blob: d17bad002308fba89a5274a21d49a9423035772c [file] [log] [blame]
// Copyright 2008, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: vladl@google.com (Vlad Losev), wan@google.com (Zhanyong Wan)
//
// This file tests the internal cross-platform support utilities.
#include "gtest/internal/gtest-port.h"
#include <stdio.h>
#if GTEST_OS_MAC
# include <time.h>
#endif // GTEST_OS_MAC
#include <list>
#include <utility> // For std::pair and std::make_pair.
#include <vector>
#include "gtest/gtest.h"
#include "gtest/gtest-spi.h"
// Indicates that this translation unit is part of Google Test's
// implementation. It must come before gtest-internal-inl.h is
// included, or there will be a compiler error. This trick is to
// prevent a user from accidentally including gtest-internal-inl.h in
// his code.
#define GTEST_IMPLEMENTATION_ 1
#include "src/gtest-internal-inl.h"
#undef GTEST_IMPLEMENTATION_
using std::make_pair;
using std::pair;
namespace testing {
namespace internal {
TEST(IsXDigitTest, WorksForNarrowAscii) {
EXPECT_TRUE(IsXDigit('0'));
EXPECT_TRUE(IsXDigit('9'));
EXPECT_TRUE(IsXDigit('A'));
EXPECT_TRUE(IsXDigit('F'));
EXPECT_TRUE(IsXDigit('a'));
EXPECT_TRUE(IsXDigit('f'));
EXPECT_FALSE(IsXDigit('-'));
EXPECT_FALSE(IsXDigit('g'));
EXPECT_FALSE(IsXDigit('G'));
}
TEST(IsXDigitTest, ReturnsFalseForNarrowNonAscii) {
EXPECT_FALSE(IsXDigit(static_cast<char>(0x80)));
EXPECT_FALSE(IsXDigit(static_cast<char>('0' | 0x80)));
}
TEST(IsXDigitTest, WorksForWideAscii) {
EXPECT_TRUE(IsXDigit(L'0'));
EXPECT_TRUE(IsXDigit(L'9'));
EXPECT_TRUE(IsXDigit(L'A'));
EXPECT_TRUE(IsXDigit(L'F'));
EXPECT_TRUE(IsXDigit(L'a'));
EXPECT_TRUE(IsXDigit(L'f'));
EXPECT_FALSE(IsXDigit(L'-'));
EXPECT_FALSE(IsXDigit(L'g'));
EXPECT_FALSE(IsXDigit(L'G'));
}
TEST(IsXDigitTest, ReturnsFalseForWideNonAscii) {
EXPECT_FALSE(IsXDigit(static_cast<wchar_t>(0x80)));
EXPECT_FALSE(IsXDigit(static_cast<wchar_t>(L'0' | 0x80)));
EXPECT_FALSE(IsXDigit(static_cast<wchar_t>(L'0' | 0x100)));
}
class Base {
public:
// Copy constructor and assignment operator do exactly what we need, so we
// use them.
Base() : member_(0) {}
explicit Base(int n) : member_(n) {}
virtual ~Base() {}
int member() { return member_; }
private:
int member_;
};
class Derived : public Base {
public:
explicit Derived(int n) : Base(n) {}
};
TEST(ImplicitCastTest, ConvertsPointers) {
Derived derived(0);
EXPECT_TRUE(&derived == ::testing::internal::ImplicitCast_<Base*>(&derived));
}
TEST(ImplicitCastTest, CanUseInheritance) {
Derived derived(1);
Base base = ::testing::internal::ImplicitCast_<Base>(derived);
EXPECT_EQ(derived.member(), base.member());
}
class Castable {
public:
explicit Castable(bool* converted) : converted_(converted) {}
operator Base() {
*converted_ = true;
return Base();
}
private:
bool* converted_;
};
TEST(ImplicitCastTest, CanUseNonConstCastOperator) {
bool converted = false;
Castable castable(&converted);
Base base = ::testing::internal::ImplicitCast_<Base>(castable);
EXPECT_TRUE(converted);
}
class ConstCastable {
public:
explicit ConstCastable(bool* converted) : converted_(converted) {}
operator Base() const {
*converted_ = true;
return Base();
}
private:
bool* converted_;
};
TEST(ImplicitCastTest, CanUseConstCastOperatorOnConstValues) {
bool converted = false;
const ConstCastable const_castable(&converted);
Base base = ::testing::internal::ImplicitCast_<Base>(const_castable);
EXPECT_TRUE(converted);
}
class ConstAndNonConstCastable {
public:
ConstAndNonConstCastable(bool* converted, bool* const_converted)
: converted_(converted), const_converted_(const_converted) {}
operator Base() {
*converted_ = true;
return Base();
}
operator Base() const {
*const_converted_ = true;
return Base();
}
private:
bool* converted_;
bool* const_converted_;
};
TEST(ImplicitCastTest, CanSelectBetweenConstAndNonConstCasrAppropriately) {
bool converted = false;
bool const_converted = false;
ConstAndNonConstCastable castable(&converted, &const_converted);
Base base = ::testing::internal::ImplicitCast_<Base>(castable);
EXPECT_TRUE(converted);
EXPECT_FALSE(const_converted);
converted = false;
const_converted = false;
const ConstAndNonConstCastable const_castable(&converted, &const_converted);
base = ::testing::internal::ImplicitCast_<Base>(const_castable);
EXPECT_FALSE(converted);
EXPECT_TRUE(const_converted);
}
class To {
public:
To(bool* converted) { *converted = true; } // NOLINT
};
TEST(ImplicitCastTest, CanUseImplicitConstructor) {
bool converted = false;
To to = ::testing::internal::ImplicitCast_<To>(&converted);
(void)to;
EXPECT_TRUE(converted);
}
TEST(IteratorTraitsTest, WorksForSTLContainerIterators) {
StaticAssertTypeEq<int,
IteratorTraits< ::std::vector<int>::const_iterator>::value_type>();
StaticAssertTypeEq<bool,
IteratorTraits< ::std::list<bool>::iterator>::value_type>();
}
TEST(IteratorTraitsTest, WorksForPointerToNonConst) {
StaticAssertTypeEq<char, IteratorTraits<char*>::value_type>();
StaticAssertTypeEq<const void*, IteratorTraits<const void**>::value_type>();
}
TEST(IteratorTraitsTest, WorksForPointerToConst) {
StaticAssertTypeEq<char, IteratorTraits<const char*>::value_type>();
StaticAssertTypeEq<const void*,
IteratorTraits<const void* const*>::value_type>();
}
// Tests that the element_type typedef is available in scoped_ptr and refers
// to the parameter type.
TEST(ScopedPtrTest, DefinesElementType) {
StaticAssertTypeEq<int, ::testing::internal::scoped_ptr<int>::element_type>();
}
// TODO(vladl@google.com): Implement THE REST of scoped_ptr tests.
TEST(GtestCheckSyntaxTest, BehavesLikeASingleStatement) {
if (AlwaysFalse())
GTEST_CHECK_(false) << "This should never be executed; "
"It's a compilation test only.";
if (AlwaysTrue())
GTEST_CHECK_(true);
else
; // NOLINT
if (AlwaysFalse())
; // NOLINT
else
GTEST_CHECK_(true) << "";
}
TEST(GtestCheckSyntaxTest, WorksWithSwitch) {
switch (0) {
case 1:
break;
default:
GTEST_CHECK_(true);
}
switch (0)
case 0:
GTEST_CHECK_(true) << "Check failed in switch case";
}
// Verifies behavior of FormatFileLocation.
TEST(FormatFileLocationTest, FormatsFileLocation) {
EXPECT_PRED_FORMAT2(IsSubstring, "foo.cc", FormatFileLocation("foo.cc", 42));
EXPECT_PRED_FORMAT2(IsSubstring, "42", FormatFileLocation("foo.cc", 42));
}
TEST(FormatFileLocationTest, FormatsUnknownFile) {
EXPECT_PRED_FORMAT2(
IsSubstring, "unknown file", FormatFileLocation(NULL, 42));
EXPECT_PRED_FORMAT2(IsSubstring, "42", FormatFileLocation(NULL, 42));
}
TEST(FormatFileLocationTest, FormatsUknownLine) {
EXPECT_EQ("foo.cc:", FormatFileLocation("foo.cc", -1));
}
TEST(FormatFileLocationTest, FormatsUknownFileAndLine) {
EXPECT_EQ("unknown file:", FormatFileLocation(NULL, -1));
}
// Verifies behavior of FormatCompilerIndependentFileLocation.
TEST(FormatCompilerIndependentFileLocationTest, FormatsFileLocation) {
EXPECT_EQ("foo.cc:42", FormatCompilerIndependentFileLocation("foo.cc", 42));
}
TEST(FormatCompilerIndependentFileLocationTest, FormatsUknownFile) {
EXPECT_EQ("unknown file:42",
FormatCompilerIndependentFileLocation(NULL, 42));
}
TEST(FormatCompilerIndependentFileLocationTest, FormatsUknownLine) {
EXPECT_EQ("foo.cc", FormatCompilerIndependentFileLocation("foo.cc", -1));
}
TEST(FormatCompilerIndependentFileLocationTest, FormatsUknownFileAndLine) {
EXPECT_EQ("unknown file", FormatCompilerIndependentFileLocation(NULL, -1));
}
#if GTEST_OS_LINUX || GTEST_OS_MAC || GTEST_OS_QNX
void* ThreadFunc(void* data) {
internal::Mutex* mutex = static_cast<internal::Mutex*>(data);
mutex->Lock();
mutex->Unlock();
return NULL;
}
TEST(GetThreadCountTest, ReturnsCorrectValue) {
const size_t starting_count = GetThreadCount();
pthread_t thread_id;
internal::Mutex mutex;
{
internal::MutexLock lock(&mutex);
pthread_attr_t attr;
ASSERT_EQ(0, pthread_attr_init(&attr));
ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE));
const int status = pthread_create(&thread_id, &attr, &ThreadFunc, &mutex);
ASSERT_EQ(0, pthread_attr_destroy(&attr));
ASSERT_EQ(0, status);
EXPECT_EQ(starting_count + 1, GetThreadCount());
}
void* dummy;
ASSERT_EQ(0, pthread_join(thread_id, &dummy));
// The OS may not immediately report the updated thread count after
// joining a thread, causing flakiness in this test. To counter that, we
// wait for up to .5 seconds for the OS to report the correct value.
for (int i = 0; i < 5; ++i) {
if (GetThreadCount() == starting_count)
break;
SleepMilliseconds(100);
}
EXPECT_EQ(starting_count, GetThreadCount());
}
#else
TEST(GetThreadCountTest, ReturnsZeroWhenUnableToCountThreads) {
EXPECT_EQ(0U, GetThreadCount());
}
#endif // GTEST_OS_LINUX || GTEST_OS_MAC || GTEST_OS_QNX
TEST(GtestCheckDeathTest, DiesWithCorrectOutputOnFailure) {
const bool a_false_condition = false;
const char regex[] =
#ifdef _MSC_VER
"gtest-port_test\\.cc\\(\\d+\\):"
#elif GTEST_USES_POSIX_RE
"gtest-port_test\\.cc:[0-9]+"
#else
"gtest-port_test\\.cc:\\d+"
#endif // _MSC_VER
".*a_false_condition.*Extra info.*";
EXPECT_DEATH_IF_SUPPORTED(GTEST_CHECK_(a_false_condition) << "Extra info",
regex);
}
#if GTEST_HAS_DEATH_TEST
TEST(GtestCheckDeathTest, LivesSilentlyOnSuccess) {
EXPECT_EXIT({
GTEST_CHECK_(true) << "Extra info";
::std::cerr << "Success\n";
exit(0); },
::testing::ExitedWithCode(0), "Success");
}
#endif // GTEST_HAS_DEATH_TEST
// Verifies that Google Test choose regular expression engine appropriate to
// the platform. The test will produce compiler errors in case of failure.
// For simplicity, we only cover the most important platforms here.
TEST(RegexEngineSelectionTest, SelectsCorrectRegexEngine) {
#if !GTEST_USES_PCRE
# if GTEST_HAS_POSIX_RE
EXPECT_TRUE(GTEST_USES_POSIX_RE);
# else
EXPECT_TRUE(GTEST_USES_SIMPLE_RE);
# endif
#endif // !GTEST_USES_PCRE
}
#if GTEST_USES_POSIX_RE
# if GTEST_HAS_TYPED_TEST
template <typename Str>
class RETest : public ::testing::Test {};
// Defines StringTypes as the list of all string types that class RE
// supports.
typedef testing::Types<
::std::string,
# if GTEST_HAS_GLOBAL_STRING
::string,
# endif // GTEST_HAS_GLOBAL_STRING
const char*> StringTypes;
TYPED_TEST_CASE(RETest, StringTypes);
// Tests RE's implicit constructors.
TYPED_TEST(RETest, ImplicitConstructorWorks) {
const RE empty(TypeParam(""));
EXPECT_STREQ("", empty.pattern());
const RE simple(TypeParam("hello"));
EXPECT_STREQ("hello", simple.pattern());
const RE normal(TypeParam(".*(\\w+)"));
EXPECT_STREQ(".*(\\w+)", normal.pattern());
}
// Tests that RE's constructors reject invalid regular expressions.
TYPED_TEST(RETest, RejectsInvalidRegex) {
EXPECT_NONFATAL_FAILURE({
const RE invalid(TypeParam("?"));
}, "\"?\" is not a valid POSIX Extended regular expression.");
}
// Tests RE::FullMatch().
TYPED_TEST(RETest, FullMatchWorks) {
const RE empty(TypeParam(""));
EXPECT_TRUE(RE::FullMatch(TypeParam(""), empty));
EXPECT_FALSE(RE::FullMatch(TypeParam("a"), empty));
const RE re(TypeParam("a.*z"));
EXPECT_TRUE(RE::FullMatch(TypeParam("az"), re));
EXPECT_TRUE(RE::FullMatch(TypeParam("axyz"), re));
EXPECT_FALSE(RE::FullMatch(TypeParam("baz"), re));
EXPECT_FALSE(RE::FullMatch(TypeParam("azy"), re));
}
// Tests RE::PartialMatch().
TYPED_TEST(RETest, PartialMatchWorks) {
const RE empty(TypeParam(""));
EXPECT_TRUE(RE::PartialMatch(TypeParam(""), empty));
EXPECT_TRUE(RE::PartialMatch(TypeParam("a"), empty));
const RE re(TypeParam("a.*z"));
EXPECT_TRUE(RE::PartialMatch(TypeParam("az"), re));
EXPECT_TRUE(RE::PartialMatch(TypeParam("axyz"), re));
EXPECT_TRUE(RE::PartialMatch(TypeParam("baz"), re));
EXPECT_TRUE(RE::PartialMatch(TypeParam("azy"), re));
EXPECT_FALSE(RE::PartialMatch(TypeParam("zza"), re));
}
# endif // GTEST_HAS_TYPED_TEST
#elif GTEST_USES_SIMPLE_RE
TEST(IsInSetTest, NulCharIsNotInAnySet) {
EXPECT_FALSE(IsInSet('\0', ""));
EXPECT_FALSE(IsInSet('\0', "\0"));
EXPECT_FALSE(IsInSet('\0', "a"));
}
TEST(IsInSetTest, WorksForNonNulChars) {
EXPECT_FALSE(IsInSet('a', "Ab"));
EXPECT_FALSE(IsInSet('c', ""));
EXPECT_TRUE(IsInSet('b', "bcd"));
EXPECT_TRUE(IsInSet('b', "ab"));
}
TEST(IsAsciiDigitTest, IsFalseForNonDigit) {
EXPECT_FALSE(IsAsciiDigit('\0'));
EXPECT_FALSE(IsAsciiDigit(' '));
EXPECT_FALSE(IsAsciiDigit('+'));
EXPECT_FALSE(IsAsciiDigit('-'));
EXPECT_FALSE(IsAsciiDigit('.'));
EXPECT_FALSE(IsAsciiDigit('a'));
}
TEST(IsAsciiDigitTest, IsTrueForDigit) {
EXPECT_TRUE(IsAsciiDigit('0'));
EXPECT_TRUE(IsAsciiDigit('1'));
EXPECT_TRUE(IsAsciiDigit('5'));
EXPECT_TRUE(IsAsciiDigit('9'));
}
TEST(IsAsciiPunctTest, IsFalseForNonPunct) {
EXPECT_FALSE(IsAsciiPunct('\0'));
EXPECT_FALSE(IsAsciiPunct(' '));
EXPECT_FALSE(IsAsciiPunct('\n'));
EXPECT_FALSE(IsAsciiPunct('a'));
EXPECT_FALSE(IsAsciiPunct('0'));
}
TEST(IsAsciiPunctTest, IsTrueForPunct) {
for (const char* p = "^-!\"#$%&'()*+,./:;<=>?@[\\]_`{|}~"; *p; p++) {
EXPECT_PRED1(IsAsciiPunct, *p);
}
}
TEST(IsRepeatTest, IsFalseForNonRepeatChar) {
EXPECT_FALSE(IsRepeat('\0'));
EXPECT_FALSE(IsRepeat(' '));
EXPECT_FALSE(IsRepeat('a'));
EXPECT_FALSE(IsRepeat('1'));
EXPECT_FALSE(IsRepeat('-'));
}
TEST(IsRepeatTest, IsTrueForRepeatChar) {
EXPECT_TRUE(IsRepeat('?'));
EXPECT_TRUE(IsRepeat('*'));
EXPECT_TRUE(IsRepeat('+'));
}
TEST(IsAsciiWhiteSpaceTest, IsFalseForNonWhiteSpace) {
EXPECT_FALSE(IsAsciiWhiteSpace('\0'));
EXPECT_FALSE(IsAsciiWhiteSpace('a'));
EXPECT_FALSE(IsAsciiWhiteSpace('1'));
EXPECT_FALSE(IsAsciiWhiteSpace('+'));
EXPECT_FALSE(IsAsciiWhiteSpace('_'));
}
TEST(IsAsciiWhiteSpaceTest, IsTrueForWhiteSpace) {
EXPECT_TRUE(IsAsciiWhiteSpace(' '));
EXPECT_TRUE(IsAsciiWhiteSpace('\n'));
EXPECT_TRUE(IsAsciiWhiteSpace('\r'));
EXPECT_TRUE(IsAsciiWhiteSpace('\t'));
EXPECT_TRUE(IsAsciiWhiteSpace('\v'));
EXPECT_TRUE(IsAsciiWhiteSpace('\f'));
}
TEST(IsAsciiWordCharTest, IsFalseForNonWordChar) {
EXPECT_FALSE(IsAsciiWordChar('\0'));
EXPECT_FALSE(IsAsciiWordChar('+'));
EXPECT_FALSE(IsAsciiWordChar('.'));
EXPECT_FALSE(IsAsciiWordChar(' '));
EXPECT_FALSE(IsAsciiWordChar('\n'));
}
TEST(IsAsciiWordCharTest, IsTrueForLetter) {
EXPECT_TRUE(IsAsciiWordChar('a'));
EXPECT_TRUE(IsAsciiWordChar('b'));
EXPECT_TRUE(IsAsciiWordChar('A'));
EXPECT_TRUE(IsAsciiWordChar('Z'));
}
TEST(IsAsciiWordCharTest, IsTrueForDigit) {
EXPECT_TRUE(IsAsciiWordChar('0'));
EXPECT_TRUE(IsAsciiWordChar('1'));
EXPECT_TRUE(IsAsciiWordChar('7'));
EXPECT_TRUE(IsAsciiWordChar('9'));
}
TEST(IsAsciiWordCharTest, IsTrueForUnderscore) {
EXPECT_TRUE(IsAsciiWordChar('_'));
}
TEST(IsValidEscapeTest, IsFalseForNonPrintable) {
EXPECT_FALSE(IsValidEscape('\0'));
EXPECT_FALSE(IsValidEscape('\007'));
}
TEST(IsValidEscapeTest, IsFalseForDigit) {
EXPECT_FALSE(IsValidEscape('0'));
EXPECT_FALSE(IsValidEscape('9'));
}
TEST(IsValidEscapeTest, IsFalseForWhiteSpace) {
EXPECT_FALSE(IsValidEscape(' '));
EXPECT_FALSE(IsValidEscape('\n'));
}
TEST(IsValidEscapeTest, IsFalseForSomeLetter) {
EXPECT_FALSE(IsValidEscape('a'));
EXPECT_FALSE(IsValidEscape('Z'));
}
TEST(IsValidEscapeTest, IsTrueForPunct) {
EXPECT_TRUE(IsValidEscape('.'));
EXPECT_TRUE(IsValidEscape('-'));
EXPECT_TRUE(IsValidEscape('^'));
EXPECT_TRUE(IsValidEscape('$'));
EXPECT_TRUE(IsValidEscape('('));
EXPECT_TRUE(IsValidEscape(']'));
EXPECT_TRUE(IsValidEscape('{'));
EXPECT_TRUE(IsValidEscape('|'));
}
TEST(IsValidEscapeTest, IsTrueForSomeLetter) {
EXPECT_TRUE(IsValidEscape('d'));
EXPECT_TRUE(IsValidEscape('D'));
EXPECT_TRUE(IsValidEscape('s'));
EXPECT_TRUE(IsValidEscape('S'));
EXPECT_TRUE(IsValidEscape('w'));
EXPECT_TRUE(IsValidEscape('W'));
}
TEST(AtomMatchesCharTest, EscapedPunct) {
EXPECT_FALSE(AtomMatchesChar(true, '\\', '\0'));
EXPECT_FALSE(AtomMatchesChar(true, '\\', ' '));
EXPECT_FALSE(AtomMatchesChar(true, '_', '.'));
EXPECT_FALSE(AtomMatchesChar(true, '.', 'a'));
EXPECT_TRUE(AtomMatchesChar(true, '\\', '\\'));
EXPECT_TRUE(AtomMatchesChar(true, '_', '_'));
EXPECT_TRUE(AtomMatchesChar(true, '+', '+'));
EXPECT_TRUE(AtomMatchesChar(true, '.', '.'));
}
TEST(AtomMatchesCharTest, Escaped_d) {
EXPECT_FALSE(AtomMatchesChar(true, 'd', '\0'));
EXPECT_FALSE(AtomMatchesChar(true, 'd', 'a'));
EXPECT_FALSE(AtomMatchesChar(true, 'd', '.'));
EXPECT_TRUE(AtomMatchesChar(true, 'd', '0'));
EXPECT_TRUE(AtomMatchesChar(true, 'd', '9'));
}
TEST(AtomMatchesCharTest, Escaped_D) {
EXPECT_FALSE(AtomMatchesChar(true, 'D', '0'));
EXPECT_FALSE(AtomMatchesChar(true, 'D', '9'));
EXPECT_TRUE(AtomMatchesChar(true, 'D', '\0'));
EXPECT_TRUE(AtomMatchesChar(true, 'D', 'a'));
EXPECT_TRUE(AtomMatchesChar(true, 'D', '-'));
}
TEST(AtomMatchesCharTest, Escaped_s) {
EXPECT_FALSE(AtomMatchesChar(true, 's', '\0'));
EXPECT_FALSE(AtomMatchesChar(true, 's', 'a'));
EXPECT_FALSE(AtomMatchesChar(true, 's', '.'));
EXPECT_FALSE(AtomMatchesChar(true, 's', '9'));
EXPECT_TRUE(AtomMatchesChar(true, 's', ' '));
EXPECT_TRUE(AtomMatchesChar(true, 's', '\n'));
EXPECT_TRUE(AtomMatchesChar(true, 's', '\t'));
}
TEST(AtomMatchesCharTest, Escaped_S) {
EXPECT_FALSE(AtomMatchesChar(true, 'S', ' '));
EXPECT_FALSE(AtomMatchesChar(true, 'S', '\r'));
EXPECT_TRUE(AtomMatchesChar(true, 'S', '\0'));
EXPECT_TRUE(AtomMatchesChar(true, 'S', 'a'));
EXPECT_TRUE(AtomMatchesChar(true, 'S', '9'));
}
TEST(AtomMatchesCharTest, Escaped_w) {
EXPECT_FALSE(AtomMatchesChar(true, 'w', '\0'));
EXPECT_FALSE(AtomMatchesChar(true, 'w', '+'));
EXPECT_FALSE(AtomMatchesChar(true, 'w', ' '));
EXPECT_FALSE(AtomMatchesChar(true, 'w', '\n'));
EXPECT_TRUE(AtomMatchesChar(true, 'w', '0'));
EXPECT_TRUE(AtomMatchesChar(true, 'w', 'b'));
EXPECT_TRUE(AtomMatchesChar(true, 'w', 'C'));
EXPECT_TRUE(AtomMatchesChar(true, 'w', '_'));
}
TEST(AtomMatchesCharTest, Escaped_W) {
EXPECT_FALSE(AtomMatchesChar(true, 'W', 'A'));
EXPECT_FALSE(AtomMatchesChar(true, 'W', 'b'));
EXPECT_FALSE(AtomMatchesChar(true, 'W', '9'));
EXPECT_FALSE(AtomMatchesChar(true, 'W', '_'));
EXPECT_TRUE(AtomMatchesChar(true, 'W', '\0'));
EXPECT_TRUE(AtomMatchesChar(true, 'W', '*'));
EXPECT_TRUE(AtomMatchesChar(true, 'W', '\n'));
}
TEST(AtomMatchesCharTest, EscapedWhiteSpace) {
EXPECT_FALSE(AtomMatchesChar(true, 'f', '\0'));
EXPECT_FALSE(AtomMatchesChar(true, 'f', '\n'));
EXPECT_FALSE(AtomMatchesChar(true, 'n', '\0'));
EXPECT_FALSE(AtomMatchesChar(true, 'n', '\r'));
EXPECT_FALSE(AtomMatchesChar(true, 'r', '\0'));
EXPECT_FALSE(AtomMatchesChar(true, 'r', 'a'));
EXPECT_FALSE(AtomMatchesChar(true, 't', '\0'));
EXPECT_FALSE(AtomMatchesChar(true, 't', 't'));
EXPECT_FALSE(AtomMatchesChar(true, 'v', '\0'));
EXPECT_FALSE(AtomMatchesChar(true, 'v', '\f'));
EXPECT_TRUE(AtomMatchesChar(true, 'f', '\f'));
EXPECT_TRUE(AtomMatchesChar(true, 'n', '\n'));
EXPECT_TRUE(AtomMatchesChar(true, 'r', '\r'));
EXPECT_TRUE(AtomMatchesChar(true, 't', '\t'));
EXPECT_TRUE(AtomMatchesChar(true, 'v', '\v'));
}
TEST(AtomMatchesCharTest, UnescapedDot) {
EXPECT_FALSE(AtomMatchesChar(false, '.', '\n'));
EXPECT_TRUE(AtomMatchesChar(false, '.', '\0'));
EXPECT_TRUE(AtomMatchesChar(false, '.', '.'));
EXPECT_TRUE(AtomMatchesChar(false, '.', 'a'));
EXPECT_TRUE(AtomMatchesChar(false, '.', ' '));
}
TEST(AtomMatchesCharTest, UnescapedChar) {
EXPECT_FALSE(AtomMatchesChar(false, 'a', '\0'));
EXPECT_FALSE(AtomMatchesChar(false, 'a', 'b'));
EXPECT_FALSE(AtomMatchesChar(false, '$', 'a'));
EXPECT_TRUE(AtomMatchesChar(false, '$', '$'));
EXPECT_TRUE(AtomMatchesChar(false, '5', '5'));
EXPECT_TRUE(AtomMatchesChar(false, 'Z', 'Z'));
}
TEST(ValidateRegexTest, GeneratesFailureAndReturnsFalseForInvalid) {
EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex(NULL)),
"NULL is not a valid simple regular expression");
EXPECT_NONFATAL_FAILURE(
ASSERT_FALSE(ValidateRegex("a\\")),
"Syntax error at index 1 in simple regular expression \"a\\\": ");
EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("a\\")),
"'\\' cannot appear at the end");
EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("\\n\\")),
"'\\' cannot appear at the end");
EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("\\s\\hb")),
"invalid escape sequence \"\\h\"");
EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("^^")),
"'^' can only appear at the beginning");
EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex(".*^b")),
"'^' can only appear at the beginning");
EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("$$")),
"'$' can only appear at the end");
EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("^$a")),
"'$' can only appear at the end");
EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("a(b")),
"'(' is unsupported");
EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("ab)")),
"')' is unsupported");
EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("[ab")),
"'[' is unsupported");
EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("a{2")),
"'{' is unsupported");
EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("?")),
"'?' can only follow a repeatable token");
EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("^*")),
"'*' can only follow a repeatable token");
EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("5*+")),
"'+' can only follow a repeatable token");
}
TEST(ValidateRegexTest, ReturnsTrueForValid) {
EXPECT_TRUE(ValidateRegex(""));
EXPECT_TRUE(ValidateRegex("a"));
EXPECT_TRUE(ValidateRegex(".*"));
EXPECT_TRUE(ValidateRegex("^a_+"));
EXPECT_TRUE(ValidateRegex("^a\\t\\&?"));
EXPECT_TRUE(ValidateRegex("09*$"));
EXPECT_TRUE(ValidateRegex("^Z$"));
EXPECT_TRUE(ValidateRegex("a\\^Z\\$\\(\\)\\|\\[\\]\\{\\}"));
}
TEST(MatchRepetitionAndRegexAtHeadTest, WorksForZeroOrOne) {
EXPECT_FALSE(MatchRepetitionAndRegexAtHead(false, 'a', '?', "a", "ba"));
// Repeating more than once.
EXPECT_FALSE(MatchRepetitionAndRegexAtHead(false, 'a', '?', "b", "aab"));
// Repeating zero times.
EXPECT_TRUE(MatchRepetitionAndRegexAtHead(false, 'a', '?', "b", "ba"));
// Repeating once.
EXPECT_TRUE(MatchRepetitionAndRegexAtHead(false, 'a', '?', "b", "ab"));
EXPECT_TRUE(MatchRepetitionAndRegexAtHead(false, '#', '?', ".", "##"));
}
TEST(MatchRepetitionAndRegexAtHeadTest, WorksForZeroOrMany) {
EXPECT_FALSE(MatchRepetitionAndRegexAtHead(false, '.', '*', "a$", "baab"));
// Repeating zero times.
EXPECT_TRUE(MatchRepetitionAndRegexAtHead(false, '.', '*', "b", "bc"));
// Repeating once.
EXPECT_TRUE(MatchRepetitionAndRegexAtHead(false, '.', '*', "b", "abc"));
// Repeating more than once.
EXPECT_TRUE(MatchRepetitionAndRegexAtHead(true, 'w', '*', "-", "ab_1-g"));
}
TEST(MatchRepetitionAndRegexAtHeadTest, WorksForOneOrMany) {
EXPECT_FALSE(MatchRepetitionAndRegexAtHead(false, '.', '+', "a$", "baab"));
// Repeating zero times.
EXPECT_FALSE(MatchRepetitionAndRegexAtHead(false, '.', '+', "b", "bc"));
// Repeating once.
EXPECT_TRUE(MatchRepetitionAndRegexAtHead(false, '.', '+', "b", "abc"));
// Repeating more than once.
EXPECT_TRUE(MatchRepetitionAndRegexAtHead(true, 'w', '+', "-", "ab_1-g"));
}
TEST(MatchRegexAtHeadTest, ReturnsTrueForEmptyRegex) {
EXPECT_TRUE(MatchRegexAtHead("", ""));
EXPECT_TRUE(MatchRegexAtHead("", "ab"));
}
TEST(MatchRegexAtHeadTest, WorksWhenDollarIsInRegex) {
EXPECT_FALSE(MatchRegexAtHead("$", "a"));
EXPECT_TRUE(MatchRegexAtHead("$", ""));
EXPECT_TRUE(MatchRegexAtHead("a$", "a"));
}
TEST(MatchRegexAtHeadTest, WorksWhenRegexStartsWithEscapeSequence) {
EXPECT_FALSE(MatchRegexAtHead("\\w", "+"));
EXPECT_FALSE(MatchRegexAtHead("\\W", "ab"));
EXPECT_TRUE(MatchRegexAtHead("\\sa", "\nab"));
EXPECT_TRUE(MatchRegexAtHead("\\d", "1a"));
}
TEST(MatchRegexAtHeadTest, WorksWhenRegexStartsWithRepetition) {
EXPECT_FALSE(MatchRegexAtHead(".+a", "abc"));
EXPECT_FALSE(MatchRegexAtHead("a?b", "aab"));
EXPECT_TRUE(MatchRegexAtHead(".*a", "bc12-ab"));
EXPECT_TRUE(MatchRegexAtHead("a?b", "b"));
EXPECT_TRUE(MatchRegexAtHead("a?b", "ab"));
}
TEST(MatchRegexAtHeadTest,
WorksWhenRegexStartsWithRepetionOfEscapeSequence) {
EXPECT_FALSE(MatchRegexAtHead("\\.+a", "abc"));
EXPECT_FALSE(MatchRegexAtHead("\\s?b", " b"));
EXPECT_TRUE(MatchRegexAtHead("\\(*a", "((((ab"));
EXPECT_TRUE(MatchRegexAtHead("\\^?b", "^b"));
EXPECT_TRUE(MatchRegexAtHead("\\\\?b", "b"));
EXPECT_TRUE(MatchRegexAtHead("\\\\?b", "\\b"));
}
TEST(MatchRegexAtHeadTest, MatchesSequentially) {
EXPECT_FALSE(MatchRegexAtHead("ab.*c", "acabc"));
EXPECT_TRUE(MatchRegexAtHead("ab.*c", "ab-fsc"));
}
TEST(MatchRegexAnywhereTest, ReturnsFalseWhenStringIsNull) {
EXPECT_FALSE(MatchRegexAnywhere("", NULL));
}
TEST(MatchRegexAnywhereTest, WorksWhenRegexStartsWithCaret) {
EXPECT_FALSE(MatchRegexAnywhere("^a", "ba"));
EXPECT_FALSE(MatchRegexAnywhere("^$", "a"));
EXPECT_TRUE(MatchRegexAnywhere("^a", "ab"));
EXPECT_TRUE(MatchRegexAnywhere("^", "ab"));
EXPECT_TRUE(MatchRegexAnywhere("^$", ""));
}
TEST(MatchRegexAnywhereTest, ReturnsFalseWhenNoMatch) {
EXPECT_FALSE(MatchRegexAnywhere("a", "bcde123"));
EXPECT_FALSE(MatchRegexAnywhere("a.+a", "--aa88888888"));
}
TEST(MatchRegexAnywhereTest, ReturnsTrueWhenMatchingPrefix) {
EXPECT_TRUE(MatchRegexAnywhere("\\w+", "ab1_ - 5"));
EXPECT_TRUE(MatchRegexAnywhere(".*=", "="));
EXPECT_TRUE(MatchRegexAnywhere("x.*ab?.*bc", "xaaabc"));
}
TEST(MatchRegexAnywhereTest, ReturnsTrueWhenMatchingNonPrefix) {
EXPECT_TRUE(MatchRegexAnywhere("\\w+", "$$$ ab1_ - 5"));
EXPECT_TRUE(MatchRegexAnywhere("\\.+=", "= ...="));
}
// Tests RE's implicit constructors.
TEST(RETest, ImplicitConstructorWorks) {
const RE empty("");
EXPECT_STREQ("", empty.pattern());
const RE simple("hello");
EXPECT_STREQ("hello", simple.pattern());
}
// Tests that RE's constructors reject invalid regular expressions.
TEST(RETest, RejectsInvalidRegex) {
EXPECT_NONFATAL_FAILURE({
const RE normal(NULL);
}, "NULL is not a valid simple regular expression");
EXPECT_NONFATAL_FAILURE({
const RE normal(".*(\\w+");
}, "'(' is unsupported");
EXPECT_NONFATAL_FAILURE({
const RE invalid("^?");
}, "'?' can only follow a repeatable token");
}
// Tests RE::FullMatch().
TEST(RETest, FullMatchWorks) {
const RE empty("");
EXPECT_TRUE(RE::FullMatch("", empty));
EXPECT_FALSE(RE::FullMatch("a", empty));
const RE re1("a");
EXPECT_TRUE(RE::FullMatch("a", re1));
const RE re("a.*z");
EXPECT_TRUE(RE::FullMatch("az", re));
EXPECT_TRUE(RE::FullMatch("axyz", re));
EXPECT_FALSE(RE::FullMatch("baz", re));
EXPECT_FALSE(RE::FullMatch("azy", re));
}
// Tests RE::PartialMatch().
TEST(RETest, PartialMatchWorks) {
const RE empty("");
EXPECT_TRUE(RE::PartialMatch("", empty));
EXPECT_TRUE(RE::PartialMatch("a", empty));
const RE re("a.*z");
EXPECT_TRUE(RE::PartialMatch("az", re));
EXPECT_TRUE(RE::PartialMatch("axyz", re));
EXPECT_TRUE(RE::PartialMatch("baz", re));
EXPECT_TRUE(RE::PartialMatch("azy", re));
EXPECT_FALSE(RE::PartialMatch("zza", re));
}
#endif // GTEST_USES_POSIX_RE
#if !GTEST_OS_WINDOWS_MOBILE
TEST(CaptureTest, CapturesStdout) {
CaptureStdout();
fprintf(stdout, "abc");
EXPECT_STREQ("abc", GetCapturedStdout().c_str());
CaptureStdout();
fprintf(stdout, "def%cghi", '\0');
EXPECT_EQ(::std::string("def\0ghi", 7), ::std::string(GetCapturedStdout()));
}
TEST(CaptureTest, CapturesStderr) {
CaptureStderr();
fprintf(stderr, "jkl");
EXPECT_STREQ("jkl", GetCapturedStderr().c_str());
CaptureStderr();
fprintf(stderr, "jkl%cmno", '\0');
EXPECT_EQ(::std::string("jkl\0mno", 7), ::std::string(GetCapturedStderr()));
}
// Tests that stdout and stderr capture don't interfere with each other.
TEST(CaptureTest, CapturesStdoutAndStderr) {
CaptureStdout();
CaptureStderr();
fprintf(stdout, "pqr");
fprintf(stderr, "stu");
EXPECT_STREQ("pqr", GetCapturedStdout().c_str());
EXPECT_STREQ("stu", GetCapturedStderr().c_str());
}
TEST(CaptureDeathTest, CannotReenterStdoutCapture) {
CaptureStdout();
EXPECT_DEATH_IF_SUPPORTED(CaptureStdout(),
"Only one stdout capturer can exist at a time");
GetCapturedStdout();
// We cannot test stderr capturing using death tests as they use it
// themselves.
}
#endif // !GTEST_OS_WINDOWS_MOBILE
TEST(ThreadLocalTest, DefaultConstructorInitializesToDefaultValues) {
ThreadLocal<int> t1;
EXPECT_EQ(0, t1.get());
ThreadLocal<void*> t2;
EXPECT_TRUE(t2.get() == NULL);
}
TEST(ThreadLocalTest, SingleParamConstructorInitializesToParam) {
ThreadLocal<int> t1(123);
EXPECT_EQ(123, t1.get());
int i = 0;
ThreadLocal<int*> t2(&i);
EXPECT_EQ(&i, t2.get());
}
class NoDefaultContructor {
public:
explicit NoDefaultContructor(const char*) {}
NoDefaultContructor(const NoDefaultContructor&) {}
};
TEST(ThreadLocalTest, ValueDefaultContructorIsNotRequiredForParamVersion) {
ThreadLocal<NoDefaultContructor> bar(NoDefaultContructor("foo"));
bar.pointer();
}
TEST(ThreadLocalTest, GetAndPointerReturnSameValue) {
ThreadLocal<std::string> thread_local_string;
EXPECT_EQ(thread_local_string.pointer(), &(thread_local_string.get()));
// Verifies the condition still holds after calling set.
thread_local_string.set("foo");
EXPECT_EQ(thread_local_string.pointer(), &(thread_local_string.get()));
}
TEST(ThreadLocalTest, PointerAndConstPointerReturnSameValue) {
ThreadLocal<std::string> thread_local_string;
const ThreadLocal<std::string>& const_thread_local_string =
thread_local_string;
EXPECT_EQ(thread_local_string.pointer(), const_thread_local_string.pointer());
thread_local_string.set("foo");
EXPECT_EQ(thread_local_string.pointer(), const_thread_local_string.pointer());
}
#if GTEST_IS_THREADSAFE
void AddTwo(int* param) { *param += 2; }
TEST(ThreadWithParamTest, ConstructorExecutesThreadFunc) {
int i = 40;
ThreadWithParam<int*> thread(&AddTwo, &i, NULL);
thread.Join();
EXPECT_EQ(42, i);
}
TEST(MutexDeathTest, AssertHeldShouldAssertWhenNotLocked) {
// AssertHeld() is flaky only in the presence of multiple threads accessing
// the lock. In this case, the test is robust.
EXPECT_DEATH_IF_SUPPORTED({
Mutex m;
{ MutexLock lock(&m); }
m.AssertHeld();
},
"thread .*hold");
}
TEST(MutexTest, AssertHeldShouldNotAssertWhenLocked) {
Mutex m;
MutexLock lock(&m);
m.AssertHeld();
}
class AtomicCounterWithMutex {
public:
explicit AtomicCounterWithMutex(Mutex* mutex) :
value_(0), mutex_(mutex), random_(42) {}
void Increment() {
MutexLock lock(mutex_);
int temp = value_;
{
// We need to put up a memory barrier to prevent reads and writes to
// value_ rearranged with the call to SleepMilliseconds when observed
// from other threads.
#if GTEST_HAS_PTHREAD
// On POSIX, locking a mutex puts up a memory barrier. We cannot use
// Mutex and MutexLock here or rely on their memory barrier
// functionality as we are testing them here.
pthread_mutex_t memory_barrier_mutex;
GTEST_CHECK_POSIX_SUCCESS_(
pthread_mutex_init(&memory_barrier_mutex, NULL));
GTEST_CHECK_POSIX_SUCCESS_(pthread_mutex_lock(&memory_barrier_mutex));
SleepMilliseconds(random_.Generate(30));
GTEST_CHECK_POSIX_SUCCESS_(pthread_mutex_unlock(&memory_barrier_mutex));
GTEST_CHECK_POSIX_SUCCESS_(pthread_mutex_destroy(&memory_barrier_mutex));
#elif GTEST_OS_WINDOWS
// On Windows, performing an interlocked access puts up a memory barrier.
volatile LONG dummy = 0;
::InterlockedIncrement(&dummy);
SleepMilliseconds(random_.Generate(30));
::InterlockedIncrement(&dummy);
#else
# error "Memory barrier not implemented on this platform."
#endif // GTEST_HAS_PTHREAD
}
value_ = temp + 1;
}
int value() const { return value_; }
private:
volatile int value_;
Mutex* const mutex_; // Protects value_.
Random random_;
};
void CountingThreadFunc(pair<AtomicCounterWithMutex*, int> param) {
for (int i = 0; i < param.second; ++i)
param.first->Increment();
}
// Tests that the mutex only lets one thread at a time to lock it.
TEST(MutexTest, OnlyOneThreadCanLockAtATime) {
Mutex mutex;
AtomicCounterWithMutex locked_counter(&mutex);
typedef ThreadWithParam<pair<AtomicCounterWithMutex*, int> > ThreadType;
const int kCycleCount = 20;
const int kThreadCount = 7;
scoped_ptr<ThreadType> counting_threads[kThreadCount];
Notification threads_can_start;
// Creates and runs kThreadCount threads that increment locked_counter
// kCycleCount times each.
for (int i = 0; i < kThreadCount; ++i) {
counting_threads[i].reset(new ThreadType(&CountingThreadFunc,
make_pair(&locked_counter,
kCycleCount),
&threads_can_start));
}
threads_can_start.Notify();
for (int i = 0; i < kThreadCount; ++i)
counting_threads[i]->Join();
// If the mutex lets more than one thread to increment the counter at a
// time, they are likely to encounter a race condition and have some
// increments overwritten, resulting in the lower then expected counter
// value.
EXPECT_EQ(kCycleCount * kThreadCount, locked_counter.value());
}
template <typename T>
void RunFromThread(void (func)(T), T param) {
ThreadWithParam<T> thread(func, param, NULL);
thread.Join();
}
void RetrieveThreadLocalValue(
pair<ThreadLocal<std::string>*, std::string*> param) {
*param.second = param.first->get();
}
TEST(ThreadLocalTest, ParameterizedConstructorSetsDefault) {
ThreadLocal<std::string> thread_local_string("foo");
EXPECT_STREQ("foo", thread_local_string.get().c_str());
thread_local_string.set("bar");
EXPECT_STREQ("bar", thread_local_string.get().c_str());
std::string result;
RunFromThread(&RetrieveThreadLocalValue,
make_pair(&thread_local_string, &result));
EXPECT_STREQ("foo", result.c_str());
}
// Keeps track of whether of destructors being called on instances of
// DestructorTracker. On Windows, waits for the destructor call reports.
class DestructorCall {
public:
DestructorCall() {
invoked_ = false;
#if GTEST_OS_WINDOWS
wait_event_.Reset(::CreateEvent(NULL, TRUE, FALSE, NULL));
GTEST_CHECK_(wait_event_.Get() != NULL);
#endif
}
bool CheckDestroyed() const {
#if GTEST_OS_WINDOWS
if (::WaitForSingleObject(wait_event_.Get(), 1000) != WAIT_OBJECT_0)
return false;
#endif
return invoked_;
}
void ReportDestroyed() {
invoked_ = true;
#if GTEST_OS_WINDOWS
::SetEvent(wait_event_.Get());
#endif
}
static std::vector<DestructorCall*>& List() { return *list_; }
static void ResetList() {
for (size_t i = 0; i < list_->size(); ++i) {
delete list_->at(i);
}
list_->clear();
}
private:
bool invoked_;
#if GTEST_OS_WINDOWS
AutoHandle wait_event_;
#endif
static std::vector<DestructorCall*>* const list_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(DestructorCall);
};
std::vector<DestructorCall*>* const DestructorCall::list_ =
new std::vector<DestructorCall*>;
// DestructorTracker keeps track of whether its instances have been
// destroyed.
class DestructorTracker {
public:
DestructorTracker() : index_(GetNewIndex()) {}
DestructorTracker(const DestructorTracker& /* rhs */)
: index_(GetNewIndex()) {}
~DestructorTracker() {
// We never access DestructorCall::List() concurrently, so we don't need
// to protect this acccess with a mutex.
DestructorCall::List()[index_]->ReportDestroyed();
}
private:
static size_t GetNewIndex() {
DestructorCall::List().push_back(new DestructorCall);
return DestructorCall::List().size() - 1;
}
const size_t index_;
GTEST_DISALLOW_ASSIGN_(DestructorTracker);
};
typedef ThreadLocal<DestructorTracker>* ThreadParam;
void CallThreadLocalGet(ThreadParam thread_local_param) {
thread_local_param->get();
}
// Tests that when a ThreadLocal object dies in a thread, it destroys
// the managed object for that thread.
TEST(ThreadLocalTest, DestroysManagedObjectForOwnThreadWhenDying) {
DestructorCall::ResetList();
{
ThreadLocal<DestructorTracker> thread_local_tracker;
ASSERT_EQ(0U, DestructorCall::List().size());
// This creates another DestructorTracker object for the main thread.
thread_local_tracker.get();
ASSERT_EQ(1U, DestructorCall::List().size());
ASSERT_FALSE(DestructorCall::List()[0]->CheckDestroyed());
}
// Now thread_local_tracker has died.
ASSERT_EQ(1U, DestructorCall::List().size());
EXPECT_TRUE(DestructorCall::List()[0]->CheckDestroyed());
DestructorCall::ResetList();
}
// Tests that when a thread exits, the thread-local object for that
// thread is destroyed.
TEST(ThreadLocalTest, DestroysManagedObjectAtThreadExit) {
DestructorCall::ResetList();
{
ThreadLocal<DestructorTracker> thread_local_tracker;
ASSERT_EQ(0U, DestructorCall::List().size());
// This creates another DestructorTracker object in the new thread.
ThreadWithParam<ThreadParam> thread(
&CallThreadLocalGet, &thread_local_tracker, NULL);
thread.Join();
// The thread has exited, and we should have a DestroyedTracker
// instance created for it. But it may not have been destroyed yet.
ASSERT_EQ(1U, DestructorCall::List().size());
}
// The thread has exited and thread_local_tracker has died.
ASSERT_EQ(1U, DestructorCall::List().size());
EXPECT_TRUE(DestructorCall::List()[0]->CheckDestroyed());
DestructorCall::ResetList();
}
TEST(ThreadLocalTest, ThreadLocalMutationsAffectOnlyCurrentThread) {
ThreadLocal<std::string> thread_local_string;
thread_local_string.set("Foo");
EXPECT_STREQ("Foo", thread_local_string.get().c_str());
std::string result;
RunFromThread(&RetrieveThreadLocalValue,
make_pair(&thread_local_string, &result));
EXPECT_TRUE(result.empty());
}
#endif // GTEST_IS_THREADSAFE
#if GTEST_OS_WINDOWS
TEST(WindowsTypesTest, HANDLEIsVoidStar) {
StaticAssertTypeEq<HANDLE, void*>();
}
TEST(WindowsTypesTest, CRITICAL_SECTIONIs_RTL_CRITICAL_SECTION) {
StaticAssertTypeEq<CRITICAL_SECTION, _RTL_CRITICAL_SECTION>();
}
#endif // GTEST_OS_WINDOWS
} // namespace internal
} // namespace testing