| /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- |
| * vim: set ts=8 sts=4 et sw=4 tw=99: |
| * This Source Code Form is subject to the terms of the Mozilla Public |
| * License, v. 2.0. If a copy of the MPL was not distributed with this |
| * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
| |
| #include "builtin/Module.h" |
| #include "frontend/ParseNode.h" |
| #include "frontend/Parser.h" |
| |
| #include "frontend/Parser-inl.h" |
| |
| using namespace js; |
| using namespace js::frontend; |
| |
| using mozilla::IsFinite; |
| |
| /* |
| * Asserts to verify assumptions behind pn_ macros. |
| */ |
| #define pn_offsetof(m) offsetof(ParseNode, m) |
| |
| JS_STATIC_ASSERT(pn_offsetof(pn_link) == pn_offsetof(dn_uses)); |
| |
| #undef pn_offsetof |
| |
| #ifdef DEBUG |
| void |
| ParseNode::checkListConsistency() |
| { |
| JS_ASSERT(isArity(PN_LIST)); |
| ParseNode **tail; |
| uint32_t count = 0; |
| if (pn_head) { |
| ParseNode *pn, *last; |
| for (pn = last = pn_head; pn; last = pn, pn = pn->pn_next, count++) |
| ; |
| tail = &last->pn_next; |
| } else { |
| tail = &pn_head; |
| } |
| JS_ASSERT(pn_tail == tail); |
| JS_ASSERT(pn_count == count); |
| } |
| #endif |
| |
| /* Add |node| to |parser|'s free node list. */ |
| void |
| ParseNodeAllocator::freeNode(ParseNode *pn) |
| { |
| /* Catch back-to-back dup recycles. */ |
| JS_ASSERT(pn != freelist); |
| |
| /* |
| * It's too hard to clear these nodes from the AtomDefnMaps, etc. that |
| * hold references to them, so we never free them. It's our caller's job to |
| * recognize and process these, since their children do need to be dealt |
| * with. |
| */ |
| JS_ASSERT(!pn->isUsed()); |
| JS_ASSERT(!pn->isDefn()); |
| |
| #ifdef DEBUG |
| /* Poison the node, to catch attempts to use it without initializing it. */ |
| memset(pn, 0xab, sizeof(*pn)); |
| #endif |
| |
| pn->pn_next = freelist; |
| freelist = pn; |
| } |
| |
| /* |
| * A work pool of ParseNodes. The work pool is a stack, chained together |
| * by nodes' pn_next fields. We use this to avoid creating deep C++ stacks |
| * when recycling deep parse trees. |
| * |
| * Since parse nodes are probably allocated in something close to the order |
| * they appear in a depth-first traversal of the tree, making the work pool |
| * a stack should give us pretty good locality. |
| */ |
| class NodeStack { |
| public: |
| NodeStack() : top(NULL) { } |
| bool empty() { return top == NULL; } |
| void push(ParseNode *pn) { |
| pn->pn_next = top; |
| top = pn; |
| } |
| void pushUnlessNull(ParseNode *pn) { if (pn) push(pn); } |
| /* Push the children of the PN_LIST node |pn| on the stack. */ |
| void pushList(ParseNode *pn) { |
| /* This clobbers pn->pn_head if the list is empty; should be okay. */ |
| *pn->pn_tail = top; |
| top = pn->pn_head; |
| } |
| ParseNode *pop() { |
| JS_ASSERT(!empty()); |
| ParseNode *hold = top; /* my kingdom for a prog1 */ |
| top = top->pn_next; |
| return hold; |
| } |
| private: |
| ParseNode *top; |
| }; |
| |
| /* |
| * Push the children of |pn| on |stack|. Return true if |pn| itself could be |
| * safely recycled, or false if it must be cleaned later (pn_used and pn_defn |
| * nodes, and all function nodes; see comments for CleanFunctionList in |
| * SemanticAnalysis.cpp). Some callers want to free |pn|; others |
| * (js::ParseNodeAllocator::prepareNodeForMutation) don't care about |pn|, and |
| * just need to take care of its children. |
| */ |
| static bool |
| PushNodeChildren(ParseNode *pn, NodeStack *stack) |
| { |
| switch (pn->getArity()) { |
| case PN_CODE: |
| /* |
| * Function nodes are linked into the function box tree, and may appear |
| * on method lists. Both of those lists are singly-linked, so trying to |
| * update them now could result in quadratic behavior when recycling |
| * trees containing many functions; and the lists can be very long. So |
| * we put off cleaning the lists up until just before function |
| * analysis, when we call CleanFunctionList. |
| * |
| * In fact, we can't recycle the parse node yet, either: it may appear |
| * on a method list, and reusing the node would corrupt that. Instead, |
| * we clear its pn_funbox pointer to mark it as deleted; |
| * CleanFunctionList recycles it as well. |
| * |
| * We do recycle the nodes around it, though, so we must clear pointers |
| * to them to avoid leaving dangling references where someone can find |
| * them. |
| */ |
| pn->pn_funbox = NULL; |
| stack->pushUnlessNull(pn->pn_body); |
| pn->pn_body = NULL; |
| return false; |
| |
| case PN_NAME: |
| /* |
| * Because used/defn nodes appear in AtomDefnMaps and elsewhere, we |
| * don't recycle them. (We'll recover their storage when we free the |
| * temporary arena.) However, we do recycle the nodes around them, so |
| * clean up the pointers to avoid dangling references. The top-level |
| * decls table carries references to them that later iterations through |
| * the compileScript loop may find, so they need to be neat. |
| * |
| * pn_expr and pn_lexdef share storage; the latter isn't an owning |
| * reference. |
| */ |
| if (!pn->isUsed()) { |
| stack->pushUnlessNull(pn->pn_expr); |
| pn->pn_expr = NULL; |
| } |
| return !pn->isUsed() && !pn->isDefn(); |
| |
| case PN_LIST: |
| pn->checkListConsistency(); |
| stack->pushList(pn); |
| break; |
| case PN_TERNARY: |
| stack->pushUnlessNull(pn->pn_kid1); |
| stack->pushUnlessNull(pn->pn_kid2); |
| stack->pushUnlessNull(pn->pn_kid3); |
| break; |
| case PN_BINARY: |
| if (pn->pn_left != pn->pn_right) |
| stack->pushUnlessNull(pn->pn_left); |
| stack->pushUnlessNull(pn->pn_right); |
| break; |
| case PN_UNARY: |
| stack->pushUnlessNull(pn->pn_kid); |
| break; |
| case PN_NULLARY: |
| return !pn->isUsed() && !pn->isDefn(); |
| default: |
| ; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Prepare |pn| to be mutated in place into a new kind of node. Recycle all |
| * |pn|'s recyclable children (but not |pn| itself!), and disconnect it from |
| * metadata structures (the function box tree). |
| */ |
| void |
| ParseNodeAllocator::prepareNodeForMutation(ParseNode *pn) |
| { |
| if (!pn->isArity(PN_NULLARY)) { |
| /* Put |pn|'s children (but not |pn| itself) on a work stack. */ |
| NodeStack stack; |
| PushNodeChildren(pn, &stack); |
| /* |
| * For each node on the work stack, push its children on the work stack, |
| * and free the node if we can. |
| */ |
| while (!stack.empty()) { |
| pn = stack.pop(); |
| if (PushNodeChildren(pn, &stack)) |
| freeNode(pn); |
| } |
| } |
| } |
| |
| /* |
| * Return the nodes in the subtree |pn| to the parser's free node list, for |
| * reallocation. |
| */ |
| ParseNode * |
| ParseNodeAllocator::freeTree(ParseNode *pn) |
| { |
| if (!pn) |
| return NULL; |
| |
| ParseNode *savedNext = pn->pn_next; |
| |
| NodeStack stack; |
| for (;;) { |
| if (PushNodeChildren(pn, &stack)) |
| freeNode(pn); |
| if (stack.empty()) |
| break; |
| pn = stack.pop(); |
| } |
| |
| return savedNext; |
| } |
| |
| /* |
| * Allocate a ParseNode from parser's node freelist or, failing that, from |
| * cx's temporary arena. |
| */ |
| void * |
| ParseNodeAllocator::allocNode() |
| { |
| if (ParseNode *pn = freelist) { |
| freelist = pn->pn_next; |
| return pn; |
| } |
| |
| void *p = cx->tempLifoAlloc().alloc(sizeof (ParseNode)); |
| if (!p) |
| js_ReportOutOfMemory(cx); |
| return p; |
| } |
| |
| /* used only by static create methods of subclasses */ |
| |
| ParseNode * |
| ParseNode::create(ParseNodeKind kind, ParseNodeArity arity, FullParseHandler *handler) |
| { |
| const Token &tok = handler->currentToken(); |
| return handler->new_<ParseNode>(kind, JSOP_NOP, arity, tok.pos); |
| } |
| |
| ParseNode * |
| ParseNode::append(ParseNodeKind kind, JSOp op, ParseNode *left, ParseNode *right, |
| FullParseHandler *handler) |
| { |
| if (!left || !right) |
| return NULL; |
| |
| JS_ASSERT(left->isKind(kind) && left->isOp(op) && (js_CodeSpec[op].format & JOF_LEFTASSOC)); |
| |
| ListNode *list; |
| if (left->pn_arity == PN_LIST) { |
| list = &left->as<ListNode>(); |
| } else { |
| ParseNode *pn1 = left->pn_left, *pn2 = left->pn_right; |
| list = handler->new_<ListNode>(kind, op, pn1); |
| if (!list) |
| return NULL; |
| list->append(pn2); |
| if (kind == PNK_ADD) { |
| if (pn1->isKind(PNK_STRING)) |
| list->pn_xflags |= PNX_STRCAT; |
| else if (!pn1->isKind(PNK_NUMBER)) |
| list->pn_xflags |= PNX_CANTFOLD; |
| if (pn2->isKind(PNK_STRING)) |
| list->pn_xflags |= PNX_STRCAT; |
| else if (!pn2->isKind(PNK_NUMBER)) |
| list->pn_xflags |= PNX_CANTFOLD; |
| } |
| } |
| |
| list->append(right); |
| list->pn_pos.end = right->pn_pos.end; |
| if (kind == PNK_ADD) { |
| if (right->isKind(PNK_STRING)) |
| list->pn_xflags |= PNX_STRCAT; |
| else if (!right->isKind(PNK_NUMBER)) |
| list->pn_xflags |= PNX_CANTFOLD; |
| } |
| |
| return list; |
| } |
| |
| ParseNode * |
| ParseNode::newBinaryOrAppend(ParseNodeKind kind, JSOp op, ParseNode *left, ParseNode *right, |
| FullParseHandler *handler, ParseContext<FullParseHandler> *pc, |
| bool foldConstants) |
| { |
| if (!left || !right) |
| return NULL; |
| |
| /* |
| * Ensure that the parse tree is faithful to the source when "use asm" (for |
| * the purpose of type checking). |
| */ |
| if (pc->useAsmOrInsideUseAsm()) |
| return handler->new_<BinaryNode>(kind, op, left, right); |
| |
| /* |
| * Flatten a left-associative (left-heavy) tree of a given operator into |
| * a list to reduce js::FoldConstants and js::frontend::EmitTree recursion. |
| */ |
| if (left->isKind(kind) && left->isOp(op) && (js_CodeSpec[op].format & JOF_LEFTASSOC)) |
| return append(kind, op, left, right, handler); |
| |
| /* |
| * Fold constant addition immediately, to conserve node space and, what's |
| * more, so js::FoldConstants never sees mixed addition and concatenation |
| * operations with more than one leading non-string operand in a PN_LIST |
| * generated for expressions such as 1 + 2 + "pt" (which should evaluate |
| * to "3pt", not "12pt"). |
| */ |
| if (kind == PNK_ADD && |
| left->isKind(PNK_NUMBER) && |
| right->isKind(PNK_NUMBER) && |
| foldConstants) |
| { |
| left->pn_dval += right->pn_dval; |
| left->pn_pos.end = right->pn_pos.end; |
| handler->freeTree(right); |
| return left; |
| } |
| |
| return handler->new_<BinaryNode>(kind, op, left, right); |
| } |
| |
| const char * |
| Definition::kindString(Kind kind) |
| { |
| static const char * const table[] = { |
| "", js_var_str, js_const_str, js_let_str, js_function_str, "argument", "unknown" |
| }; |
| |
| JS_ASSERT(unsigned(kind) <= unsigned(ARG)); |
| return table[kind]; |
| } |
| |
| namespace js { |
| namespace frontend { |
| |
| #if JS_HAS_DESTRUCTURING |
| |
| /* |
| * This function assumes the cloned tree is for use in the same statement and |
| * binding context as the original tree. |
| */ |
| template <> |
| ParseNode * |
| Parser<FullParseHandler>::cloneParseTree(ParseNode *opn) |
| { |
| JS_CHECK_RECURSION(context, return NULL); |
| |
| ParseNode *pn = handler.new_<ParseNode>(opn->getKind(), opn->getOp(), opn->getArity(), |
| opn->pn_pos); |
| if (!pn) |
| return NULL; |
| pn->setInParens(opn->isInParens()); |
| pn->setDefn(opn->isDefn()); |
| pn->setUsed(opn->isUsed()); |
| |
| switch (pn->getArity()) { |
| #define NULLCHECK(e) JS_BEGIN_MACRO if (!(e)) return NULL; JS_END_MACRO |
| |
| case PN_CODE: |
| if (pn->getKind() == PNK_MODULE) { |
| JS_NOT_REACHED("module nodes cannot be cloned"); |
| return NULL; |
| } else { |
| NULLCHECK(pn->pn_funbox = |
| newFunctionBox(opn->pn_funbox->function(), pc, opn->pn_funbox->strict)); |
| NULLCHECK(pn->pn_body = cloneParseTree(opn->pn_body)); |
| pn->pn_cookie = opn->pn_cookie; |
| pn->pn_dflags = opn->pn_dflags; |
| pn->pn_blockid = opn->pn_blockid; |
| } |
| break; |
| |
| case PN_LIST: |
| pn->makeEmpty(); |
| for (ParseNode *opn2 = opn->pn_head; opn2; opn2 = opn2->pn_next) { |
| ParseNode *pn2; |
| NULLCHECK(pn2 = cloneParseTree(opn2)); |
| pn->append(pn2); |
| } |
| pn->pn_xflags = opn->pn_xflags; |
| break; |
| |
| case PN_TERNARY: |
| NULLCHECK(pn->pn_kid1 = cloneParseTree(opn->pn_kid1)); |
| NULLCHECK(pn->pn_kid2 = cloneParseTree(opn->pn_kid2)); |
| NULLCHECK(pn->pn_kid3 = cloneParseTree(opn->pn_kid3)); |
| break; |
| |
| case PN_BINARY: |
| NULLCHECK(pn->pn_left = cloneParseTree(opn->pn_left)); |
| if (opn->pn_right != opn->pn_left) |
| NULLCHECK(pn->pn_right = cloneParseTree(opn->pn_right)); |
| else |
| pn->pn_right = pn->pn_left; |
| pn->pn_iflags = opn->pn_iflags; |
| break; |
| |
| case PN_UNARY: |
| NULLCHECK(pn->pn_kid = cloneParseTree(opn->pn_kid)); |
| pn->pn_hidden = opn->pn_hidden; |
| break; |
| |
| case PN_NAME: |
| // PN_NAME could mean several arms in pn_u, so copy the whole thing. |
| pn->pn_u = opn->pn_u; |
| if (opn->isUsed()) { |
| /* |
| * The old name is a use of its pn_lexdef. Make the clone also be a |
| * use of that definition. |
| */ |
| Definition *dn = pn->pn_lexdef; |
| |
| pn->pn_link = dn->dn_uses; |
| dn->dn_uses = pn; |
| } else if (opn->pn_expr) { |
| NULLCHECK(pn->pn_expr = cloneParseTree(opn->pn_expr)); |
| |
| /* |
| * If the old name is a definition, the new one has pn_defn set. |
| * Make the old name a use of the new node. |
| */ |
| if (opn->isDefn()) { |
| opn->setDefn(false); |
| handler.linkUseToDef(opn, (Definition *) pn); |
| } |
| } |
| break; |
| |
| case PN_NULLARY: |
| pn->pn_u = opn->pn_u; |
| break; |
| |
| #undef NULLCHECK |
| } |
| return pn; |
| } |
| |
| #endif /* JS_HAS_DESTRUCTURING */ |
| |
| /* |
| * Used by Parser::forStatement and comprehensionTail to clone the TARGET in |
| * for (var/const/let TARGET in EXPR) |
| * |
| * opn must be the pn_head of a node produced by Parser::variables, so its form |
| * is known to be LHS = NAME | [LHS] | {id:LHS}. |
| * |
| * The cloned tree is for use only in the same statement and binding context as |
| * the original tree. |
| */ |
| template <> |
| ParseNode * |
| Parser<FullParseHandler>::cloneLeftHandSide(ParseNode *opn) |
| { |
| ParseNode *pn = handler.new_<ParseNode>(opn->getKind(), opn->getOp(), opn->getArity(), |
| opn->pn_pos); |
| if (!pn) |
| return NULL; |
| pn->setInParens(opn->isInParens()); |
| pn->setDefn(opn->isDefn()); |
| pn->setUsed(opn->isUsed()); |
| |
| #if JS_HAS_DESTRUCTURING |
| if (opn->isArity(PN_LIST)) { |
| JS_ASSERT(opn->isKind(PNK_ARRAY) || opn->isKind(PNK_OBJECT)); |
| pn->makeEmpty(); |
| for (ParseNode *opn2 = opn->pn_head; opn2; opn2 = opn2->pn_next) { |
| ParseNode *pn2; |
| if (opn->isKind(PNK_OBJECT)) { |
| JS_ASSERT(opn2->isArity(PN_BINARY)); |
| JS_ASSERT(opn2->isKind(PNK_COLON)); |
| |
| ParseNode *tag = cloneParseTree(opn2->pn_left); |
| if (!tag) |
| return NULL; |
| ParseNode *target = cloneLeftHandSide(opn2->pn_right); |
| if (!target) |
| return NULL; |
| |
| pn2 = handler.new_<BinaryNode>(PNK_COLON, JSOP_INITPROP, opn2->pn_pos, tag, target); |
| } else if (opn2->isArity(PN_NULLARY)) { |
| JS_ASSERT(opn2->isKind(PNK_ELISION)); |
| pn2 = cloneParseTree(opn2); |
| } else { |
| pn2 = cloneLeftHandSide(opn2); |
| } |
| |
| if (!pn2) |
| return NULL; |
| pn->append(pn2); |
| } |
| pn->pn_xflags = opn->pn_xflags; |
| return pn; |
| } |
| #endif |
| |
| JS_ASSERT(opn->isArity(PN_NAME)); |
| JS_ASSERT(opn->isKind(PNK_NAME)); |
| |
| /* If opn is a definition or use, make pn a use. */ |
| pn->pn_u.name = opn->pn_u.name; |
| pn->setOp(JSOP_SETNAME); |
| if (opn->isUsed()) { |
| Definition *dn = pn->pn_lexdef; |
| |
| pn->pn_link = dn->dn_uses; |
| dn->dn_uses = pn; |
| } else { |
| pn->pn_expr = NULL; |
| if (opn->isDefn()) { |
| /* We copied some definition-specific state into pn. Clear it out. */ |
| pn->pn_cookie.makeFree(); |
| pn->pn_dflags &= ~PND_BOUND; |
| pn->setDefn(false); |
| |
| handler.linkUseToDef(pn, (Definition *) opn); |
| } |
| } |
| return pn; |
| } |
| |
| } /* namespace frontend */ |
| } /* namespace js */ |
| |
| #ifdef DEBUG |
| |
| static const char * const parseNodeNames[] = { |
| #define STRINGIFY(name) #name, |
| FOR_EACH_PARSE_NODE_KIND(STRINGIFY) |
| #undef STRINGIFY |
| }; |
| |
| void |
| frontend::DumpParseTree(ParseNode *pn, int indent) |
| { |
| if (pn == NULL) |
| fprintf(stderr, "#NULL"); |
| else |
| pn->dump(indent); |
| } |
| |
| static void |
| IndentNewLine(int indent) |
| { |
| fputc('\n', stderr); |
| for (int i = 0; i < indent; ++i) |
| fputc(' ', stderr); |
| } |
| |
| void |
| ParseNode::dump() |
| { |
| dump(0); |
| fputc('\n', stderr); |
| } |
| |
| void |
| ParseNode::dump(int indent) |
| { |
| switch (pn_arity) { |
| case PN_NULLARY: |
| ((NullaryNode *) this)->dump(); |
| break; |
| case PN_UNARY: |
| ((UnaryNode *) this)->dump(indent); |
| break; |
| case PN_BINARY: |
| ((BinaryNode *) this)->dump(indent); |
| break; |
| case PN_TERNARY: |
| ((TernaryNode *) this)->dump(indent); |
| break; |
| case PN_CODE: |
| ((CodeNode *) this)->dump(indent); |
| break; |
| case PN_LIST: |
| ((ListNode *) this)->dump(indent); |
| break; |
| case PN_NAME: |
| ((NameNode *) this)->dump(indent); |
| break; |
| default: |
| fprintf(stderr, "#<BAD NODE %p, kind=%u, arity=%u>", |
| (void *) this, unsigned(getKind()), unsigned(pn_arity)); |
| break; |
| } |
| } |
| |
| void |
| NullaryNode::dump() |
| { |
| switch (getKind()) { |
| case PNK_TRUE: fprintf(stderr, "#true"); break; |
| case PNK_FALSE: fprintf(stderr, "#false"); break; |
| case PNK_NULL: fprintf(stderr, "#null"); break; |
| |
| case PNK_NUMBER: { |
| ToCStringBuf cbuf; |
| const char *cstr = NumberToCString(NULL, &cbuf, pn_dval); |
| if (!IsFinite(pn_dval)) |
| fputc('#', stderr); |
| if (cstr) |
| fprintf(stderr, "%s", cstr); |
| else |
| fprintf(stderr, "%g", pn_dval); |
| break; |
| } |
| |
| case PNK_STRING: |
| JSString::dumpChars(pn_atom->chars(), pn_atom->length()); |
| break; |
| |
| default: |
| fprintf(stderr, "(%s)", parseNodeNames[getKind()]); |
| } |
| } |
| |
| void |
| UnaryNode::dump(int indent) |
| { |
| const char *name = parseNodeNames[getKind()]; |
| fprintf(stderr, "(%s ", name); |
| indent += strlen(name) + 2; |
| DumpParseTree(pn_kid, indent); |
| fprintf(stderr, ")"); |
| } |
| |
| void |
| BinaryNode::dump(int indent) |
| { |
| const char *name = parseNodeNames[getKind()]; |
| fprintf(stderr, "(%s ", name); |
| indent += strlen(name) + 2; |
| DumpParseTree(pn_left, indent); |
| IndentNewLine(indent); |
| DumpParseTree(pn_right, indent); |
| fprintf(stderr, ")"); |
| } |
| |
| void |
| TernaryNode::dump(int indent) |
| { |
| const char *name = parseNodeNames[getKind()]; |
| fprintf(stderr, "(%s ", name); |
| indent += strlen(name) + 2; |
| DumpParseTree(pn_kid1, indent); |
| IndentNewLine(indent); |
| DumpParseTree(pn_kid2, indent); |
| IndentNewLine(indent); |
| DumpParseTree(pn_kid3, indent); |
| fprintf(stderr, ")"); |
| } |
| |
| void |
| CodeNode::dump(int indent) |
| { |
| const char *name = parseNodeNames[getKind()]; |
| fprintf(stderr, "(%s ", name); |
| indent += strlen(name) + 2; |
| DumpParseTree(pn_body, indent); |
| fprintf(stderr, ")"); |
| } |
| |
| void |
| ListNode::dump(int indent) |
| { |
| const char *name = parseNodeNames[getKind()]; |
| fprintf(stderr, "(%s [", name); |
| if (pn_head != NULL) { |
| indent += strlen(name) + 3; |
| DumpParseTree(pn_head, indent); |
| ParseNode *pn = pn_head->pn_next; |
| while (pn != NULL) { |
| IndentNewLine(indent); |
| DumpParseTree(pn, indent); |
| pn = pn->pn_next; |
| } |
| } |
| fprintf(stderr, "])"); |
| } |
| |
| void |
| NameNode::dump(int indent) |
| { |
| if (isKind(PNK_NAME) || isKind(PNK_DOT)) { |
| if (isKind(PNK_DOT)) |
| fprintf(stderr, "(."); |
| |
| if (!pn_atom) { |
| fprintf(stderr, "#<null name>"); |
| } else { |
| const jschar *s = pn_atom->chars(); |
| size_t len = pn_atom->length(); |
| if (len == 0) |
| fprintf(stderr, "#<zero-length name>"); |
| for (size_t i = 0; i < len; i++) { |
| if (s[i] > 32 && s[i] < 127) |
| fputc(s[i], stderr); |
| else if (s[i] <= 255) |
| fprintf(stderr, "\\x%02x", (unsigned int) s[i]); |
| else |
| fprintf(stderr, "\\u%04x", (unsigned int) s[i]); |
| } |
| } |
| |
| if (isKind(PNK_DOT)) { |
| fputc(' ', stderr); |
| DumpParseTree(expr(), indent + 2); |
| fputc(')', stderr); |
| } |
| return; |
| } |
| |
| JS_ASSERT(!isUsed()); |
| const char *name = parseNodeNames[getKind()]; |
| if (isUsed()) |
| fprintf(stderr, "(%s)", name); |
| else { |
| fprintf(stderr, "(%s ", name); |
| indent += strlen(name) + 2; |
| DumpParseTree(expr(), indent); |
| fprintf(stderr, ")"); |
| } |
| } |
| #endif |
| |
| ObjectBox::ObjectBox(JSObject *object, ObjectBox* traceLink) |
| : object(object), |
| traceLink(traceLink), |
| emitLink(NULL) |
| { |
| JS_ASSERT(!object->is<JSFunction>()); |
| } |
| |
| ObjectBox::ObjectBox(JSFunction *function, ObjectBox* traceLink) |
| : object(function), |
| traceLink(traceLink), |
| emitLink(NULL) |
| { |
| JS_ASSERT(object->is<JSFunction>()); |
| JS_ASSERT(asFunctionBox()->function() == function); |
| } |
| |
| ModuleBox * |
| ObjectBox::asModuleBox() |
| { |
| JS_ASSERT(isModuleBox()); |
| return static_cast<ModuleBox *>(this); |
| } |
| |
| FunctionBox * |
| ObjectBox::asFunctionBox() |
| { |
| JS_ASSERT(isFunctionBox()); |
| return static_cast<FunctionBox *>(this); |
| } |
| |
| ObjectBox::ObjectBox(Module *module, ObjectBox* traceLink) |
| : object(module), |
| traceLink(traceLink), |
| emitLink(NULL) |
| { |
| JS_ASSERT(object->is<Module>()); |
| } |
| |
| void |
| ObjectBox::trace(JSTracer *trc) |
| { |
| ObjectBox *box = this; |
| while (box) { |
| MarkObjectRoot(trc, &box->object, "parser.object"); |
| if (box->isModuleBox()) |
| box->asModuleBox()->bindings.trace(trc); |
| if (box->isFunctionBox()) |
| box->asFunctionBox()->bindings.trace(trc); |
| box = box->traceLink; |
| } |
| } |