCountOffset));
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done below).
__ Bind(&push_stack_frame);
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ Push<TurboAssembler::kSignLR>(lr, fp);
__ mov(fp, sp);
__ Push(cp, closure);
// Reset code age.
// Reset code age and the OSR arming. The OSR field and BytecodeAgeOffset are
// 8-bit fields next to each other, so we could just optimize by writing a
// 16-bit. These static asserts guard our assumption is valid.
STATIC_ASSERT(BytecodeArray::kBytecodeAgeOffset ==
BytecodeArray::kOsrNestingLevelOffset + kCharSize);
STATIC_ASSERT(BytecodeArray::kNoAgeBytecodeAge == 0);
__ Strh(wzr, FieldMemOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kOsrNestingLevelOffset));
// Load the initial bytecode offset.
__ Mov(kInterpreterBytecodeOffsetRegister,
Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
// Push actual argument count, bytecode array, Smi tagged bytecode array
// offset and an undefined (to properly align the stack pointer).
STATIC_ASSERT(TurboAssembler::kExtraSlotClaimedByPrologue == 1);
__ SmiTag(x6, kInterpreterBytecodeOffsetRegister);
__ Push(kJavaScriptCallArgCountRegister, kInterpreterBytecodeArrayRegister);
__ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
__ Push(x6, kInterpreterAccumulatorRegister);
// Allocate the local and temporary register file on the stack.
Label stack_overflow;
{
// Load frame size from the BytecodeArray object.
__ Ldr(w11, FieldMemOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kFrameSizeOffset));
// Do a stack check to ensure we don't go over the limit.
__ Sub(x10, sp, Operand(x11));
{
UseScratchRegisterScope temps(masm);
Register scratch = temps.AcquireX();
__ LoadStackLimit(scratch, StackLimitKind::kRealStackLimit);
__ Cmp(x10, scratch);
}
__ B(lo, &stack_overflow);
// If ok, push undefined as the initial value for all register file entries.
// Note: there should always be at least one stack slot for the return
// register in the register file.
Label loop_header;
__ Lsr(x11, x11, kSystemPointerSizeLog2);
// Round down (since we already have an undefined in the stack) the number
// of registers to a multiple of 2, to align the stack to 16 bytes.
__ Bic(x11, x11, 1);
__ PushMultipleTimes(kInterpreterAccumulatorRegister, x11);
__ Bind(&loop_header);
}
// If the bytecode array has a valid incoming new target or generator object
// register, initialize it with incoming value which was passed in x3.
Label no_incoming_new_target_or_generator_register;
__ Ldrsw(x10,
FieldMemOperand(
kInterpreterBytecodeArrayRegister,
BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset));
__ Cbz(x10, &no_incoming_new_target_or_generator_register);
__ Str(x3, MemOperand(fp, x10, LSL, kSystemPointerSizeLog2));
__ Bind(&no_incoming_new_target_or_generator_register);
// Perform interrupt stack check.
// TODO(solanes): Merge with the real stack limit check above.
Label stack_check_interrupt, after_stack_check_interrupt;
__ LoadStackLimit(x10, StackLimitKind::kInterruptStackLimit);
__ Cmp(sp, x10);
__ B(lo, &stack_check_interrupt);
__ Bind(&after_stack_check_interrupt);
// The accumulator is already loaded with undefined.
// Load the dispatch table into a register and dispatch to the bytecode
// handler at the current bytecode offset.
Label do_dispatch;
__ bind(&do_dispatch);
__ Mov(
kInterpreterDispatchTableRegister,
ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
__ Ldrb(x23, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
__ Mov(x1, Operand(x23, LSL, kSystemPointerSizeLog2));
__ Ldr(kJavaScriptCallCodeStartRegister,
MemOperand(kInterpreterDispatchTableRegister, x1));
__ Call(kJavaScriptCallCodeStartRegister);
masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());
// Any returns to the entry trampoline are either due to the return bytecode
// or the interpreter tail calling a builtin and then a dispatch.
// Get bytecode array and bytecode offset from the stack frame.
__ Ldr(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
// Either return, or advance to the next bytecode and dispatch.
Label do_return;
__ Ldrb(x1, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, x1, x2, x3,
&do_return);
__ B(&do_dispatch);
__ bind(&do_return);
// The return value is in x0.
LeaveInterpreterFrame(masm, x2, x4);
__ Ret();
__ bind(&stack_check_interrupt);
// Modify the bytecode offset in the stack to be kFunctionEntryBytecodeOffset
// for the call to the StackGuard.
__ Mov(kInterpreterBytecodeOffsetRegister,
Operand(Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag +
kFunctionEntryBytecodeOffset)));
__ Str(kInterpreterBytecodeOffsetRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ CallRuntime(Runtime::kStackGuard);
// After the call, restore the bytecode array, bytecode offset and accumulator
// registers again. Also, restore the bytecode offset in the stack to its
// previous value.
__ Ldr(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ Mov(kInterpreterBytecodeOffsetRegister,
Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
__ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
__ SmiTag(x10, kInterpreterBytecodeOffsetRegister);
__ Str(x10, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ jmp(&after_stack_check_interrupt);
__ bind(&has_optimized_code_or_marker);
Label maybe_has_optimized_code;
// Check if optimized code is available
__ TestAndBranchIfAllClear(
optimization_state,
FeedbackVector::kHasCompileOptimizedOrLogFirstExecutionMarker,
&maybe_has_optimized_code);
Register optimization_marker = optimization_state;
__ DecodeField<FeedbackVector::OptimizationMarkerBits>(optimization_marker);
MaybeOptimizeCode(masm, feedback_vector, optimization_marker);
// Fall through if there's no runnable optimized code.
__ jmp(&not_optimized);
__ bind(&maybe_has_optimized_code);
Register optimized_code_entry = x7;
__ LoadAnyTaggedField(
optimized_code_entry,
FieldMemOperand(feedback_vector,
FeedbackVector::kMaybeOptimizedCodeOffset));
TailCallOptimizedCodeSlot(masm, optimized_code_entry, x4);
__ bind(&compile_lazy);
GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
__ Unreachable(); // Should not return.
__ bind(&stack_overflow);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ Unreachable(); // Should not return.
}
static void Generate_InterpreterPushArgs(MacroAssembler* masm,
Register num_args,
Register first_arg_index,
Register spread_arg_out,
ConvertReceiverMode receiver_mode,
InterpreterPushArgsMode mode) {
Register last_arg_addr = x10;
Register stack_addr = x11;
Register slots_to_claim = x12;
Register slots_to_copy = x13; // May include receiver, unlike num_args.
DCHECK(!AreAliased(num_args, first_arg_index, last_arg_addr, stack_addr,
slots_to_claim, slots_to_copy));
// spread_arg_out may alias with the first_arg_index input.
DCHECK(!AreAliased(spread_arg_out, last_arg_addr, stack_addr, slots_to_claim,
slots_to_copy));
// Add one slot for the receiver.
__ Add(slots_to_claim, num_args, 1);
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// Exclude final spread from slots to claim and the number of arguments.
__ Sub(slots_to_claim, slots_to_claim, 1);
__ Sub(num_args, num_args, 1);
}
// Add a stack check before pushing arguments.
Label stack_overflow, done;
__ StackOverflowCheck(slots_to_claim, &stack_overflow);
__ B(&done);
__ Bind(&stack_overflow);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ Unreachable();
__ Bind(&done);
// Round up to an even number of slots and claim them.
__ Add(slots_to_claim, slots_to_claim, 1);
__ Bic(slots_to_claim, slots_to_claim, 1);
__ Claim(slots_to_claim);
{
// Store padding, which may be overwritten.
UseScratchRegisterScope temps(masm);
Register scratch = temps.AcquireX();
__ Sub(scratch, slots_to_claim, 1);
__ Poke(padreg, Operand(scratch, LSL, kSystemPointerSizeLog2));
}
if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
__ Mov(slots_to_copy, num_args);
__ SlotAddress(stack_addr, 1);
} else {
// If we're not given an explicit receiver to store, we'll need to copy it
// together with the rest of the arguments.
__ Add(slots_to_copy, num_args, 1);
__ SlotAddress(stack_addr, 0);
}
__ Sub(last_arg_addr, first_arg_index,
Operand(slots_to_copy, LSL, kSystemPointerSizeLog2));
__ Add(last_arg_addr, last_arg_addr, kSystemPointerSize);
// Load the final spread argument into spread_arg_out, if necessary.
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Ldr(spread_arg_out, MemOperand(last_arg_addr, -kSystemPointerSize));
}
__ CopyDoubleWords(stack_addr, last_arg_addr, slots_to_copy,
TurboAssembler::kDstLessThanSrcAndReverse);
if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
// Store "undefined" as the receiver arg if we need to.
Register receiver = x14;
__ LoadRoot(receiver, RootIndex::kUndefinedValue);
__ Poke(receiver, 0);
}
}
// static
void Builtins::Generate_InterpreterPushArgsThenCallImpl(
MacroAssembler* masm, ConvertReceiverMode receiver_mode,
InterpreterPushArgsMode mode) {
DCHECK(mode != InterpreterPushArgsMode::kArrayFunction);
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x2 : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -- x1 : the target to call (can be any Object).
// -----------------------------------
// Push the arguments. num_args may be updated according to mode.
// spread_arg_out will be updated to contain the last spread argument, when
// mode == InterpreterPushArgsMode::kWithFinalSpread.
Register num_args = x0;
Register first_arg_index = x2;
Register spread_arg_out =
(mode == InterpreterPushArgsMode::kWithFinalSpread) ? x2 : no_reg;
Generate_InterpreterPushArgs(masm, num_args, first_arg_index, spread_arg_out,
receiver_mode, mode);
// Call the target.
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread),
RelocInfo::CODE_TARGET);
} else {
__ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny),
RelocInfo::CODE_TARGET);
}
}
// static
void Builtins::Generate_InterpreterPushArgsThenConstructImpl(
MacroAssembler* masm, InterpreterPushArgsMode mode) {
// ----------- S t a t e -------------
// -- x0 : argument count (not including receiver)
// -- x3 : new target
// -- x1 : constructor to call
// -- x2 : allocation site feedback if available, undefined otherwise
// -- x4 : address of the first argument
// -----------------------------------
__ AssertUndefinedOrAllocationSite(x2);
// Push the arguments. num_args may be updated according to mode.
// spread_arg_out will be updated to contain the last spread argument, when
// mode == InterpreterPushArgsMode::kWithFinalSpread.
Register num_args = x0;
Register first_arg_index = x4;
Register spread_arg_out =
(mode == InterpreterPushArgsMode::kWithFinalSpread) ? x2 : no_reg;
Generate_InterpreterPushArgs(masm, num_args, first_arg_index, spread_arg_out,
ConvertReceiverMode::kNullOrUndefined, mode);
if (mode == InterpreterPushArgsMode::kArrayFunction) {
__ AssertFunction(x1);
// Tail call to the array construct stub (still in the caller
// context at this point).
Handle<Code> code = BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl);
__ Jump(code, RelocInfo::CODE_TARGET);
} else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// Call the constructor with x0, x1, and x3 unmodified.
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread),
RelocInfo::CODE_TARGET);
} else {
DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
// Call the constructor with x0, x1, and x3 unmodified.
__ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
}
}
static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
// Set the return address to the correct point in the interpreter entry
// trampoline.
Label builtin_trampoline, trampoline_loaded;
Smi interpreter_entry_return_pc_offset(
masm->isolate()->heap()->interpreter_entry_return_pc_offset());
DCHECK_NE(interpreter_entry_return_pc_offset, Smi::zero());
// If the SFI function_data is an InterpreterData, the function will have a
// custom copy of the interpreter entry trampoline for profiling. If so,
// get the custom trampoline, otherwise grab the entry address of the global
// trampoline.
__ Ldr(x1, MemOperand(fp, StandardFrameConstants::kFunctionOffset));
__ LoadTaggedPointerField(
x1, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
__ LoadTaggedPointerField(
x1, FieldMemOperand(x1, SharedFunctionInfo::kFunctionDataOffset));
__ CompareObjectType(x1, kInterpreterDispatchTableRegister,
kInterpreterDispatchTableRegister,
INTERPRETER_DATA_TYPE);
__ B(ne, &builtin_trampoline);
__ LoadTaggedPointerField(
x1, FieldMemOperand(x1, InterpreterData::kInterpreterTrampolineOffset));
__ Add(x1, x1, Operand(Code::kHeaderSize - kHeapObjectTag));
__ B(&trampoline_loaded);
__ Bind(&builtin_trampoline);
__ Mov(x1, ExternalReference::
address_of_interpreter_entry_trampoline_instruction_start(
masm->isolate()));
__ Ldr(x1, MemOperand(x1));
__ Bind(&trampoline_loaded);
__ Add(lr, x1, Operand(interpreter_entry_return_pc_offset.value()));
// Initialize the dispatch table register.
__ Mov(
kInterpreterDispatchTableRegister,
ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
// Get the bytecode array pointer from the frame.
__ Ldr(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
if (FLAG_debug_code) {
// Check function data field is actually a BytecodeArray object.
__ AssertNotSmi(
kInterpreterBytecodeArrayRegister,
AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
__ CompareObjectType(kInterpreterBytecodeArrayRegister, x1, x1,
BYTECODE_ARRAY_TYPE);
__ Assert(
eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Get the target bytecode offset from the frame.
__ SmiUntag(kInterpreterBytecodeOffsetRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
if (FLAG_debug_code) {
Label okay;
__ cmp(kInterpreterBytecodeOffsetRegister,
Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
__ B(ge, &okay);
__ Unreachable();
__ bind(&okay);
}
// Dispatch to the target bytecode.
__ Ldrb(x23, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
__ Mov(x1, Operand(x23, LSL, kSystemPointerSizeLog2));
__ Ldr(kJavaScriptCallCodeStartRegister,
MemOperand(kInterpreterDispatchTableRegister, x1));
UseScratchRegisterScope temps(masm);
temps.Exclude(x17);
__ Mov(x17, kJavaScriptCallCodeStartRegister);
__ Jump(x17);
}
void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) {
// Get bytecode array and bytecode offset from the stack frame.
__ ldr(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
Label enter_bytecode, function_entry_bytecode;
__ cmp(kInterpreterBytecodeOffsetRegister,
Operand(BytecodeArray::kHeaderSize - kHeapObjectTag +
kFunctionEntryBytecodeOffset));
__ B(eq, &function_entry_bytecode);
// Load the current bytecode.
__ Ldrb(x1, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
// Advance to the next bytecode.
Label if_return;
AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, x1, x2, x3,
&if_return);
__ bind(&enter_bytecode);
// Convert new bytecode offset to a Smi and save in the stackframe.
__ SmiTag(x2, kInterpreterBytecodeOffsetRegister);
__ Str(x2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
Generate_InterpreterEnterBytecode(masm);
__ bind(&function_entry_bytecode);
// If the code deoptimizes during the implicit function entry stack interrupt
// check, it will have a bailout ID of kFunctionEntryBytecodeOffset, which is
// not a valid bytecode offset. Detect this case and advance to the first
// actual bytecode.
__ Mov(kInterpreterBytecodeOffsetRegister,
Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
__ B(&enter_bytecode);
// We should never take the if_return path.
__ bind(&if_return);
__ Abort(AbortReason::kInvalidBytecodeAdvance);
}
void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
Generate_InterpreterEnterBytecode(masm);
}
namespace {
void Generate_ContinueToBuiltinHelper(MacroAssembler* masm,
bool java_script_builtin,
bool with_result) {
const RegisterConfiguration* config(RegisterConfiguration::Default());
int allocatable_register_count = config->num_allocatable_general_registers();
int frame_size = BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp +
(allocatable_register_count +
BuiltinContinuationFrameConstants::PaddingSlotCount(
allocatable_register_count)) *
kSystemPointerSize;
UseScratchRegisterScope temps(masm);
Register scratch = temps.AcquireX(); // Temp register is not allocatable.
// Set up frame pointer.
__ Add(fp, sp, frame_size);
if (with_result) {
if (java_script_builtin) {
__ mov(scratch, x0);
} else {
// Overwrite the hole inserted by the deoptimizer with the return value
// from the LAZY deopt point.
__ Str(x0, MemOperand(
fp, BuiltinContinuationFrameConstants::kCallerSPOffset));
}
}
// Restore registers in pairs.
int offset = -BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp -
allocatable_register_count * kSystemPointerSize;
for (int i = allocatable_register_count - 1; i > 0; i -= 2) {
int code1 = config->GetAllocatableGeneralCode(i);
int code2 = config->GetAllocatableGeneralCode(i - 1);
Register reg1 = Register::from_code(code1);
Register reg2 = Register::from_code(code2);
__ Ldp(reg1, reg2, MemOperand(fp, offset));
offset += 2 * kSystemPointerSize;
}
// Restore first register separately, if number of registers is odd.
if (allocatable_register_count % 2 != 0) {
int code = config->GetAllocatableGeneralCode(0);
__ Ldr(Register::from_code(code), MemOperand(fp, offset));
}
if (java_script_builtin) __ SmiUntag(kJavaScriptCallArgCountRegister);
if (java_script_builtin && with_result) {
// Overwrite the hole inserted by the deoptimizer with the return value from
// the LAZY deopt point. r0 contains the arguments count, the return value
// from LAZY is always the last argument.
__ add(x0, x0,
BuiltinContinuationFrameConstants::kCallerSPOffset /
kSystemPointerSize);
__ Str(scratch, MemOperand(fp, x0, LSL, kSystemPointerSizeLog2));
// Recover argument count.
__ sub(x0, x0,
BuiltinContinuationFrameConstants::kCallerSPOffset /
kSystemPointerSize);
}
// Load builtin index (stored as a Smi) and use it to get the builtin start
// address from the builtins table.
Register builtin = scratch;
__ Ldr(
builtin,
MemOperand(fp, BuiltinContinuationFrameConstants::kBuiltinIndexOffset));
// Restore fp, lr.
__ Mov(sp, fp);
__ Pop<TurboAssembler::kAuthLR>(fp, lr);
__ LoadEntryFromBuiltinIndex(builtin);
__ Jump(builtin);
}
} // namespace
void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, false, false);
}
void Builtins::Generate_ContinueToCodeStubBuiltinWithResult(
MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, false, true);
}
void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, true, false);
}
void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult(
MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, true, true);
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kNotifyDeoptimized);
}
// Pop TOS register and padding.
DCHECK_EQ(kInterpreterAccumulatorRegister.code(), x0.code());
__ Pop(x0, padreg);
__ Ret();
}
void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kCompileForOnStackReplacement);
}
// If the code object is null, just return to the caller.
Label skip;
__ CompareTaggedAndBranch(x0, Smi::zero(), ne, &skip);
__ Ret();
__ Bind(&skip);
// Drop the handler frame that is be sitting on top of the actual
// JavaScript frame. This is the case then OSR is triggered from bytecode.
__ LeaveFrame(StackFrame::STUB);
// Load deoptimization data from the code object.
// <deopt_data> = <code>[#deoptimization_data_offset]
__ LoadTaggedPointerField(
x1, FieldMemOperand(x0, Code::kDeoptimizationDataOffset));
// Load the OSR entrypoint offset from the deoptimization data.
// <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
__ SmiUntagField(
x1, FieldMemOperand(x1, FixedArray::OffsetOfElementAt(
DeoptimizationData::kOsrPcOffsetIndex)));
// Compute the target address = code_obj + header_size + osr_offset
// <entry_addr> = <code_obj> + #header_size + <osr_offset>
__ Add(x0, x0, x1);
__ Add(lr, x0, Code::kHeaderSize - kHeapObjectTag);
// And "return" to the OSR entry point of the function.
__ Ret();
}
// static
void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : argc
// -- sp[0] : receiver
// -- sp[8] : thisArg (if argc >= 1)
// -- sp[16] : argArray (if argc == 2)
// -----------------------------------
ASM_LOCATION("Builtins::Generate_FunctionPrototypeApply");
Register argc = x0;
Register receiver = x1;
Register arg_array = x2;
Register this_arg = x3;
Register undefined_value = x4;
Register null_value = x5;
__ LoadRoot(undefined_value, RootIndex::kUndefinedValue);
__ LoadRoot(null_value, RootIndex::kNullValue);
// 1. Load receiver into x1, argArray into x2 (if present), remove all
// arguments from the stack (including the receiver), and push thisArg (if
// present) instead.
{
Label done;
__ Mov(this_arg, undefined_value);
__ Mov(arg_array, undefined_value);
__ Peek(receiver, 0);
__ Cmp(argc, Immediate(1));
__ B(lt, &done);
__ Peek(this_arg, kSystemPointerSize);
__ B(eq, &done);
__ Peek(arg_array, 2 * kSystemPointerSize);
__ bind(&done);
}
__ DropArguments(argc, TurboAssembler::kCountExcludesReceiver);
__ PushArgument(this_arg);
// ----------- S t a t e -------------
// -- x2 : argArray
// -- x1 : receiver
// -- sp[0] : thisArg
// -----------------------------------
// 2. We don't need to check explicitly for callable receiver here,
// since that's the first thing the Call/CallWithArrayLike builtins
// will do.
// 3. Tail call with no arguments if argArray is null or undefined.
Label no_arguments;
__ CmpTagged(arg_array, null_value);
__ CcmpTagged(arg_array, undefined_value, ZFlag, ne);
__ B(eq, &no_arguments);
// 4a. Apply the receiver to the given argArray.
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
RelocInfo::CODE_TARGET);
// 4b. The argArray is either null or undefined, so we tail call without any
// arguments to the receiver.
__ Bind(&no_arguments);
{
__ Mov(x0, 0);
DCHECK_EQ(receiver, x1);
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
}
// static
void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
Register argc = x0;
Register function = x1;
ASM_LOCATION("Builtins::Generate_FunctionPrototypeCall");
// 1. Get the callable to call (passed as receiver) from the stack.
__ Peek(function, __ ReceiverOperand(argc));
// 2. Handle case with no arguments.
{
Label non_zero;
Register scratch = x10;
__ Cbnz(argc, &non_zero);
__ LoadRoot(scratch, RootIndex::kUndefinedValue);
// Overwrite receiver with undefined, which will be the new receiver.
// We do not need to overwrite the padding slot above it with anything.
__ Poke(scratch, 0);
// Call function. The argument count is already zero.
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
__ Bind(&non_zero);
}
Label arguments_ready;
// 3. Shift arguments. It depends if the arguments is even or odd.
// That is if padding exists or not.
{
Label even;
Register copy_from = x10;
Register copy_to = x11;
Register count = x12;
__ Mov(count, argc); // CopyDoubleWords changes the count argument.
__ Tbz(argc, 0, &even);
// Shift arguments one slot down on the stack (overwriting the original
// receiver).
__ SlotAddress(copy_from, 1);
__ Sub(copy_to, copy_from, kSystemPointerSize);
__ CopyDoubleWords(copy_to, copy_from, count);
// Overwrite the duplicated remaining last argument.
__ Poke(padreg, Operand(argc, LSL, kXRegSizeLog2));
__ B(&arguments_ready);
// Copy arguments one slot higher in memory, overwriting the original
// receiver and padding.
__ Bind(&even);
__ SlotAddress(copy_from, count);
__ Add(copy_to, copy_from, kSystemPointerSize);
__ CopyDoubleWords(copy_to, copy_from, count,
TurboAssembler::kSrcLessThanDst);
__ Drop(2);
}
// 5. Adjust argument count to make the original first argument the new
// receiver and call the callable.
__ Bind(&arguments_ready);
__ Sub(argc, argc, 1);
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : argc
// -- sp[0] : receiver
// -- sp[8] : target (if argc >= 1)
// -- sp[16] : thisArgument (if argc >= 2)
// -- sp[24] : argumentsList (if argc == 3)
// -----------------------------------
ASM_LOCATION("Builtins::Generate_ReflectApply");
Register argc = x0;
Register arguments_list = x2;
Register target = x1;
Register this_argument = x4;
Register undefined_value = x3;
__ LoadRoot(undefined_value, RootIndex::kUndefinedValue);
// 1. Load target into x1 (if present), argumentsList into x2 (if present),
// remove all arguments from the stack (including the receiver), and push
// thisArgument (if present) instead.
{
Label done;
__ Mov(target, undefined_value);
__ Mov(this_argument, undefined_value);
__ Mov(arguments_list, undefined_value);
__ Cmp(argc, Immediate(1));
__ B(lt, &done);
__ Peek(target, kSystemPointerSize);
__ B(eq, &done);
__ Peek(this_argument, 2 * kSystemPointerSize);
__ Cmp(argc, Immediate(3));
__ B(lt, &done);
__ Peek(arguments_list, 3 * kSystemPointerSize);
__ bind(&done);
}
__ DropArguments(argc, TurboAssembler::kCountExcludesReceiver);
__ PushArgument(this_argument);
// ----------- S t a t e -------------
// -- x2 : argumentsList
// -- x1 : target
// -- sp[0] : thisArgument
// -----------------------------------
// 2. We don't need to check explicitly for callable target here,
// since that's the first thing the Call/CallWithArrayLike builtins
// will do.
// 3. Apply the target to the given argumentsList.
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : argc
// -- sp[0] : receiver
// -- sp[8] : target
// -- sp[16] : argumentsList
// -- sp[24] : new.target (optional)
// -----------------------------------
ASM_LOCATION("Builtins::Generate_ReflectConstruct");
Register argc = x0;
Register arguments_list = x2;
Register target = x1;
Register new_target = x3;
Register undefined_value = x4;
__ LoadRoot(undefined_value, RootIndex::kUndefinedValue);
// 1. Load target into x1 (if present), argumentsList into x2 (if present),
// new.target into x3 (if present, otherwise use target), remove all
// arguments from the stack (including the receiver), and push thisArgument
// (if present) instead.
{
Label done;
__ Mov(target, undefined_value);
__ Mov(arguments_list, undefined_value);
__ Mov(new_target, undefined_value);
__ Cmp(argc, Immediate(1));
__ B(lt, &done);
__ Peek(target, kSystemPointerSize);
__ B(eq, &done);
__ Peek(arguments_list, 2 * kSystemPointerSize);
__ Mov(new_target, target); // new.target defaults to target
__ Cmp(argc, Immediate(3));
__ B(lt, &done);
__ Peek(new_target, 3 * kSystemPointerSize);
__ bind(&done);
}
__ DropArguments(argc, TurboAssembler::kCountExcludesReceiver);
// Push receiver (undefined).
__ PushArgument(undefined_value);
// ----------- S t a t e -------------
// -- x2 : argumentsList
// -- x1 : target
// -- x3 : new.target
// -- sp[0] : receiver (undefined)
// -----------------------------------
// 2. We don't need to check explicitly for constructor target here,
// since that's the first thing the Construct/ConstructWithArrayLike
// builtins will do.
// 3. We don't need to check explicitly for constructor new.target here,
// since that's the second thing the Construct/ConstructWithArrayLike
// builtins will do.
// 4. Construct the target with the given new.target and argumentsList.
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike),
RelocInfo::CODE_TARGET);
}
namespace {
void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ Push<TurboAssembler::kSignLR>(lr, fp);
__ Mov(x11, StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR));
__ Push(x11, x1); // x1: function
__ SmiTag(x11, x0); // x0: number of arguments.
__ Push(x11, padreg);
__ Add(fp, sp, ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp);
}
void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : result being passed through
// -----------------------------------
// Get the number of arguments passed (as a smi), tear down the frame and
// then drop the parameters and the receiver.
__ Ldr(x10, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ Mov(sp, fp);
__ Pop<TurboAssembler::kAuthLR>(fp, lr);
// Drop actual parameters and receiver.
__ SmiUntag(x10);
__ DropArguments(x10, TurboAssembler::kCountExcludesReceiver);
}
// Prepares the stack for copying the varargs. First we claim the necessary
// slots, taking care of potential padding. Then we copy the existing arguments
// one slot up or one slot down, as needed.
void Generate_PrepareForCopyingVarargs(MacroAssembler* masm, Register argc,
Register len) {
Label exit, even;
Register slots_to_copy = x10;
Register slots_to_claim = x12;
__ Add(slots_to_copy, argc, 1); // Copy with receiver.
__ Mov(slots_to_claim, len);
__ Tbz(slots_to_claim, 0, &even);
// Claim space we need. If argc is even, slots_to_claim = len + 1, as we need
// one extra padding slot. If argc is odd, we know that the original arguments
// will have a padding slot we can reuse (since len is odd), so
// slots_to_claim = len - 1.
{
Register scratch = x11;
__ Add(slots_to_claim, len, 1);
__ And(scratch, argc, 1);
__ Eor(scratch, scratch, 1);
__ Sub(slots_to_claim, slots_to_claim, Operand(scratch, LSL, 1));
}
__ Bind(&even);
__ Cbz(slots_to_claim, &exit);
__ Claim(slots_to_claim);
// Move the arguments already in the stack including the receiver.
{
Register src = x11;
Register dst = x12;
__ SlotAddress(src, slots_to_claim);
__ SlotAddress(dst, 0);
__ CopyDoubleWords(dst, src, slots_to_copy);
}
__ Bind(&exit);
}
} // namespace
// static
void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- x1 : target
// -- x0 : number of parameters on the stack (not including the receiver)
// -- x2 : arguments list (a FixedArray)
// -- x4 : len (number of elements to push from args)
// -- x3 : new.target (for [[Construct]])
// -----------------------------------
if (masm->emit_debug_code()) {
// Allow x2 to be a FixedArray, or a FixedDoubleArray if x4 == 0.
Label ok, fail;
__ AssertNotSmi(x2, AbortReason::kOperandIsNotAFixedArray);
__ LoadTaggedPointerField(x10, FieldMemOperand(x2, HeapObject::kMapOffset));
__ Ldrh(x13, FieldMemOperand(x10, Map::kInstanceTypeOffset));
__ Cmp(x13, FIXED_ARRAY_TYPE);
__ B(eq, &ok);
__ Cmp(x13, FIXED_DOUBLE_ARRAY_TYPE);
__ B(ne, &fail);
__ Cmp(x4, 0);
__ B(eq, &ok);
// Fall through.
__ bind(&fail);
__ Abort(AbortReason::kOperandIsNotAFixedArray);
__ bind(&ok);
}
Register arguments_list = x2;
Register argc = x0;
Register len = x4;
Label stack_overflow;
__ StackOverflowCheck(len, &stack_overflow);
// Skip argument setup if we don't need to push any varargs.
Label done;
__ Cbz(len, &done);
Generate_PrepareForCopyingVarargs(masm, argc, len);
// Push varargs.
{
Label loop;
Register src = x10;
Register the_hole_value = x11;
Register undefined_value = x12;
Register scratch = x13;
__ Add(src, arguments_list, FixedArray::kHeaderSize - kHeapObjectTag);
__ LoadRoot(the_hole_value, RootIndex::kTheHoleValue);
__ LoadRoot(undefined_value, RootIndex::kUndefinedValue);
// We do not use the CompareRoot macro as it would do a LoadRoot behind the
// scenes and we want to avoid that in a loop.
// TODO(all): Consider using Ldp and Stp.
Register dst = x16;
__ Add(dst, argc, Immediate(1)); // Consider the receiver as well.
__ SlotAddress(dst, dst);
__ Add(argc, argc, len); // Update new argc.
__ Bind(&loop);
__ Sub(len, len, 1);
__ LoadAnyTaggedField(scratch, MemOperand(src, kTaggedSize, PostIndex));
__ CmpTagged(scratch, the_hole_value);
__ Csel(scratch, scratch, undefined_value, ne);
__ Str(scratch, MemOperand(dst, kSystemPointerSize, PostIndex));
__ Cbnz(len, &loop);
}
__ Bind(&done);
// Tail-call to the actual Call or Construct builtin.
__ Jump(code, RelocInfo::CODE_TARGET);
__ bind(&stack_overflow);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
}
// static
void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm,
CallOrConstructMode mode,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x3 : the new.target (for [[Construct]] calls)
// -- x1 : the target to call (can be any Object)
// -- x2 : start index (to support rest parameters)
// -----------------------------------
Register argc = x0;
Register start_index = x2;
// Check if new.target has a [[Construct]] internal method.
if (mode == CallOrConstructMode::kConstruct) {
Label new_target_constructor, new_target_not_constructor;
__ JumpIfSmi(x3, &new_target_not_constructor);
__ LoadTaggedPointerField(x5, FieldMemOperand(x3, HeapObject::kMapOffset));
__ Ldrb(x5, FieldMemOperand(x5, Map::kBitFieldOffset));
__ TestAndBranchIfAnySet(x5, Map::Bits1::IsConstructorBit::kMask,
&new_target_constructor);
__ Bind(&new_target_not_constructor);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ PushArgument(x3);
__ CallRuntime(Runtime::kThrowNotConstructor);
}
__ Bind(&new_target_constructor);
}
Register args_fp = x5;
Register len = x6;
#ifdef V8_NO_ARGUMENTS_ADAPTOR
// TODO(victorgomes): Remove this copy when all the arguments adaptor frame
// code is erased.
__ Mov(args_fp, fp);
__ Ldr(len, MemOperand(fp, StandardFrameConstants::kArgCOffset));
#else
// Check if we have an arguments adaptor frame below the function frame.
// args_fp will point to the frame that contains the actual arguments, which
// will be the current frame unless we have an arguments adaptor frame, in
// which case args_fp points to the arguments adaptor frame.
{
Label arguments_adaptor, arguments_done;
Register scratch = x10;
__ Ldr(args_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ Ldr(x4, MemOperand(args_fp,
CommonFrameConstants::kContextOrFrameTypeOffset));
__ CmpTagged(x4, StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR));
__ B(eq, &arguments_adaptor);
{
__ Ldr(scratch, MemOperand(fp, StandardFrameConstants::kFunctionOffset));
__ LoadTaggedPointerField(
scratch,
FieldMemOperand(scratch, JSFunction::kSharedFunctionInfoOffset));
__ Ldrh(len,
FieldMemOperand(scratch,
SharedFunctionInfo::kFormalParameterCountOffset));
__ Mov(args_fp, fp);
}
__ B(&arguments_done);
__ Bind(&arguments_adaptor);
{
// Just load the length from ArgumentsAdaptorFrame.
__ SmiUntag(
len,
MemOperand(args_fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
}
__ Bind(&arguments_done);
}
#endif
Label stack_done, stack_overflow;
__ Subs(len, len, start_index);
__ B(le, &stack_done);
// Check for stack overflow.
__ StackOverflowCheck(len, &stack_overflow);
Generate_PrepareForCopyingVarargs(masm, argc, len);
// Push varargs.
{
Register dst = x13;
// Point to the fist argument to copy from (skipping receiver).
__ Add(args_fp, args_fp,
CommonFrameConstants::kFixedFrameSizeAboveFp + kSystemPointerSize);
__ lsl(start_index, start_index, kSystemPointerSizeLog2);
__ Add(args_fp, args_fp, start_index);
// Point to the position to copy to.
__ Add(x10, argc, 1);
__ SlotAddress(dst, x10);
// Update total number of arguments.
__ Add(argc, argc, len);
__ CopyDoubleWords(dst, args_fp, len);
}
__ B(&stack_done);
__ Bind(&stack_overflow);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ Bind(&stack_done);
__ Jump(code, RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_CallFunction(MacroAssembler* masm,
ConvertReceiverMode mode) {
ASM_LOCATION("Builtins::Generate_CallFunction");
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the function to call (checked to be a JSFunction)
// -----------------------------------
__ AssertFunction(x1);
// See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
// Check that function is not a "classConstructor".
Label class_constructor;
__ LoadTaggedPointerField(
x2, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(w3, FieldMemOperand(x2, SharedFunctionInfo::kFlagsOffset));
__ TestAndBranchIfAnySet(w3, SharedFunctionInfo::IsClassConstructorBit::kMask,
&class_constructor);
// Enter the context of the function; ToObject has to run in the function
// context, and we also need to take the global proxy from the function
// context in case of conversion.
__ LoadTaggedPointerField(cp,
FieldMemOperand(x1, JSFunction::kContextOffset));
// We need to convert the receiver for non-native sloppy mode functions.
Label done_convert;
__ TestAndBranchIfAnySet(w3,
SharedFunctionInfo::IsNativeBit::kMask |
SharedFunctionInfo::IsStrictBit::kMask,
&done_convert);
{
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the function to call (checked to be a JSFunction)
// -- x2 : the shared function info.
// -- cp : the function context.
// -----------------------------------
if (mode == ConvertReceiverMode::kNullOrUndefined) {
// Patch receiver to global proxy.
__ LoadGlobalProxy(x3);
} else {
Label convert_to_object, convert_receiver;
__ Peek(x3, __ ReceiverOperand(x0));
__ JumpIfSmi(x3, &convert_to_object);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CompareObjectType(x3, x4, x4, FIRST_JS_RECEIVER_TYPE);
__ B(hs, &done_convert);
if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
Label convert_global_proxy;
__ JumpIfRoot(x3, RootIndex::kUndefinedValue, &convert_global_proxy);
__ JumpIfNotRoot(x3, RootIndex::kNullValue, &convert_to_object);
__ Bind(&convert_global_proxy);
{
// Patch receiver to global proxy.
__ LoadGlobalProxy(x3);
}
__ B(&convert_receiver);
}
__ Bind(&convert_to_object);
{
// Convert receiver using ToObject.
// TODO(bmeurer): Inline the allocation here to avoid building the frame
// in the fast case? (fall back to AllocateInNewSpace?)
FrameScope scope(masm, StackFrame::INTERNAL);
__ SmiTag(x0);
__ Push(padreg, x0, x1, cp);
__ Mov(x0, x3);
__ Call(BUILTIN_CODE(masm->isolate(), ToObject),
RelocInfo::CODE_TARGET);
__ Mov(x3, x0);
__ Pop(cp, x1, x0, padreg);
__ SmiUntag(x0);
}
__ LoadTaggedPointerField(
x2, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
__ Bind(&convert_receiver);
}
__ Poke(x3, __ ReceiverOperand(x0));
}
__ Bind(&done_convert);
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the function to call (checked to be a JSFunction)
// -- x2 : the shared function info.
// -- cp : the function context.
// -----------------------------------
__ Ldrh(x2,
FieldMemOperand(x2, SharedFunctionInfo::kFormalParameterCountOffset));
__ InvokeFunctionCode(x1, no_reg, x2, x0, JUMP_FUNCTION);
// The function is a "classConstructor", need to raise an exception.
__ Bind(&class_constructor);
{
FrameScope frame(masm, StackFrame::INTERNAL);
__ PushArgument(x1);
__ CallRuntime(Runtime::kThrowConstructorNonCallableError);
}
}
namespace {
void Generate_PushBoundArguments(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : target (checked to be a JSBoundFunction)
// -- x3 : new.target (only in case of [[Construct]])
// -----------------------------------
Register bound_argc = x4;
Register bound_argv = x2;
// Load [[BoundArguments]] into x2 and length of that into x4.
Label no_bound_arguments;
__ LoadTaggedPointerField(
bound_argv, FieldMemOperand(x1, JSBoundFunction::kBoundArgumentsOffset));
__ SmiUntagField(bound_argc,
FieldMemOperand(bound_argv, FixedArray::kLengthOffset));
__ Cbz(bound_argc, &no_bound_arguments);
{
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : target (checked to be a JSBoundFunction)
// -- x2 : the [[BoundArguments]] (implemented as FixedArray)
// -- x3 : new.target (only in case of [[Construct]])
// -- x4 : the number of [[BoundArguments]]
// -----------------------------------
Register argc = x0;
// Check for stack overflow.
{
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack
// limit".
Label done;
__ LoadStackLimit(x10, StackLimitKind::kRealStackLimit);
// Make x10 the space we have left. The stack might already be overflowed
// here which will cause x10 to become negative.
__ Sub(x10, sp, x10);
// Check if the arguments will overflow the stack.
__ Cmp(x10, Operand(bound_argc, LSL, kSystemPointerSizeLog2));
__ B(gt, &done);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ Bind(&done);
}
Label copy_bound_args;
Register total_argc = x15;
Register slots_to_claim = x12;
Register scratch = x10;
Register receiver = x14;
__ Add(total_argc, argc, bound_argc);
__ Peek(receiver, 0);
// Round up slots_to_claim to an even number if it is odd.
__ Add(slots_to_claim, bound_argc, 1);
__ Bic(slots_to_claim, slots_to_claim, 1);
__ Claim(slots_to_claim, kSystemPointerSize);
__ Tbz(bound_argc, 0, &copy_bound_args);
{
Label argc_even;
__ Tbz(argc, 0, &argc_even);
// Arguments count is odd (with the receiver it's even), so there's no
// alignment padding above the arguments and we have to "add" it. We
// claimed bound_argc + 1, since it is odd and it was rounded up. +1 here
// is for stack alignment padding.
// 1. Shift args one slot down.
{
Register copy_from = x11;
Register copy_to = x12;
__ SlotAddress(copy_to, slots_to_claim);
__ Add(copy_from, copy_to, kSystemPointerSize);
__ CopyDoubleWords(copy_to, copy_from, argc);
}
// 2. Write a padding in the last slot.
__ Add(scratch, total_argc, 1);
__ Str(padreg, MemOperand(sp, scratch, LSL, kSystemPointerSizeLog2));
__ B(&copy_bound_args);
__ Bind(&argc_even);
// Arguments count is even (with the receiver it's odd), so there's an
// alignment padding above the arguments and we can reuse it. We need to
// claim bound_argc - 1, but we claimed bound_argc + 1, since it is odd
// and it was rounded up.
// 1. Drop 2.
__ Drop(2);
// 2. Shift args one slot up.
{
Register copy_from = x11;
Register copy_to = x12;
__ SlotAddress(copy_to, total_argc);
__ Sub(copy_from, copy_to, kSystemPointerSize);
__ CopyDoubleWords(copy_to, copy_from, argc,
TurboAssembler::kSrcLessThanDst);
}
}
// If bound_argc is even, there is no alignment massage to do, and we have
// already claimed the correct number of slots (bound_argc).
__ Bind(&copy_bound_args);
// Copy the receiver back.
__ Poke(receiver, 0);
// Copy [[BoundArguments]] to the stack (below the receiver).
{
Label loop;
Register counter = bound_argc;
Register copy_to = x12;
__ Add(bound_argv, bound_argv, FixedArray::kHeaderSize - kHeapObjectTag);
__ SlotAddress(copy_to, 1);
__ Bind(&loop);
__ Sub(counter, counter, 1);
__ LoadAnyTaggedField(scratch,
MemOperand(bound_argv, kTaggedSize, PostIndex));
__ Str(scratch, MemOperand(copy_to, kSystemPointerSize, PostIndex));
__ Cbnz(counter, &loop);
}
// Update argc.
__ Mov(argc, total_argc);
}
__ Bind(&no_bound_arguments);
}
} // namespace
// static
void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the function to call (checked to be a JSBoundFunction)
// -----------------------------------
__ AssertBoundFunction(x1);
// Patch the receiver to [[BoundThis]].
__ LoadAnyTaggedField(x10,
FieldMemOperand(x1, JSBoundFunction::kBoundThisOffset));
__ Poke(x10, __ ReceiverOperand(x0));
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Call the [[BoundTargetFunction]] via the Call builtin.
__ LoadTaggedPointerField(
x1, FieldMemOperand(x1, JSBoundFunction::kBoundTargetFunctionOffset));
__ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the target to call (can be any Object).
// -----------------------------------
Label non_callable, non_smi;
__ JumpIfSmi(x1, &non_callable);
__ Bind(&non_smi);
__ CompareObjectType(x1, x4, x5, JS_FUNCTION_TYPE);
__ Jump(masm->isolate()->builtins()->CallFunction(mode),
RelocInfo::CODE_TARGET, eq);
__ Cmp(x5, JS_BOUND_FUNCTION_TYPE);
__ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction),
RelocInfo::CODE_TARGET, eq);
// Check if target has a [[Call]] internal method.
__ Ldrb(x4, FieldMemOperand(x4, Map::kBitFieldOffset));
__ TestAndBranchIfAllClear(x4, Map::Bits1::IsCallableBit::kMask,
&non_callable);
// Check if target is a proxy and call CallProxy external builtin
__ Cmp(x5, JS_PROXY_TYPE);
__ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET, eq);
// 2. Call to something else, which might have a [[Call]] internal method (if
// not we raise an exception).
// Overwrite the original receiver with the (original) target.
__ Poke(x1, __ ReceiverOperand(x0));
// Let the "call_as_function_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, x1);
__ Jump(masm->isolate()->builtins()->CallFunction(
ConvertReceiverMode::kNotNullOrUndefined),
RelocInfo::CODE_TARGET);
// 3. Call to something that is not callable.
__ bind(&non_callable);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ PushArgument(x1);
__ CallRuntime(Runtime::kThrowCalledNonCallable);
}
}
// static
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the constructor to call (checked to be a JSFunction)
// -- x3 : the new target (checked to be a constructor)
// -----------------------------------
__ AssertConstructor(x1);
__ AssertFunction(x1);
// Calling convention for function specific ConstructStubs require
// x2 to contain either an AllocationSite or undefined.
__ LoadRoot(x2, RootIndex::kUndefinedValue);
Label call_generic_stub;
// Jump to JSBuiltinsConstructStub or JSConstructStubGeneric.
__ LoadTaggedPointerField(
x4, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(w4, FieldMemOperand(x4, SharedFunctionInfo::kFlagsOffset));
__ TestAndBranchIfAllClear(
w4, SharedFunctionInfo::ConstructAsBuiltinBit::kMask, &call_generic_stub);
__ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub),
RelocInfo::CODE_TARGET);
__ bind(&call_generic_stub);
__ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the function to call (checked to be a JSBoundFunction)
// -- x3 : the new target (checked to be a constructor)
// -----------------------------------
__ AssertConstructor(x1);
__ AssertBoundFunction(x1);
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Patch new.target to [[BoundTargetFunction]] if new.target equals target.
{
Label done;
__ CmpTagged(x1, x3);
__ B(ne, &done);
__ LoadTaggedPointerField(
x3, FieldMemOperand(x1, JSBoundFunction::kBoundTargetFunctionOffset));
__ Bind(&done);
}
// Construct the [[BoundTargetFunction]] via the Construct builtin.
__ LoadTaggedPointerField(
x1, FieldMemOperand(x1, JSBoundFunction::kBoundTargetFunctionOffset));
__ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_Construct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the constructor to call (can be any Object)
// -- x3 : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -----------------------------------
// Check if target is a Smi.
Label non_constructor, non_proxy;
__ JumpIfSmi(x1, &non_constructor);
// Check if target has a [[Construct]] internal method.
__ LoadTaggedPointerField(x4, FieldMemOperand(x1, HeapObject::kMapOffset));
__ Ldrb(x2, FieldMemOperand(x4, Map::kBitFieldOffset));
__ TestAndBranchIfAllClear(x2, Map::Bits1::IsConstructorBit::kMask,
&non_constructor);
// Dispatch based on instance type.
__ CompareInstanceType(x4, x5, JS_FUNCTION_TYPE);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction),
RelocInfo::CODE_TARGET, eq);
// Only dispatch to bound functions after checking whether they are
// constructors.
__ Cmp(x5, JS_BOUND_FUNCTION_TYPE);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction),
RelocInfo::CODE_TARGET, eq);
// Only dispatch to proxies after checking whether they are constructors.
__ Cmp(x5, JS_PROXY_TYPE);
__ B(ne, &non_proxy);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy),
RelocInfo::CODE_TARGET);
// Called Construct on an exotic Object with a [[Construct]] internal method.
__ bind(&non_proxy);
{
// Overwrite the original receiver with the (original) target.
__ Poke(x1, __ ReceiverOperand(x0));
// Let the "call_as_constructor_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, x1);
__ Jump(masm->isolate()->builtins()->CallFunction(),
RelocInfo::CODE_TARGET);
}
// Called Construct on an Object that doesn't have a [[Construct]] internal
// method.
__ bind(&non_constructor);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable),
RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
ASM_LOCATION("Builtins::Generate_ArgumentsAdaptorTrampoline");
// ----------- S t a t e -------------
// -- x0 : actual number of arguments
// -- x1 : function (passed through to callee)
// -- x2 : expected number of arguments
// -- x3 : new target (passed through to callee)
// -----------------------------------
// The frame we are about to construct will look like:
//
// slot Adaptor frame
// +-----------------+--------------------------------
// -n-1 | receiver | ^
// | (parameter 0) | |
// |- - - - - - - - -| |
// -n | | Caller
// ... | ... | frame slots --> actual args
// -2 | parameter n-1 | |
// |- - - - - - - - -| |
// -1 | parameter n | v
// -----+-----------------+--------------------------------
// 0 | return addr | ^
// |- - - - - - - - -| |
// 1 | saved frame ptr | <-- frame ptr |
// |- - - - - - - - -| |
// 2 |Frame Type Marker| |
// |- - - - - - - - -| |
// 3 | function | Callee
// |- - - - - - - - -| frame slots
// 4 | num of | |
// | actual args | |
// |- - - - - - - - -| |
// 5 | padding | |
// |-----------------+---- |
// [6] | [padding] | ^ |
// |- - - - - - - - -| | |
// 6+pad | receiver | | |
// | (parameter 0) | | |
// |- - - - - - - - -| | |
// 7+pad | parameter 1 | | |
// |- - - - - - - - -| Frame slots ----> expected args
// 8+pad | parameter 2 | | |
// |- - - - - - - - -| | |
// | | | |
// ... | ... | | |
// | parameter m | | |
// |- - - - - - - - -| | |
// | [undefined] | | |
// |- - - - - - - - -| | |
// | | | |
// | ... | | |
// | [undefined] | v <-- stack ptr v
// -----+-----------------+---------------------------------
//
// There is an optional slot of padding above the receiver to ensure stack
// alignment of the arguments.
// If the number of expected arguments is larger than the number of actual
// arguments, the remaining expected slots will be filled with undefined.
// TODO(v8:10201) update comment once reversed arguments order sticks
Register argc_actual = x0; // Excluding the receiver.
Register argc_expected = x2; // Excluding the receiver.
Register function = x1;
Label create_adaptor_frame, dont_adapt_arguments, stack_overflow;
__ Cmp(argc_expected, kDontAdaptArgumentsSentinel);
__ B(eq, &dont_adapt_arguments);
// -------------------------------------------
// Create an arguments adaptor frame.
// -------------------------------------------
__ Bind(&create_adaptor_frame);
{
__ RecordComment("-- Adapt arguments --");
EnterArgumentsAdaptorFrame(masm);
Register copy_from = x10;
Register copy_to = x12;
Register copy_end = x11;
Register argc_to_copy = x13;
Register scratch1 = x15;
// We need slots for the expected arguments, with one extra slot for the
// receiver.
__ RecordComment("-- Stack check --");
__ Add(scratch1, argc_expected, 1);
__ StackOverflowCheck(scratch1, &stack_overflow);
// Round up number of slots to be even, to maintain stack alignment.
__ RecordComment("-- Allocate callee frame slots --");
__ Add(scratch1, scratch1, 1);
__ Bic(scratch1, scratch1, 1);
__ Claim(scratch1, kSystemPointerSize);
// If we don't have enough arguments, fill the remaining expected
// arguments with undefined, otherwise skip this step.
Label enough_arguments;
__ Cmp(argc_actual, argc_expected);
__ Csel(argc_to_copy, argc_expected, argc_actual, ge);
__ Add(argc_to_copy, argc_to_copy, 1); // Include receiver.
__ B(ge, &enough_arguments);
// Fill the remaining expected arguments with undefined.
__ RecordComment("-- Fill slots with undefined --");
Label fill;
// scratch1 still contains the size of the claimed area,
// which is RoundUp(argc_expected + 1, 2).
__ SlotAddress(copy_to, scratch1);
__ SlotAddress(copy_end, argc_to_copy);
__ LoadRoot(scratch1, RootIndex::kUndefinedValue);
// Now we can write pairs of undefineds, potentially overwriting one word
// below copy_end, but that's ok because that slot is still within claimed
// region. This loop will execute at least once because at this point we
// know that there's at least one undefined to be pushed and
// argc_to_copy >= 1.
__ Bind(&fill);
__ Stp(scratch1, scratch1,
MemOperand(copy_to, -2 * kSystemPointerSize, PreIndex));
__ Cmp(copy_to, copy_end);
__ B(hi, &fill);
// Enough arguments.
__ Bind(&enough_arguments);
// Store padding if needed, when expected arguments is even.
__ RecordComment("-- Store padding --");
Label skip_padding;
__ Tbnz(argc_expected, 0, &skip_padding);
__ SlotAddress(scratch1, argc_expected);
__ Str(padreg, MemOperand(scratch1, kSystemPointerSize));
__ bind(&skip_padding);
// Copy arguments.
__ RecordComment("-- Copy actual arguments --");
__ Mov(copy_to, sp);
__ Add(copy_from, fp, 2 * kSystemPointerSize);
__ CopyDoubleWords(copy_to, copy_from, argc_to_copy);
// Arguments have been adapted. Now call the entry point.
__ RecordComment("-- Call entry point --");
__ Mov(argc_actual, argc_expected);
// x0 : expected number of arguments
// x1 : function (passed through to callee)
// x3 : new target (passed through to callee)
static_assert(kJavaScriptCallCodeStartRegister == x2, "ABI mismatch");
__ LoadTaggedPointerField(
x2, FieldMemOperand(function, JSFunction::kCodeOffset));
__ CallCodeObject(x2);
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(
masm->pc_offset());
// Exit frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ Ret();
}
// -------------------------------------------
// Dont adapt arguments.
// -------------------------------------------
__ Bind(&dont_adapt_arguments);
{
// Call the entry point without adapting the arguments.
__ RecordComment("-- Call without adapting args --");
static_assert(kJavaScriptCallCodeStartRegister == x2, "ABI mismatch");
__ LoadTaggedPointerField(
x2, FieldMemOperand(function, JSFunction::kCodeOffset));
__ JumpCodeObject(x2);
}
__ Bind(&stack_overflow);
__ RecordComment("-- Stack overflow --");
{
FrameScope frame(masm, StackFrame::MANUAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ Unreachable();
}
}
void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) {
// The function index was put in w8 by the jump table trampoline.
// Sign extend and convert to Smi for the runtime call.
__ sxtw(kWasmCompileLazyFuncIndexRegister,
kWasmCompileLazyFuncIndexRegister.W());
__ SmiTag(kWasmCompileLazyFuncIndexRegister,
kWasmCompileLazyFuncIndexRegister);
UseScratchRegisterScope temps(masm);
{
HardAbortScope hard_abort(masm); // Avoid calls to Abort.
FrameScope scope(masm, StackFrame::WASM_COMPILE_LAZY);
// Save all parameter registers (see wasm-linkage.cc). They might be
// overwritten in the runtime call below. We don't have any callee-saved
// registers in wasm, so no need to store anything else.
constexpr RegList gp_regs =
Register::ListOf(x0, x1, x2, x3, x4, x5, x6, x7);
constexpr RegList fp_regs =
Register::ListOf(d0, d1, d2, d3, d4, d5, d6, d7);
__ PushXRegList(gp_regs);
__ PushDRegList(fp_regs);
// Pass instance and function index as explicit arguments to the runtime
// function.
__ Push(kWasmInstanceRegister, kWasmCompileLazyFuncIndexRegister);
// Initialize the JavaScript context with 0. CEntry will use it to
// set the current context on the isolate.
__ Mov(cp, Smi::zero());
__ CallRuntime(Runtime::kWasmCompileLazy, 2);
// Exclude x17 from the scope, there are hardcoded uses of it below.
temps.Exclude(x17);
// The entrypoint address is the return value.
__ Mov(x17, kReturnRegister0);
// Restore registers.
__ PopDRegList(fp_regs);
__ PopXRegList(gp_regs);
}
// Finally, jump to the entrypoint.
__ Jump(x17);
}
void Builtins::Generate_WasmDebugBreak(MacroAssembler* masm) {
HardAbortScope hard_abort(masm); // Avoid calls to Abort.
{
FrameScope scope(masm, StackFrame::WASM_DEBUG_BREAK);
// Save all parameter registers. They might hold live values, we restore
// them after the runtime call.
__ PushXRegList(WasmDebugBreakFrameConstants::kPushedGpRegs);
__ PushQRegList(WasmDebugBreakFrameConstants::kPushedFpRegs);
// Initialize the JavaScript context with 0. CEntry will use it to
// set the current context on the isolate.
__ Move(cp, Smi::zero());
__ CallRuntime(Runtime::kWasmDebugBreak, 0);
// Restore registers.
__ PopQRegList(WasmDebugBreakFrameConstants::kPushedFpRegs);
__ PopXRegList(WasmDebugBreakFrameConstants::kPushedGpRegs);
}
__ Ret();
}
void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size,
SaveFPRegsMode save_doubles, ArgvMode argv_mode,
bool builtin_exit_frame) {
// The Abort mechanism relies on CallRuntime, which in turn relies on
// CEntry, so until this stub has been generated, we have to use a
// fall-back Abort mechanism.
//
// Note that this stub must be generated before any use of Abort.
HardAbortScope hard_aborts(masm);
ASM_LOCATION("CEntry::Generate entry");
// Register parameters:
// x0: argc (including receiver, untagged)
// x1: target
// If argv_mode == kArgvInRegister:
// x11: argv (pointer to first argument)
//
// The stack on entry holds the arguments and the receiver, with the receiver
// at the highest address:
//
// sp]argc-1]: receiver
// sp[argc-2]: arg[argc-2]
// ... ...
// sp[1]: arg[1]
// sp[0]: arg[0]
//
// The arguments are in reverse order, so that arg[argc-2] is actually the
// first argument to the target function and arg[0] is the last.
const Register& argc_input = x0;
const Register& target_input = x1;
// Calculate argv, argc and the target address, and store them in
// callee-saved registers so we can retry the call without having to reload
// these arguments.
// TODO(jbramley): If the first call attempt succeeds in the common case (as
// it should), then we might be better off putting these parameters directly
// into their argument registers, rather than using callee-saved registers and
// preserving them on the stack.
const Register& argv = x21;
const Register& argc = x22;
const Register& target = x23;
// Derive argv from the stack pointer so that it points to the first argument
// (arg[argc-2]), or just below the receiver in case there are no arguments.
// - Adjust for the arg[] array.
Register temp_argv = x11;
if (argv_mode == kArgvOnStack) {
__ SlotAddress(temp_argv, x0);
// - Adjust for the receiver.
__ Sub(temp_argv, temp_argv, 1 * kSystemPointerSize);
}
// Reserve three slots to preserve x21-x23 callee-saved registers.
int extra_stack_space = 3;
// Enter the exit frame.
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(
save_doubles == kSaveFPRegs, x10, extra_stack_space,
builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);
// Poke callee-saved registers into reserved space.
__ Poke(argv, 1 * kSystemPointerSize);
__ Poke(argc, 2 * kSystemPointerSize);
__ Poke(target, 3 * kSystemPointerSize);
// We normally only keep tagged values in callee-saved registers, as they
// could be pushed onto the stack by called stubs and functions, and on the
// stack they can confuse the GC. However, we're only calling C functions
// which can push arbitrary data onto the stack anyway, and so the GC won't
// examine that part of the stack.
__ Mov(argc, argc_input);
__ Mov(target, target_input);
__ Mov(argv, temp_argv);
// x21 : argv
// x22 : argc
// x23 : call target
//
// The stack (on entry) holds the arguments and the receiver, with the
// receiver at the highest address:
//
// argv[8]: receiver
// argv -> argv[0]: arg[argc-2]
// ... ...
// argv[...]: arg[1]
// argv[...]: arg[0]
//
// Immediately below (after) this is the exit frame, as constructed by
// EnterExitFrame:
// fp[8]: CallerPC (lr)
// fp -> fp[0]: CallerFP (old fp)
// fp[-8]: Space reserved for SPOffset.
// fp[-16]: CodeObject()
// sp[...]: Saved doubles, if saved_doubles is true.
// sp[32]: Alignment padding, if necessary.
// sp[24]: Preserved x23 (used for target).
// sp[16]: Preserved x22 (used for argc).
// sp[8]: Preserved x21 (used for argv).
// sp -> sp[0]: Space reserved for the return address.
//
// After a successful call, the exit frame, preserved registers (x21-x23) and
// the arguments (including the receiver) are dropped or popped as
// appropriate. The stub then returns.
//
// After an unsuccessful call, the exit frame and suchlike are left
// untouched, and the stub either throws an exception by jumping to one of
// the exception_returned label.
// Prepare AAPCS64 arguments to pass to the builtin.
__ Mov(x0, argc);
__ Mov(x1, argv);
__ Mov(x2, ExternalReference::isolate_address(masm->isolate()));
__ StoreReturnAddressAndCall(target);
// Result returned in x0 or x1:x0 - do not destroy these registers!
// x0 result0 The return code from the call.
// x1 result1 For calls which return ObjectPair.
// x21 argv
// x22 argc
// x23 target
const Register& result = x0;
// Check result for exception sentinel.
Label exception_returned;
__ CompareRoot(result, RootIndex::kException);
__ B(eq, &exception_returned);
// The call succeeded, so unwind the stack and return.
// Restore callee-saved registers x21-x23.
__ Mov(x11, argc);
__ Peek(argv, 1 * kSystemPointerSize);
__ Peek(argc, 2 * kSystemPointerSize);
__ Peek(target, 3 * kSystemPointerSize);
__ LeaveExitFrame(save_doubles == kSaveFPRegs, x10, x9);
if (argv_mode == kArgvOnStack) {
// Drop the remaining stack slots and return from the stub.
__ DropArguments(x11);
}
__ AssertFPCRState();
__ Ret();
// Handling of exception.
__ Bind(&exception_returned);
ExternalReference pending_handler_context_address = ExternalReference::Create(
IsolateAddressId::kPendingHandlerContextAddress, masm->isolate());
ExternalReference pending_handler_entrypoint_address =
ExternalReference::Create(
IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate());
ExternalReference pending_handler_fp_address = ExternalReference::Create(
IsolateAddressId::kPendingHandlerFPAddress, masm->isolate());
ExternalReference pending_handler_sp_address = ExternalReference::Create(
IsolateAddressId::kPendingHandlerSPAddress, masm->isolate());
// Ask the runtime for help to determine the handler. This will set x0 to
// contain the current pending exception, don't clobber it.
ExternalReference find_handler =
ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ Mov(x0, 0); // argc.
__ Mov(x1, 0); // argv.
__ Mov(x2, ExternalReference::isolate_address(masm->isolate()));
__ CallCFunction(find_handler, 3);
}
// Retrieve the handler context, SP and FP.
__ Mov(cp, pending_handler_context_address);
__ Ldr(cp, MemOperand(cp));
{
UseScratchRegisterScope temps(masm);
Register scratch = temps.AcquireX();
__ Mov(scratch, pending_handler_sp_address);
__ Ldr(scratch, MemOperand(scratch));
__ Mov(sp, scratch);
}
__ Mov(fp, pending_handler_fp_address);
__ Ldr(fp, MemOperand(fp));
// If the handler is a JS frame, restore the context to the frame. Note that
// the context will be set to (cp == 0) for non-JS frames.
Label not_js_frame;
__ Cbz(cp, &not_js_frame);
__ Str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ Bind(&not_js_frame);
// Reset the masking register. This is done independent of the underlying
// feature flag {FLAG_untrusted_code_mitigations} to make the snapshot work
// with both configurations. It is safe to always do this, because the
// underlying register is caller-saved and can be arbitrarily clobbered.
__ ResetSpeculationPoisonRegister();
// Compute the handler entry address and jump to it. We use x17 here for the
// jump target, as this jump can occasionally end up at the start of
// InterpreterEnterBytecodeDispatch, which when CFI is enabled starts with
// a "BTI c".
UseScratchRegisterScope temps(masm);
temps.Exclude(x17);
__ Mov(x17, pending_handler_entrypoint_address);
__ Ldr(x17, MemOperand(x17));
__ Br(x17);
}
void Builtins::Generate_DoubleToI(MacroAssembler* masm) {
Label done;
Register result = x7;
DCHECK(result.Is64Bits());
HardAbortScope hard_abort(masm); // Avoid calls to Abort.
UseScratchRegisterScope temps(masm);
Register scratch1 = temps.AcquireX();
Register scratch2 = temps.AcquireX();
DoubleRegister double_scratch = temps.AcquireD();
// Account for saved regs.
const int kArgumentOffset = 2 * kSystemPointerSize;
__ Push(result, scratch1); // scratch1 is also pushed to preserve alignment.
__ Peek(double_scratch, kArgumentOffset);
// Try to convert with a FPU convert instruction. This handles all
// non-saturating cases.
__ TryConvertDoubleToInt64(result, double_scratch, &done);
__ Fmov(result, double_scratch);
// If we reach here we need to manually convert the input to an int32.
// Extract the exponent.
Register exponent = scratch1;
__ Ubfx(exponent, result, HeapNumber::kMantissaBits,
HeapNumber::kExponentBits);
// It the exponent is >= 84 (kMantissaBits + 32), the result is always 0 since
// the mantissa gets shifted completely out of the int32_t result.
__ Cmp(exponent, HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 32);
__ CzeroX(result, ge);
__ B(ge, &done);
// The Fcvtzs sequence handles all cases except where the conversion causes
// signed overflow in the int64_t target. Since we've already handled
// exponents >= 84, we can guarantee that 63 <= exponent < 84.
if (masm->emit_debug_code()) {
__ Cmp(exponent, HeapNumber::kExponentBias + 63);
// Exponents less than this should have been handled by the Fcvt case.
__ Check(ge, AbortReason::kUnexpectedValue);
}
// Isolate the mantissa bits, and set the implicit '1'.
Register mantissa = scratch2;
__ Ubfx(mantissa, result, 0, HeapNumber::kMantissaBits);
__ Orr(mantissa, mantissa, 1ULL << HeapNumber::kMantissaBits);
// Negate the mantissa if necessary.
__ Tst(result, kXSignMask);
__ Cneg(mantissa, mantissa, ne);
// Shift the mantissa bits in the correct place. We know that we have to shift
// it left here, because exponent >= 63 >= kMantissaBits.
__ Sub(exponent, exponent,
HeapNumber::kExponentBias + HeapNumber::kMantissaBits);
__ Lsl(result, mantissa, exponent);
__ Bind(&done);
__ Poke(result, kArgumentOffset);
__ Pop(scratch1, result);
__ Ret();
}
void Builtins::Generate_GenericJSToWasmWrapper(MacroAssembler* masm) {
// TODO(v8:10701): Implement for this platform.
__ Trap();
}
namespace {
// The number of register that CallApiFunctionAndReturn will need to save on
// the stack. The space for these registers need to be allocated in the
// ExitFrame before calling CallApiFunctionAndReturn.
constexpr int kCallApiFunctionSpillSpace = 4;
int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
return static_cast<int>(ref0.address() - ref1.address());
}
// Calls an API function. Allocates HandleScope, extracts returned value
// from handle and propagates exceptions.
// 'stack_space' is the space to be unwound on exit (includes the call JS
// arguments space and the additional space allocated for the fast call).
// 'spill_offset' is the offset from the stack pointer where
// CallApiFunctionAndReturn can spill registers.
void CallApiFunctionAndReturn(MacroAssembler* masm, Register function_address,
ExternalReference thunk_ref, int stack_space,
MemOperand* stack_space_operand, int spill_offset,
MemOperand return_value_operand) {
ASM_LOCATION("CallApiFunctionAndReturn");
Isolate* isolate = masm->isolate();
ExternalReference next_address =
ExternalReference::handle_scope_next_address(isolate);
const int kNextOffset = 0;
const int kLimitOffset = AddressOffset(
ExternalReference::handle_scope_limit_address(isolate), next_address);
const int kLevelOffset = AddressOffset(
ExternalReference::handle_scope_level_address(isolate), next_address);
DCHECK(function_address == x1 || function_address == x2);
Label profiler_enabled, end_profiler_check;
__ Mov(x10, ExternalReference::is_profiling_address(isolate));
__ Ldrb(w10, MemOperand(x10));
__ Cbnz(w10, &profiler_enabled);
__ Mov(x10, ExternalReference::address_of_runtime_stats_flag());
__ Ldrsw(w10, MemOperand(x10));
__ Cbnz(w10, &profiler_enabled);
{
// Call the api function directly.
__ Mov(x3, function_address);
__ B(&end_profiler_check);
}
__ Bind(&profiler_enabled);
{
// Additional parameter is the address of the actual callback.
__ Mov(x3, thunk_ref);
}
__ Bind(&end_profiler_check);
// Save the callee-save registers we are going to use.
// TODO(all): Is this necessary? ARM doesn't do it.
STATIC_ASSERT(kCallApiFunctionSpillSpace == 4);
__ Poke(x19, (spill_offset + 0) * kXRegSize);
__ Poke(x20, (spill_offset + 1) * kXRegSize);
__ Poke(x21, (spill_offset + 2) * kXRegSize);
__ Poke(x22, (spill_offset + 3) * kXRegSize);
// Allocate HandleScope in callee-save registers.
// We will need to restore the HandleScope after the call to the API function,
// by allocating it in callee-save registers they will be preserved by C code.
Register handle_scope_base = x22;
Register next_address_reg = x19;
Register limit_reg = x20;
Register level_reg = w21;
__ Mov(handle_scope_base, next_address);
__ Ldr(next_address_reg, MemOperand(handle_scope_base, kNextOffset));
__ Ldr(limit_reg, MemOperand(handle_scope_base, kLimitOffset));
__ Ldr(level_reg, MemOperand(handle_scope_base, kLevelOffset));
__ Add(level_reg, level_reg, 1);
__ Str(level_reg, MemOperand(handle_scope_base, kLevelOffset));
__ Mov(x10, x3); // TODO(arm64): Load target into x10 directly.
__ StoreReturnAddressAndCall(x10);
Label promote_scheduled_exception;
Label delete_allocated_handles;
Label leave_exit_frame;
Label return_value_loaded;
// Load value from ReturnValue.
__ Ldr(x0, return_value_operand);
__ Bind(&return_value_loaded);
// No more valid handles (the result handle was the last one). Restore
// previous handle scope.
__ Str(next_address_reg, MemOperand(handle_scope_base, kNextOffset));
if (__ emit_debug_code()) {
__ Ldr(w1, MemOperand(handle_scope_base, kLevelOffset));
__ Cmp(w1, level_reg);
__ Check(eq, AbortReason::kUnexpectedLevelAfterReturnFromApiCall);
}
__ Sub(level_reg, level_reg, 1);
__ Str(level_reg, MemOperand(handle_scope_base, kLevelOffset));
__ Ldr(x1, MemOperand(handle_scope_base, kLimitOffset));
__ Cmp(limit_reg, x1);
__ B(ne, &delete_allocated_handles);
// Leave the API exit frame.
__ Bind(&leave_exit_frame);
// Restore callee-saved registers.
__ Peek(x19, (spill_offset + 0) * kXRegSize);
__ Peek(x20, (spill_offset + 1) * kXRegSize);
__ Peek(x21, (spill_offset + 2) * kXRegSize);
__ Peek(x22, (spill_offset + 3) * kXRegSize);
if (stack_space_operand != nullptr) {
DCHECK_EQ(stack_space, 0);
// Load the number of stack slots to drop before LeaveExitFrame modifies sp.
__ Ldr(x19, *stack_space_operand);
}
__ LeaveExitFrame(false, x1, x5);
// Check if the function scheduled an exception.
__ Mov(x5, ExternalReference::scheduled_exception_address(isolate));
__ Ldr(x5, MemOperand(x5));
__ JumpIfNotRoot(x5, RootIndex::kTheHoleValue, &promote_scheduled_exception);
if (stack_space_operand == nullptr) {
DCHECK_NE(stack_space, 0);
__ DropSlots(stack_space);
} else {
DCHECK_EQ(stack_space, 0);
__ DropArguments(x19);
}
__ Ret();
// Re-throw by promoting a scheduled exception.
__ Bind(&promote_scheduled_exception);
__ TailCallRuntime(Runtime::kPromoteScheduledException);
// HandleScope limit has changed. Delete allocated extensions.
__ Bind(&delete_allocated_handles);
__ Str(limit_reg, MemOperand(handle_scope_base, kLimitOffset));
// Save the return value in a callee-save register.
Register saved_result = x19;
__ Mov(saved_result, x0);
__ Mov(x0, ExternalReference::isolate_address(isolate));
__ CallCFunction(ExternalReference::delete_handle_scope_extensions(), 1);
__ Mov(x0, saved_result);
__ B(&leave_exit_frame);
}
} // namespace
void Builtins::Generate_CallApiCallback(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- cp : context
// -- x1 : api function address
// -- x2 : arguments count (not including the receiver)
// -- x3 : call data
// -- x0 : holder
// -- sp[0] : receiver
// -- sp[8] : first argument
// -- ...
// -- sp[(argc) * 8] : last argument
// -----------------------------------
Register api_function_address = x1;
Register argc = x2;
Register call_data = x3;
Register holder = x0;
Register scratch = x4;
DCHECK(!AreAliased(api_function_address, argc, call_data, holder, scratch));
using FCA = FunctionCallbackArguments;
STATIC_ASSERT(FCA::kArgsLength == 6);
STATIC_ASSERT(FCA::kNewTargetIndex == 5);
STATIC_ASSERT(FCA::kDataIndex == 4);
STATIC_ASSERT(FCA::kReturnValueOffset == 3);
STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
STATIC_ASSERT(FCA::kIsolateIndex == 1);
STATIC_ASSERT(FCA::kHolderIndex == 0);
// Set up FunctionCallbackInfo's implicit_args on the stack as follows:
//
// Target state:
// sp[0 * kSystemPointerSize]: kHolder
// sp[1 * kSystemPointerSize]: kIsolate
// sp[2 * kSystemPointerSize]: undefined (kReturnValueDefaultValue)
// sp[3 * kSystemPointerSize]: undefined (kReturnValue)
// sp[4 * kSystemPointerSize]: kData
// sp[5 * kSystemPointerSize]: undefined (kNewTarget)
// Reserve space on the stack.
__ Claim(FCA::kArgsLength, kSystemPointerSize);
// kHolder.
__ Str(holder, MemOperand(sp, 0 * kSystemPointerSize));
// kIsolate.
__ Mov(scratch, ExternalReference::isolate_address(masm->isolate()));
__ Str(scratch, MemOperand(sp, 1 * kSystemPointerSize));
// kReturnValueDefaultValue and kReturnValue.
__ LoadRoot(scratch, RootIndex::kUndefinedValue);
__ Str(scratch, MemOperand(sp, 2 * kSystemPointerSize));
__ Str(scratch, MemOperand(sp, 3 * kSystemPointerSize));
// kData.
__ Str(call_data, MemOperand(sp, 4 * kSystemPointerSize));
// kNewTarget.
__ Str(scratch, MemOperand(sp, 5 * kSystemPointerSize));
// Keep a pointer to kHolder (= implicit_args) in a scratch register.
// We use it below to set up the FunctionCallbackInfo object.
__ Mov(scratch, sp);
// Allocate the v8::Arguments structure in the arguments' space, since it's
// not controlled by GC.
static constexpr int kApiStackSpace = 4;
static constexpr bool kDontSaveDoubles = false;
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(kDontSaveDoubles, x10,
kApiStackSpace + kCallApiFunctionSpillSpace);
// FunctionCallbackInfo::implicit_args_ (points at kHolder as set up above).
// Arguments are after the return address (pushed by EnterExitFrame()).
__ Str(scratch, MemOperand(sp, 1 * kSystemPointerSize));
// FunctionCallbackInfo::values_ (points at the first varargs argument passed
// on the stack).
__ Add(scratch, scratch,
Operand((FCA::kArgsLength + 1) * kSystemPointerSize));
__ Str(scratch, MemOperand(sp, 2 * kSystemPointerSize));
// FunctionCallbackInfo::length_.
__ Str(argc, MemOperand(sp, 3 * kSystemPointerSize));
// We also store the number of slots to drop from the stack after returning
// from the API function here.
// Note: Unlike on other architectures, this stores the number of slots to
// drop, not the number of bytes. arm64 must always drop a slot count that is
// a multiple of two, and related helper functions (DropArguments) expect a
// register containing the slot count.
__ Add(scratch, argc, Operand(FCA::kArgsLength + 1 /*receiver*/));
__ Str(scratch, MemOperand(sp, 4 * kSystemPointerSize));
// v8::InvocationCallback's argument.
DCHECK(!AreAliased(x0, api_function_address));
__ add(x0, sp, Operand(1 * kSystemPointerSize));
ExternalReference thunk_ref = ExternalReference::invoke_function_callback();
// The current frame needs to be aligned.
DCHECK_EQ(FCA::kArgsLength % 2, 0);
// There are two stack slots above the arguments we constructed on the stack.
// TODO(jgruber): Document what these arguments are.
static constexpr int kStackSlotsAboveFCA = 2;
MemOperand return_value_operand(
fp, (kStackSlotsAboveFCA + FCA::kReturnValueOffset) * kSystemPointerSize);
static constexpr int kSpillOffset = 1 + kApiStackSpace;
static constexpr int kUseStackSpaceOperand = 0;
MemOperand stack_space_operand(sp, 4 * kSystemPointerSize);
AllowExternalCallThatCantCauseGC scope(masm);
CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
kUseStackSpaceOperand, &stack_space_operand,
kSpillOffset, return_value_operand);
}
void Builtins::Generate_CallApiGetter(MacroAssembler* masm) {
STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
Register receiver = ApiGetterDescriptor::ReceiverRegister();
Register holder = ApiGetterDescriptor::HolderRegister();
Register callback = ApiGetterDescriptor::CallbackRegister();
Register data = x4;
Register undef = x5;
Register isolate_address = x6;
Register name = x7;
DCHECK(!AreAliased(receiver, holder, callback, data, undef, isolate_address,
name));
__ LoadAnyTaggedField(data,
FieldMemOperand(callback, AccessorInfo::kDataOffset));
__ LoadRoot(undef, RootIndex::kUndefinedValue);
__ Mov(isolate_address, ExternalReference::isolate_address(masm->isolate()));
__ LoadTaggedPointerField(
name, FieldMemOperand(callback, AccessorInfo::kNameOffset));
// PropertyCallbackArguments:
// receiver, data, return value, return value default, isolate, holder,
// should_throw_on_error
// These are followed by the property name, which is also pushed below the
// exit frame to make the GC aware of it.
__ Push(receiver, data, undef, undef, isolate_address, holder, xzr, name);
// v8::PropertyCallbackInfo::args_ array and name handle.
static const int kStackUnwindSpace =
PropertyCallbackArguments::kArgsLength + 1;
static_assert(kStackUnwindSpace % 2 == 0,
"slots must be a multiple of 2 for stack pointer alignment");
// Load address of v8::PropertyAccessorInfo::args_ array and name handle.
__ Mov(x0, sp); // x0 = Handle<Name>
__ Add(x1, x0, 1 * kSystemPointerSize); // x1 = v8::PCI::args_
const int kApiStackSpace = 1;
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace);
// Create v8::PropertyCallbackInfo object on the stack and initialize
// it's args_ field.
__ Poke(x1, 1 * kSystemPointerSize);
__ SlotAddress(x1, 1);
// x1 = v8::PropertyCallbackInfo&
ExternalReference thunk_ref =
ExternalReference::invoke_accessor_getter_callback();
Register api_function_address = x2;
Register js_getter = x4;
__ LoadTaggedPointerField(
js_getter, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset));
__ Ldr(api_function_address,
FieldMemOperand(js_getter, Foreign::kForeignAddressOffset));
const int spill_offset = 1 + kApiStackSpace;
// +3 is to skip prolog, return address and name handle.
MemOperand return_value_operand(
fp,
(PropertyCallbackArguments::kReturnValueOffset + 3) * kSystemPointerSize);
MemOperand* const kUseStackSpaceConstant = nullptr;
CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
kStackUnwindSpace, kUseStackSpaceConstant,
spill_offset, return_value_operand);
}
void Builtins::Generate_DirectCEntry(MacroAssembler* masm) {
// The sole purpose of DirectCEntry is for movable callers (e.g. any general
// purpose Code object) to be able to call into C functions that may trigger
// GC and thus move the caller.
//
// DirectCEntry places the return address on the stack (updated by the GC),
// making the call GC safe. The irregexp backend relies on this.
__ Poke<TurboAssembler::kSignLR>(lr, 0); // Store the return address.
__ Blr(x10); // Call the C++ function.
__ Peek<TurboAssembler::kAuthLR>(lr, 0); // Return to calling code.
__ AssertFPCRState();
__ Ret();
}
namespace {
void CopyRegListToFrame(MacroAssembler* masm, const Register& dst,
int dst_offset, const CPURegList& reg_list,
const Register& temp0, const Register& temp1,
int src_offset = 0) {
DCHECK_EQ(reg_list.Count() % 2, 0);
UseScratchRegisterScope temps(masm);
CPURegList copy_to_input = reg_list;
int reg_size = reg_list.RegisterSizeInBytes();
DCHECK_EQ(temp0.SizeInBytes(), reg_size);
DCHECK_EQ(temp1.SizeInBytes(), reg_size);
// Compute some temporary addresses to avoid having the macro assembler set
// up a temp with an offset for accesses out of the range of the addressing
// mode.
Register src = temps.AcquireX();
masm->Add(src, sp, src_offset);
masm->Add(dst, dst, dst_offset);
// Write reg_list into the frame pointed to by dst.
for (int i = 0; i < reg_list.Count(); i += 2) {
masm->Ldp(temp0, temp1, MemOperand(src, i * reg_size));
CPURegister reg0 = copy_to_input.PopLowestIndex();
CPURegister reg1 = copy_to_input.PopLowestIndex();
int offset0 = reg0.code() * reg_size;
int offset1 = reg1.code() * reg_size;
// Pair up adjacent stores, otherwise write them separately.
if (offset1 == offset0 + reg_size) {
masm->Stp(temp0, temp1, MemOperand(dst, offset0));
} else {
masm->Str(temp0, MemOperand(dst, offset0));
masm->Str(temp1, MemOperand(dst, offset1));
}
}
masm->Sub(dst, dst, dst_offset);
}
void RestoreRegList(MacroAssembler* masm, const CPURegList& reg_list,
const Register& src_base, int src_offset) {
DCHECK_EQ(reg_list.Count() % 2, 0);
UseScratchRegisterScope temps(masm);
CPURegList restore_list = reg_list;
int reg_size = restore_list.RegisterSizeInBytes();
// Compute a temporary addresses to avoid having the macro assembler set
// up a temp with an offset for accesses out of the range of the addressing
// mode.
Register src = temps.AcquireX();
masm->Add(src, src_base, src_offset);
// No need to restore padreg.
restore_list.Remove(padreg);
// Restore every register in restore_list from src.
while (!restore_list.IsEmpty()) {
CPURegister reg0 = restore_list.PopLowestIndex();
CPURegister reg1 = restore_list.PopLowestIndex();
int offset0 = reg0.code() * reg_size;
if (reg1 == NoCPUReg) {
masm->Ldr(reg0, MemOperand(src, offset0));
break;
}
int offset1 = reg1.code() * reg_size;
// Pair up adjacent loads, otherwise read them separately.
if (offset1 == offset0 + reg_size) {
masm->Ldp(reg0, reg1, MemOperand(src, offset0));
} else {
masm->Ldr(reg0, MemOperand(src, offset0));
masm->Ldr(reg1, MemOperand(src, offset1));
}
}
}
void Generate_DeoptimizationEntry(MacroAssembler* masm,
DeoptimizeKind deopt_kind) {
Isolate* isolate = masm->isolate();
// TODO(all): This code needs to be revisited. We probably only need to save
// caller-saved registers here. Callee-saved registers can be stored directly
// in the input frame.
// Save all allocatable double registers.
CPURegList saved_double_registers(
CPURegister::kVRegister, kDRegSizeInBits,
RegisterConfiguration::Default()->allocatable_double_codes_mask());
DCHECK_EQ(saved_double_registers.Count() % 2, 0);
__ PushCPURegList(saved_double_registers);
// We save all the registers except sp, lr, platform register (x18) and the
// masm scratches.
CPURegList saved_registers(CPURegister::kRegister, kXRegSizeInBits, 0, 28);
saved_registers.Remove(ip0);
saved_registers.Remove(ip1);
saved_registers.Remove(x18);
saved_registers.Combine(fp);
saved_registers.Align();
DCHECK_EQ(saved_registers.Count() % 2, 0);
__ PushCPURegList(saved_registers);
__ Mov(x3, Operand(ExternalReference::Create(
IsolateAddressId::kCEntryFPAddress, isolate)));
__ Str(fp, MemOperand(x3));
const int kSavedRegistersAreaSize =
(saved_registers.Count() * kXRegSize) +
(saved_double_registers.Count() * kDRegSize);
// Floating point registers are saved on the stack above core registers.
const int kDoubleRegistersOffset = saved_registers.Count() * kXRegSize;
Register bailout_id = x2;
Register code_object = x3;
Register fp_to_sp = x4;
__ Mov(bailout_id, Deoptimizer::kFixedExitSizeMarker);
// Get the address of the location in the code object. This is the return
// address for lazy deoptimization.
__ Mov(code_object, lr);
// Compute the fp-to-sp delta.
__ Add(fp_to_sp, sp, kSavedRegistersAreaSize);
__ Sub(fp_to_sp, fp, fp_to_sp);
// Allocate a new deoptimizer object.
__ Ldr(x1, MemOperand(fp, CommonFrameConstants::kContextOrFrameTypeOffset));
// Ensure we can safely load from below fp.
DCHECK_GT(kSavedRegistersAreaSize, -StandardFrameConstants::kFunctionOffset);
__ Ldr(x0, MemOperand(fp, StandardFrameConstants::kFunctionOffset));
// If x1 is a smi, zero x0.
__ Tst(x1, kSmiTagMask);
__ CzeroX(x0, eq);
__ Mov(x1, static_cast<int>(deopt_kind));
// Following arguments are already loaded:
// - x2: bailout id
// - x3: code object address
// - x4: fp-to-sp delta
__ Mov(x5, ExternalReference::isolate_address(isolate));
{
// Call Deoptimizer::New().
AllowExternalCallThatCantCauseGC scope(masm);
__ CallCFunction(ExternalReference::new_deoptimizer_function(), 6);
}
// Preserve "deoptimizer" object in register x0.
Register deoptimizer = x0;
// Get the input frame descriptor pointer.
__ Ldr(x1, MemOperand(deoptimizer, Deoptimizer::input_offset()));
// Copy core registers into the input frame.
CopyRegListToFrame(masm, x1, FrameDescription::registers_offset(),
saved_registers, x2, x3);
// Copy double registers to the input frame.
CopyRegListToFrame(masm, x1, FrameDescription::double_registers_offset(),
saved_double_registers, x2, x3, kDoubleRegistersOffset);
// Mark the stack as not iterable for the CPU profiler which won't be able to
// walk the stack without the return address.
{
UseScratchRegisterScope temps(masm);
Register is_iterable = temps.AcquireX();
__ Mov(is_iterable, ExternalReference::stack_is_iterable_address(isolate));
__ strb(xzr, MemOperand(is_iterable));
}
// Remove the saved registers from the stack.
DCHECK_EQ(kSavedRegistersAreaSize % kXRegSize, 0);
__ Drop(kSavedRegistersAreaSize / kXRegSize);
// Compute a pointer to the unwinding limit in register x2; that is
// the first stack slot not part of the input frame.
Register unwind_limit = x2;
__ Ldr(unwind_limit, MemOperand(x1, FrameDescription::frame_size_offset()));
// Unwind the stack down to - but not including - the unwinding
// limit and copy the contents of the activation frame to the input
// frame description.
__ Add(x3, x1, FrameDescription::frame_content_offset());
__ SlotAddress(x1, 0);
__ Lsr(unwind_limit, unwind_limit, kSystemPointerSizeLog2);
__ Mov(x5, unwind_limit);
__ CopyDoubleWords(x3, x1, x5);
#ifdef V8_NO_ARGUMENTS_ADAPTOR
// Since {unwind_limit} is the frame size up to the parameter count, we might
// end up with a unaligned stack pointer. This is later recovered when
// setting the stack pointer to {caller_frame_top_offset}.
__ Bic(unwind_limit, unwind_limit, 1);
#endif
__ Drop(unwind_limit);
// Compute the output frame in the deoptimizer.
__ Push(padreg, x0); // Preserve deoptimizer object across call.
{
// Call Deoptimizer::ComputeOutputFrames().
AllowExternalCallThatCantCauseGC scope(masm);
__ CallCFunction(ExternalReference::compute_output_frames_function(), 1);
}
__ Pop(x4, padreg); // Restore deoptimizer object (class Deoptimizer).
{
UseScratchRegisterScope temps(masm);
Register scratch = temps.AcquireX();
__ Ldr(scratch, MemOperand(x4, Deoptimizer::caller_frame_top_offset()));
__ Mov(sp, scratch);
}
// Replace the current (input) frame with the output frames.
Label outer_push_loop, outer_loop_header;
__ Ldrsw(x1, MemOperand(x4, Deoptimizer::output_count_offset()));
__ Ldr(x0, MemOperand(x4, Deoptimizer::output_offset()));
__ Add(x1, x0, Operand(x1, LSL, kSystemPointerSizeLog2));
__ B(&outer_loop_header);
__ Bind(&outer_push_loop);
Register current_frame = x2;
Register frame_size = x3;
__ Ldr(current_frame, MemOperand(x0, kSystemPointerSize, PostIndex));
__ Ldr(x3, MemOperand(current_frame, FrameDescription::frame_size_offset()));
__ Lsr(frame_size, x3, kSystemPointerSizeLog2);
__ Claim(frame_size);
__ Add(x7, current_frame, FrameDescription::frame_content_offset());
__ SlotAddress(x6, 0);
__ CopyDoubleWords(x6, x7, frame_size);
__ Bind(&outer_loop_header);
__ Cmp(x0, x1);
__ B(lt, &outer_push_loop);
__ Ldr(x1, MemOperand(x4, Deoptimizer::input_offset()));
RestoreRegList(masm, saved_double_registers, x1,
FrameDescription::double_registers_offset());
{
UseScratchRegisterScope temps(masm);
Register is_iterable = temps.AcquireX();
Register one = x4;
__ Mov(is_iterable, ExternalReference::stack_is_iterable_address(isolate));
__ Mov(one, Operand(1));
__ strb(one, MemOperand(is_iterable));
}
// TODO(all): ARM copies a lot (if not all) of the last output frame onto the
// stack, then pops it all into registers. Here, we try to load it directly
// into the relevant registers. Is this correct? If so, we should improve the
// ARM code.
// Restore registers from the last output frame.
// Note that lr is not in the list of saved_registers and will be restored
// later. We can use it to hold the address of last output frame while
// reloading the other registers.
DCHECK(!saved_registers.IncludesAliasOf(lr));
Register last_output_frame = lr;
__ Mov(last_output_frame, current_frame);
RestoreRegList(masm, saved_registers, last_output_frame,
FrameDescription::registers_offset());
UseScratchRegisterScope temps(masm);
temps.Exclude(x17);
Register continuation = x17;
__ Ldr(continuation, MemOperand(last_output_frame,
FrameDescription::continuation_offset()));
__ Ldr(lr, MemOperand(last_output_frame, FrameDescription::pc_offset()));
#ifdef V8_ENABLE_CONTROL_FLOW_INTEGRITY
__ Autibsp();
#endif
__ Br(continuation);
}
} // namespace
void Builtins::Generate_DeoptimizationEntry_Eager(MacroAssembler* masm) {
Generate_DeoptimizationEntry(masm, DeoptimizeKind::kEager);
}
void Builtins::Generate_DeoptimizationEntry_Soft(MacroAssembler* masm) {
Generate_DeoptimizationEntry(masm, DeoptimizeKind::kSoft);
}
void Builtins::Generate_DeoptimizationEntry_Bailout(MacroAssembler* masm) {
Generate_DeoptimizationEntry(masm, DeoptimizeKind::kBailout);
}
void Builtins::Generate_DeoptimizationEntry_Lazy(MacroAssembler* masm) {
Generate_DeoptimizationEntry(masm, DeoptimizeKind::kLazy);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_ARM