blob: 9bbf5f3a3f75819b080a39dd4bd707ddbdb980b9 [file] [log] [blame]
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/wasm-compiler.h"
#include <memory>
#include "src/assembler-inl.h"
#include "src/base/optional.h"
#include "src/base/platform/elapsed-timer.h"
#include "src/base/platform/platform.h"
#include "src/builtins/builtins.h"
#include "src/code-factory.h"
#include "src/compiler/access-builder.h"
#include "src/compiler/code-generator.h"
#include "src/compiler/common-operator.h"
#include "src/compiler/compiler-source-position-table.h"
#include "src/compiler/diamond.h"
#include "src/compiler/graph-visualizer.h"
#include "src/compiler/graph.h"
#include "src/compiler/instruction-selector.h"
#include "src/compiler/int64-lowering.h"
#include "src/compiler/js-graph.h"
#include "src/compiler/js-operator.h"
#include "src/compiler/linkage.h"
#include "src/compiler/machine-operator.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/pipeline.h"
#include "src/compiler/simd-scalar-lowering.h"
#include "src/compiler/zone-stats.h"
#include "src/factory.h"
#include "src/isolate-inl.h"
#include "src/log-inl.h"
#include "src/trap-handler/trap-handler.h"
#include "src/wasm/function-body-decoder.h"
#include "src/wasm/memory-tracing.h"
#include "src/wasm/wasm-code-manager.h"
#include "src/wasm/wasm-limits.h"
#include "src/wasm/wasm-module.h"
#include "src/wasm/wasm-objects-inl.h"
#include "src/wasm/wasm-opcodes.h"
#include "src/wasm/wasm-text.h"
namespace v8 {
namespace internal {
namespace compiler {
// TODO(titzer): pull WASM_64 up to a common header.
#if !V8_TARGET_ARCH_32_BIT || V8_TARGET_ARCH_X64
#define WASM_64 1
#else
#define WASM_64 0
#endif
#define FATAL_UNSUPPORTED_OPCODE(opcode) \
V8_Fatal(__FILE__, __LINE__, "Unsupported opcode #%d:%s", (opcode), \
wasm::WasmOpcodes::OpcodeName(opcode));
namespace {
constexpr uint32_t kBytesPerExceptionValuesArrayElement = 2;
void MergeControlToEnd(JSGraph* jsgraph, Node* node) {
Graph* g = jsgraph->graph();
if (g->end()) {
NodeProperties::MergeControlToEnd(g, jsgraph->common(), node);
} else {
g->SetEnd(g->NewNode(jsgraph->common()->End(1), node));
}
}
bool ContainsSimd(wasm::FunctionSig* sig) {
for (wasm::ValueType t : sig->all()) {
if (t == wasm::kWasmS128) return true;
}
return false;
}
} // namespace
WasmGraphBuilder::WasmGraphBuilder(
ModuleEnv* env, Zone* zone, JSGraph* jsgraph, Handle<Code> centry_stub,
wasm::FunctionSig* sig,
compiler::SourcePositionTable* source_position_table,
RuntimeExceptionSupport exception_support)
: zone_(zone),
jsgraph_(jsgraph),
centry_stub_node_(jsgraph_->HeapConstant(centry_stub)),
env_(env),
function_tables_(zone),
cur_buffer_(def_buffer_),
cur_bufsize_(kDefaultBufferSize),
has_simd_(ContainsSimd(sig)),
untrusted_code_mitigations_(FLAG_untrusted_code_mitigations),
runtime_exception_support_(exception_support),
sig_(sig),
source_position_table_(source_position_table) {
DCHECK_IMPLIES(use_trap_handler(), trap_handler::IsTrapHandlerEnabled());
DCHECK_NOT_NULL(jsgraph_);
}
Node* WasmGraphBuilder::Error() { return jsgraph()->Dead(); }
Node* WasmGraphBuilder::Start(unsigned params) {
Node* start = graph()->NewNode(jsgraph()->common()->Start(params));
graph()->SetStart(start);
return start;
}
Node* WasmGraphBuilder::Param(unsigned index) {
return graph()->NewNode(jsgraph()->common()->Parameter(index),
graph()->start());
}
Node* WasmGraphBuilder::Loop(Node* entry) {
return graph()->NewNode(jsgraph()->common()->Loop(1), entry);
}
Node* WasmGraphBuilder::Terminate(Node* effect, Node* control) {
Node* terminate =
graph()->NewNode(jsgraph()->common()->Terminate(), effect, control);
MergeControlToEnd(jsgraph(), terminate);
return terminate;
}
bool WasmGraphBuilder::IsPhiWithMerge(Node* phi, Node* merge) {
return phi && IrOpcode::IsPhiOpcode(phi->opcode()) &&
NodeProperties::GetControlInput(phi) == merge;
}
bool WasmGraphBuilder::ThrowsException(Node* node, Node** if_success,
Node** if_exception) {
if (node->op()->HasProperty(compiler::Operator::kNoThrow)) {
return false;
}
*if_success = graph()->NewNode(jsgraph()->common()->IfSuccess(), node);
*if_exception =
graph()->NewNode(jsgraph()->common()->IfException(), node, node);
return true;
}
void WasmGraphBuilder::AppendToMerge(Node* merge, Node* from) {
DCHECK(IrOpcode::IsMergeOpcode(merge->opcode()));
merge->AppendInput(jsgraph()->zone(), from);
int new_size = merge->InputCount();
NodeProperties::ChangeOp(
merge, jsgraph()->common()->ResizeMergeOrPhi(merge->op(), new_size));
}
void WasmGraphBuilder::AppendToPhi(Node* phi, Node* from) {
DCHECK(IrOpcode::IsPhiOpcode(phi->opcode()));
int new_size = phi->InputCount();
phi->InsertInput(jsgraph()->zone(), phi->InputCount() - 1, from);
NodeProperties::ChangeOp(
phi, jsgraph()->common()->ResizeMergeOrPhi(phi->op(), new_size));
}
Node* WasmGraphBuilder::Merge(unsigned count, Node** controls) {
return graph()->NewNode(jsgraph()->common()->Merge(count), count, controls);
}
Node* WasmGraphBuilder::Phi(wasm::ValueType type, unsigned count, Node** vals,
Node* control) {
DCHECK(IrOpcode::IsMergeOpcode(control->opcode()));
Node** buf = Realloc(vals, count, count + 1);
buf[count] = control;
return graph()->NewNode(jsgraph()->common()->Phi(type, count), count + 1,
buf);
}
Node* WasmGraphBuilder::EffectPhi(unsigned count, Node** effects,
Node* control) {
DCHECK(IrOpcode::IsMergeOpcode(control->opcode()));
Node** buf = Realloc(effects, count, count + 1);
buf[count] = control;
return graph()->NewNode(jsgraph()->common()->EffectPhi(count), count + 1,
buf);
}
Node* WasmGraphBuilder::NumberConstant(int32_t value) {
return jsgraph()->Constant(value);
}
Node* WasmGraphBuilder::Uint32Constant(uint32_t value) {
return jsgraph()->Uint32Constant(value);
}
Node* WasmGraphBuilder::Int32Constant(int32_t value) {
return jsgraph()->Int32Constant(value);
}
Node* WasmGraphBuilder::Int64Constant(int64_t value) {
return jsgraph()->Int64Constant(value);
}
Node* WasmGraphBuilder::IntPtrConstant(intptr_t value) {
return jsgraph()->IntPtrConstant(value);
}
void WasmGraphBuilder::StackCheck(wasm::WasmCodePosition position,
Node** effect, Node** control) {
// TODO(mtrofin): "!env_" happens when we generate a wrapper.
// We should factor wrappers separately from wasm codegen.
if (FLAG_wasm_no_stack_checks || !env_ || !runtime_exception_support_) {
return;
}
if (effect == nullptr) effect = effect_;
if (control == nullptr) control = control_;
Node* limit = graph()->NewNode(
jsgraph()->machine()->Load(MachineType::Pointer()),
jsgraph()->ExternalConstant(
ExternalReference::address_of_stack_limit(jsgraph()->isolate())),
jsgraph()->IntPtrConstant(0), *effect, *control);
*effect = limit;
Node* pointer = graph()->NewNode(jsgraph()->machine()->LoadStackPointer());
Node* check =
graph()->NewNode(jsgraph()->machine()->UintLessThan(), limit, pointer);
Diamond stack_check(graph(), jsgraph()->common(), check, BranchHint::kTrue);
stack_check.Chain(*control);
Handle<Code> code = BUILTIN_CODE(jsgraph()->isolate(), WasmStackGuard);
CallInterfaceDescriptor idesc =
WasmRuntimeCallDescriptor(jsgraph()->isolate());
CallDescriptor* desc = Linkage::GetStubCallDescriptor(
jsgraph()->isolate(), jsgraph()->zone(), idesc, 0,
CallDescriptor::kNoFlags, Operator::kNoProperties,
MachineType::AnyTagged(), 1, Linkage::kNoContext);
Node* stub_code = jsgraph()->HeapConstant(code);
Node* call = graph()->NewNode(jsgraph()->common()->Call(desc), stub_code,
*effect, stack_check.if_false);
SetSourcePosition(call, position);
Node* ephi = graph()->NewNode(jsgraph()->common()->EffectPhi(2), *effect,
call, stack_check.merge);
*control = stack_check.merge;
*effect = ephi;
}
void WasmGraphBuilder::PatchInStackCheckIfNeeded() {
if (!needs_stack_check_) return;
Node* start = graph()->start();
// Place a stack check which uses a dummy node as control and effect.
Node* dummy = graph()->NewNode(jsgraph()->common()->Dead());
Node* control = dummy;
Node* effect = dummy;
// The function-prologue stack check is associated with position 0, which
// is never a position of any instruction in the function.
StackCheck(0, &effect, &control);
// In testing, no steck checks were emitted. Nothing to rewire then.
if (effect == dummy) return;
// Now patch all control uses of {start} to use {control} and all effect uses
// to use {effect} instead. Then rewire the dummy node to use start instead.
NodeProperties::ReplaceUses(start, start, effect, control);
NodeProperties::ReplaceUses(dummy, nullptr, start, start);
}
Node* WasmGraphBuilder::Binop(wasm::WasmOpcode opcode, Node* left, Node* right,
wasm::WasmCodePosition position) {
const Operator* op;
MachineOperatorBuilder* m = jsgraph()->machine();
switch (opcode) {
case wasm::kExprI32Add:
op = m->Int32Add();
break;
case wasm::kExprI32Sub:
op = m->Int32Sub();
break;
case wasm::kExprI32Mul:
op = m->Int32Mul();
break;
case wasm::kExprI32DivS:
return BuildI32DivS(left, right, position);
case wasm::kExprI32DivU:
return BuildI32DivU(left, right, position);
case wasm::kExprI32RemS:
return BuildI32RemS(left, right, position);
case wasm::kExprI32RemU:
return BuildI32RemU(left, right, position);
case wasm::kExprI32And:
op = m->Word32And();
break;
case wasm::kExprI32Ior:
op = m->Word32Or();
break;
case wasm::kExprI32Xor:
op = m->Word32Xor();
break;
case wasm::kExprI32Shl:
op = m->Word32Shl();
right = MaskShiftCount32(right);
break;
case wasm::kExprI32ShrU:
op = m->Word32Shr();
right = MaskShiftCount32(right);
break;
case wasm::kExprI32ShrS:
op = m->Word32Sar();
right = MaskShiftCount32(right);
break;
case wasm::kExprI32Ror:
op = m->Word32Ror();
right = MaskShiftCount32(right);
break;
case wasm::kExprI32Rol:
right = MaskShiftCount32(right);
return BuildI32Rol(left, right);
case wasm::kExprI32Eq:
op = m->Word32Equal();
break;
case wasm::kExprI32Ne:
return Invert(Binop(wasm::kExprI32Eq, left, right));
case wasm::kExprI32LtS:
op = m->Int32LessThan();
break;
case wasm::kExprI32LeS:
op = m->Int32LessThanOrEqual();
break;
case wasm::kExprI32LtU:
op = m->Uint32LessThan();
break;
case wasm::kExprI32LeU:
op = m->Uint32LessThanOrEqual();
break;
case wasm::kExprI32GtS:
op = m->Int32LessThan();
std::swap(left, right);
break;
case wasm::kExprI32GeS:
op = m->Int32LessThanOrEqual();
std::swap(left, right);
break;
case wasm::kExprI32GtU:
op = m->Uint32LessThan();
std::swap(left, right);
break;
case wasm::kExprI32GeU:
op = m->Uint32LessThanOrEqual();
std::swap(left, right);
break;
case wasm::kExprI64And:
op = m->Word64And();
break;
case wasm::kExprI64Add:
op = m->Int64Add();
break;
case wasm::kExprI64Sub:
op = m->Int64Sub();
break;
case wasm::kExprI64Mul:
op = m->Int64Mul();
break;
case wasm::kExprI64DivS:
return BuildI64DivS(left, right, position);
case wasm::kExprI64DivU:
return BuildI64DivU(left, right, position);
case wasm::kExprI64RemS:
return BuildI64RemS(left, right, position);
case wasm::kExprI64RemU:
return BuildI64RemU(left, right, position);
case wasm::kExprI64Ior:
op = m->Word64Or();
break;
case wasm::kExprI64Xor:
op = m->Word64Xor();
break;
case wasm::kExprI64Shl:
op = m->Word64Shl();
right = MaskShiftCount64(right);
break;
case wasm::kExprI64ShrU:
op = m->Word64Shr();
right = MaskShiftCount64(right);
break;
case wasm::kExprI64ShrS:
op = m->Word64Sar();
right = MaskShiftCount64(right);
break;
case wasm::kExprI64Eq:
op = m->Word64Equal();
break;
case wasm::kExprI64Ne:
return Invert(Binop(wasm::kExprI64Eq, left, right));
case wasm::kExprI64LtS:
op = m->Int64LessThan();
break;
case wasm::kExprI64LeS:
op = m->Int64LessThanOrEqual();
break;
case wasm::kExprI64LtU:
op = m->Uint64LessThan();
break;
case wasm::kExprI64LeU:
op = m->Uint64LessThanOrEqual();
break;
case wasm::kExprI64GtS:
op = m->Int64LessThan();
std::swap(left, right);
break;
case wasm::kExprI64GeS:
op = m->Int64LessThanOrEqual();
std::swap(left, right);
break;
case wasm::kExprI64GtU:
op = m->Uint64LessThan();
std::swap(left, right);
break;
case wasm::kExprI64GeU:
op = m->Uint64LessThanOrEqual();
std::swap(left, right);
break;
case wasm::kExprI64Ror:
op = m->Word64Ror();
right = MaskShiftCount64(right);
break;
case wasm::kExprI64Rol:
return BuildI64Rol(left, right);
case wasm::kExprF32CopySign:
return BuildF32CopySign(left, right);
case wasm::kExprF64CopySign:
return BuildF64CopySign(left, right);
case wasm::kExprF32Add:
op = m->Float32Add();
break;
case wasm::kExprF32Sub:
op = m->Float32Sub();
break;
case wasm::kExprF32Mul:
op = m->Float32Mul();
break;
case wasm::kExprF32Div:
op = m->Float32Div();
break;
case wasm::kExprF32Eq:
op = m->Float32Equal();
break;
case wasm::kExprF32Ne:
return Invert(Binop(wasm::kExprF32Eq, left, right));
case wasm::kExprF32Lt:
op = m->Float32LessThan();
break;
case wasm::kExprF32Ge:
op = m->Float32LessThanOrEqual();
std::swap(left, right);
break;
case wasm::kExprF32Gt:
op = m->Float32LessThan();
std::swap(left, right);
break;
case wasm::kExprF32Le:
op = m->Float32LessThanOrEqual();
break;
case wasm::kExprF64Add:
op = m->Float64Add();
break;
case wasm::kExprF64Sub:
op = m->Float64Sub();
break;
case wasm::kExprF64Mul:
op = m->Float64Mul();
break;
case wasm::kExprF64Div:
op = m->Float64Div();
break;
case wasm::kExprF64Eq:
op = m->Float64Equal();
break;
case wasm::kExprF64Ne:
return Invert(Binop(wasm::kExprF64Eq, left, right));
case wasm::kExprF64Lt:
op = m->Float64LessThan();
break;
case wasm::kExprF64Le:
op = m->Float64LessThanOrEqual();
break;
case wasm::kExprF64Gt:
op = m->Float64LessThan();
std::swap(left, right);
break;
case wasm::kExprF64Ge:
op = m->Float64LessThanOrEqual();
std::swap(left, right);
break;
case wasm::kExprF32Min:
op = m->Float32Min();
break;
case wasm::kExprF64Min:
op = m->Float64Min();
break;
case wasm::kExprF32Max:
op = m->Float32Max();
break;
case wasm::kExprF64Max:
op = m->Float64Max();
break;
case wasm::kExprF64Pow:
return BuildF64Pow(left, right);
case wasm::kExprF64Atan2:
op = m->Float64Atan2();
break;
case wasm::kExprF64Mod:
return BuildF64Mod(left, right);
case wasm::kExprI32AsmjsDivS:
return BuildI32AsmjsDivS(left, right);
case wasm::kExprI32AsmjsDivU:
return BuildI32AsmjsDivU(left, right);
case wasm::kExprI32AsmjsRemS:
return BuildI32AsmjsRemS(left, right);
case wasm::kExprI32AsmjsRemU:
return BuildI32AsmjsRemU(left, right);
case wasm::kExprI32AsmjsStoreMem8:
return BuildAsmjsStoreMem(MachineType::Int8(), left, right);
case wasm::kExprI32AsmjsStoreMem16:
return BuildAsmjsStoreMem(MachineType::Int16(), left, right);
case wasm::kExprI32AsmjsStoreMem:
return BuildAsmjsStoreMem(MachineType::Int32(), left, right);
case wasm::kExprF32AsmjsStoreMem:
return BuildAsmjsStoreMem(MachineType::Float32(), left, right);
case wasm::kExprF64AsmjsStoreMem:
return BuildAsmjsStoreMem(MachineType::Float64(), left, right);
default:
FATAL_UNSUPPORTED_OPCODE(opcode);
}
return graph()->NewNode(op, left, right);
}
Node* WasmGraphBuilder::Unop(wasm::WasmOpcode opcode, Node* input,
wasm::WasmCodePosition position) {
const Operator* op;
MachineOperatorBuilder* m = jsgraph()->machine();
switch (opcode) {
case wasm::kExprI32Eqz:
op = m->Word32Equal();
return graph()->NewNode(op, input, jsgraph()->Int32Constant(0));
case wasm::kExprF32Abs:
op = m->Float32Abs();
break;
case wasm::kExprF32Neg: {
op = m->Float32Neg();
break;
}
case wasm::kExprF32Sqrt:
op = m->Float32Sqrt();
break;
case wasm::kExprF64Abs:
op = m->Float64Abs();
break;
case wasm::kExprF64Neg: {
op = m->Float64Neg();
break;
}
case wasm::kExprF64Sqrt:
op = m->Float64Sqrt();
break;
case wasm::kExprI32SConvertF64:
return BuildI32SConvertF64(input, position, NumericImplementation::kTrap);
case wasm::kExprI32SConvertSatF64:
return BuildI32SConvertF64(input, position,
NumericImplementation::kSaturate);
case wasm::kExprI32UConvertF64:
return BuildI32UConvertF64(input, position, NumericImplementation::kTrap);
case wasm::kExprI32UConvertSatF64:
return BuildI32UConvertF64(input, position,
NumericImplementation::kSaturate);
case wasm::kExprI32AsmjsSConvertF64:
return BuildI32AsmjsSConvertF64(input);
case wasm::kExprI32AsmjsUConvertF64:
return BuildI32AsmjsUConvertF64(input);
case wasm::kExprF32ConvertF64:
op = m->TruncateFloat64ToFloat32();
break;
case wasm::kExprF64SConvertI32:
op = m->ChangeInt32ToFloat64();
break;
case wasm::kExprF64UConvertI32:
op = m->ChangeUint32ToFloat64();
break;
case wasm::kExprF32SConvertI32:
op = m->RoundInt32ToFloat32();
break;
case wasm::kExprF32UConvertI32:
op = m->RoundUint32ToFloat32();
break;
case wasm::kExprI32SConvertF32:
return BuildI32SConvertF32(input, position, NumericImplementation::kTrap);
case wasm::kExprI32SConvertSatF32:
return BuildI32SConvertF32(input, position,
NumericImplementation::kSaturate);
case wasm::kExprI32UConvertF32:
return BuildI32UConvertF32(input, position, NumericImplementation::kTrap);
case wasm::kExprI32UConvertSatF32:
return BuildI32UConvertF32(input, position,
NumericImplementation::kSaturate);
case wasm::kExprI32AsmjsSConvertF32:
return BuildI32AsmjsSConvertF32(input);
case wasm::kExprI32AsmjsUConvertF32:
return BuildI32AsmjsUConvertF32(input);
case wasm::kExprF64ConvertF32:
op = m->ChangeFloat32ToFloat64();
break;
case wasm::kExprF32ReinterpretI32:
op = m->BitcastInt32ToFloat32();
break;
case wasm::kExprI32ReinterpretF32:
op = m->BitcastFloat32ToInt32();
break;
case wasm::kExprI32Clz:
op = m->Word32Clz();
break;
case wasm::kExprI32Ctz: {
if (m->Word32Ctz().IsSupported()) {
op = m->Word32Ctz().op();
break;
} else if (m->Word32ReverseBits().IsSupported()) {
Node* reversed = graph()->NewNode(m->Word32ReverseBits().op(), input);
Node* result = graph()->NewNode(m->Word32Clz(), reversed);
return result;
} else {
return BuildI32Ctz(input);
}
}
case wasm::kExprI32Popcnt: {
if (m->Word32Popcnt().IsSupported()) {
op = m->Word32Popcnt().op();
break;
} else {
return BuildI32Popcnt(input);
}
}
case wasm::kExprF32Floor: {
if (!m->Float32RoundDown().IsSupported()) return BuildF32Floor(input);
op = m->Float32RoundDown().op();
break;
}
case wasm::kExprF32Ceil: {
if (!m->Float32RoundUp().IsSupported()) return BuildF32Ceil(input);
op = m->Float32RoundUp().op();
break;
}
case wasm::kExprF32Trunc: {
if (!m->Float32RoundTruncate().IsSupported()) return BuildF32Trunc(input);
op = m->Float32RoundTruncate().op();
break;
}
case wasm::kExprF32NearestInt: {
if (!m->Float32RoundTiesEven().IsSupported())
return BuildF32NearestInt(input);
op = m->Float32RoundTiesEven().op();
break;
}
case wasm::kExprF64Floor: {
if (!m->Float64RoundDown().IsSupported()) return BuildF64Floor(input);
op = m->Float64RoundDown().op();
break;
}
case wasm::kExprF64Ceil: {
if (!m->Float64RoundUp().IsSupported()) return BuildF64Ceil(input);
op = m->Float64RoundUp().op();
break;
}
case wasm::kExprF64Trunc: {
if (!m->Float64RoundTruncate().IsSupported()) return BuildF64Trunc(input);
op = m->Float64RoundTruncate().op();
break;
}
case wasm::kExprF64NearestInt: {
if (!m->Float64RoundTiesEven().IsSupported())
return BuildF64NearestInt(input);
op = m->Float64RoundTiesEven().op();
break;
}
case wasm::kExprF64Acos: {
return BuildF64Acos(input);
}
case wasm::kExprF64Asin: {
return BuildF64Asin(input);
}
case wasm::kExprF64Atan:
op = m->Float64Atan();
break;
case wasm::kExprF64Cos: {
op = m->Float64Cos();
break;
}
case wasm::kExprF64Sin: {
op = m->Float64Sin();
break;
}
case wasm::kExprF64Tan: {
op = m->Float64Tan();
break;
}
case wasm::kExprF64Exp: {
op = m->Float64Exp();
break;
}
case wasm::kExprF64Log:
op = m->Float64Log();
break;
case wasm::kExprI32ConvertI64:
op = m->TruncateInt64ToInt32();
break;
case wasm::kExprI64SConvertI32:
op = m->ChangeInt32ToInt64();
break;
case wasm::kExprI64UConvertI32:
op = m->ChangeUint32ToUint64();
break;
case wasm::kExprF64ReinterpretI64:
op = m->BitcastInt64ToFloat64();
break;
case wasm::kExprI64ReinterpretF64:
op = m->BitcastFloat64ToInt64();
break;
case wasm::kExprI64Clz:
op = m->Word64Clz();
break;
case wasm::kExprI64Ctz: {
OptionalOperator ctz64 = m->Word64Ctz();
if (ctz64.IsSupported()) {
op = ctz64.op();
break;
} else if (m->Is32() && m->Word32Ctz().IsSupported()) {
op = ctz64.placeholder();
break;
} else if (m->Word64ReverseBits().IsSupported()) {
Node* reversed = graph()->NewNode(m->Word64ReverseBits().op(), input);
Node* result = graph()->NewNode(m->Word64Clz(), reversed);
return result;
} else {
return BuildI64Ctz(input);
}
}
case wasm::kExprI64Popcnt: {
OptionalOperator popcnt64 = m->Word64Popcnt();
if (popcnt64.IsSupported()) {
op = popcnt64.op();
} else if (m->Is32() && m->Word32Popcnt().IsSupported()) {
op = popcnt64.placeholder();
} else {
return BuildI64Popcnt(input);
}
break;
}
case wasm::kExprI64Eqz:
op = m->Word64Equal();
return graph()->NewNode(op, input, jsgraph()->Int64Constant(0));
case wasm::kExprF32SConvertI64:
if (m->Is32()) {
return BuildF32SConvertI64(input);
}
op = m->RoundInt64ToFloat32();
break;
case wasm::kExprF32UConvertI64:
if (m->Is32()) {
return BuildF32UConvertI64(input);
}
op = m->RoundUint64ToFloat32();
break;
case wasm::kExprF64SConvertI64:
if (m->Is32()) {
return BuildF64SConvertI64(input);
}
op = m->RoundInt64ToFloat64();
break;
case wasm::kExprF64UConvertI64:
if (m->Is32()) {
return BuildF64UConvertI64(input);
}
op = m->RoundUint64ToFloat64();
break;
case wasm::kExprI64SConvertF32:
return BuildI64SConvertF32(input, position);
case wasm::kExprI64SConvertF64:
return BuildI64SConvertF64(input, position);
case wasm::kExprI64UConvertF32:
return BuildI64UConvertF32(input, position);
case wasm::kExprI64UConvertF64:
return BuildI64UConvertF64(input, position);
case wasm::kExprI32AsmjsLoadMem8S:
return BuildAsmjsLoadMem(MachineType::Int8(), input);
case wasm::kExprI32AsmjsLoadMem8U:
return BuildAsmjsLoadMem(MachineType::Uint8(), input);
case wasm::kExprI32AsmjsLoadMem16S:
return BuildAsmjsLoadMem(MachineType::Int16(), input);
case wasm::kExprI32AsmjsLoadMem16U:
return BuildAsmjsLoadMem(MachineType::Uint16(), input);
case wasm::kExprI32AsmjsLoadMem:
return BuildAsmjsLoadMem(MachineType::Int32(), input);
case wasm::kExprF32AsmjsLoadMem:
return BuildAsmjsLoadMem(MachineType::Float32(), input);
case wasm::kExprF64AsmjsLoadMem:
return BuildAsmjsLoadMem(MachineType::Float64(), input);
default:
FATAL_UNSUPPORTED_OPCODE(opcode);
}
return graph()->NewNode(op, input);
}
Node* WasmGraphBuilder::Float32Constant(float value) {
return jsgraph()->Float32Constant(value);
}
Node* WasmGraphBuilder::Float64Constant(double value) {
return jsgraph()->Float64Constant(value);
}
Node* WasmGraphBuilder::HeapConstant(Handle<HeapObject> value) {
return jsgraph()->HeapConstant(value);
}
namespace {
Node* Branch(JSGraph* jsgraph, Node* cond, Node** true_node, Node** false_node,
Node* control, BranchHint hint) {
DCHECK_NOT_NULL(cond);
DCHECK_NOT_NULL(control);
Node* branch =
jsgraph->graph()->NewNode(jsgraph->common()->Branch(hint), cond, control);
*true_node = jsgraph->graph()->NewNode(jsgraph->common()->IfTrue(), branch);
*false_node = jsgraph->graph()->NewNode(jsgraph->common()->IfFalse(), branch);
return branch;
}
} // namespace
Node* WasmGraphBuilder::BranchNoHint(Node* cond, Node** true_node,
Node** false_node) {
return Branch(jsgraph(), cond, true_node, false_node, *control_,
BranchHint::kNone);
}
Node* WasmGraphBuilder::BranchExpectTrue(Node* cond, Node** true_node,
Node** false_node) {
return Branch(jsgraph(), cond, true_node, false_node, *control_,
BranchHint::kTrue);
}
Node* WasmGraphBuilder::BranchExpectFalse(Node* cond, Node** true_node,
Node** false_node) {
return Branch(jsgraph(), cond, true_node, false_node, *control_,
BranchHint::kFalse);
}
Builtins::Name WasmGraphBuilder::GetBuiltinIdForTrap(wasm::TrapReason reason) {
if (runtime_exception_support_ == kNoRuntimeExceptionSupport) {
// We use Builtins::builtin_count as a marker to tell the code generator
// to generate a call to a testing c-function instead of a runtime
// function. This code should only be called from a cctest.
return Builtins::builtin_count;
}
switch (reason) {
#define TRAPREASON_TO_MESSAGE(name) \
case wasm::k##name: \
return Builtins::kThrowWasm##name;
FOREACH_WASM_TRAPREASON(TRAPREASON_TO_MESSAGE)
#undef TRAPREASON_TO_MESSAGE
default:
UNREACHABLE();
}
}
Node* WasmGraphBuilder::TrapIfTrue(wasm::TrapReason reason, Node* cond,
wasm::WasmCodePosition position) {
Builtins::Name trap_id = GetBuiltinIdForTrap(reason);
Node* node = graph()->NewNode(jsgraph()->common()->TrapIf(trap_id), cond,
Effect(), Control());
*control_ = node;
SetSourcePosition(node, position);
return node;
}
Node* WasmGraphBuilder::TrapIfFalse(wasm::TrapReason reason, Node* cond,
wasm::WasmCodePosition position) {
Builtins::Name trap_id = GetBuiltinIdForTrap(reason);
Node* node = graph()->NewNode(jsgraph()->common()->TrapUnless(trap_id), cond,
Effect(), Control());
*control_ = node;
SetSourcePosition(node, position);
return node;
}
// Add a check that traps if {node} is equal to {val}.
Node* WasmGraphBuilder::TrapIfEq32(wasm::TrapReason reason, Node* node,
int32_t val,
wasm::WasmCodePosition position) {
Int32Matcher m(node);
if (m.HasValue() && !m.Is(val)) return graph()->start();
if (val == 0) {
return TrapIfFalse(reason, node, position);
} else {
return TrapIfTrue(reason,
graph()->NewNode(jsgraph()->machine()->Word32Equal(),
node, jsgraph()->Int32Constant(val)),
position);
}
}
// Add a check that traps if {node} is zero.
Node* WasmGraphBuilder::ZeroCheck32(wasm::TrapReason reason, Node* node,
wasm::WasmCodePosition position) {
return TrapIfEq32(reason, node, 0, position);
}
// Add a check that traps if {node} is equal to {val}.
Node* WasmGraphBuilder::TrapIfEq64(wasm::TrapReason reason, Node* node,
int64_t val,
wasm::WasmCodePosition position) {
Int64Matcher m(node);
if (m.HasValue() && !m.Is(val)) return graph()->start();
return TrapIfTrue(reason,
graph()->NewNode(jsgraph()->machine()->Word64Equal(), node,
jsgraph()->Int64Constant(val)),
position);
}
// Add a check that traps if {node} is zero.
Node* WasmGraphBuilder::ZeroCheck64(wasm::TrapReason reason, Node* node,
wasm::WasmCodePosition position) {
return TrapIfEq64(reason, node, 0, position);
}
Node* WasmGraphBuilder::Switch(unsigned count, Node* key) {
return graph()->NewNode(jsgraph()->common()->Switch(count), key, *control_);
}
Node* WasmGraphBuilder::IfValue(int32_t value, Node* sw) {
DCHECK_EQ(IrOpcode::kSwitch, sw->opcode());
return graph()->NewNode(jsgraph()->common()->IfValue(value), sw);
}
Node* WasmGraphBuilder::IfDefault(Node* sw) {
DCHECK_EQ(IrOpcode::kSwitch, sw->opcode());
return graph()->NewNode(jsgraph()->common()->IfDefault(), sw);
}
Node* WasmGraphBuilder::Return(unsigned count, Node** vals) {
DCHECK_NOT_NULL(*control_);
DCHECK_NOT_NULL(*effect_);
static const int kStackAllocatedNodeBufferSize = 8;
Node* stack_buffer[kStackAllocatedNodeBufferSize];
std::vector<Node*> heap_buffer;
Node** buf = stack_buffer;
if (count + 3 > kStackAllocatedNodeBufferSize) {
heap_buffer.resize(count + 3);
buf = heap_buffer.data();
}
buf[0] = jsgraph()->Int32Constant(0);
memcpy(buf + 1, vals, sizeof(void*) * count);
buf[count + 1] = *effect_;
buf[count + 2] = *control_;
Node* ret =
graph()->NewNode(jsgraph()->common()->Return(count), count + 3, buf);
MergeControlToEnd(jsgraph(), ret);
return ret;
}
Node* WasmGraphBuilder::ReturnVoid() { return Return(0, nullptr); }
Node* WasmGraphBuilder::Unreachable(wasm::WasmCodePosition position) {
TrapIfFalse(wasm::TrapReason::kTrapUnreachable, Int32Constant(0), position);
ReturnVoid();
return nullptr;
}
Node* WasmGraphBuilder::MaskShiftCount32(Node* node) {
static const int32_t kMask32 = 0x1F;
if (!jsgraph()->machine()->Word32ShiftIsSafe()) {
// Shifts by constants are so common we pattern-match them here.
Int32Matcher match(node);
if (match.HasValue()) {
int32_t masked = (match.Value() & kMask32);
if (match.Value() != masked) node = jsgraph()->Int32Constant(masked);
} else {
node = graph()->NewNode(jsgraph()->machine()->Word32And(), node,
jsgraph()->Int32Constant(kMask32));
}
}
return node;
}
Node* WasmGraphBuilder::MaskShiftCount64(Node* node) {
static const int64_t kMask64 = 0x3F;
if (!jsgraph()->machine()->Word32ShiftIsSafe()) {
// Shifts by constants are so common we pattern-match them here.
Int64Matcher match(node);
if (match.HasValue()) {
int64_t masked = (match.Value() & kMask64);
if (match.Value() != masked) node = jsgraph()->Int64Constant(masked);
} else {
node = graph()->NewNode(jsgraph()->machine()->Word64And(), node,
jsgraph()->Int64Constant(kMask64));
}
}
return node;
}
static bool ReverseBytesSupported(MachineOperatorBuilder* m,
size_t size_in_bytes) {
switch (size_in_bytes) {
case 4:
case 16:
return m->Word32ReverseBytes().IsSupported();
case 8:
return m->Word64ReverseBytes().IsSupported();
default:
break;
}
return false;
}
Node* WasmGraphBuilder::BuildChangeEndiannessStore(
Node* node, MachineRepresentation mem_rep, wasm::ValueType wasmtype) {
Node* result;
Node* value = node;
MachineOperatorBuilder* m = jsgraph()->machine();
int valueSizeInBytes = 1 << ElementSizeLog2Of(wasmtype);
int valueSizeInBits = 8 * valueSizeInBytes;
bool isFloat = false;
switch (wasmtype) {
case wasm::kWasmF64:
value = graph()->NewNode(m->BitcastFloat64ToInt64(), node);
isFloat = true;
case wasm::kWasmI64:
result = jsgraph()->Int64Constant(0);
break;
case wasm::kWasmF32:
value = graph()->NewNode(m->BitcastFloat32ToInt32(), node);
isFloat = true;
case wasm::kWasmI32:
result = jsgraph()->Int32Constant(0);
break;
case wasm::kWasmS128:
DCHECK(ReverseBytesSupported(m, valueSizeInBytes));
break;
default:
UNREACHABLE();
break;
}
if (mem_rep == MachineRepresentation::kWord8) {
// No need to change endianness for byte size, return original node
return node;
}
if (wasmtype == wasm::kWasmI64 && mem_rep < MachineRepresentation::kWord64) {
// In case we store lower part of WasmI64 expression, we can truncate
// upper 32bits
value = graph()->NewNode(m->TruncateInt64ToInt32(), value);
valueSizeInBytes = 1 << ElementSizeLog2Of(wasm::kWasmI32);
valueSizeInBits = 8 * valueSizeInBytes;
if (mem_rep == MachineRepresentation::kWord16) {
value =
graph()->NewNode(m->Word32Shl(), value, jsgraph()->Int32Constant(16));
}
} else if (wasmtype == wasm::kWasmI32 &&
mem_rep == MachineRepresentation::kWord16) {
value =
graph()->NewNode(m->Word32Shl(), value, jsgraph()->Int32Constant(16));
}
int i;
uint32_t shiftCount;
if (ReverseBytesSupported(m, valueSizeInBytes)) {
switch (valueSizeInBytes) {
case 4:
result = graph()->NewNode(m->Word32ReverseBytes().op(), value);
break;
case 8:
result = graph()->NewNode(m->Word64ReverseBytes().op(), value);
break;
case 16: {
Node* byte_reversed_lanes[4];
for (int lane = 0; lane < 4; lane++) {
byte_reversed_lanes[lane] = graph()->NewNode(
m->Word32ReverseBytes().op(),
graph()->NewNode(jsgraph()->machine()->I32x4ExtractLane(lane),
value));
}
// This is making a copy of the value.
result =
graph()->NewNode(jsgraph()->machine()->S128And(), value, value);
for (int lane = 0; lane < 4; lane++) {
result =
graph()->NewNode(jsgraph()->machine()->I32x4ReplaceLane(3 - lane),
result, byte_reversed_lanes[lane]);
}
break;
}
default:
UNREACHABLE();
break;
}
} else {
for (i = 0, shiftCount = valueSizeInBits - 8; i < valueSizeInBits / 2;
i += 8, shiftCount -= 16) {
Node* shiftLower;
Node* shiftHigher;
Node* lowerByte;
Node* higherByte;
DCHECK_LT(0, shiftCount);
DCHECK_EQ(0, (shiftCount + 8) % 16);
if (valueSizeInBits > 32) {
shiftLower = graph()->NewNode(m->Word64Shl(), value,
jsgraph()->Int64Constant(shiftCount));
shiftHigher = graph()->NewNode(m->Word64Shr(), value,
jsgraph()->Int64Constant(shiftCount));
lowerByte = graph()->NewNode(
m->Word64And(), shiftLower,
jsgraph()->Int64Constant(static_cast<uint64_t>(0xFF)
<< (valueSizeInBits - 8 - i)));
higherByte = graph()->NewNode(
m->Word64And(), shiftHigher,
jsgraph()->Int64Constant(static_cast<uint64_t>(0xFF) << i));
result = graph()->NewNode(m->Word64Or(), result, lowerByte);
result = graph()->NewNode(m->Word64Or(), result, higherByte);
} else {
shiftLower = graph()->NewNode(m->Word32Shl(), value,
jsgraph()->Int32Constant(shiftCount));
shiftHigher = graph()->NewNode(m->Word32Shr(), value,
jsgraph()->Int32Constant(shiftCount));
lowerByte = graph()->NewNode(
m->Word32And(), shiftLower,
jsgraph()->Int32Constant(static_cast<uint32_t>(0xFF)
<< (valueSizeInBits - 8 - i)));
higherByte = graph()->NewNode(
m->Word32And(), shiftHigher,
jsgraph()->Int32Constant(static_cast<uint32_t>(0xFF) << i));
result = graph()->NewNode(m->Word32Or(), result, lowerByte);
result = graph()->NewNode(m->Word32Or(), result, higherByte);
}
}
}
if (isFloat) {
switch (wasmtype) {
case wasm::kWasmF64:
result = graph()->NewNode(m->BitcastInt64ToFloat64(), result);
break;
case wasm::kWasmF32:
result = graph()->NewNode(m->BitcastInt32ToFloat32(), result);
break;
default:
UNREACHABLE();
break;
}
}
return result;
}
Node* WasmGraphBuilder::BuildChangeEndiannessLoad(Node* node,
MachineType memtype,
wasm::ValueType wasmtype) {
Node* result;
Node* value = node;
MachineOperatorBuilder* m = jsgraph()->machine();
int valueSizeInBytes = 1 << ElementSizeLog2Of(memtype.representation());
int valueSizeInBits = 8 * valueSizeInBytes;
bool isFloat = false;
switch (memtype.representation()) {
case MachineRepresentation::kFloat64:
value = graph()->NewNode(m->BitcastFloat64ToInt64(), node);
isFloat = true;
case MachineRepresentation::kWord64:
result = jsgraph()->Int64Constant(0);
break;
case MachineRepresentation::kFloat32:
value = graph()->NewNode(m->BitcastFloat32ToInt32(), node);
isFloat = true;
case MachineRepresentation::kWord32:
case MachineRepresentation::kWord16:
result = jsgraph()->Int32Constant(0);
break;
case MachineRepresentation::kWord8:
// No need to change endianness for byte size, return original node
return node;
break;
case MachineRepresentation::kSimd128:
DCHECK(ReverseBytesSupported(m, valueSizeInBytes));
break;
default:
UNREACHABLE();
break;
}
int i;
uint32_t shiftCount;
if (ReverseBytesSupported(m, valueSizeInBytes < 4 ? 4 : valueSizeInBytes)) {
switch (valueSizeInBytes) {
case 2:
result =
graph()->NewNode(m->Word32ReverseBytes().op(),
graph()->NewNode(m->Word32Shl(), value,
jsgraph()->Int32Constant(16)));
break;
case 4:
result = graph()->NewNode(m->Word32ReverseBytes().op(), value);
break;
case 8:
result = graph()->NewNode(m->Word64ReverseBytes().op(), value);
break;
case 16: {
Node* byte_reversed_lanes[4];
for (int lane = 0; lane < 4; lane++) {
byte_reversed_lanes[lane] = graph()->NewNode(
m->Word32ReverseBytes().op(),
graph()->NewNode(jsgraph()->machine()->I32x4ExtractLane(lane),
value));
}
// This is making a copy of the value.
result =
graph()->NewNode(jsgraph()->machine()->S128And(), value, value);
for (int lane = 0; lane < 4; lane++) {
result =
graph()->NewNode(jsgraph()->machine()->I32x4ReplaceLane(3 - lane),
result, byte_reversed_lanes[lane]);
}
break;
}
default:
UNREACHABLE();
}
} else {
for (i = 0, shiftCount = valueSizeInBits - 8; i < valueSizeInBits / 2;
i += 8, shiftCount -= 16) {
Node* shiftLower;
Node* shiftHigher;
Node* lowerByte;
Node* higherByte;
DCHECK_LT(0, shiftCount);
DCHECK_EQ(0, (shiftCount + 8) % 16);
if (valueSizeInBits > 32) {
shiftLower = graph()->NewNode(m->Word64Shl(), value,
jsgraph()->Int64Constant(shiftCount));
shiftHigher = graph()->NewNode(m->Word64Shr(), value,
jsgraph()->Int64Constant(shiftCount));
lowerByte = graph()->NewNode(
m->Word64And(), shiftLower,
jsgraph()->Int64Constant(static_cast<uint64_t>(0xFF)
<< (valueSizeInBits - 8 - i)));
higherByte = graph()->NewNode(
m->Word64And(), shiftHigher,
jsgraph()->Int64Constant(static_cast<uint64_t>(0xFF) << i));
result = graph()->NewNode(m->Word64Or(), result, lowerByte);
result = graph()->NewNode(m->Word64Or(), result, higherByte);
} else {
shiftLower = graph()->NewNode(m->Word32Shl(), value,
jsgraph()->Int32Constant(shiftCount));
shiftHigher = graph()->NewNode(m->Word32Shr(), value,
jsgraph()->Int32Constant(shiftCount));
lowerByte = graph()->NewNode(
m->Word32And(), shiftLower,
jsgraph()->Int32Constant(static_cast<uint32_t>(0xFF)
<< (valueSizeInBits - 8 - i)));
higherByte = graph()->NewNode(
m->Word32And(), shiftHigher,
jsgraph()->Int32Constant(static_cast<uint32_t>(0xFF) << i));
result = graph()->NewNode(m->Word32Or(), result, lowerByte);
result = graph()->NewNode(m->Word32Or(), result, higherByte);
}
}
}
if (isFloat) {
switch (memtype.representation()) {
case MachineRepresentation::kFloat64:
result = graph()->NewNode(m->BitcastInt64ToFloat64(), result);
break;
case MachineRepresentation::kFloat32:
result = graph()->NewNode(m->BitcastInt32ToFloat32(), result);
break;
default:
UNREACHABLE();
break;
}
}
// We need to sign extend the value
if (memtype.IsSigned()) {
DCHECK(!isFloat);
if (valueSizeInBits < 32) {
Node* shiftBitCount;
// Perform sign extension using following trick
// result = (x << machine_width - type_width) >> (machine_width -
// type_width)
if (wasmtype == wasm::kWasmI64) {
shiftBitCount = jsgraph()->Int32Constant(64 - valueSizeInBits);
result = graph()->NewNode(
m->Word64Sar(),
graph()->NewNode(m->Word64Shl(),
graph()->NewNode(m->ChangeInt32ToInt64(), result),
shiftBitCount),
shiftBitCount);
} else if (wasmtype == wasm::kWasmI32) {
shiftBitCount = jsgraph()->Int32Constant(32 - valueSizeInBits);
result = graph()->NewNode(
m->Word32Sar(),
graph()->NewNode(m->Word32Shl(), result, shiftBitCount),
shiftBitCount);
}
}
}
return result;
}
Node* WasmGraphBuilder::BuildF32CopySign(Node* left, Node* right) {
Node* result = Unop(
wasm::kExprF32ReinterpretI32,
Binop(wasm::kExprI32Ior,
Binop(wasm::kExprI32And, Unop(wasm::kExprI32ReinterpretF32, left),
jsgraph()->Int32Constant(0x7FFFFFFF)),
Binop(wasm::kExprI32And, Unop(wasm::kExprI32ReinterpretF32, right),
jsgraph()->Int32Constant(0x80000000))));
return result;
}
Node* WasmGraphBuilder::BuildF64CopySign(Node* left, Node* right) {
#if WASM_64
Node* result = Unop(
wasm::kExprF64ReinterpretI64,
Binop(wasm::kExprI64Ior,
Binop(wasm::kExprI64And, Unop(wasm::kExprI64ReinterpretF64, left),
jsgraph()->Int64Constant(0x7FFFFFFFFFFFFFFF)),
Binop(wasm::kExprI64And, Unop(wasm::kExprI64ReinterpretF64, right),
jsgraph()->Int64Constant(0x8000000000000000))));
return result;
#else
MachineOperatorBuilder* m = jsgraph()->machine();
Node* high_word_left = graph()->NewNode(m->Float64ExtractHighWord32(), left);
Node* high_word_right =
graph()->NewNode(m->Float64ExtractHighWord32(), right);
Node* new_high_word = Binop(wasm::kExprI32Ior,
Binop(wasm::kExprI32And, high_word_left,
jsgraph()->Int32Constant(0x7FFFFFFF)),
Binop(wasm::kExprI32And, high_word_right,
jsgraph()->Int32Constant(0x80000000)));
return graph()->NewNode(m->Float64InsertHighWord32(), left, new_high_word);
#endif
}
// Helper classes for float to int conversions.
struct WasmGraphBuilder::IntConvertOps {
MachineRepresentation word_rep() const {
return MachineRepresentation::kWord32;
}
Node* zero() const { return builder_->Int32Constant(0); }
virtual Node* min() const = 0;
virtual Node* max() const = 0;
virtual ~IntConvertOps() = default;
protected:
explicit IntConvertOps(WasmGraphBuilder* builder) : builder_(builder) {}
WasmGraphBuilder* builder_;
DISALLOW_IMPLICIT_CONSTRUCTORS(IntConvertOps);
};
struct I32SConvertOps final : public WasmGraphBuilder::IntConvertOps {
explicit I32SConvertOps(WasmGraphBuilder* builder)
: WasmGraphBuilder::IntConvertOps(builder) {}
~I32SConvertOps() = default;
Node* min() const {
return builder_->Int32Constant(std::numeric_limits<int32_t>::min());
}
Node* max() const {
return builder_->Int32Constant(std::numeric_limits<int32_t>::max());
}
DISALLOW_IMPLICIT_CONSTRUCTORS(I32SConvertOps);
};
struct I32UConvertOps final : public WasmGraphBuilder::IntConvertOps {
explicit I32UConvertOps(WasmGraphBuilder* builder)
: WasmGraphBuilder::IntConvertOps(builder) {}
~I32UConvertOps() = default;
Node* min() const {
return builder_->Int32Constant(std::numeric_limits<uint32_t>::min());
}
Node* max() const {
return builder_->Int32Constant(std::numeric_limits<uint32_t>::max());
}
DISALLOW_IMPLICIT_CONSTRUCTORS(I32UConvertOps);
};
struct WasmGraphBuilder::FloatConvertOps {
virtual Node* zero() const = 0;
virtual wasm::WasmOpcode trunc_op() const = 0;
virtual wasm::WasmOpcode ne_op() const = 0;
virtual wasm::WasmOpcode lt_op() const = 0;
virtual ~FloatConvertOps() = default;
protected:
explicit FloatConvertOps(WasmGraphBuilder* builder) : builder_(builder) {}
WasmGraphBuilder* builder_;
DISALLOW_IMPLICIT_CONSTRUCTORS(FloatConvertOps);
};
struct F32ConvertOps final : public WasmGraphBuilder::FloatConvertOps {
explicit F32ConvertOps(WasmGraphBuilder* builder)
: WasmGraphBuilder::FloatConvertOps(builder) {}
~F32ConvertOps() = default;
Node* zero() const { return builder_->Float32Constant(0.0); }
wasm::WasmOpcode trunc_op() const { return wasm::kExprF32Trunc; }
wasm::WasmOpcode ne_op() const { return wasm::kExprF32Ne; }
wasm::WasmOpcode lt_op() const { return wasm::kExprF32Lt; }
DISALLOW_IMPLICIT_CONSTRUCTORS(F32ConvertOps);
};
struct F64ConvertOps final : public WasmGraphBuilder::FloatConvertOps {
explicit F64ConvertOps(WasmGraphBuilder* builder)
: WasmGraphBuilder::FloatConvertOps(builder) {}
~F64ConvertOps() = default;
Node* zero() const { return builder_->Float64Constant(0.0); }
wasm::WasmOpcode trunc_op() const { return wasm::kExprF64Trunc; }
wasm::WasmOpcode ne_op() const { return wasm::kExprF64Ne; }
wasm::WasmOpcode lt_op() const { return wasm::kExprF64Lt; }
DISALLOW_IMPLICIT_CONSTRUCTORS(F64ConvertOps);
};
Node* WasmGraphBuilder::BuildConvertCheck(Node* test, Node* result, Node* input,
wasm::WasmCodePosition position,
NumericImplementation impl,
const IntConvertOps* int_ops,
const FloatConvertOps* float_ops) {
switch (impl) {
case NumericImplementation::kTrap:
TrapIfTrue(wasm::kTrapFloatUnrepresentable, test, position);
return result;
case NumericImplementation::kSaturate: {
Diamond tl_d(graph(), jsgraph()->common(), test, BranchHint::kFalse);
tl_d.Chain(*control_);
Diamond nan_d(graph(), jsgraph()->common(),
Binop(float_ops->ne_op(), input, input), // Checks if NaN.
BranchHint::kFalse);
nan_d.Nest(tl_d, true);
Diamond sat_d(graph(), jsgraph()->common(),
Binop(float_ops->lt_op(), input, float_ops->zero()),
BranchHint::kNone);
sat_d.Nest(nan_d, false);
Node* sat_val =
sat_d.Phi(int_ops->word_rep(), int_ops->min(), int_ops->max());
Node* nan_val = nan_d.Phi(int_ops->word_rep(), int_ops->zero(), sat_val);
return tl_d.Phi(int_ops->word_rep(), nan_val, result);
}
}
UNREACHABLE();
}
Node* WasmGraphBuilder::BuildI32ConvertOp(
Node* input, wasm::WasmCodePosition position, NumericImplementation impl,
const Operator* op, wasm::WasmOpcode check_op, const IntConvertOps* int_ops,
const FloatConvertOps* float_ops) {
// Truncation of the input value is needed for the overflow check later.
Node* trunc = Unop(float_ops->trunc_op(), input);
Node* result = graph()->NewNode(op, trunc);
// Convert the result back to f64. If we end up at a different value than the
// truncated input value, then there has been an overflow and we
// trap/saturate.
Node* check = Unop(check_op, result);
Node* overflow = Binop(float_ops->ne_op(), trunc, check);
return BuildConvertCheck(overflow, result, input, position, impl, int_ops,
float_ops);
}
Node* WasmGraphBuilder::BuildI32SConvertF32(Node* input,
wasm::WasmCodePosition position,
NumericImplementation impl) {
I32SConvertOps int_ops(this);
F32ConvertOps float_ops(this);
return BuildI32ConvertOp(input, position, impl,
jsgraph()->machine()->TruncateFloat32ToInt32(),
wasm::kExprF32SConvertI32, &int_ops, &float_ops);
}
Node* WasmGraphBuilder::BuildI32SConvertF64(Node* input,
wasm::WasmCodePosition position,
NumericImplementation impl) {
I32SConvertOps int_ops(this);
F64ConvertOps float_ops(this);
return BuildI32ConvertOp(input, position, impl,
jsgraph()->machine()->ChangeFloat64ToInt32(),
wasm::kExprF64SConvertI32, &int_ops, &float_ops);
}
Node* WasmGraphBuilder::BuildI32UConvertF32(Node* input,
wasm::WasmCodePosition position,
NumericImplementation impl) {
I32UConvertOps int_ops(this);
F32ConvertOps float_ops(this);
return BuildI32ConvertOp(input, position, impl,
jsgraph()->machine()->TruncateFloat32ToUint32(),
wasm::kExprF32UConvertI32, &int_ops, &float_ops);
}
Node* WasmGraphBuilder::BuildI32UConvertF64(Node* input,
wasm::WasmCodePosition position,
NumericImplementation impl) {
I32UConvertOps int_ops(this);
F64ConvertOps float_ops(this);
return BuildI32ConvertOp(input, position, impl,
jsgraph()->machine()->TruncateFloat64ToUint32(),
wasm::kExprF64UConvertI32, &int_ops, &float_ops);
}
Node* WasmGraphBuilder::BuildI32AsmjsSConvertF32(Node* input) {
MachineOperatorBuilder* m = jsgraph()->machine();
// asm.js must use the wacky JS semantics.
input = graph()->NewNode(m->ChangeFloat32ToFloat64(), input);
return graph()->NewNode(m->TruncateFloat64ToWord32(), input);
}
Node* WasmGraphBuilder::BuildI32AsmjsSConvertF64(Node* input) {
MachineOperatorBuilder* m = jsgraph()->machine();
// asm.js must use the wacky JS semantics.
return graph()->NewNode(m->TruncateFloat64ToWord32(), input);
}
Node* WasmGraphBuilder::BuildI32AsmjsUConvertF32(Node* input) {
MachineOperatorBuilder* m = jsgraph()->machine();
// asm.js must use the wacky JS semantics.
input = graph()->NewNode(m->ChangeFloat32ToFloat64(), input);
return graph()->NewNode(m->TruncateFloat64ToWord32(), input);
}
Node* WasmGraphBuilder::BuildI32AsmjsUConvertF64(Node* input) {
MachineOperatorBuilder* m = jsgraph()->machine();
// asm.js must use the wacky JS semantics.
return graph()->NewNode(m->TruncateFloat64ToWord32(), input);
}
Node* WasmGraphBuilder::BuildBitCountingCall(Node* input, ExternalReference ref,
MachineRepresentation input_type) {
Node* stack_slot_param =
graph()->NewNode(jsgraph()->machine()->StackSlot(input_type));
const Operator* store_op = jsgraph()->machine()->Store(
StoreRepresentation(input_type, kNoWriteBarrier));
*effect_ =
graph()->NewNode(store_op, stack_slot_param, jsgraph()->Int32Constant(0),
input, *effect_, *control_);
MachineSignature::Builder sig_builder(jsgraph()->zone(), 1, 1);
sig_builder.AddReturn(MachineType::Int32());
sig_builder.AddParam(MachineType::Pointer());
Node* function = graph()->NewNode(jsgraph()->common()->ExternalConstant(ref));
return BuildCCall(sig_builder.Build(), function, stack_slot_param);
}
Node* WasmGraphBuilder::BuildI32Ctz(Node* input) {
return BuildBitCountingCall(
input, ExternalReference::wasm_word32_ctz(jsgraph()->isolate()),
MachineRepresentation::kWord32);
}
Node* WasmGraphBuilder::BuildI64Ctz(Node* input) {
return Unop(wasm::kExprI64UConvertI32,
BuildBitCountingCall(input, ExternalReference::wasm_word64_ctz(
jsgraph()->isolate()),
MachineRepresentation::kWord64));
}
Node* WasmGraphBuilder::BuildI32Popcnt(Node* input) {
return BuildBitCountingCall(
input, ExternalReference::wasm_word32_popcnt(jsgraph()->isolate()),
MachineRepresentation::kWord32);
}
Node* WasmGraphBuilder::BuildI64Popcnt(Node* input) {
return Unop(wasm::kExprI64UConvertI32,
BuildBitCountingCall(input, ExternalReference::wasm_word64_popcnt(
jsgraph()->isolate()),
MachineRepresentation::kWord64));
}
Node* WasmGraphBuilder::BuildF32Trunc(Node* input) {
MachineType type = MachineType::Float32();
ExternalReference ref =
ExternalReference::wasm_f32_trunc(jsgraph()->isolate());
return BuildCFuncInstruction(ref, type, input);
}
Node* WasmGraphBuilder::BuildF32Floor(Node* input) {
MachineType type = MachineType::Float32();
ExternalReference ref =
ExternalReference::wasm_f32_floor(jsgraph()->isolate());
return BuildCFuncInstruction(ref, type, input);
}
Node* WasmGraphBuilder::BuildF32Ceil(Node* input) {
MachineType type = MachineType::Float32();
ExternalReference ref =
ExternalReference::wasm_f32_ceil(jsgraph()->isolate());
return BuildCFuncInstruction(ref, type, input);
}
Node* WasmGraphBuilder::BuildF32NearestInt(Node* input) {
MachineType type = MachineType::Float32();
ExternalReference ref =
ExternalReference::wasm_f32_nearest_int(jsgraph()->isolate());
return BuildCFuncInstruction(ref, type, input);
}
Node* WasmGraphBuilder::BuildF64Trunc(Node* input) {
MachineType type = MachineType::Float64();
ExternalReference ref =
ExternalReference::wasm_f64_trunc(jsgraph()->isolate());
return BuildCFuncInstruction(ref, type, input);
}
Node* WasmGraphBuilder::BuildF64Floor(Node* input) {
MachineType type = MachineType::Float64();
ExternalReference ref =
ExternalReference::wasm_f64_floor(jsgraph()->isolate());
return BuildCFuncInstruction(ref, type, input);
}
Node* WasmGraphBuilder::BuildF64Ceil(Node* input) {
MachineType type = MachineType::Float64();
ExternalReference ref =
ExternalReference::wasm_f64_ceil(jsgraph()->isolate());
return BuildCFuncInstruction(ref, type, input);
}
Node* WasmGraphBuilder::BuildF64NearestInt(Node* input) {
MachineType type = MachineType::Float64();
ExternalReference ref =
ExternalReference::wasm_f64_nearest_int(jsgraph()->isolate());
return BuildCFuncInstruction(ref, type, input);
}
Node* WasmGraphBuilder::BuildF64Acos(Node* input) {
MachineType type = MachineType::Float64();
ExternalReference ref =
ExternalReference::f64_acos_wrapper_function(jsgraph()->isolate());
return BuildCFuncInstruction(ref, type, input);
}
Node* WasmGraphBuilder::BuildF64Asin(Node* input) {
MachineType type = MachineType::Float64();
ExternalReference ref =
ExternalReference::f64_asin_wrapper_function(jsgraph()->isolate());
return BuildCFuncInstruction(ref, type, input);
}
Node* WasmGraphBuilder::BuildF64Pow(Node* left, Node* right) {
MachineType type = MachineType::Float64();
ExternalReference ref =
ExternalReference::wasm_float64_pow(jsgraph()->isolate());
return BuildCFuncInstruction(ref, type, left, right);
}
Node* WasmGraphBuilder::BuildF64Mod(Node* left, Node* right) {
MachineType type = MachineType::Float64();
ExternalReference ref =
ExternalReference::f64_mod_wrapper_function(jsgraph()->isolate());
return BuildCFuncInstruction(ref, type, left, right);
}
Node* WasmGraphBuilder::BuildCFuncInstruction(ExternalReference ref,
MachineType type, Node* input0,
Node* input1) {
// We do truncation by calling a C function which calculates the result.
// The input is passed to the C function as a double*'s to avoid double
// parameters. For this we reserve slots on the stack, store the parameters
// in those slots, pass pointers to the slot to the C function,
// and after calling the C function we collect the return value from
// the stack slot.
Node* stack_slot_param0 =
graph()->NewNode(jsgraph()->machine()->StackSlot(type.representation()));
const Operator* store_op0 = jsgraph()->machine()->Store(
StoreRepresentation(type.representation(), kNoWriteBarrier));
*effect_ = graph()->NewNode(store_op0, stack_slot_param0,
jsgraph()->Int32Constant(0), input0, *effect_,
*control_);
Node* function = graph()->NewNode(jsgraph()->common()->ExternalConstant(ref));
if (input1 == nullptr) {
const int input_count = 1;
Signature<MachineType>::Builder sig_builder(jsgraph()->zone(), 0,
input_count);
sig_builder.AddParam(MachineType::Pointer());
BuildCCall(sig_builder.Build(), function, stack_slot_param0);
} else {
Node* stack_slot_param1 = graph()->NewNode(
jsgraph()->machine()->StackSlot(type.representation()));
const Operator* store_op1 = jsgraph()->machine()->Store(
StoreRepresentation(type.representation(), kNoWriteBarrier));
*effect_ = graph()->NewNode(store_op1, stack_slot_param1,
jsgraph()->Int32Constant(0), input1, *effect_,
*control_);
const int input_count = 2;
Signature<MachineType>::Builder sig_builder(jsgraph()->zone(), 0,
input_count);
sig_builder.AddParam(MachineType::Pointer());
sig_builder.AddParam(MachineType::Pointer());
BuildCCall(sig_builder.Build(), function, stack_slot_param0,
stack_slot_param1);
}
const Operator* load_op = jsgraph()->machine()->Load(type);
Node* load =
graph()->NewNode(load_op, stack_slot_param0, jsgraph()->Int32Constant(0),
*effect_, *control_);
*effect_ = load;
return load;
}
Node* WasmGraphBuilder::BuildF32SConvertI64(Node* input) {
// TODO(titzer/bradnelson): Check handlng of asm.js case.
return BuildIntToFloatConversionInstruction(
input, ExternalReference::wasm_int64_to_float32(jsgraph()->isolate()),
MachineRepresentation::kWord64, MachineType::Float32());
}
Node* WasmGraphBuilder::BuildF32UConvertI64(Node* input) {
// TODO(titzer/bradnelson): Check handlng of asm.js case.
return BuildIntToFloatConversionInstruction(
input, ExternalReference::wasm_uint64_to_float32(jsgraph()->isolate()),
MachineRepresentation::kWord64, MachineType::Float32());
}
Node* WasmGraphBuilder::BuildF64SConvertI64(Node* input) {
return BuildIntToFloatConversionInstruction(
input, ExternalReference::wasm_int64_to_float64(jsgraph()->isolate()),
MachineRepresentation::kWord64, MachineType::Float64());
}
Node* WasmGraphBuilder::BuildF64UConvertI64(Node* input) {
return BuildIntToFloatConversionInstruction(
input, ExternalReference::wasm_uint64_to_float64(jsgraph()->isolate()),
MachineRepresentation::kWord64, MachineType::Float64());
}
Node* WasmGraphBuilder::BuildIntToFloatConversionInstruction(
Node* input, ExternalReference ref,
MachineRepresentation parameter_representation,
const MachineType result_type) {
Node* stack_slot_param = graph()->NewNode(
jsgraph()->machine()->StackSlot(parameter_representation));
Node* stack_slot_result = graph()->NewNode(
jsgraph()->machine()->StackSlot(result_type.representation()));
const Operator* store_op = jsgraph()->machine()->Store(
StoreRepresentation(parameter_representation, kNoWriteBarrier));
*effect_ =
graph()->NewNode(store_op, stack_slot_param, jsgraph()->Int32Constant(0),
input, *effect_, *control_);
MachineSignature::Builder sig_builder(jsgraph()->zone(), 0, 2);
sig_builder.AddParam(MachineType::Pointer());
sig_builder.AddParam(MachineType::Pointer());
Node* function = graph()->NewNode(jsgraph()->common()->ExternalConstant(ref));
BuildCCall(sig_builder.Build(), function, stack_slot_param,
stack_slot_result);
const Operator* load_op = jsgraph()->machine()->Load(result_type);
Node* load =
graph()->NewNode(load_op, stack_slot_result, jsgraph()->Int32Constant(0),
*effect_, *control_);
*effect_ = load;
return load;
}
Node* WasmGraphBuilder::BuildI64SConvertF32(Node* input,
wasm::WasmCodePosition position) {
if (jsgraph()->machine()->Is32()) {
return BuildFloatToIntConversionInstruction(
input, ExternalReference::wasm_float32_to_int64(jsgraph()->isolate()),
MachineRepresentation::kFloat32, MachineType::Int64(), position);
} else {
Node* trunc = graph()->NewNode(
jsgraph()->machine()->TryTruncateFloat32ToInt64(), input);
Node* result = graph()->NewNode(jsgraph()->common()->Projection(0), trunc,
graph()->start());
Node* overflow = graph()->NewNode(jsgraph()->common()->Projection(1), trunc,
graph()->start());
ZeroCheck64(wasm::kTrapFloatUnrepresentable, overflow, position);
return result;
}
}
Node* WasmGraphBuilder::BuildI64UConvertF32(Node* input,
wasm::WasmCodePosition position) {
if (jsgraph()->machine()->Is32()) {
return BuildFloatToIntConversionInstruction(
input, ExternalReference::wasm_float32_to_uint64(jsgraph()->isolate()),
MachineRepresentation::kFloat32, MachineType::Int64(), position);
} else {
Node* trunc = graph()->NewNode(
jsgraph()->machine()->TryTruncateFloat32ToUint64(), input);
Node* result = graph()->NewNode(jsgraph()->common()->Projection(0), trunc,
graph()->start());
Node* overflow = graph()->NewNode(jsgraph()->common()->Projection(1), trunc,
graph()->start());
ZeroCheck64(wasm::kTrapFloatUnrepresentable, overflow, position);
return result;
}
}
Node* WasmGraphBuilder::BuildI64SConvertF64(Node* input,
wasm::WasmCodePosition position) {
if (jsgraph()->machine()->Is32()) {
return BuildFloatToIntConversionInstruction(
input, ExternalReference::wasm_float64_to_int64(jsgraph()->isolate()),
MachineRepresentation::kFloat64, MachineType::Int64(), position);
} else {
Node* trunc = graph()->NewNode(
jsgraph()->machine()->TryTruncateFloat64ToInt64(), input);
Node* result = graph()->NewNode(jsgraph()->common()->Projection(0), trunc,
graph()->start());
Node* overflow = graph()->NewNode(jsgraph()->common()->Projection(1), trunc,
graph()->start());
ZeroCheck64(wasm::kTrapFloatUnrepresentable, overflow, position);
return result;
}
}
Node* WasmGraphBuilder::BuildI64UConvertF64(Node* input,
wasm::WasmCodePosition position) {
if (jsgraph()->machine()->Is32()) {
return BuildFloatToIntConversionInstruction(
input, ExternalReference::wasm_float64_to_uint64(jsgraph()->isolate()),
MachineRepresentation::kFloat64, MachineType::Int64(), position);
} else {
Node* trunc = graph()->NewNode(
jsgraph()->machine()->TryTruncateFloat64ToUint64(), input);
Node* result = graph()->NewNode(jsgraph()->common()->Projection(0), trunc,
graph()->start());
Node* overflow = graph()->NewNode(jsgraph()->common()->Projection(1), trunc,
graph()->start());
ZeroCheck64(wasm::kTrapFloatUnrepresentable, overflow, position);
return result;
}
}
Node* WasmGraphBuilder::BuildFloatToIntConversionInstruction(
Node* input, ExternalReference ref,
MachineRepresentation parameter_representation,
const MachineType result_type, wasm::WasmCodePosition position) {
Node* stack_slot_param = graph()->NewNode(
jsgraph()->machine()->StackSlot(parameter_representation));
Node* stack_slot_result = graph()->NewNode(
jsgraph()->machine()->StackSlot(result_type.representation()));
const Operator* store_op = jsgraph()->machine()->Store(
StoreRepresentation(parameter_representation, kNoWriteBarrier));
*effect_ =
graph()->NewNode(store_op, stack_slot_param, jsgraph()->Int32Constant(0),
input, *effect_, *control_);
MachineSignature::Builder sig_builder(jsgraph()->zone(), 1, 2);
sig_builder.AddReturn(MachineType::Int32());
sig_builder.AddParam(MachineType::Pointer());
sig_builder.AddParam(MachineType::Pointer());
Node* function = graph()->NewNode(jsgraph()->common()->ExternalConstant(ref));
ZeroCheck32(wasm::kTrapFloatUnrepresentable,
BuildCCall(sig_builder.Build(), function, stack_slot_param,
stack_slot_result),
position);
const Operator* load_op = jsgraph()->machine()->Load(result_type);
Node* load =
graph()->NewNode(load_op, stack_slot_result, jsgraph()->Int32Constant(0),
*effect_, *control_);
*effect_ = load;
return load;
}
Node* WasmGraphBuilder::GrowMemory(Node* input) {
SetNeedsStackCheck();
Diamond check_input_range(
graph(), jsgraph()->common(),
graph()->NewNode(jsgraph()->machine()->Uint32LessThanOrEqual(), input,
jsgraph()->Uint32Constant(FLAG_wasm_max_mem_pages)),
BranchHint::kTrue);
check_input_range.Chain(*control_);
Node* parameters[] = {BuildChangeUint32ToSmi(input)};
Node* old_effect = *effect_;
*control_ = check_input_range.if_true;
Node* call = BuildCallToRuntime(Runtime::kWasmGrowMemory, parameters,
arraysize(parameters));
Node* result = BuildChangeSmiToInt32(call);
result = check_input_range.Phi(MachineRepresentation::kWord32, result,
jsgraph()->Int32Constant(-1));
*effect_ = graph()->NewNode(jsgraph()->common()->EffectPhi(2), *effect_,
old_effect, check_input_range.merge);
*control_ = check_input_range.merge;
return result;
}
uint32_t WasmGraphBuilder::GetExceptionEncodedSize(
const wasm::WasmException* exception) const {
const wasm::WasmExceptionSig* sig = exception->sig;
uint32_t encoded_size = 0;
for (size_t i = 0; i < sig->parameter_count(); ++i) {
size_t byte_size = size_t(1) << ElementSizeLog2Of(sig->GetParam(i));
DCHECK_EQ(byte_size % kBytesPerExceptionValuesArrayElement, 0);
DCHECK_LE(1, byte_size / kBytesPerExceptionValuesArrayElement);
encoded_size += byte_size / kBytesPerExceptionValuesArrayElement;
}
return encoded_size;
}
Node* WasmGraphBuilder::Throw(uint32_t tag,
const wasm::WasmException* exception,
const Vector<Node*> values) {
SetNeedsStackCheck();
uint32_t encoded_size = GetExceptionEncodedSize(exception);
Node* create_parameters[] = {
BuildChangeUint32ToSmi(ConvertExceptionTagToRuntimeId(tag)),
BuildChangeUint32ToSmi(Uint32Constant(encoded_size))};
BuildCallToRuntime(Runtime::kWasmThrowCreate, create_parameters,
arraysize(create_parameters));
uint32_t index = 0;
const wasm::WasmExceptionSig* sig = exception->sig;
MachineOperatorBuilder* m = jsgraph()->machine();
for (size_t i = 0; i < sig->parameter_count(); ++i) {
Node* value = values[i];
switch (sig->GetParam(i)) {
case wasm::kWasmF32:
value = graph()->NewNode(m->BitcastFloat32ToInt32(), value);
// Intentionally fall to next case.
case wasm::kWasmI32:
BuildEncodeException32BitValue(&index, value);
break;
case wasm::kWasmF64:
value = graph()->NewNode(m->BitcastFloat64ToInt64(), value);
// Intentionally fall to next case.
case wasm::kWasmI64: {
Node* upper32 = graph()->NewNode(
m->TruncateInt64ToInt32(),
Binop(wasm::kExprI64ShrU, value, Int64Constant(32)));
BuildEncodeException32BitValue(&index, upper32);
Node* lower32 = graph()->NewNode(m->TruncateInt64ToInt32(), value);
BuildEncodeException32BitValue(&index, lower32);
break;
}
default:
UNREACHABLE();
}
}
DCHECK_EQ(encoded_size, index);
return BuildCallToRuntime(Runtime::kWasmThrow, nullptr, 0);
}
void WasmGraphBuilder::BuildEncodeException32BitValue(uint32_t* index,
Node* value) {
MachineOperatorBuilder* machine = jsgraph()->machine();
Node* upper_parameters[] = {
BuildChangeUint32ToSmi(Int32Constant(*index)),
BuildChangeUint32ToSmi(
graph()->NewNode(machine->Word32Shr(), value, Int32Constant(16))),
};
BuildCallToRuntime(Runtime::kWasmExceptionSetElement, upper_parameters,
arraysize(upper_parameters));
++(*index);
Node* lower_parameters[] = {
BuildChangeUint32ToSmi(Int32Constant(*index)),
BuildChangeUint32ToSmi(graph()->NewNode(machine->Word32And(), value,
Int32Constant(0xFFFFu))),
};
BuildCallToRuntime(Runtime::kWasmExceptionSetElement, lower_parameters,
arraysize(lower_parameters));
++(*index);
}
Node* WasmGraphBuilder::BuildDecodeException32BitValue(Node* const* values,
uint32_t* index) {
MachineOperatorBuilder* machine = jsgraph()->machine();
Node* upper = BuildChangeSmiToInt32(values[*index]);
(*index)++;
upper = graph()->NewNode(machine->Word32Shl(), upper, Int32Constant(16));
Node* lower = BuildChangeSmiToInt32(values[*index]);
(*index)++;
Node* value = graph()->NewNode(machine->Word32Or(), upper, lower);
return value;
}
Node* WasmGraphBuilder::Rethrow() {
SetNeedsStackCheck();
Node* result = BuildCallToRuntime(Runtime::kWasmThrow, nullptr, 0);
return result;
}
Node* WasmGraphBuilder::ConvertExceptionTagToRuntimeId(uint32_t tag) {
// TODO(kschimpf): Handle exceptions from different modules, when they are
// linked at runtime.
return Uint32Constant(tag);
}
Node* WasmGraphBuilder::GetExceptionRuntimeId() {
SetNeedsStackCheck();
return BuildChangeSmiToInt32(
BuildCallToRuntime(Runtime::kWasmGetExceptionRuntimeId, nullptr, 0));
}
Node** WasmGraphBuilder::GetExceptionValues(
const wasm::WasmException* except_decl) {
// TODO(kschimpf): We need to move this code to the function-body-decoder.cc
// in order to build landing-pad (exception) edges in case the runtime
// call causes an exception.
// Start by getting the encoded values from the exception.
uint32_t encoded_size = GetExceptionEncodedSize(except_decl);
Node** values = Buffer(encoded_size);
for (uint32_t i = 0; i < encoded_size; ++i) {
Node* parameters[] = {BuildChangeUint32ToSmi(Uint32Constant(i))};
values[i] = BuildCallToRuntime(Runtime::kWasmExceptionGetElement,
parameters, arraysize(parameters));
}
// Now convert the leading entries to the corresponding parameter values.
uint32_t index = 0;
const wasm::WasmExceptionSig* sig = except_decl->sig;
for (size_t i = 0; i < sig->parameter_count(); ++i) {
Node* value = BuildDecodeException32BitValue(values, &index);
switch (wasm::ValueType type = sig->GetParam(i)) {
case wasm::kWasmF32: {
value = Unop(wasm::kExprF32ReinterpretI32, value);
break;
}
case wasm::kWasmI32:
break;
case wasm::kWasmF64:
case wasm::kWasmI64: {
Node* upper =
Binop(wasm::kExprI64Shl, Unop(wasm::kExprI64UConvertI32, value),
Int64Constant(32));
Node* lower = Unop(wasm::kExprI64UConvertI32,
BuildDecodeException32BitValue(values, &index));
value = Binop(wasm::kExprI64Ior, upper, lower);
if (type == wasm::kWasmF64) {
value = Unop(wasm::kExprF64ReinterpretI64, value);
}
break;
}
default:
UNREACHABLE();
}
values[i] = value;
}
DCHECK_EQ(index, encoded_size);
return values;
}
Node* WasmGraphBuilder::BuildI32DivS(Node* left, Node* right,
wasm::WasmCodePosition position) {
MachineOperatorBuilder* m = jsgraph()->machine();
ZeroCheck32(wasm::kTrapDivByZero, right, position);
Node* before = *control_;
Node* denom_is_m1;
Node* denom_is_not_m1;
BranchExpectFalse(
graph()->NewNode(m->Word32Equal(), right, jsgraph()->Int32Constant(-1)),
&denom_is_m1, &denom_is_not_m1);
*control_ = denom_is_m1;
TrapIfEq32(wasm::kTrapDivUnrepresentable, left, kMinInt, position);
if (*control_ != denom_is_m1) {
*control_ = graph()->NewNode(jsgraph()->common()->Merge(2), denom_is_not_m1,
*control_);
} else {
*control_ = before;
}
return graph()->NewNode(m->Int32Div(), left, right, *control_);
}
Node* WasmGraphBuilder::BuildI32RemS(Node* left, Node* right,
wasm::WasmCodePosition position) {
MachineOperatorBuilder* m = jsgraph()->machine();
ZeroCheck32(wasm::kTrapRemByZero, right, position);
Diamond d(
graph(), jsgraph()->common(),
graph()->NewNode(m->Word32Equal(), right, jsgraph()->Int32Constant(-1)),
BranchHint::kFalse);
d.Chain(*control_);
return d.Phi(MachineRepresentation::kWord32, jsgraph()->Int32Constant(0),
graph()->NewNode(m->Int32Mod(), left, right, d.if_false));
}
Node* WasmGraphBuilder::BuildI32DivU(Node* left, Node* right,
wasm::WasmCodePosition position) {
MachineOperatorBuilder* m = jsgraph()->machine();
return graph()->NewNode(m->Uint32Div(), left, right,
ZeroCheck32(wasm::kTrapDivByZero, right, position));
}
Node* WasmGraphBuilder::BuildI32RemU(Node* left, Node* right,
wasm::WasmCodePosition position) {
MachineOperatorBuilder* m = jsgraph()->machine();
return graph()->NewNode(m->Uint32Mod(), left, right,
ZeroCheck32(wasm::kTrapRemByZero, right, position));
}
Node* WasmGraphBuilder::BuildI32AsmjsDivS(Node* left, Node* right) {
MachineOperatorBuilder* m = jsgraph()->machine();
Int32Matcher mr(right);
if (mr.HasValue()) {
if (mr.Value() == 0) {
return jsgraph()->Int32Constant(0);
} else if (mr.Value() == -1) {
// The result is the negation of the left input.
return graph()->NewNode(m->Int32Sub(), jsgraph()->Int32Constant(0), left);
}
return graph()->NewNode(m->Int32Div(), left, right, *control_);
}
// asm.js semantics return 0 on divide or mod by zero.
if (m->Int32DivIsSafe()) {
// The hardware instruction does the right thing (e.g. arm).
return graph()->NewNode(m->Int32Div(), left, right, graph()->start());
}
// Check denominator for zero.
Diamond z(
graph(), jsgraph()->common(),
graph()->NewNode(m->Word32Equal(), right, jsgraph()->Int32Constant(0)),
BranchHint::kFalse);
// Check numerator for -1. (avoid minint / -1 case).
Diamond n(
graph(), jsgraph()->common(),
graph()->NewNode(m->Word32Equal(), right, jsgraph()->Int32Constant(-1)),
BranchHint::kFalse);
Node* div = graph()->NewNode(m->Int32Div(), left, right, z.if_false);
Node* neg =
graph()->NewNode(m->Int32Sub(), jsgraph()->Int32Constant(0), left);
return n.Phi(
MachineRepresentation::kWord32, neg,
z.Phi(MachineRepresentation::kWord32, jsgraph()->Int32Constant(0), div));
}
Node* WasmGraphBuilder::BuildI32AsmjsRemS(Node* left, Node* right) {
CommonOperatorBuilder* c = jsgraph()->common();
MachineOperatorBuilder* m = jsgraph()->machine();
Node* const zero = jsgraph()->Int32Constant(0);
Int32Matcher mr(right);
if (mr.HasValue()) {
if (mr.Value() == 0 || mr.Value() == -1) {
return zero;
}
return graph()->NewNode(m->Int32Mod(), left, right, *control_);
}
// General case for signed integer modulus, with optimization for (unknown)
// power of 2 right hand side.
//
// if 0 < right then
// msk = right - 1
// if right & msk != 0 then
// left % right
// else
// if left < 0 then
// -(-left & msk)
// else
// left & msk
// else
// if right < -1 then
// left % right
// else
// zero
//
// Note: We do not use the Diamond helper class here, because it really hurts
// readability with nested diamonds.
Node* const minus_one = jsgraph()->Int32Constant(-1);
const Operator* const merge_op = c->Merge(2);
const Operator* const phi_op = c->Phi(MachineRepresentation::kWord32, 2);
Node* check0 = graph()->NewNode(m->Int32LessThan(), zero, right);
Node* branch0 =
graph()->NewNode(c->Branch(BranchHint::kTrue), check0, graph()->start());
Node* if_true0 = graph()->NewNode(c->IfTrue(), branch0);
Node* true0;
{
Node* msk = graph()->NewNode(m->Int32Add(), right, minus_one);
Node* check1 = graph()->NewNode(m->Word32And(), right, msk);
Node* branch1 = graph()->NewNode(c->Branch(), check1, if_true0);
Node* if_true1 = graph()->NewNode(c->IfTrue(), branch1);
Node* true1 = graph()->NewNode(m->Int32Mod(), left, right, if_true1);
Node* if_false1 = graph()->NewNode(c->IfFalse(), branch1);
Node* false1;
{
Node* check2 = graph()->NewNode(m->Int32LessThan(), left, zero);
Node* branch2 =
graph()->NewNode(c->Branch(BranchHint::kFalse), check2, if_false1);
Node* if_true2 = graph()->NewNode(c->IfTrue(), branch2);
Node* true2 = graph()->NewNode(
m->Int32Sub(), zero,
graph()->NewNode(m->Word32And(),
graph()->NewNode(m->Int32Sub(), zero, left), msk));
Node* if_false2 = graph()->NewNode(c->IfFalse(), branch2);
Node* false2 = graph()->NewNode(m->Word32And(), left, msk);
if_false1 = graph()->NewNode(merge_op, if_true2, if_false2);
false1 = graph()->NewNode(phi_op, true2, false2, if_false1);
}
if_true0 = graph()->NewNode(merge_op, if_true1, if_false1);
true0 = graph()->NewNode(phi_op, true1, false1, if_true0);
}
Node* if_false0 = graph()->NewNode(c->IfFalse(), branch0);
Node* false0;
{
Node* check1 = graph()->NewNode(m->Int32LessThan(), right, minus_one);
Node* branch1 =
graph()->NewNode(c->Branch(BranchHint::kTrue), check1, if_false0);
Node* if_true1 = graph()->NewNode(c->IfTrue(), branch1);
Node* true1 = graph()->NewNode(m->Int32Mod(), left, right, if_true1);
Node* if_false1 = graph()->NewNode(c->IfFalse(), branch1);
Node* false1 = zero;
if_false0 = graph()->NewNode(merge_op, if_true1, if_false1);
false0 = graph()->NewNode(phi_op, true1, false1, if_false0);
}
Node* merge0 = graph()->NewNode(merge_op, if_true0, if_false0);
return graph()->NewNode(phi_op, true0, false0, merge0);
}
Node* WasmGraphBuilder::BuildI32AsmjsDivU(Node* left, Node* right) {
MachineOperatorBuilder* m = jsgraph()->machine();
// asm.js semantics return 0 on divide or mod by zero.
if (m->Uint32DivIsSafe()) {
// The hardware instruction does the right thing (e.g. arm).
return graph()->NewNode(m->Uint32Div(), left, right, graph()->start());
}
// Explicit check for x % 0.
Diamond z(
graph(), jsgraph()->common(),
graph()->NewNode(m->Word32Equal(), right, jsgraph()->Int32Constant(0)),
BranchHint::kFalse);
return z.Phi(MachineRepresentation::kWord32, jsgraph()->Int32Constant(0),
graph()->NewNode(jsgraph()->machine()->Uint32Div(), left, right,
z.if_false));
}
Node* WasmGraphBuilder::BuildI32AsmjsRemU(Node* left, Node* right) {
MachineOperatorBuilder* m = jsgraph()->machine();
// asm.js semantics return 0 on divide or mod by zero.
// Explicit check for x % 0.
Diamond z(
graph(), jsgraph()->common(),
graph()->NewNode(m->Word32Equal(), right, jsgraph()->Int32Constant(0)),
BranchHint::kFalse);
Node* rem = graph()->NewNode(jsgraph()->machine()->Uint32Mod(), left, right,
z.if_false);
return z.Phi(MachineRepresentation::kWord32, jsgraph()->Int32Constant(0),
rem);
}
Node* WasmGraphBuilder::BuildI64DivS(Node* left, Node* right,
wasm::WasmCodePosition position) {
if (jsgraph()->machine()->Is32()) {
return BuildDiv64Call(
left, right, ExternalReference::wasm_int64_div(jsgraph()->isolate()),
MachineType::Int64(), wasm::kTrapDivByZero, position);
}
ZeroCheck64(wasm::kTrapDivByZero, right, position);
Node* before = *control_;
Node* denom_is_m1;
Node* denom_is_not_m1;
BranchExpectFalse(graph()->NewNode(jsgraph()->machine()->Word64Equal(), right,
jsgraph()->Int64Constant(-1)),
&denom_is_m1, &denom_is_not_m1);
*control_ = denom_is_m1;
TrapIfEq64(wasm::kTrapDivUnrepresentable, left,
std::numeric_limits<int64_t>::min(), position);
if (*control_ != denom_is_m1) {
*control_ = graph()->NewNode(jsgraph()->common()->Merge(2), denom_is_not_m1,
*control_);
} else {
*control_ = before;
}
return graph()->NewNode(jsgraph()->machine()->Int64Div(), left, right,
*control_);
}
Node* WasmGraphBuilder::BuildI64RemS(Node* left, Node* right,
wasm::WasmCodePosition position) {
if (jsgraph()->machine()->Is32()) {
return BuildDiv64Call(
left, right, ExternalReference::wasm_int64_mod(jsgraph()->isolate()),
MachineType::Int64(), wasm::kTrapRemByZero, position);
}
ZeroCheck64(wasm::kTrapRemByZero, right, position);
Diamond d(jsgraph()->graph(), jsgraph()->common(),
graph()->NewNode(jsgraph()->machine()->Word64Equal(), right,
jsgraph()->Int64Constant(-1)));
d.Chain(*control_);
Node* rem = graph()->NewNode(jsgraph()->machine()->Int64Mod(), left, right,
d.if_false);
return d.Phi(MachineRepresentation::kWord64, jsgraph()->Int64Constant(0),
rem);
}
Node* WasmGraphBuilder::BuildI64DivU(Node* left, Node* right,
wasm::WasmCodePosition position) {
if (jsgraph()->machine()->Is32()) {
return BuildDiv64Call(
left, right, ExternalReference::wasm_uint64_div(jsgraph()->isolate()),
MachineType::Int64(), wasm::kTrapDivByZero, position);
}
return graph()->NewNode(jsgraph()->machine()->Uint64Div(), left, right,
ZeroCheck64(wasm::kTrapDivByZero, right, position));
}
Node* WasmGraphBuilder::BuildI64RemU(Node* left, Node* right,
wasm::WasmCodePosition position) {
if (jsgraph()->machine()->Is32()) {
return BuildDiv64Call(
left, right, ExternalReference::wasm_uint64_mod(jsgraph()->isolate()),
MachineType::Int64(), wasm::kTrapRemByZero, position);
}
return graph()->NewNode(jsgraph()->machine()->Uint64Mod(), left, right,
ZeroCheck64(wasm::kTrapRemByZero, right, position));
}
Node* WasmGraphBuilder::BuildDiv64Call(Node* left, Node* right,
ExternalReference ref,
MachineType result_type, int trap_zero,
wasm::WasmCodePosition position) {
Node* stack_slot_dst = graph()->NewNode(
jsgraph()->machine()->StackSlot(MachineRepresentation::kWord64));
Node* stack_slot_src = graph()->NewNode(
jsgraph()->machine()->StackSlot(MachineRepresentation::kWord64));
const Operator* store_op = jsgraph()->machine()->Store(
StoreRepresentation(MachineRepresentation::kWord64, kNoWriteBarrier));
*effect_ =
graph()->NewNode(store_op, stack_slot_dst, jsgraph()->Int32Constant(0),
left, *effect_, *control_);
*effect_ =
graph()->NewNode(store_op, stack_slot_src, jsgraph()->Int32Constant(0),
right, *effect_, *control_);
MachineSignature::Builder sig_builder(jsgraph()->zone(), 1, 2);
sig_builder.AddReturn(MachineType::Int32());
sig_builder.AddParam(MachineType::Pointer());
sig_builder.AddParam(MachineType::Pointer());
Node* function = graph()->NewNode(jsgraph()->common()->ExternalConstant(ref));
Node* call =
BuildCCall(sig_builder.Build(), function, stack_slot_dst, stack_slot_src);
ZeroCheck32(static_cast<wasm::TrapReason>(trap_zero), call, position);
TrapIfEq32(wasm::kTrapDivUnrepresentable, call, -1, position);
const Operator* load_op = jsgraph()->machine()->Load(result_type);
Node* load =
graph()->NewNode(load_op, stack_slot_dst, jsgraph()->Int32Constant(0),
*effect_, *control_);
*effect_ = load;
return load;
}
template <typename... Args>
Node* WasmGraphBuilder::BuildCCall(MachineSignature* sig, Node* function,
Args... args) {
DCHECK_LE(sig->return_count(), 1);
DCHECK_EQ(sizeof...(args), sig->parameter_count());
Node* const call_args[] = {function, args..., *effect_, *control_};
CallDescriptor* desc =
Linkage::GetSimplifiedCDescriptor(jsgraph()->zone(), sig);
const Operator* op = jsgraph()->common()->Call(desc);
Node* call = graph()->NewNode(op, arraysize(call_args), call_args);
*effect_ = call;
return call;
}
Node* WasmGraphBuilder::BuildWasmCall(wasm::FunctionSig* sig, Node** args,
Node*** rets,
wasm::WasmCodePosition position) {
DCHECK_NOT_NULL(wasm_context_);
SetNeedsStackCheck();
const size_t params = sig->parameter_count();
const size_t extra = 3; // wasm_context, effect, and control.
const size_t count = 1 + params + extra;
// Reallocate the buffer to make space for extra inputs.
args = Realloc(args, 1 + params, count);
// Make room for the wasm_context parameter at index 1, just after code.
memmove(&args[2], &args[1], params * sizeof(Node*));
args[1] = wasm_context_.get();
// Add effect and control inputs.
args[params + 2] = *effect_;
args[params + 3] = *control_;
CallDescriptor* descriptor = GetWasmCallDescriptor(jsgraph()->zone(), sig);
const Operator* op = jsgraph()->common()->Call(descriptor);
Node* call = graph()->NewNode(op, static_cast<int>(count), args);
SetSourcePosition(call, position);
*effect_ = call;
size_t ret_count = sig->return_count();
if (ret_count == 0) return call; // No return value.
*rets = Buffer(ret_count);
if (ret_count == 1) {
// Only a single return value.
(*rets)[0] = call;
} else {
// Create projections for all return values.
for (size_t i = 0; i < ret_count; i++) {
(*rets)[i] = graph()->NewNode(jsgraph()->common()->Projection(i), call,
graph()->start());
}
}
return call;
}
Node* WasmGraphBuilder::CallDirect(uint32_t index, Node** args, Node*** rets,
wasm::WasmCodePosition position) {
DCHECK_NULL(args[0]);
wasm::FunctionSig* sig = env_->module->functions[index].sig;
if (FLAG_wasm_jit_to_native) {
// Just encode the function index. This will be patched at instantiation.
Address code = reinterpret_cast<Address>(index);
args[0] = jsgraph()->RelocatableIntPtrConstant(
reinterpret_cast<intptr_t>(code), RelocInfo::WASM_CALL);
} else {
// Add code object as constant.
Handle<Code> code = index < env_->function_code.size()
? env_->function_code[index]
: env_->default_function_code;
DCHECK(!code.is_null());
args[0] = HeapConstant(code);
}
return BuildWasmCall(sig, args, rets, position);
}
Node* WasmGraphBuilder::CallIndirect(uint32_t sig_index, Node** args,
Node*** rets,
wasm::WasmCodePosition position) {
DCHECK_NOT_NULL(args[0]);
DCHECK_NOT_NULL(env_);
// Assume only one table for now.
uint32_t table_index = 0;
wasm::FunctionSig* sig = env_->module->signatures[sig_index];
EnsureFunctionTableNodes();
MachineOperatorBuilder* machine = jsgraph()->machine();
Node* key = args[0];
// Bounds check against the table size.
Node* size = function_tables_[table_index].size;
Node* in_bounds = graph()->NewNode(machine->Uint32LessThan(), key, size);
TrapIfFalse(wasm::kTrapFuncInvalid, in_bounds, position);
Node* table_address = function_tables_[table_index].table_addr;
Node* table = graph()->NewNode(
jsgraph()->machine()->Load(MachineType::AnyTagged()), table_address,
jsgraph()->IntPtrConstant(0), *effect_, *control_);
// Load signature from the table and check.
// The table is a FixedArray; signatures are encoded as SMIs.
// [sig1, code1, sig2, code2, sig3, code3, ...]
static_assert(compiler::kFunctionTableEntrySize == 2, "consistency");
static_assert(compiler::kFunctionTableSignatureOffset == 0, "consistency");
static_assert(compiler::kFunctionTableCodeOffset == 1, "consistency");
ElementAccess access = AccessBuilder::ForFixedArrayElement();
const int fixed_offset = access.header_size - access.tag();
Node* key_offset = graph()->NewNode(machine->Word32Shl(), key,
Int32Constant(kPointerSizeLog2 + 1));
Node* load_sig =
graph()->NewNode(machine->Load(MachineType::AnyTagged()), table,
graph()->NewNode(machine->Int32Add(), key_offset,
Int32Constant(fixed_offset)),
*effect_, *control_);
int32_t canonical_sig_num = env_->module->signature_ids[sig_index];
CHECK_GE(sig_index, 0);
Node* sig_match = graph()->NewNode(machine->WordEqual(), load_sig,
jsgraph()->SmiConstant(canonical_sig_num));
TrapIfFalse(wasm::kTrapFuncSigMismatch, sig_match, position);
// Load code object from the table. It is held by a Foreign.
Node* entry = graph()->NewNode(
machine->Load(MachineType::AnyTagged()), table,
graph()->NewNode(machine->Int32Add(), key_offset,
Uint32Constant(fixed_offset + kPointerSize)),
*effect_, *control_);
if (FLAG_wasm_jit_to_native) {
Node* address = graph()->NewNode(
machine->Load(MachineType::Pointer()), entry,
Int32Constant(Foreign::kForeignAddressOffset - kHeapObjectTag),
*effect_, *control_);
args[0] = address;
} else {
args[0] = entry;
}
return BuildWasmCall(sig, args, rets, position);
}
Node* WasmGraphBuilder::BuildI32Rol(Node* left, Node* right) {
// Implement Rol by Ror since TurboFan does not have Rol opcode.
// TODO(weiliang): support Word32Rol opcode in TurboFan.
Int32Matcher m(right);
if (m.HasValue()) {
return Binop(wasm::kExprI32Ror, left,
jsgraph()->Int32Constant(32 - m.Value()));
} else {
return Binop(wasm::kExprI32Ror, left,
Binop(wasm::kExprI32Sub, jsgraph()->Int32Constant(32), right));
}
}
Node* WasmGraphBuilder::BuildI64Rol(Node* left, Node* right) {
// Implement Rol by Ror since TurboFan does not have Rol opcode.
// TODO(weiliang): support Word64Rol opcode in TurboFan.
Int64Matcher m(right);
if (m.HasValue()) {
return Binop(wasm::kExprI64Ror, left,
jsgraph()->Int64Constant(64 - m.Value()));
} else {
return Binop(wasm::kExprI64Ror, left,
Binop(wasm::kExprI64Sub, jsgraph()->Int64Constant(64), right));
}
}
Node* WasmGraphBuilder::Invert(Node* node) {
return Unop(wasm::kExprI32Eqz, node);
}
Node* WasmGraphBuilder::BuildChangeInt32ToTagged(Node* value) {
MachineOperatorBuilder* machine = jsgraph()->machine();
CommonOperatorBuilder* common = jsgraph()->common();
if (machine->Is64()) {
return BuildChangeInt32ToSmi(value);
}
Node* add = graph()->NewNode(machine->Int32AddWithOverflow(), value, value,
graph()->start());
Node* ovf = graph()->NewNode(common->Projection(1), add, graph()->start());
Node* branch = graph()->NewNode(common->Branch(BranchHint::kFalse), ovf,
graph()->start());
Node* if_true = graph()->NewNode(common->IfTrue(), branch);
Node* vtrue = BuildAllocateHeapNumberWithValue(
graph()->NewNode(machine->ChangeInt32ToFloat64(), value), if_true);
Node* if_false = graph()->NewNode(common->IfFalse(), branch);
Node* vfalse = graph()->NewNode(common->Projection(0), add, if_false);
Node* merge = graph()->NewNode(common->Merge(2), if_true, if_false);
Node* phi = graph()->NewNode(common->Phi(MachineRepresentation::kTagged, 2),
vtrue, vfalse, merge);
return phi;
}
Node* WasmGraphBuilder::BuildChangeFloat64ToTagged(Node* value) {
MachineOperatorBuilder* machine = jsgraph()->machine();
CommonOperatorBuilder* common = jsgraph()->common();
Node* value32 = graph()->NewNode(machine->RoundFloat64ToInt32(), value);
Node* check_same = graph()->NewNode(
machine->Float64Equal(), value,
graph()->NewNode(machine->ChangeInt32ToFloat64(), value32));
Node* branch_same =
graph()->NewNode(common->Branch(), check_same, graph()->start());
Node* if_smi = graph()->NewNode(common->IfTrue(), branch_same);
Node* vsmi;
Node* if_box = graph()->NewNode(common->IfFalse(), branch_same);
Node* vbox;
// We only need to check for -0 if the {value} can potentially contain -0.
Node* check_zero = graph()->NewNode(machine->Word32Equal(), value32,
jsgraph()->Int32Constant(0));
Node* branch_zero =
graph()->NewNode(common->Branch(BranchHint::kFalse), check_zero, if_smi);
Node* if_zero = graph()->NewNode(common->IfTrue(), branch_zero);
Node* if_notzero = graph()->NewNode(common->IfFalse(), branch_zero);
// In case of 0, we need to check the high bits for the IEEE -0 pattern.
Node* check_negative = graph()->NewNode(
machine->Int32LessThan(),
graph()->NewNode(machine->Float64ExtractHighWord32(), value),
jsgraph()->Int32Constant(0));
Node* branch_negative = graph()->NewNode(common->Branch(BranchHint::kFalse),
check_negative, if_zero);
Node* if_negative = graph()->NewNode(common->IfTrue(), branch_negative);
Node* if_notnegative = graph()->NewNode(common->IfFalse(), branch_negative);
// We need to create a box for negative 0.
if_smi = graph()->NewNode(common->Merge(2), if_notzero, if_notnegative);
if_box = graph()->NewNode(common->Merge(2), if_box, if_negative);
// On 64-bit machines we can just wrap the 32-bit integer in a smi, for 32-bit
// machines we need to deal with potential overflow and fallback to boxing.
if (machine->Is64()) {
vsmi = BuildChangeInt32ToSmi(value32);
} else {
Node* smi_tag = graph()->NewNode(machine->Int32AddWithOverflow(), value32,
value32, if_smi);
Node* check_ovf = graph()->NewNode(common->Projection(1), smi_tag, if_smi);
Node* branch_ovf =
graph()->NewNode(common->Branch(BranchHint::kFalse), check_ovf, if_smi);
Node* if_ovf = graph()->NewNode(common->IfTrue(), branch_ovf);
if_box = graph()->NewNode(common->Merge(2), if_ovf, if_box);
if_smi = graph()->NewNode(common->IfFalse(), branch_ovf);
vsmi = graph()->NewNode(common->Projection(0), smi_tag, if_smi);
}
// Allocate the box for the {value}.
vbox = BuildAllocateHeapNumberWithValue(value, if_box);
Node* control = graph()->NewNode(common->Merge(2), if_smi, if_box);
value = graph()->NewNode(common->Phi(MachineRepresentation::kTagged, 2), vsmi,
vbox, control);
return value;
}
Node* WasmGraphBuilder::ToJS(Node* node, wasm::ValueType type) {
switch (type) {
case wasm::kWasmI32:
return BuildChangeInt32ToTagged(node);
case wasm::kWasmS128:
case wasm::kWasmI64:
UNREACHABLE();
case wasm::kWasmF32:
node = graph()->NewNode(jsgraph()->machine()->ChangeFloat32ToFloat64(),
node);
return BuildChangeFloat64ToTagged(node);
case wasm::kWasmF64:
return BuildChangeFloat64ToTagged(node);
case wasm::kWasmStmt:
return jsgraph()->UndefinedConstant();
default:
UNREACHABLE();
}
}
Node* WasmGraphBuilder::BuildJavaScriptToNumber(Node* node, Node* js_context) {
Callable callable =
Builtins::CallableFor(jsgraph()->isolate(), Builtins::kToNumber);
CallDescriptor* desc = Linkage::GetStubCallDescriptor(
jsgraph()->isolate(), jsgraph()->zone(), callable.descriptor(), 0,
CallDescriptor::kNoFlags, Operator::kNoProperties);
Node* stub_code = jsgraph()->HeapConstant(callable.code());
Node* result = graph()->NewNode(jsgraph()->common()->Call(desc), stub_code,
node, js_context, *effect_, *control_);
SetSourcePosition(result, 1);
*effect_ = result;
return result;
}
bool CanCover(Node* value, IrOpcode::Value opcode) {
if (value->opcode() != opcode) return false;
bool first = true;
for (Edge const edge : value->use_edges()) {
if (NodeProperties::IsControlEdge(edge)) continue;
if (NodeProperties::IsEffectEdge(edge)) continue;
DCHECK(NodeProperties::IsValueEdge(edge));
if (!first) return false;
first = false;
}
return true;
}
Node* WasmGraphBuilder::BuildChangeTaggedToFloat64(Node* value) {
MachineOperatorBuilder* machine = jsgraph()->machine();
CommonOperatorBuilder* common = jsgraph()->common();
Node* check = BuildTestNotSmi(value);
Node* branch = graph()->NewNode(common->Branch(BranchHint::kFalse), check,
graph()->start());
Node* if_not_smi = graph()->NewNode(common->IfTrue(), branch);
Node* vnot_smi;
Node* check_undefined = graph()->NewNode(machine->WordEqual(), value,
jsgraph()->UndefinedConstant());
Node* branch_undefined = graph()->NewNode(common->Branch(BranchHint::kFalse),
check_undefined, if_not_smi);
Node* if_undefined = graph()->NewNode(common->IfTrue(), branch_undefined);
Node* vundefined =
jsgraph()->Float64Constant(std::numeric_limits<double>::quiet_NaN());
Node* if_not_undefined =
graph()->NewNode(common->IfFalse(), branch_undefined);
Node* vheap_number = BuildLoadHeapNumberValue(value, if_not_undefined);
if_not_smi =
graph()->NewNode(common->Merge(2), if_undefined, if_not_undefined);
vnot_smi = graph()->NewNode(common->Phi(MachineRepresentation::kFloat64, 2),
vundefined, vheap_number, if_not_smi);
Node* if_smi = graph()->NewNode(common->IfFalse(), branch);
Node* vfrom_smi = BuildChangeSmiToFloat64(value);
Node* merge = graph()->NewNode(common->Merge(2), if_not_smi, if_smi);
Node* phi = graph()->NewNode(common->Phi(MachineRepresentation::kFloat64, 2),
vnot_smi, vfrom_smi, merge);
return phi;
}
Node* WasmGraphBuilder::FromJS(Node* node, Node* js_context,
wasm::ValueType type) {
DCHECK_NE(wasm::kWasmStmt, type);
// Do a JavaScript ToNumber.
Node* num = BuildJavaScriptToNumber(node, js_context);
// Change representation.
SimplifiedOperatorBuilder simplified(jsgraph()->zone());
num = BuildChangeTaggedToFloat64(num);
switch (type) {
case wasm::kWasmI32: {
num = graph()->NewNode(jsgraph()->machine()->TruncateFloat64ToWord32(),
num);
break;
}
case wasm::kWasmS128:
case wasm::kWasmI64:
UNREACHABLE();
case wasm::kWasmF32:
num = graph()->NewNode(jsgraph()->machine()->TruncateFloat64ToFloat32(),
num);
break;
case wasm::kWasmF64:
break;
default:
UNREACHABLE();
}
return num;
}
Node* WasmGraphBuilder::BuildChangeInt32ToSmi(Node* value) {
if (jsgraph()->machine()->Is64()) {
value = graph()->NewNode(jsgraph()->machine()->ChangeInt32ToInt64(), value);
}
return graph()->NewNode(jsgraph()->machine()->WordShl(), value,
BuildSmiShiftBitsConstant());
}
Node* WasmGraphBuilder::BuildChangeSmiToInt32(Node* value) {
value = graph()->NewNode(jsgraph()->machine()->WordSar(), value,
BuildSmiShiftBitsConstant());
if (jsgraph()->machine()->Is64()) {
value =
graph()->NewNode(jsgraph()->machine()->TruncateInt64ToInt32(), value);
}
return value;
}
Node* WasmGraphBuilder::BuildChangeUint32ToSmi(Node* value) {
return graph()->NewNode(jsgraph()->machine()->WordShl(),
Uint32ToUintptr(value), BuildSmiShiftBitsConstant());
}
Node* WasmGraphBuilder::BuildChangeSmiToFloat64(Node* value) {
return graph()->NewNode(jsgraph()->machine()->ChangeInt32ToFloat64(),
BuildChangeSmiToInt32(value));
}
Node* WasmGraphBuilder::BuildTestNotSmi(Node* value) {
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagMask == 1);
return graph()->NewNode(jsgraph()->machine()->WordAnd(), value,
jsgraph()->IntPtrConstant(kSmiTagMask));
}
Node* WasmGraphBuilder::BuildSmiShiftBitsConstant() {
return jsgraph()->IntPtrConstant(kSmiShiftSize + kSmiTagSize);
}
Node* WasmGraphBuilder::BuildAllocateHeapNumberWithValue(Node* value,
Node* control) {
MachineOperatorBuilder* machine = jsgraph()->machine();
CommonOperatorBuilder* common = jsgraph()->common();
// The AllocateHeapNumber builtin does not use the js_context, so we can
// safely pass in Smi zero here.
Callable callable = Builtins::CallableFor(jsgraph()->isolate(),
Builtins::kAllocateHeapNumber);
Node* target = jsgraph()->HeapConstant(callable.code());
Node* js_context = jsgraph()->NoContextConstant();
Node* effect =
graph()->NewNode(common->BeginRegion(RegionObservability::kNotObservable),
graph()->start());
if (!allocate_heap_number_operator_.is_set()) {
CallDescriptor* descriptor = Linkage::GetStubCallDescriptor(
jsgraph()->isolate(), jsgraph()->zone(), callable.descriptor(), 0,
CallDescriptor::kNoFlags, Operator::kNoThrow);
allocate_heap_number_operator_.set(common->Call(descriptor));
}
Node* heap_number = graph()->NewNode(allocate_heap_number_operator_.get(),
target, js_context, effect, control);
Node* store =
graph()->NewNode(machine->Store(StoreRepresentation(
MachineRepresentation::kFloat64, kNoWriteBarrier)),
heap_number, BuildHeapNumberValueIndexConstant(), value,
heap_number, control);
return graph()->NewNode(common->FinishRegion(), heap_number, store);
}
Node* WasmGraphBuilder::BuildLoadHeapNumberValue(Node* value, Node* control) {
return graph()->NewNode(jsgraph()->machine()->Load(MachineType::Float64()),
value, BuildHeapNumberValueIndexConstant(),
graph()->start(), control);
}
Node* WasmGraphBuilder::BuildHeapNumberValueIndexConstant() {
return jsgraph()->IntPtrConstant(HeapNumber::kValueOffset - kHeapObjectTag);
}
void WasmGraphBuilder::BuildJSToWasmWrapper(WasmCodeWrapper wasm_code,
Address wasm_context_address) {
const int wasm_count = static_cast<int>(sig_->parameter_count());
const int count =
wasm_count + 4; // wasm_code, wasm_context, effect, and control.
Node** args = Buffer(count);
// Build the start and the JS parameter nodes.
Node* start = Start(wasm_count + 5);
*control_ = start;
*effect_ = start;
// Create the js_context parameter
Node* js_context = graph()->NewNode(
jsgraph()->common()->Parameter(
Linkage::GetJSCallContextParamIndex(wasm_count + 1), "%context"),
graph()->start());
// Create the wasm_context node to pass as parameter. This must be a
// RelocatableIntPtrConstant because JSToWasm wrappers are compiled at module
// compile time and patched at instance build time.
DCHECK_NULL(wasm_context_);
wasm_context_ = jsgraph()->RelocatableIntPtrConstant(
reinterpret_cast<uintptr_t>(wasm_context_address),
RelocInfo::WASM_CONTEXT_REFERENCE);
Node* wasm_code_node = nullptr;
if (!wasm_code.IsCodeObject()) {
const wasm::WasmCode* code = wasm_code.GetWasmCode();
Address instr_start =
code == nullptr ? nullptr : code->instructions().start();
wasm_code_node = jsgraph()->RelocatableIntPtrConstant(
reinterpret_cast<intptr_t>(instr_start), RelocInfo::JS_TO_WASM_CALL);
} else {
wasm_code_node = HeapConstant(wasm_code.GetCode());
}
if (!wasm::IsJSCompatibleSignature(sig_)) {
// Throw a TypeError. Use the js_context of the calling javascript function
// (passed as a parameter), such that the generated code is js_context
// independent.
BuildCallToRuntimeWithContext(Runtime::kWasmThrowTypeError, js_context,
nullptr, 0);
// Add a dummy call to the wasm function so that the generated wrapper
// contains a reference to the wrapped wasm function. Without this reference
// the wasm function could not be re-imported into another wasm module.
int pos = 0;
args[pos++] = wasm_code_node;
args[pos++] = wasm_context_.get();
args[pos++] = *effect_;
args[pos++] = *control_;
// We only need a dummy call descriptor.
wasm::FunctionSig::Builder dummy_sig_builder(jsgraph()->zone(), 0, 0);
CallDescriptor* desc =
GetWasmCallDescriptor(jsgraph()->zone(), dummy_sig_builder.Build());
*effect_ = graph()->NewNode(jsgraph()->common()->Call(desc), pos, args);
Return(jsgraph()->UndefinedConstant());
return;
}
int pos = 0;
args[pos++] = wasm_code_node;
args[pos++] = wasm_context_.get();
// Convert JS parameters to wasm numbers.
for (int i = 0; i < wasm_count; ++i) {
Node* param = Param(i + 1);
Node* wasm_param = FromJS(param, js_context, sig_->GetParam(i));
args[pos++] = wasm_param;
}
// Set the ThreadInWasm flag before we do the actual call.
BuildModifyThreadInWasmFlag(true);
args[pos++] = *effect_;
args[pos++] = *control_;
// Call the wasm code.
CallDescriptor* desc = GetWasmCallDescriptor(jsgraph()->zone(), sig_);
Node* call = graph()->NewNode(jsgraph()->common()->Call(desc), count, args);
*effect_ = call;
// Clear the ThreadInWasmFlag
BuildModifyThreadInWasmFlag(false);
Node* retval = call;
Node* jsval = ToJS(
retval, sig_->return_count() == 0 ? wasm::kWasmStmt : sig_->GetReturn());
Return(jsval);
}
int WasmGraphBuilder::AddParameterNodes(Node** args, int pos, int param_count,
wasm::FunctionSig* sig) {
// Convert wasm numbers to JS values.
for (int i = 0; i < param_count; ++i) {
Node* param = Param(i + 1); // Start from index 1 to drop the wasm_context.
args[pos++] = ToJS(param, sig->GetParam(i));
}
return pos;
}
Node* WasmGraphBuilder::LoadImportDataAtOffset(int offset, Node* table) {
offset = FixedArray::OffsetOfElementAt(offset) - kHeapObjectTag;
Node* offset_node = jsgraph()->Int32Constant(offset);
Node* import_data = graph()->NewNode(
jsgraph()->machine()->Load(LoadRepresentation::TaggedPointer()), table,
offset_node, *effect_, *control_);
*effect_ = import_data;
return import_data;
}
Node* WasmGraphBuilder::LoadNativeContext(Node* table) {
// The js_imports_table is set up so that index 0 has isolate->native_context
return LoadImportDataAtOffset(0, table);
}
int OffsetForImportData(int index, WasmGraphBuilder::ImportDataType type) {
// The js_imports_table is set up so that index 0 has isolate->native_context
// and for every index, 3*index+1 has the JSReceiver, 3*index+2 has function's
// global proxy and 3*index+3 has function's context.
return 3 * index + type;
}
Node* WasmGraphBuilder::LoadImportData(int index, ImportDataType type,
Node* table) {
return LoadImportDataAtOffset(OffsetForImportData(index, type), table);
}
bool WasmGraphBuilder::BuildWasmToJSWrapper(
Handle<JSReceiver> target, Handle<FixedArray> global_js_imports_table,
int index) {
DCHECK(target->IsCallable());
int wasm_count = static_cast<int>(sig_->parameter_count());
// Build the start and the parameter nodes.
Isolate* isolate = jsgraph()->isolate();
CallDescriptor* desc;
Node* start = Start(wasm_count + 3);
*effect_ = start;
*control_ = start;
// We add the target function to a table and look it up during runtime. This
// ensures that if the GC kicks in, it doesn't need to patch the code for the
// JS function.
// js_imports_table is fixed array with global handle scope whose lifetime is
// tied to the instance.
// TODO(aseemgarg): explore using per-import global handle instead of a table
Node* table_ptr = jsgraph()->IntPtrConstant(
reinterpret_cast<intptr_t>(global_js_imports_table.location()));
Node* table = graph()->NewNode(
jsgraph()->machine()->Load(LoadRepresentation::TaggedPointer()),
table_ptr, jsgraph()->IntPtrConstant(0), *effect_, *control_);
*effect_ = table;
if (!wasm::IsJSCompatibleSignature(sig_)) {
// Throw a TypeError.
Node* native_context = LoadNativeContext(table);
BuildCallToRuntimeWithContext(Runtime::kWasmThrowTypeError, native_context,
nullptr, 0);
// We don't need to return a value here, as the runtime call will not return
// anyway (the c entry stub will trigger stack unwinding).
ReturnVoid();
return false;
}
Node** args = Buffer(wasm_count + 7);
Node* call = nullptr;
BuildModifyThreadInWasmFlag(false);
if (target->IsJSFunction()) {
Handle<JSFunction> function = Handle<JSFunction>::cast(target);
if (function->shared()->internal_formal_parameter_count() == wasm_count) {
int pos = 0;
args[pos++] =
LoadImportData(index, kFunction, table); // target callable.
// Receiver.
if (is_sloppy(function->shared()->language_mode()) &&
!function->shared()->native()) {
args[pos++] = LoadImportData(index, kGlobalProxy, table);
} else {
args[pos++] = jsgraph()->Constant(
handle(isolate->heap()->undefined_value(), isolate));
}
desc = Linkage::GetJSCallDescriptor(
graph()->zone(), false, wasm_count + 1, CallDescriptor::kNoFlags);
// Convert wasm numbers to JS values.
pos = AddParameterNodes(args, pos, wasm_count, sig_);
args[pos++] = jsgraph()->UndefinedConstant(); // new target
args[pos++] = jsgraph()->Int32Constant(wasm_count); // argument count
args[pos++] = LoadImportData(index, kFunctionContext, table);
args[pos++] = *effect_;
args[pos++] = *control_;
call = graph()->NewNode(jsgraph()->common()->Call(desc), pos, args);
}
}
// We cannot call the target directly, we have to use the Call builtin.
Node* native_context = nullptr;
if (!call) {
int pos = 0;
Callable callable = CodeFactory::Call(isolate);
args[pos++] = jsgraph()->HeapConstant(callable.code());
args[pos++] = LoadImportData(index, kFunction, table); // target callable.
args[pos++] = jsgraph()->Int32Constant(wasm_count); // argument count
args[pos++] = jsgraph()->Constant(
handle(isolate->heap()->undefined_value(), isolate)); // receiver
desc = Linkage::GetStubCallDescriptor(isolate, graph()->zone(),
callable.descriptor(), wasm_count + 1,
CallDescriptor::kNoFlags);
// Convert wasm numbers to JS values.
pos = AddParameterNodes(args, pos, wasm_count, sig_);
// The native_context is sufficient here, because all kind of callables
// which depend on the context provide their own context. The context here
// is only needed if the target is a constructor to throw a TypeError, if
// the target is a native function, or if the target is a callable JSObject,
// which can only be constructed by the runtime.
native_context = LoadNativeContext(table);
args[pos++] = native_context;
args[pos++] = *effect_;
args[pos++] = *control_;
call = graph()->NewNode(jsgraph()->common()->Call(desc), pos, args);
}
*effect_ = call;
SetSourcePosition(call, 0);
BuildModifyThreadInWasmFlag(true);
// Convert the return value back.
Node* val = sig_->return_count() == 0
? jsgraph()->Int32Constant(0)
: FromJS(call,
native_context != nullptr ? native_context
: LoadNativeContext(table),
sig_->GetReturn());
Return(val);
return true;
}
namespace {
bool HasInt64ParamOrReturn(wasm::FunctionSig* sig) {
for (auto type : sig->all()) {
if (type == wasm::kWasmI64) return true;
}
return false;
}
} // namespace
void WasmGraphBuilder::BuildWasmToWasmWrapper(WasmCodeWrapper wasm_code,
Address new_context_address) {
int wasm_count = static_cast<int>(sig_->parameter_count());
int count = wasm_count + 4; // wasm_code, wasm_context, effect, and control.
Node** args = Buffer(count);
// Build the start node.
Node* start = Start(count + 1);
*control_ = start;
*effect_ = start;
int pos = 0;
// Add the wasm code target.
if (!wasm_code.IsCodeObject()) {
const wasm::WasmCode* code = wasm_code.GetWasmCode();
Address instr_start =
code == nullptr ? nullptr : code->instructions().start();
args[pos++] = jsgraph()->RelocatableIntPtrConstant(
reinterpret_cast<intptr_t>(instr_start), RelocInfo::JS_TO_WASM_CALL);
} else {
args[pos++] = jsgraph()->HeapConstant(wasm_code.GetCode());
}
// Add the wasm_context of the other instance.
args[pos++] = jsgraph()->IntPtrConstant(
reinterpret_cast<uintptr_t>(new_context_address));
// Add the parameters starting from index 1 since the parameter with index 0
// is the old wasm_context.
for (int i = 0; i < wasm_count; ++i) {
args[pos++] = Param(i + 1);
}
args[pos++] = *effect_;
args[pos++] = *control_;
// Tail-call the wasm code.
CallDescriptor* desc = GetWasmCallDescriptor(jsgraph()->zone(), sig_);
Node* tail_call =
graph()->NewNode(jsgraph()->common()->TailCall(desc), count, args);
MergeControlToEnd(jsgraph(), tail_call);
}
void WasmGraphBuilder::BuildWasmInterpreterEntry(uint32_t func_index) {
int param_count = static_cast<int>(sig_->parameter_count());
// Build the start and the parameter nodes.
Node* start = Start(param_count + 3);
*effect_ = start;
*control_ = start;
// Compute size for the argument buffer.
int args_size_bytes = 0;
for (wasm::ValueType type : sig_->parameters()) {
args_size_bytes += 1 << ElementSizeLog2Of(type);
}
// The return value is also passed via this buffer:
DCHECK_GE(wasm::kV8MaxWasmFunctionReturns, sig_->return_count());
// TODO(wasm): Handle multi-value returns.
DCHECK_EQ(1, wasm::kV8MaxWasmFunctionReturns);
int return_size_bytes =
sig_->return_count() == 0 ? 0 : 1 << ElementSizeLog2Of(sig_->GetReturn());
// Get a stack slot for the arguments.
Node* arg_buffer =
args_size_bytes == 0 && return_size_bytes == 0
? jsgraph()->IntPtrConstant(0)
: graph()->NewNode(jsgraph()->machine()->StackSlot(
std::max(args_size_bytes, return_size_bytes), 8));
// Now store all our arguments to the buffer.
int offset = 0;
for (int i = 0; i < param_count; ++i) {
wasm::ValueType type = sig_->GetParam(i);
// Start from the parameter with index 1 to drop the wasm_context.
*effect_ = graph()->NewNode(GetSafeStoreOperator(offset, type), arg_buffer,
Int32Constant(offset), Param(i + 1), *effect_,
*control_);
offset += 1 << ElementSizeLog2Of(type);
}
DCHECK_EQ(args_size_bytes, offset);
// We are passing the raw arg_buffer here. To the GC and other parts, it looks
// like a Smi (lowest bit not set). In the runtime function however, don't
// call Smi::value on it, but just cast it to a byte pointer.
Node* parameters[] = {
jsgraph()->SmiConstant(func_index), // function index
arg_buffer, // argument buffer
};
BuildCallToRuntime(Runtime::kWasmRunInterpreter, parameters,
arraysize(parameters));
// Read back the return value.
if (sig_->return_count() == 0) {
Return(Int32Constant(0));
} else {
// TODO(wasm): Implement multi-return.
DCHECK_EQ(1, sig_->return_count());
MachineType load_rep = wasm::WasmOpcodes::MachineTypeFor(sig_->GetReturn());
Node* val =
graph()->NewNode(jsgraph()->machine()->Load(load_rep), arg_buffer,
Int32Constant(0), *effect_, *control_);
Return(val);
}
if (HasInt64ParamOrReturn(sig_)) LowerInt64();
}
void WasmGraphBuilder::BuildCWasmEntry(Address wasm_context_address) {
// Build the start and the JS parameter nodes.
Node* start = Start(CWasmEntryParameters::kNumParameters + 5);
*control_ = start;
*effect_ = start;
// Create the wasm_context node to pass as parameter.
DCHECK_NULL(wasm_context_);
wasm_context_ = jsgraph()->IntPtrConstant(
reinterpret_cast<uintptr_t>(wasm_context_address));
// Create parameter nodes (offset by 1 for the receiver parameter).
Node* code_obj = nullptr;
if (FLAG_wasm_jit_to_native) {
Node* foreign_code_obj = Param(CWasmEntryParameters::kCodeObject + 1);
MachineOperatorBuilder* machine = jsgraph()->machine();
code_obj = graph()->NewNode(
machine->Load(MachineType::Pointer()), foreign_code_obj,
Int32Constant(Foreign::kForeignAddressOffset - kHeapObjectTag),
*effect_, *control_);
} else {
code_obj = Param(CWasmEntryParameters::kCodeObject + 1);
}
Node* arg_buffer = Param(CWasmEntryParameters::kArgumentsBuffer + 1);
int wasm_arg_count = static_cast<int>(sig_->parameter_count());
int arg_count = wasm_arg_count + 4; // code, wasm_context, control, effect
Node** args = Buffer(arg_count);
int pos = 0;
args[pos++] = code_obj;
args[pos++] = wasm_context_.get();
int offset = 0;
for (wasm::ValueType type : sig_->parameters()) {
Node* arg_load =
graph()->NewNode(GetSafeLoadOperator(offset, type), arg_buffer,
Int32Constant(offset), *effect_, *control_);
*effect_ = arg_load;
args[pos++] = arg_load;
offset += 1 << ElementSizeLog2Of(type);
}
args[pos++] = *effect_;
args[pos++] = *control_;
DCHECK_EQ(arg_count, pos);
// Call the wasm code.
CallDescriptor* desc = GetWasmCallDescriptor(jsgraph()->zone(), sig_);
Node* call =
graph()->NewNode(jsgraph()->common()->Call(desc), arg_count, args);
*effect_ = call;
// Store the return value.
DCHECK_GE(1, sig_->return_count());
if (sig_->return_count() == 1) {
StoreRepresentation store_rep(sig_->GetReturn(), kNoWriteBarrier);
Node* store =
graph()->NewNode(jsgraph()->machine()->Store(store_rep), arg_buffer,
Int32Constant(0), call, *effect_, *control_);
*effect_ = store;
}
Return(jsgraph()->SmiConstant(0));
if (jsgraph()->machine()->Is32() && HasInt64ParamOrReturn(sig_)) {
MachineRepresentation sig_reps[] = {
MachineRepresentation::kWord32, // return value
MachineRepresentation::kTagged, // receiver
MachineRepresentation::kTagged, // arg0 (code)
MachineRepresentation::kTagged // arg1 (buffer)
};
wasm::FunctionSig c_entry_sig(1, 2, sig_reps);
Int64Lowering r(jsgraph()->graph(), jsgraph()->machine(),
jsgraph()->common(), jsgraph()->zone(), &c_entry_sig);
r.LowerGraph();
}
}
void WasmGraphBuilder::InitContextCache(WasmContextCacheNodes* context_cache) {
DCHECK_NOT_NULL(wasm_context_);
DCHECK_NOT_NULL(*control_);
DCHECK_NOT_NULL(*effect_);
// Load the memory start.
Node* mem_start = graph()->NewNode(
jsgraph()->machine()->Load(MachineType::UintPtr()), wasm_context_.get(),
jsgraph()->Int32Constant(
static_cast<int32_t>(offsetof(WasmContext, mem_start))),
*effect_, *control_);
*effect_ = mem_start;
context_cache->mem_start = mem_start;
// Load the memory size.
Node* mem_size = graph()->NewNode(
jsgraph()->machine()->Load(MachineType::Uint32()), wasm_context_.get(),
jsgraph()->Int32Constant(
static_cast<int32_t>(offsetof(WasmContext, mem_size))),
*effect_, *control_);
*effect_ = mem_size;
context_cache->mem_size = mem_size;
if (untrusted_code_mitigations_) {
// Load the memory mask.
Node* mem_mask = graph()->NewNode(
jsgraph()->machine()->Load(MachineType::Uint32()), wasm_context_.get(),
jsgraph()->Int32Constant(
static_cast<int32_t>(offsetof(WasmContext, mem_mask))),
*effect_, *control_);
*effect_ = mem_mask;
context_cache->mem_mask = mem_mask;
} else {
// Explicitly set to nullptr to ensure a SEGV when we try to use it.
context_cache->mem_mask = nullptr;
}
}
void WasmGraphBuilder::PrepareContextCacheForLoop(
WasmContextCacheNodes* context_cache, Node* control) {
#define INTRODUCE_PHI(field, rep) \
context_cache->field = Phi(rep, 1, &context_cache->field, control);
INTRODUCE_PHI(mem_start, MachineType::PointerRepresentation());
INTRODUCE_PHI(mem_size, MachineRepresentation::kWord32);
if (untrusted_code_mitigations_) {
INTRODUCE_PHI(mem_mask, MachineRepresentation::kWord32);
}
#undef INTRODUCE_PHI
}
void WasmGraphBuilder::NewContextCacheMerge(WasmContextCacheNodes* to,
WasmContextCacheNodes* from,
Node* merge) {
#define INTRODUCE_PHI(field, rep) \
if (to->field != from->field) { \
Node* vals[] = {to->field, from->field}; \
to->field = Phi(rep, 2, vals, merge); \
}
INTRODUCE_PHI(mem_start, MachineType::PointerRepresentation());
INTRODUCE_PHI(mem_size, MachineRepresentation::kWord32);
if (untrusted_code_mitigations_) {
INTRODUCE_PHI(mem_mask, MachineRepresentation::kWord32);
}
#undef INTRODUCE_PHI
}
void WasmGraphBuilder::MergeContextCacheInto(WasmContextCacheNodes* to,
WasmContextCacheNodes* from,
Node* merge) {
to->mem_size = CreateOrMergeIntoPhi(MachineRepresentation::kWord32, merge,
to->mem_size, from->mem_size);
to->mem_start = CreateOrMergeIntoPhi(MachineType::PointerRepresentation(),
merge, to->mem_start, from->mem_start);
if (untrusted_code_mitigations_) {
to->mem_mask = CreateOrMergeIntoPhi(MachineRepresentation::kWord32, merge,
to->mem_mask, from->mem_mask);
}
}
Node* WasmGraphBuilder::CreateOrMergeIntoPhi(wasm::ValueType type, Node* merge,
Node* tnode, Node* fnode) {
if (IsPhiWithMerge(tnode, merge)) {
AppendToPhi(tnode, fnode);
} else if (tnode != fnode) {
uint32_t count = merge->InputCount();
Node** vals = Buffer(count);
for (uint32_t j = 0; j < count - 1; j++) vals[j] = tnode;
vals[count - 1] = fnode;
return Phi(type, count, vals, merge);
}
return tnode;
}
Node* WasmGraphBuilder::CreateOrMergeIntoEffectPhi(Node* merge, Node* tnode,
Node* fnode) {
if (IsPhiWithMerge(tnode, merge)) {
AppendToPhi(tnode, fnode);
} else if (tnode != fnode) {
uint32_t count = merge->InputCount();
Node** effects = Buffer(count);
for (uint32_t j = 0; j < count - 1; j++) {
effects[j] = tnode;
}
effects[count - 1] = fnode;
tnode = EffectPhi(count, effects, merge);
}
return tnode;
}
void WasmGraphBuilder::GetGlobalBaseAndOffset(MachineType mem_type,
uint32_t offset, Node** base_node,
Node** offset_node) {
DCHECK_NOT_NULL(wasm_context_);
if (globals_start_ == nullptr) {
// Load globals_start from the WasmContext at runtime.
// TODO(wasm): we currently generate only one load of the {globals_start}
// start per graph, which means it can be placed anywhere by the scheduler.
// This is legal because the globals_start should never change.
// However, in some cases (e.g. if the WasmContext is already in a
// register), it is slightly more efficient to reload this value from the
// WasmContext. Since this depends on register allocation, it is not
// possible to express in the graph, and would essentially constitute a
// "mem2reg" optimization in TurboFan.
globals_start_ = graph()->NewNode(
jsgraph()->machine()->Load(MachineType::UintPtr()), wasm_context_.get(),
jsgraph()->Int32Constant(
static_cast<int32_t>(offsetof(WasmContext, globals_start))),
graph()->start(), graph()->start());
}
*base_node = globals_start_.get();
*offset_node = jsgraph()->Int32Constant(offset);
if (mem_type == MachineType::Simd128() && offset != 0) {
// TODO(titzer,bbudge): code generation for SIMD memory offsets is broken.
*base_node =
graph()->NewNode(kPointerSize == 4 ? jsgraph()->machine()->Int32Add()
: jsgraph()->machine()->Int64Add(),
*base_node, *offset_node);
*offset_node = jsgraph()->Int32Constant(0);
}
}
Node* WasmGraphBuilder::MemBuffer(uint32_t offset) {
DCHECK_NOT_NULL(context_cache_);
Node* mem_start = context_cache_->mem_start;
DCHECK_NOT_NULL(mem_start);
if (offset == 0) return mem_start;
return graph()->NewNode(jsgraph()->machine()->IntAdd(), mem_start,
jsgraph()->IntPtrConstant(offset));
}
Node* WasmGraphBuilder::CurrentMemoryPages() {
// CurrentMemoryPages can not be called from asm.js.
DCHECK_EQ(wasm::kWasmOrigin, env_->module->origin());
DCHECK_NOT_NULL(context_cache_);
Node* mem_size = context_cache_->mem_size;
DCHECK_NOT_NULL(mem_size);
if (jsgraph()->machine()->Is64()) {
mem_size = graph()->NewNode(jsgraph()->machine()->TruncateInt64ToInt32(),
mem_size);
}
return graph()->NewNode(
jsgraph()->machine()->Word32Shr(), mem_size,
jsgraph()->Int32Constant(WhichPowerOf2(wasm::kWasmPageSize)));
}
void WasmGraphBuilder::EnsureFunctionTableNodes() {
if (function_tables_.size() > 0) return;
size_t tables_size = env_->function_tables.size();
for (size_t i = 0; i < tables_size; ++i) {
wasm::GlobalHandleAddress function_handle_address =
env_->function_tables[i];
Node* table_addr = jsgraph()->RelocatableIntPtrConstant(
reinterpret_cast<intptr_t>(function_handle_address),
RelocInfo::WASM_GLOBAL_HANDLE);
uint32_t table_size = env_->module->function_tables[i].initial_size;
Node* size = jsgraph()->RelocatableInt32Constant(
static_cast<uint32_t>(table_size),
RelocInfo::WASM_FUNCTION_TABLE_SIZE_REFERENCE);
function_tables_.push_back({table_addr, size});
}
}
Node* WasmGraphBuilder::BuildModifyThreadInWasmFlag(bool new_value) {
// TODO(eholk): generate code to modify the thread-local storage directly,
// rather than calling the runtime.
if (!use_trap_handler()) {
return *control_;
}
// Using two functions instead of taking the new value as a parameter saves
// one instruction on each call to set up the parameter.
ExternalReference ref =
new_value ? ExternalReference::wasm_set_thread_in_wasm_flag(
jsgraph()->isolate())
: ExternalReference::wasm_clear_thread_in_wasm_flag(
jsgraph()->isolate());
MachineSignature::Builder sig_builder(jsgraph()->zone(), 0, 0);
return BuildCCall(
sig_builder.Build(),
graph()->NewNode(jsgraph()->common()->ExternalConstant(ref)));
}
// Only call this function for code which is not reused across instantiations,
// as we do not patch the embedded js_context.
Node* WasmGraphBuilder::BuildCallToRuntimeWithContext(Runtime::FunctionId f,
Node* js_context,
Node** parameters,
int parameter_count) {
const Runtime::Function* fun = Runtime::FunctionForId(f);
CallDescriptor* desc = Linkage::GetRuntimeCallDescriptor(
jsgraph()->zone(), f, fun->nargs, Operator::kNoProperties,
CallDescriptor::kNoFlags);
// CEntryStubConstant nodes have to be created and cached in the main
// thread. At the moment this is only done for CEntryStubConstant(1).
DCHECK_EQ(1, fun->result_size);
// At the moment we only allow 4 parameters. If more parameters are needed,
// increase this constant accordingly.
static const int kMaxParams = 4;
DCHECK_GE(kMaxParams, parameter_count);
Node* inputs[kMaxParams + 6];
int count = 0;
inputs[count++] = centry_stub_node_;
for (int i = 0; i < parameter_count; i++) {
inputs[count++] = parameters[i];
}
inputs[count++] = jsgraph()->ExternalConstant(
ExternalReference(f, jsgraph()->isolate())); // ref
inputs[count++] = jsgraph()->Int32Constant(fun->nargs); // arity
inputs[count++] = js_context; // js_context
inputs[count++] = *effect_;
inputs[count++] = *control_;
Node* node = jsgraph()->graph()->NewNode(jsgraph()->common()->Call(desc),
count, inputs);
*effect_ = node;
return node;
}
Node* WasmGraphBuilder::BuildCallToRuntime(Runtime::FunctionId f,
Node** parameters,
int parameter_count) {
return BuildCallToRuntimeWithContext(f, jsgraph()->NoContextConstant(),
parameters, parameter_count);
}
Node* WasmGraphBuilder::GetGlobal(uint32_t index) {
MachineType mem_type =
wasm::WasmOpcodes::MachineTypeFor(env_->module->globals[index].type);
Node* base = nullptr;
Node* offset = nullptr;
GetGlobalBaseAndOffset(mem_type, env_->module->globals[index].offset, &base,
&offset);
Node* node = graph()->NewNode(jsgraph()->machine()->Load(mem_type), base,
offset, *effect_, *control_);
*effect_ = node;
return node;
}
Node* WasmGraphBuilder::SetGlobal(uint32_t index, Node* val) {
MachineType mem_type =
wasm::WasmOpcodes::MachineTypeFor(env_->module->globals[index].type);
Node* base = nullptr;
Node* offset = nullptr;
GetGlobalBaseAndOffset(mem_type, env_->module->globals[index].offset, &base,
&offset);
const Operator* op = jsgraph()->machine()->Store(
StoreRepresentation(mem_type.representation(), kNoWriteBarrier));
Node* node = graph()->NewNode(op, base, offset, val, *effect_, *control_);
*effect_ = node;
return node;
}
Node* WasmGraphBuilder::BoundsCheckMem(uint8_t access_size, Node* index,
uint32_t offset,
wasm::WasmCodePosition position,
EnforceBoundsCheck enforce_check) {
if (FLAG_wasm_no_bounds_checks) return Uint32ToUintptr(index);
DCHECK_NOT_NULL(context_cache_);
Node* mem_size = context_cache_->mem_size;
DCHECK_NOT_NULL(mem_size);
auto m = jsgraph()->machine();
if (use_trap_handler() && enforce_check == kCanOmitBoundsCheck) {
// Simply zero out the 32-bits on 64-bit targets and let the trap handler
// do its job.
return Uint32ToUintptr(index);
}
uint32_t min_size = env_->module->initial_pages * wasm::kWasmPageSize;
uint32_t max_size =
(env_->module->has_maximum_pages ? env_->module->maximum_pages
: wasm::kV8MaxWasmMemoryPages) *
wasm::kWasmPageSize;
if (access_size > max_size || offset > max_size - access_size) {
// The access will be out of bounds, even for the largest memory.
TrapIfEq32(wasm::kTrapMemOutOfBounds, Int32Constant(0), 0, position);
return jsgraph()->IntPtrConstant(0);
}
DCHECK_LE(1, access_size);
// This computation cannot overflow, since
// {offset <= max_size - access_size <= kMaxUint32 - access_size}.
// It also cannot underflow, since {access_size >= 1}.
uint32_t end_offset = offset + access_size - 1;
Node* end_offset_node = Int32Constant(end_offset);
// The accessed memory is [index + offset, index + end_offset].
// Check that the last read byte (at {index + end_offset}) is in bounds.
// 1) Check that {end_offset < mem_size}. This also ensures that we can safely
// compute {effective_size} as {mem_size - end_offset)}.
// {effective_size} is >= 1 if condition 1) holds.
// 2) Check that {index + end_offset < mem_size} by
// - computing {effective_size} as {mem_size - end_offset} and
// - checking that {index < effective_size}.
if (end_offset >= min_size) {
// The end offset is larger than the smallest memory.
// Dynamically check the end offset against the actual memory size, which
// is not known at compile time.
Node* cond = graph()->NewNode(jsgraph()->machine()->Uint32LessThan(),
end_offset_node, mem_size);
TrapIfFalse(wasm::kTrapMemOutOfBounds, cond, position);
} else {
// The end offset is within the bounds of the smallest memory, so only
// one check is required. Check to see if the index is also a constant.
Uint32Matcher match(index);
if (match.HasValue()) {
uint32_t index_val = match.Value();
if (index_val < min_size - end_offset) {
// The input index is a constant and everything is statically within
// bounds of the smallest possible memory.
return Uint32ToUintptr(index);
}
}
}
// This produces a positive number, since {end_offset < min_size <= mem_size}.
Node* effective_size = graph()->NewNode(jsgraph()->machine()->Int32Sub(),
mem_size, end_offset_node);
// Introduce the actual bounds check.
Node* cond = graph()->NewNode(m->Uint32LessThan(), index, effective_size);
TrapIfFalse(wasm::kTrapMemOutOfBounds, cond, position);
if (untrusted_code_mitigations_) {
// In the fallthrough case, condition the index with the memory mask.
Node* mem_mask = context_cache_->mem_mask;
DCHECK_NOT_NULL(mem_mask);
index = graph()->NewNode(m->Word32And(), index, mem_mask);
}
return Uint32ToUintptr(index);
}
const Operator* WasmGraphBuilder::GetSafeLoadOperator(int offset,
wasm::ValueType type) {
int alignment = offset % (1 << ElementSizeLog2Of(type));
MachineType mach_type = wasm::WasmOpcodes::MachineTypeFor(type);
if (alignment == 0 || jsgraph()->machine()->UnalignedLoadSupported(type)) {
return jsgraph()->machine()->Load(mach_type);
}
return jsgraph()->machine()->UnalignedLoad(mach_type);
}
const Operator* WasmGraphBuilder::GetSafeStoreOperator(int offset,
wasm::ValueType type) {
int alignment = offset % (1 << ElementSizeLog2Of(type));
if (alignment == 0 || jsgraph()->machine()->UnalignedStoreSupported(type)) {
StoreRepresentation rep(type, WriteBarrierKind::kNoWriteBarrier);
return jsgraph()->machine()->Store(rep);
}
UnalignedStoreRepresentation rep(type);
return jsgraph()->machine()->UnalignedStore(rep);
}
Node* WasmGraphBuilder::TraceMemoryOperation(bool is_store,
MachineRepresentation rep,
Node* index, uint32_t offset,
wasm::WasmCodePosition position) {
int kAlign = 4; // Ensure that the LSB is 0, such that this looks like a Smi.
Node* info = graph()->NewNode(
jsgraph()->machine()->StackSlot(sizeof(wasm::MemoryTracingInfo), kAlign));
Node* address = graph()->NewNode(jsgraph()->machine()->Int32Add(),
Int32Constant(offset), index);
auto store = [&](int offset, MachineRepresentation rep, Node* data) {
*effect_ = graph()->NewNode(
jsgraph()->machine()->Store(StoreRepresentation(rep, kNoWriteBarrier)),
info, jsgraph()->Int32Constant(offset), data, *effect_, *control_);
};
// Store address, is_store, and mem_rep.
store(offsetof(wasm::MemoryTracingInfo, address),
MachineRepresentation::kWord32, address);
store(offsetof(wasm::MemoryTracingInfo, is_store),
MachineRepresentation::kWord8,
jsgraph()->Int32Constant(is_store ? 1 : 0));
store(offsetof(wasm::MemoryTracingInfo, mem_rep),
MachineRepresentation::kWord8,
jsgraph()->Int32Constant(static_cast<int>(rep)));
Node* call = BuildCallToRuntime(Runtime::kWasmTraceMemory, &info, 1);
SetSourcePosition(call, position);
return call;
}
Node* WasmGraphBuilder::LoadMem(wasm::ValueType type, MachineType memtype,
Node* index, uint32_t offset,
uint32_t alignment,
wasm::WasmCodePosition position) {
Node* load;
// Wasm semantics throw on OOB. Introduce explicit bounds check and
// conditioning when not using the trap handler.
index = BoundsCheckMem(wasm::WasmOpcodes::MemSize(memtype), index, offset,
position, kCanOmitBoundsCheck);
if (memtype.representation() == MachineRepresentation::kWord8 ||
jsgraph()->machine()->UnalignedLoadSupported(memtype.representation())) {
if (use_trap_handler()) {
load = graph()->NewNode(jsgraph()->machine()->ProtectedLoad(memtype),
MemBuffer(offset), index, *effect_, *control_);
SetSourcePosition(load, position);
} else {
load = graph()->NewNode(jsgraph()->machine()->Load(memtype),
MemBuffer(offset), index, *effect_, *control_);
}
} else {
// TODO(eholk): Support unaligned loads with trap handlers.
DCHECK(!use_trap_handler());
load = graph()->NewNode(jsgraph()->machine()->UnalignedLoad(memtype),
MemBuffer(offset), index, *effect_, *control_);
}
*effect_ = load;
#if defined(V8_TARGET_BIG_ENDIAN)
load = BuildChangeEndiannessLoad(load, memtype, type);
#endif
if (type == wasm::kWasmI64 &&
ElementSizeLog2Of(memtype.representation()) < 3) {
// TODO(titzer): TF zeroes the upper bits of 64-bit loads for subword sizes.
if (memtype.IsSigned()) {
// sign extend
load = graph()->NewNode(jsgraph()->machine()->ChangeInt32ToInt64(), load);
} else {
// zero extend
load =
graph()->NewNode(jsgraph()->machine()->ChangeUint32ToUint64(), load);
}
}
if (FLAG_wasm_trace_memory) {
TraceMemoryOperation(false, memtype.representation(), index, offset,
position);
}
return load;
}
Node* WasmGraphBuilder::StoreMem(MachineRepresentation mem_rep, Node* index,
uint32_t offset, uint32_t alignment, Node* val,
wasm::WasmCodePosition position,
wasm::ValueType type) {
Node* store;
index = BoundsCheckMem(wasm::WasmOpcodes::MemSize(mem_rep), index, offset,
position, kCanOmitBoundsCheck);
#if defined(V8_TARGET_BIG_ENDIAN)
val = BuildChangeEndiannessStore(val, mem_rep, type);
#endif
if (mem_rep == MachineRepresentation::kWord8 ||
jsgraph()->machine()->UnalignedStoreSupported(mem_rep)) {
if (use_trap_handler()) {
store =
graph()->NewNode(jsgraph()->machine()->ProtectedStore(mem_rep),
MemBuffer(offset), index, val, *effect_, *control_);
SetSourcePosition(store, position);
} else {
StoreRepresentation rep(mem_rep, kNoWriteBarrier);
store =
graph()->NewNode(jsgraph()->machine()->Store(rep), MemBuffer(offset),
index, val, *effect_, *control_);
}
} else {
// TODO(eholk): Support unaligned stores with trap handlers.
DCHECK(!use_trap_handler());
UnalignedStoreRepresentation rep(mem_rep);
store =
graph()->NewNode(jsgraph()->machine()->UnalignedStore(rep),
MemBuffer(offset), index, val, *effect_, *control_);
}
*effect_ = store;
if (FLAG_wasm_trace_memory) {
TraceMemoryOperation(true, mem_rep, index, offset, position);
}
return store;
}
namespace {
Node* GetAsmJsOOBValue(MachineRepresentation rep, JSGraph* jsgraph) {
switch (rep) {
case MachineRepresentation::kWord8:
case MachineRepresentation::kWord16:
case MachineRepresentation::kWord32:
return jsgraph->Int32Constant(0);
case MachineRepresentation::kWord64:
return jsgraph->Int64Constant(0);
case MachineRepresentation::kFloat32:
return jsgraph->Float32Constant(std::numeric_limits<float>::quiet_NaN());
case MachineRepresentation::kFloat64:
return jsgraph->Float64Constant(std::numeric_limits<double>::quiet_NaN());
default:
UNREACHABLE();
}
}
} // namespace
Node* WasmGraphBuilder::BuildAsmjsLoadMem(MachineType type, Node* index) {
DCHECK_NOT_NULL(context_cache_);
Node* mem_start = context_cache_->mem_start;
Node* mem_size = context_cache_->mem_size;
DCHECK_NOT_NULL(mem_start);
DCHECK_NOT_NULL(mem_size);
// Asm.js semantics are defined along the lines of typed arrays, hence OOB
// reads return {undefined} coerced to the result type (0 for integers, NaN
// for float and double).
// Note that we check against the memory size ignoring the size of the
// stored value, which is conservative if misaligned. Technically, asm.js
// should never have misaligned accesses.
Diamond bounds_check(
graph(), jsgraph()->common(),
graph()->NewNode(jsgraph()->machine()->Uint32LessThan(), index, mem_size),
BranchHint::kTrue);
bounds_check.Chain(*control_);
if (untrusted_code_mitigations_) {
// Condition the index with the memory mask.
Node* mem_mask = context_cache_->mem_mask;
DCHECK_NOT_NULL(mem_mask);
index =
graph()->NewNode(jsgraph()->machine()->Word32And(), index, mem_mask);
}
index = Uint32ToUintptr(index);
Node* load = graph()->NewNode(jsgraph()->machine()->Load(type), mem_start,
index, *effect_, bounds_check.if_true);
Node* value_phi =
bounds_check.Phi(type.representation(), load,
GetAsmJsOOBValue(type.representation(), jsgraph()));
Node* effect_phi = graph()->NewNode(jsgraph()->common()->EffectPhi(2), load,
*effect_, bounds_check.merge);
*effect_ = effect_phi;
*control_ = bounds_check.merge;
return value_phi;
}
Node* WasmGraphBuilder::Uint32ToUintptr(Node* node) {
if (jsgraph()->machine()->Is32()) return node;
return graph()->NewNode(jsgraph()->machine()->ChangeUint32ToUint64(), node);
}
Node* WasmGraphBuilder::BuildAsmjsStoreMem(MachineType type, Node* index,
Node* val) {
DCHECK_NOT_NULL(context_cache_);
Node* mem_start = context_cache_->mem_start;
Node* mem_size = context_cache_->mem_size;
DCHECK_NOT_NULL(mem_start);
DCHECK_NOT_NULL(mem_size);
// Asm.js semantics are to ignore OOB writes.
// Note that we check against the memory size ignoring the size of the
// stored value, which is conservative if misaligned. Technically, asm.js
// should never have misaligned accesses.
Diamond bounds_check(
graph(), jsgraph()->common(),
graph()->NewNode(jsgraph()->machine()->Uint32LessThan(), index, mem_size),
BranchHint::kTrue);
bounds_check.Chain(*control_);
if (untrusted_code_mitigations_) {
// Condition the index with the memory mask.
Node* mem_mask = context_cache_->mem_mask;
DCHECK_NOT_NULL(mem_mask);
index =
graph()->NewNode(jsgraph()->machine()->Word32And(), index, mem_mask);
}
index = Uint32ToUintptr(index);
const Operator* store_op = jsgraph()->machine()->Store(StoreRepresentation(
type.representation(), WriteBarrierKind::kNoWriteBarrier));
Node* store = graph()->NewNode(store_op, mem_start, index, val, *effect_,
bounds_check.if_true);
Node* effect_phi = graph()->NewNode(jsgraph()->common()->EffectPhi(2), store,
*effect_, bounds_check.merge);
*effect_ = effect_phi;
*control_ = bounds_check.merge;
return val;
}
void WasmGraphBuilder::PrintDebugName(Node* node) {
PrintF("#%d:%s", node->id(), node->op()->mnemonic());
}
Node* WasmGraphBuilder::String(const char* string) {
return jsgraph()->Constant(
jsgraph()->isolate()->factory()->NewStringFromAsciiChecked(string));
}
Graph* WasmGraphBuilder::graph() { return jsgraph()->graph(); }
void WasmGraphBuilder::LowerInt64() {
if (jsgraph()->machine()->Is64()) return;
Int64Lowering r(jsgraph()->graph(), jsgraph()->machine(), jsgraph()->common(),
jsgraph()->zone(), sig_);
r.LowerGraph();
}
void WasmGraphBuilder::SimdScalarLoweringForTesting() {
SimdScalarLowering(jsgraph(), sig_).LowerGraph();
}
void WasmGraphBuilder::SetSourcePosition(Node* node,
wasm::WasmCodePosition position) {
DCHECK_NE(position, wasm::kNoCodePosition);
if (source_position_table_)
source_position_table_->SetSourcePosition(node, SourcePosition(position));
}
Node* WasmGraphBuilder::S128Zero() {
has_simd_ = true;
return graph()->NewNode(jsgraph()->machine()->S128Zero());
}
Node* WasmGraphBuilder::SimdOp(wasm::WasmOpcode opcode, Node* const* inputs) {
has_simd_ = true;
switch (opcode) {
case wasm::kExprF32x4Splat:
return graph()->NewNode(jsgraph()->machine()->F32x4Splat(), inputs[0]);
case wasm::kExprF32x4SConvertI32x4:
return graph()->NewNode(jsgraph()->machine()->F32x4SConvertI32x4(),
inputs[0]);
case wasm::kExprF32x4UConvertI32x4:
return graph()->NewNode(jsgraph()->machine()->F32x4UConvertI32x4(),
inputs[0]);
case wasm::kExprF32x4Abs:
return graph()->NewNode(jsgraph()->machine()->F32x4Abs(), inputs[0]);
case wasm::kExprF32x4Neg:
return graph()->NewNode(jsgraph()->machine()->F32x4Neg(), inputs[0]);
case wasm::kExprF32x4RecipApprox:
return graph()->NewNode(jsgraph()->machine()->F32x4RecipApprox(),
inputs[0]);
case wasm::kExprF32x4RecipSqrtApprox:
return graph()->NewNode(jsgraph()->machine()->F32x4RecipSqrtApprox(),
inputs[0]);
case wasm::kExprF32x4Add:
return graph()->NewNode(jsgraph()->machine()->F32x4Add(), inputs[0],
inputs[1]);
case wasm::kExprF32x4AddHoriz:
return graph()->NewNode(jsgraph()->machine()->F32x4AddHoriz(), inputs[0],
inputs[1]);
case wasm::kExprF32x4Sub:
return graph()->NewNode(jsgraph()->machine()->F32x4Sub(), inputs[0],
inputs[1]);
case wasm::kExprF32x4Mul:
return graph()->NewNode(jsgraph()->machine()->F32x4Mul(), inputs[0],
inputs[1]);
case wasm::kExprF32x4Min:
return graph()->NewNode(jsgraph()->machine()->F32x4Min(), inputs[0],
inputs[1]);
case wasm::kExprF32x4Max:
return graph()->NewNode(jsgraph()->machine()->F32x4Max(), inputs[0],
inputs[1]);
case wasm::kExprF32x4Eq:
return graph()->NewNode(jsgraph()->machine()->F32x4Eq(), inputs[0],
inputs[1]);
case wasm::kExprF32x4Ne:
return graph()->NewNode(jsgraph()->machine()->F32x4Ne(), inputs[0],
inputs[1]);
case wasm::kExprF32x4Lt:
return graph()->NewNode(jsgraph()->machine()->F32x4Lt(), inputs[0],
inputs[1]);
case wasm::kExprF32x4Le:
return graph()->NewNode(jsgraph()->machine()->F32x4Le(), inputs[0],
inputs[1]);
case wasm::kExprF32x4Gt:
return graph()->NewNode(jsgraph()->machine()->F32x4Lt(), inputs[1],
inputs[0]);
case wasm::kExprF32x4Ge:
return graph()->NewNode(jsgraph()->machine()->F32x4Le(), inputs[1],
inputs[0]);
case wasm::kExprI32x4Splat:
return graph()->NewNode(jsgraph()->machine()->I32x4Splat(), inputs[0]);
case wasm::kExprI32x4SConvertF32x4:
return graph()->NewNode(jsgraph()->machine()->I32x4SConvertF32x4(),
inputs[0]);
case wasm::kExprI32x4UConvertF32x4:
return graph()->NewNode(jsgraph()->machine()->I32x4UConvertF32x4(),
inputs[0]);
case wasm::kExprI32x4SConvertI16x8Low:
return graph()->NewNode(jsgraph()->machine()->I32x4SConvertI16x8Low(),
inputs[0]);
case wasm::kExprI32x4SConvertI16x8High:
return graph()->NewNode(jsgraph()->machine()->I32x4SConvertI16x8High(),
inputs[0]);
case wasm::kExprI32x4Neg:
return graph()->NewNode(jsgraph()->machine()->I32x4Neg(), inputs[0]);
case wasm::kExprI32x4Add:
return graph()->NewNode(jsgraph()->machine()->I32x4Add(), inputs[0],
inputs[1]);
case wasm::kExprI32x4AddHoriz:
return graph()->NewNode(jsgraph()->machine()->I32x4AddHoriz(), inputs[0],
inputs[1]);
case wasm::kExprI32x4Sub:
return graph()->NewNode(jsgraph()->machine()->I32x4Sub(), inputs[0],
inputs[1]);
case wasm::kExprI32x4Mul:
return graph()->NewNode(jsgraph()->machine()->I32x4Mul(), inputs[0],
inputs[1]);
case wasm::kExprI32x4MinS:
return graph()->NewNode(jsgraph()->machine()->I32x4MinS(), inputs[0],
inputs[1]);
case wasm::kExprI32x4MaxS:
return graph()->NewNode(jsgraph()->machine()->I32x4MaxS(), inputs[0],
inputs[1]);
case wasm::kExprI32x4Eq:
return graph()->NewNode(jsgraph()->machine()->I32x4Eq(), inputs[0],
inputs[1]);
case wasm::kExprI32x4Ne:
return graph()->NewNode(jsgraph()->machine()->I32x4Ne(), inputs[0],
inputs[1]);
case wasm::kExprI32x4LtS:
return graph()->NewNode(jsgraph()->machine()->I32x4GtS(), inputs[1],
inputs[0]);
case wasm::kExprI32x4LeS:
return graph()->NewNode(jsgraph()->machine()->I32x4GeS(), inputs[1],
inputs[0]);
case wasm::kExprI32x4GtS:
return graph()->NewNode(jsgraph()->machine()->I32x4GtS(), inputs[0],
inputs[1]);
case wasm::kExprI32x4GeS:
return graph()->NewNode(jsgraph()->machine()->I32x4GeS(), inputs[0],
inputs[1]);
case wasm::kExprI32x4UConvertI16x8Low:
return graph()->NewNode(jsgraph()->machine()->I32x4UConvertI16x8Low(),
inputs[0]);
case wasm::kExprI32x4UConvertI16x8High:
return graph()->NewNode(jsgraph()->machine()->I32x4UConvertI16x8High(),
inputs[0]);
case wasm::kExprI32x4MinU:
return graph()->NewNode(jsgraph()->machine()->I32x4MinU(), inputs[0],
inputs[1]);
case wasm::kExprI32x4MaxU:
return graph()->NewNode(jsgraph()->machine()->I32x4MaxU(), inputs[0],
inputs[1]);
case wasm::kExprI32x4LtU:
return graph()->NewNode(jsgraph()->machine()->I32x4GtU(), inputs[1],
inputs[0]);
case wasm::kExprI32x4LeU:
return graph()->NewNode(jsgraph()->machine()->I32x4GeU(), inputs[1],
inputs[0]);
case wasm::kExprI32x4GtU:
return graph()->NewNode(jsgraph()->machine()->I32x4GtU(), inputs[0],
inputs[1]);
case wasm::kExprI32x4GeU:
return graph()->NewNode(jsgraph()->machine()->I32x4GeU(), inputs[0],
inputs[1]);
case wasm::kExprI16x8Splat:
return graph()->NewNode(jsgraph()->machine()->I16x8Splat(), inputs[0]);
case wasm::kExprI16x8SConvertI8x16Low:
return graph()->NewNode(jsgraph()->machine()->I16x8SConvertI8x16Low(),
inputs[0]);
case wasm::kExprI16x8SConvertI8x16High:
return graph()->NewNode(jsgraph()->machine()->I16x8SConvertI8x16High(),
inputs[0]);
case wasm::kExprI16x8Neg:
return graph()->NewNode(jsgraph()->machine()->I16x8Neg(), inputs[0]);
case wasm::kExprI16x8SConvertI32x4:
return graph()->NewNode(jsgraph()->machine()->I16x8SConvertI32x4(),
inputs[0], inputs[1]);
case wasm::kExprI16x8Add:
return graph()->NewNode(jsgraph()->machine()->I16x8Add(), inputs[0],
inputs[1]);
case wasm::kExprI16x8AddSaturateS:
return graph()->NewNode(jsgraph()->machine()->I16x8AddSaturateS(),
inputs[0], inputs[1]);
case wasm::kExprI16x8AddHoriz:
return graph()->NewNode(jsgraph()->machine()->I16x8AddHoriz(), inputs[0],
inputs[1]);
case wasm::kExprI16x8Sub:
return graph()->NewNode(jsgraph()->machine()->I16x8Sub(), inputs[0],
inputs[1]);
case wasm::kExprI16x8SubSaturateS:
return graph()->NewNode(jsgraph()->machine()->I16x8SubSaturateS(),
inputs[0], inputs[1]);
case wasm::kExprI16x8Mul:
return graph()->NewNode(jsgraph()->machine()->I16x8Mul(), inputs[0],
inputs[1]);
case wasm::kExprI16x8MinS:
return graph()->NewNode(jsgraph()->machine()->I16x8MinS(), inputs[0],
inputs[1]);
case wasm::kExprI16x8MaxS:
return graph()->NewNode(jsgraph()->machine()->I16x8MaxS(), inputs[0],
inputs[1]);
case wasm::kExprI16x8Eq:
return graph()->NewNode(jsgraph()->machine()->I16x8Eq(), inputs[0],
inputs[1]);
case wasm::kExprI16x8Ne:
return graph()->NewNode(jsgraph()->machine()->I16x8Ne(), inputs[0],
inputs[1]);
case wasm::kExprI16x8LtS:
return graph()->NewNode(jsgraph()->machine()->I16x8GtS(), inputs[1],
inputs[0]);
case wasm::kExprI16x8LeS:
return graph()->NewNode(jsgraph()->machine()->I16x8GeS(), inputs[1],
inputs[0]);
case wasm::kExprI16x8GtS:
return graph()->NewNode(jsgraph()->machine()->I16x8GtS(), inputs[0],
inputs[1]);
case wasm::kExprI16x8GeS:
return graph()->NewNode(jsgraph()->machine()->I16x8GeS(), inputs[0],
inputs[1]);
case wasm::kExprI16x8UConvertI8x16Low:
return graph()->NewNode(jsgraph()->machine()->I16x8UConvertI8x16Low(),
inputs[0]);
case wasm::kExprI16x8UConvertI8x16High:
return graph()->NewNode(jsgraph()->machine()->I16x8UConvertI8x16High(),
inputs[0]);
case wasm::kExprI16x8UConvertI32x4:
return graph()->NewNode(jsgraph()->machine()->I16x8UConvertI32x4(),
inputs[0], inputs[1]);
case wasm::kExprI16x8AddSaturateU:
return graph()->NewNode(jsgraph()->machine()->I16x8AddSaturateU(),
inputs[0], inputs[1]);
case wasm::kExprI16x8SubSaturateU:
return graph()->NewNode(jsgraph()->machine()->I16x8SubSaturateU(),
inputs[0], inputs[1]);
case wasm::kExprI16x8MinU:
return graph()->NewNode(jsgraph()->machine()->I16x8MinU(), inputs[0],
inputs[1]);
case wasm::kExprI16x8MaxU:
return graph()->NewNode(jsgraph()->machine()->I16x8MaxU(), inputs[0],
inputs[1]);
case wasm::kExprI16x8LtU:
return graph()->NewNode(jsgraph()->machine()->I16x8GtU(), inputs[1],
inputs[0]);
case wasm::kExprI16x8LeU:
return graph()->NewNode(jsgraph()->machine()->I16x8GeU(), inputs[1],
inputs[0]);
case wasm::kExprI16x8GtU:
return graph()->NewNode(jsgraph()->machine()->I16x8GtU(), inputs[0],
inputs[1]);
case wasm::kExprI16x8GeU:
return graph()->NewNode(jsgraph()->machine()->I16x8GeU(), inputs[0],
inputs[1]);
case wasm::kExprI8x16Splat:
return graph()->NewNode(jsgraph()->machine()->I8x16Splat(), inputs[0]);
case wasm::kExprI8x16Neg:
return graph()->NewNode(jsgraph()->machine()->I8x16Neg(), inputs[0]);
case wasm::kExprI8x16SConvertI16x8:
return graph()->NewNode(jsgraph()->machine()->I8x16SConvertI16x8(),
inputs[0], inputs[1]);
case wasm::kExprI8x16Add:
return graph()->NewNode(jsgraph()->machine()->I8x16Add(), inputs[0],
inputs[1]);
case wasm::kExprI8x16AddSaturateS:
return graph()->NewNode(jsgraph()->machine()->I8x16AddSaturateS(),
inputs[0], inputs[1]);
case wasm::kExprI8x16Sub:
return graph()->NewNode(jsgraph()->machine()->I8x16Sub(), inputs[0],
inputs[1]);
case wasm::kExprI8x16SubSaturateS:
return graph()->NewNode(jsgraph()->machine()->I8x16SubSaturateS(),
inputs[0], inputs[1]);
case wasm::kExprI8x16Mul:
return graph()->NewNode(jsgraph()->machine()->I8x16Mul(), inputs[0],
inputs[1]);
case wasm::kExprI8x16MinS:
return graph()->NewNode(jsgraph()->machine()->I8x16MinS(), inputs[0],
inputs[1]);
case wasm::kExprI8x16MaxS:
return graph()->NewNode(jsgraph()->machine()->I8x16MaxS(), inputs[0],
inputs[1]);
case wasm::kExprI8x16Eq:
return graph()->NewNode(jsgraph()->machine()->I8x16Eq(), inputs[0],
inputs[1]);
case wasm::kExprI8x16Ne:
return graph()->NewNode(jsgraph()->machine()->I8x16Ne(), inputs[0],
inputs[1]);
case wasm::kExprI8x16LtS:
return graph()->NewNode(jsgraph()->machine()->I8x16GtS(), inputs[1],
inputs[0]);
case wasm::kExprI8x16LeS:
return graph()->NewNode(jsgraph()->machine()->I8x16GeS(), inputs[1],
inputs[0]);
case wasm::kExprI8x16GtS:
return graph()->NewNode(jsgraph()->machine()->I8x16GtS(), inputs[0],
inputs[1]);
case wasm::kExprI8x16GeS:
return graph()->NewNode(jsgraph()->machine()->I8x16GeS(), inputs[0],
inputs[1]);
case wasm::kExprI8x16UConvertI16x8:
return graph()->NewNode(jsgraph()->machine()->I8x16UConvertI16x8(),
inputs[0], inputs[1]);
case wasm::kExprI8x16AddSaturateU:
return graph()->NewNode(jsgraph()->machine()->I8x16AddSaturateU(),
inputs[0], inputs[1]);
case wasm::kExprI8x16SubSaturateU:
return graph()->NewNode(jsgraph()->machine()->I8x16SubSaturateU(),
inputs[0], inputs[1]);
case wasm::kExprI8x16MinU:
return graph()->NewNode(jsgraph()->machine()->I8x16MinU(), inputs[0],
inputs[1]);
case wasm::kExprI8x16MaxU:
return graph()->NewNode(jsgraph()->machine()->I8x16MaxU(), inputs[0],
inputs[1]);
case wasm::kExprI8x16LtU:
return graph()->NewNode(jsgraph()->machine()->I8x16GtU(), inputs[1],
inputs[0]);
case wasm::kExprI8x16LeU:
return graph()->NewNode(jsgraph()->machine()->I8x16GeU(), inputs[1],
inputs[0]);
case wasm::kExprI8x16GtU:
return graph()->NewNode(jsgraph()->machine()->I8x16GtU(), inputs[0],
inputs[1]);
case wasm::kExprI8x16GeU:
return graph()->NewNode(jsgraph()->machine()->I8x16GeU(), inputs[0],
inputs[1]);
case wasm::kExprS128And:
return graph()->NewNode(jsgraph()->machine()->S128And(), inputs[0],
inputs[1]);
case wasm::kExprS128Or:
return graph()->NewNode(jsgraph()->machine()->S128Or(), inputs[0],
inputs[1]);
case wasm::kExprS128Xor:
return graph()->NewNode(jsgraph()->machine()->S128Xor(), inputs[0],
inputs[1]);
case wasm::kExprS128Not:
return graph()->NewNode(jsgraph()->machine()->S128Not(), inputs[0]);
case wasm::kExprS128Select:
return graph()->NewNode(jsgraph()->machine()->S128Select(), inputs[0],
inputs[1], inputs[2]);
case wasm::kExprS1x4AnyTrue:
return graph()->NewNode(jsgraph()->machine()->S1x4AnyTrue(), inputs[0]);
case wasm::kExprS1x4AllTrue:
return graph()->NewNode(jsgraph()->machine()->S1x4AllTrue(), inputs[0]);
case wasm::kExprS1x8AnyTrue:
return graph()->NewNode(jsgraph()->machine()->S1x8AnyTrue(), inputs[0]);
case wasm::kExprS1x8AllTrue:
return graph()->NewNode(jsgraph()->machine()->S1x8AllTrue(), inputs[0]);
case wasm::kExprS1x16AnyTrue:
return graph()->NewNode(jsgraph()->machine()->S1x16AnyTrue(), inputs[0]);
case wasm::kExprS1x16AllTrue:
return graph()->NewNode(jsgraph()->machine()->S1x16AllTrue(), inputs[0]);
default:
FATAL_UNSUPPORTED_OPCODE(opcode);
}
}
Node* WasmGraphBuilder::SimdLaneOp(wasm::WasmOpcode opcode, uint8_t lane,
Node* const* inputs) {
has_simd_ = true;
switch (opcode) {
case wasm::kExprF32x4ExtractLane:
return graph()->NewNode(jsgraph()->machine()->F32x4ExtractLane(lane),
inputs[0]);
case wasm::kExprF32x4ReplaceLane:
return graph()->NewNode(jsgraph()->machine()->F32x4ReplaceLane(lane),
inputs[0], inputs[1]);
case wasm::kExprI32x4ExtractLane:
return graph()->NewNode(jsgraph()->machine()->I32x4ExtractLane(lane),
inputs[0]);
case wasm::kExprI32x4ReplaceLane:
return graph()->NewNode(jsgraph()->machine()->I32x4ReplaceLane(lane),
inputs[0], inputs[1]);
case wasm::kExprI16x8ExtractLane:
return graph()->NewNode(jsgraph()->machine()->I16x8ExtractLane(lane),
inputs[0]);
case wasm::kExprI16x8ReplaceLane:
return graph()->NewNode(jsgraph()->machine()->I16x8ReplaceLane(lane),
inputs[0], inputs[1]);
case wasm::kExprI8x16ExtractLane:
return graph()->NewNode(jsgraph()->machine()->I8x16ExtractLane(lane),
inputs[0]);
case wasm::kExprI8x16ReplaceLane:
return graph()->NewNode(jsgraph()->machine()->I8x16ReplaceLane(lane),
inputs[0], inputs[1]);
default:
FATAL_UNSUPPORTED_OPCODE(opcode);
}
}
Node* WasmGraphBuilder::SimdShiftOp(wasm::WasmOpcode opcode, uint8_t shift,
Node* const* inputs) {
has_simd_ = true;
switch (opcode) {
case wasm::kExprI32x4Shl:
return graph()->NewNode(jsgraph()->machine()->I32x4Shl(shift), inputs[0]);
case wasm::kExprI32x4ShrS:
return graph()->NewNode(jsgraph()->machine()->I32x4ShrS(shift),
inputs[0]);
case wasm::kExprI32x4ShrU:
return graph()->NewNode(jsgraph()->machine()->I32x4ShrU(shift),
inputs[0]);
case wasm::kExprI16x8Shl:
return graph()->NewNode(jsgraph()->machine()->I16x8Shl(shift), inputs[0]);
case wasm::kExprI16x8ShrS:
return graph()->NewNode(jsgraph()->machine()->I16x8ShrS(shift),
inputs[0]);
case wasm::kExprI16x8ShrU:
return graph()->NewNode(jsgraph()->machine()->I16x8ShrU(shift),
inputs[0]);
case wasm::kExprI8x16Shl:
return graph()->NewNode(jsgraph()->machine()->I8x16Shl(shift), inputs[0]);
case wasm::kExprI8x16ShrS:
return graph()->NewNode(jsgraph()->machine()->I8x16ShrS(shift),
inputs[0]);
case wasm::kExprI8x16ShrU:
return graph()->NewNode(jsgraph()->machine()->I8x16ShrU(shift),
inputs[0]);
default:
FATAL_UNSUPPORTED_OPCODE(opcode);
}
}
Node* WasmGraphBuilder::Simd8x16ShuffleOp(const uint8_t shuffle[16],
Node* const* inputs) {
has_simd_ = true;
return graph()->NewNode(jsgraph()->machine()->S8x16Shuffle(shuffle),
inputs[0], inputs[1]);
}
#define ATOMIC_BINOP_LIST(V) \
V(I32AtomicAdd, Add, Uint32) \
V(I32AtomicSub, Sub, Uint32) \
V(I32AtomicAnd, And, Uint32) \
V(I32AtomicOr, Or, Uint32) \
V(I32AtomicXor, Xor, Uint32) \
V(I32AtomicExchange, Exchange, Uint32) \
V(I32AtomicAdd8U, Add, Uint8) \
V(I32AtomicSub8U, Sub, Uint8) \
V(I32AtomicAnd8U, And, Uint8) \
V(I32AtomicOr8U, Or, Uint8) \
V(I32AtomicXor8U, Xor, Uint8) \
V(I32AtomicExchange8U, Exchange, Uint8) \
V(I32AtomicAdd16U, Add, Uint16) \
V(I32AtomicSub16U, Sub, Uint16) \
V(I32AtomicAnd16U, And, Uint16) \
V(I32AtomicOr16U, Or, Uint16) \
V(I32AtomicXor16U, Xor, Uint16) \
V(I32AtomicExchange16U, Exchange, Uint16)
#define ATOMIC_TERNARY_LIST(V) \
V(I32AtomicCompareExchange, CompareExchange, Uint32) \
V(I32AtomicCompareExchange8U, CompareExchange, Uint8) \
V(I32AtomicCompareExchange16U, CompareExchange, Uint16)
#define ATOMIC_LOAD_LIST(V) \
V(I32AtomicLoad, Uint32) \
V(I32AtomicLoad8U, Uint8) \
V(I32AtomicLoad16U, Uint16)
#define ATOMIC_STORE_LIST(V) \
V(I32AtomicStore, Uint32, kWord32) \
V(I32AtomicStore8U, Uint8, kWord8) \
V(I32AtomicStore16U, Uint16, kWord16)
Node* WasmGraphBuilder::AtomicOp(wasm::WasmOpcode opcode, Node* const* inputs,
uint32_t alignment, uint32_t offset,
wasm::WasmCodePosition position) {
// TODO(gdeepti): Add alignment validation, traps on misalignment
Node* node;
switch (opcode) {
#define BUILD_ATOMIC_BINOP(Name, Operation, Type) \
case wasm::kExpr##Name: { \
Node* index = \
BoundsCheckMem(wasm::WasmOpcodes::MemSize(MachineType::Type()), \
inputs[0], offset, position, kNeedsBoundsCheck); \
node = graph()->NewNode( \
jsgraph()->machine()->Atomic##Operation(MachineType::Type()), \
MemBuffer(offset), index, inputs[1], *effect_, *control_); \
break; \
}
ATOMIC_BINOP_LIST(BUILD_ATOMIC_BINOP)
#undef BUILD_ATOMIC_BINOP
#define BUILD_ATOMIC_TERNARY_OP(Name, Operation, Type) \
case wasm::kExpr##Name: { \
Node* index = \
BoundsCheckMem(wasm::WasmOpcodes::MemSize(MachineType::Type()), \
inputs[0], offset, position, kNeedsBoundsCheck); \
node = graph()->NewNode( \
jsgraph()->machine()->Atomic##Operation(MachineType::Type()), \
MemBuffer(offset), index, inputs[1], inputs[2], *effect_, *control_); \
break; \
}
ATOMIC_TERNARY_LIST(BUILD_ATOMIC_TERNARY_OP)
#undef BUILD_ATOMIC_TERNARY_OP
#define BUILD_ATOMIC_LOAD_OP(Name, Type) \
case wasm::kExpr##Name: { \
Node* index = \
BoundsCheckMem(wasm::WasmOpcodes::MemSize(MachineType::Type()), \
inputs[0], offset, position, kNeedsBoundsCheck); \
node = graph()->NewNode( \
jsgraph()->machine()->AtomicLoad(MachineType::Type()), \
MemBuffer(offset), index, *effect_, *control_); \
break; \
}
ATOMIC_LOAD_LIST(BUILD_ATOMIC_LOAD_OP)
#undef BUILD_ATOMIC_LOAD_OP
#define BUILD_ATOMIC_STORE_OP(Name, Type, Rep) \
case wasm::kExpr##Name: { \
Node* index = \
BoundsCheckMem(wasm::WasmOpcodes::MemSize(MachineType::Type()), \
inputs[0], offset, position, kNeedsBoundsCheck); \
node = graph()->NewNode( \
jsgraph()->machine()->AtomicStore(MachineRepresentation::Rep), \
MemBuffer(offset), index, inputs[1], *effect_, *control_); \
break; \
}
ATOMIC_STORE_LIST(BUILD_ATOMIC_STORE_OP)
#undef BUILD_ATOMIC_STORE_OP
default:
FATAL_UNSUPPORTED_OPCODE(opcode);
}
*effect_ = node;
return node;
}
#undef ATOMIC_BINOP_LIST
#undef ATOMIC_TERNARY_LIST
#undef ATOMIC_LOAD_LIST
#undef ATOMIC_STORE_LIST
namespace {
bool must_record_function_compilation(Isolate* isolate) {
return isolate->logger()->is_logging_code_events() || isolate->is_profiling();
}
PRINTF_FORMAT(4, 5)
void RecordFunctionCompilation(CodeEventListener::LogEventsAndTags tag,
Isolate* isolate, Handle<Code> code,
const char* format, ...) {
DCHECK(must_record_function_compilation(isolate));
ScopedVector<char> buffer(128);
va_list arguments;
va_start(arguments, format);
int len = VSNPrintF(buffer, format, arguments);
CHECK_LT(0, len);
va_end(arguments);
Handle<String> name_str =
isolate->factory()->NewStringFromAsciiChecked(buffer.start());
Handle<String> script_str =
isolate->factory()->NewStringFromAsciiChecked("(wasm)");
Handle<SharedFunctionInfo> shared =
isolate->factory()->NewSharedFunctionInfo(name_str, code, false);
PROFILE(isolate, CodeCreateEvent(tag, AbstractCode::cast(*code), *shared,
*script_str, 0, 0));
}
} // namespace
Handle<Code> CompileJSToWasmWrapper(Isolate* isolate, wasm::WasmModule* module,
WasmCodeWrapper wasm_code, uint32_t index,
Address wasm_context_address,
bool use_trap_handler) {
const wasm::WasmFunction* func = &module->functions[index];
//----------------------------------------------------------------------------
// Create the Graph
//----------------------------------------------------------------------------
Zone zone(isolate->allocator(), ZONE_NAME);
Graph graph(&zone);
CommonOperatorBuilder common(&zone);
MachineOperatorBuilder machine(
&zone, MachineType::PointerRepresentation(),
InstructionSelector::SupportedMachineOperatorFlags(),
InstructionSelector::AlignmentRequirements());
JSGraph jsgraph(isolate, &graph, &common, nullptr, nullptr, &machine);
Node* control = nullptr;
Node* effect = nullptr;
// TODO(titzer): compile JS to WASM wrappers without a {ModuleEnv}.
ModuleEnv env(module,
// TODO(mtrofin): remove the Illegal builtin when we don't need
// FLAG_wasm_jit_to_native
BUILTIN_CODE(isolate, Illegal), // default_function_code
use_trap_handler);
WasmGraphBuilder builder(&env, &zone, &jsgraph,
CEntryStub(isolate, 1).GetCode(), func->sig);
builder.set_control_ptr(&control);
builder.set_effect_ptr(&effect);
builder.BuildJSToWasmWrapper(wasm_code, wasm_context_address);
//----------------------------------------------------------------------------
// Run the compilation pipeline.
//----------------------------------------------------------------------------
if (FLAG_trace_turbo_graph) { // Simple textual RPO.
OFStream os(stdout);
os << "-- Graph after change lowering -- " << std::endl;
os << AsRPO(graph);
}
// Schedule and compile to machine code.
int params =
static_cast<int>(module->functions[index].sig->parameter_count());
CallDescriptor* incoming = Linkage::GetJSCallDescriptor(
&zone, false, params + 1, CallDescriptor::kNoFlags);
#ifdef DEBUG
EmbeddedVector<char, 32> func_name;
static unsigned id = 0;
func_name.Truncate(SNPrintF(func_name, "js-to-wasm#%d", id++));
#else
Vector<const char> func_name = CStrVector("js-to-wasm");
#endif
CompilationInfo info(func_name, &zone, Code::JS_TO_WASM_FUNCTION);
Handle<Code> code =
Pipeline::GenerateCodeForTesting(&info, isolate, incoming, &graph);
#ifdef ENABLE_DISASSEMBLER
if (FLAG_print_opt_code && !code.is_null()) {
OFStream os(stdout);
code->Disassemble(func_name.start(), os);
}
#endif
if (must_record_function_compilation(isolate)) {
RecordFunctionCompilation(CodeEventListener::FUNCTION_TAG, isolate, code,
"%.*s", func_name.length(), func_name.start());
}
return code;
}
namespace {
void ValidateImportWrapperReferencesImmovables(Handle<Code> wrapper) {
#ifdef DEBUG
// We expect the only embedded objects to be those originating from
// a snapshot, which are immovable.
DisallowHeapAllocation no_gc;
if (wrapper.is_null()) return;
static constexpr int kAllGCRefs = (1 << (RelocInfo::LAST_GCED_ENUM + 1)) - 1;
for (RelocIterator it(*wrapper, kAllGCRefs); !it.done(); it.next()) {
RelocInfo::Mode mode = it.rinfo()->rmode();
Object* target = nullptr;
switch (mode) {
case RelocInfo::CODE_TARGET:
// this would be either one of the stubs or builtins, because
// we didn't link yet.
target = Code::GetCodeFromTargetAddress(it.rinfo()->target_address());
break;
case RelocInfo::EMBEDDED_OBJECT:
target = it.rinfo()->target_object();
break;
default:
UNREACHABLE();
}
DCHECK_NOT_NULL(target);
bool is_immovable =
target->IsSmi() || Heap::IsImmovable(HeapObject::cast(target));
bool is_allowed_stub = false;
if (target->IsCode()) {
Code* code = Code::cast(target);
is_allowed_stub =
code->kind() == Code::STUB &&
CodeStub::MajorKeyFromKey(code->stub_key()) == CodeStub::DoubleToI;
}
DCHECK(is_immovable || is_allowed_stub);
}
#endif
}
} // namespace
Handle<Code> CompileWasmToJSWrapper(
Isolate* isolate, Handle<JSReceiver> target, wasm::FunctionSig* sig,
uint32_t index, wasm::ModuleOrigin origin, bool use_trap_handler,
Handle<FixedArray> global_js_imports_table) {
//----------------------------------------------------------------------------
// Create the Graph
//----------------------------------------------------------------------------
Zone zone(isolate->allocator(), ZONE_NAME);
Graph graph(&zone);
CommonOperatorBuilder common(&zone);
MachineOperatorBuilder machine(
&zone, MachineType::PointerRepresentation(),
InstructionSelector::SupportedMachineOperatorFlags(),
InstructionSelector::AlignmentRequirements());
JSGraph jsgraph(isolate, &graph, &common, nullptr, nullptr, &machine);
Node* control = nullptr;
Node* effect = nullptr;
SourcePositionTable* source_position_table =
origin == wasm::kAsmJsOrigin ? new (&zone) SourcePositionTable(&graph)
: nullptr;
ModuleEnv env(nullptr, Handle<Code>::null(), use_trap_handler);
WasmGraphBuilder builder(&env, &zone, &jsgraph,
CEntryStub(isolate, 1).GetCode(), sig,
source_position_table);
builder.set_control_ptr(&control);
builder.set_effect_ptr(&effect);
if (builder.BuildWasmToJSWrapper(target, global_js_imports_table, index)) {
global_js_imports_table->set(
OffsetForImportData(index, WasmGraphBuilder::kFunction), *target);
if (target->IsJSFunction()) {
Handle<JSFunction> function = Handle<JSFunction>::cast(target);
global_js_imports_table->set(
OffsetForImportData(index, WasmGraphBuilder::kFunctionContext),
function->context());
global_js_imports_table->set(
OffsetForImportData(index, WasmGraphBuilder::kGlobalProxy),
function->context()->global_proxy());
}
}
if (FLAG_trace_turbo_graph) { // Simple textual RPO.
OFStream os(stdout);
os << "-- Graph after change lowering -- " << std::endl;
os << AsRPO(graph);
}
// Schedule and compile to machine code.
CallDescriptor* incoming = GetWasmCallDescriptor(&zone, sig);
if (machine.Is32()) {
incoming = GetI32WasmCallDescriptor(&zone, incoming);
}
#ifdef DEBUG
EmbeddedVector<char, 32> func_name;
static unsigned id = 0;
func_name.Truncate(SNPrintF(func_name, "wasm-to-js#%d", id++));
#else
Vector<const char> func_name = CStrVector("wasm-to-js");
#endif
CompilationInfo info(func_name, &zone, Code::WASM_TO_JS_FUNCTION);
Handle<Code> code = Pipeline::GenerateCodeForTesting(
&info, isolate, incoming, &graph, nullptr, source_position_table);
ValidateImportWrapperReferencesImmovables(code);
Handle<FixedArray> deopt_data =
isolate->factory()->NewFixedArray(2, TENURED);
intptr_t loc =
reinterpret_cast<intptr_t>(global_js_imports_table.location());
Handle<Object> loc_handle = isolate->factory()->NewHeapNumberFromBits(loc);
deopt_data->set(0, *loc_handle);
Handle<Object> index_handle = isolate->factory()->NewNumberFromInt(
OffsetForImportData(index, WasmGraphBuilder::kFunction));
deopt_data->set(1, *index_handle);
code->set_deoptimization_data(*deopt_data);
#ifdef ENABLE_DISASSEMBLER
if (FLAG_print_opt_code && !code.is_null()) {
OFStream os(stdout);
code->Disassemble(func_name.start(), os);
}
#endif
if (must_record_function_compilation(isolate)) {
RecordFunctionCompilation(CodeEventListener::FUNCTION_TAG, isolate, code,
"%.*s", func_name.length(), func_name.start());
}
return code;
}
Handle<Code> CompileWasmToWasmWrapper(Isolate* isolate, WasmCodeWrapper target,
wasm::FunctionSig* sig,
Address new_wasm_context_address) {
//----------------------------------------------------------------------------
// Create the Graph
//----------------------------------------------------------------------------
Zone zone(isolate->allocator(), ZONE_NAME);
Graph graph(&zone);
CommonOperatorBuilder common(&zone);
MachineOperatorBuilder machine(
&zone, MachineType::PointerRepresentation(),
InstructionSelector::SupportedMachineOperatorFlags(),
InstructionSelector::AlignmentRequirements());
JSGraph jsgraph(isolate, &graph, &common, nullptr, nullptr, &machine);
Node* control = nullptr;
Node* effect = nullptr;
ModuleEnv env(
nullptr, Handle<Code>::null(),
!target.IsCodeObject() && target.GetWasmCode()->HasTrapHandlerIndex());
WasmGraphBuilder builder(&env, &zone, &jsgraph, Handle<Code>(), sig);
builder.set_control_ptr(&control);
builder.set_effect_ptr(&effect);
builder.BuildWasmToWasmWrapper(target, new_wasm_context_address);
if (HasInt64ParamOrReturn(sig)) builder.LowerInt64();
if (FLAG_trace_turbo_graph) { // Simple textual RPO.
OFStream os(stdout);
os << "-- Graph after change lowering -- " << std::endl;
os << AsRPO(graph);
}
// Schedule and compile to machine code.
CallDescriptor* incoming = GetWasmCallDescriptor(&zone, sig);
if (machine.Is32()) {
incoming = GetI32WasmCallDescriptor(&zone, incoming);
}
bool debugging =
#if DEBUG
true;
#else
FLAG_print_opt_code || FLAG_trace_turbo || FLAG_trace_turbo_graph;
#endif
Vector<const char> func_name = ArrayVector("wasm-to-wasm");
static unsigned id = 0;
Vector<char> buffer;
if (debugging) {
buffer = Vector<char>::New(128);
int chars = SNPrintF(buffer, "wasm-to-wasm#%d", id);
func_name = Vector<const char>::cast(buffer.SubVector(0, chars));
}
CompilationInfo info(func_name, &zone, Code::WASM_TO_WASM_FUNCTION);
Handle<Code> code =
Pipeline::GenerateCodeForTesting(&info, isolate, incoming, &graph);
#ifdef ENABLE_DISASSEMBLER
if (FLAG_print_opt_code && !code.is_null()) {
OFStream os(stdout);
code->Disassemble(buffer.start(), os);
}
#endif
if (debugging) {
buffer.Dispose();
}
if (isolate->logger()->is_logging_code_events() || isolate->is_profiling()) {
RecordFunctionCompilation(CodeEventListener::FUNCTION_TAG, isolate, code,
"wasm-to-wasm");
}
return code;
}
Handle<Code> CompileWasmInterpreterEntry(Isolate* isolate, uint32_t func_index,
wasm::FunctionSig* sig,
Handle<WasmInstanceObject> instance) {
//----------------------------------------------------------------------------
// Create the Graph
//----------------------------------------------------------------------------
Zone zone(isolate->allocator(), ZONE_NAME);
Graph graph(&zone);
CommonOperatorBuilder common(&zone);
MachineOperatorBuilder machine(
&zone, MachineType::PointerRepresentation(),
InstructionSelector::SupportedMachineOperatorFlags(),
InstructionSelector::AlignmentRequirements());
JSGraph jsgraph(isolate, &graph, &common, nullptr, nullptr, &machine);
Node* control = nullptr;
Node* effect = nullptr;
WasmGraphBuilder builder(nullptr, &zone, &jsgraph,
CEntryStub(isolate, 1).GetCode(), sig);
builder.set_control_ptr(&control);
builder.set_effect_ptr(&effect);
builder.BuildWasmInterpreterEntry(func_index);
Handle<Code> code = Handle<Code>::null();
{
if (FLAG_trace_turbo_graph) { // Simple textual RPO.
OFStream os(stdout);
os << "-- Wasm interpreter entry graph -- " << std::endl;
os << AsRPO(graph);
}
// Schedule and compile to machine code.
CallDescriptor* incoming = GetWasmCallDescriptor(&zone, sig);
if (machine.Is32()) {
incoming = GetI32WasmCallDescriptor(&zone, incoming);
}
#ifdef DEBUG
EmbeddedVector<char, 32> func_name;
func_name.Truncate(
SNPrintF(func_name, "wasm-interpreter-entry#%d", func_index));
#else
Vector<const char> func_name = CStrVector("wasm-interpreter-entry");
#endif
CompilationInfo info(func_name, &zone, Code::WASM_INTERPRETER_ENTRY);
code = Pipeline::GenerateCodeForTesting(&info, isolate, incoming, &graph,
nullptr);
#ifdef ENABLE_DISASSEMBLER
if (FLAG_print_opt_code && !code.is_null()) {
OFStream os(stdout);
code->Disassemble(func_name.start(), os);
}
#endif
if (must_record_function_compilation(isolate)) {
RecordFunctionCompilation(CodeEventListener::FUNCTION_TAG, isolate, code,
"%.*s", func_name.length(), func_name.start());
}
}
if (!FLAG_wasm_jit_to_native) {
Handle<FixedArray> deopt_data =
isolate->factory()->NewFixedArray(1, TENURED);
Handle<WeakCell> weak_instance = isolate->factory()->NewWeakCell(instance);
deopt_data->set(0, *weak_instance);
code->set_deoptimization_data(*deopt_data);
}
return code;
}
Handle<Code> CompileCWasmEntry(Isolate* isolate, wasm::FunctionSig* sig,
Address wasm_context_address) {
Zone zone(isolate->allocator(), ZONE_NAME);
Graph graph(&zone);
CommonOperatorBuilder common(&zone);
MachineOperatorBuilder machine(
&zone, MachineType::PointerRepresentation(),
InstructionSelector::SupportedMachineOperatorFlags(),
InstructionSelector::AlignmentRequirements());
JSGraph jsgraph(isolate, &graph, &common, nullptr, nullptr, &machine);
Node* control = nullptr;
Node* effect = nullptr;
WasmGraphBuilder builder(nullptr, &zone, &jsgraph,
CEntryStub(isolate, 1).GetCode(), sig);
builder.set_control_ptr(&control);
builder.set_effect_ptr(&effect);
builder.BuildCWasmEntry(wasm_context_address);
if (FLAG_trace_turbo_graph) { // Simple textual RPO.
OFStream os(stdout);
os << "-- C Wasm entry graph -- " << std::endl;
os << AsRPO(graph);
}
// Schedule and compile to machine code.
CallDescriptor* incoming = Linkage::GetJSCallDescriptor(
&zone, false, CWasmEntryParameters::kNumParameters + 1,
CallDescriptor::kNoFlags);
// Build a name in the form "c-wasm-entry:<params>:<returns>".
static constexpr size_t kMaxNameLen = 128;
char debug_name[kMaxNameLen] = "c-wasm-entry:";
size_t name_len = strlen(debug_name);
auto append_name_char = [&](char c) {
if (name_len + 1 < kMaxNameLen) debug_name[name_len++] = c;
};
for (wasm::ValueType t : sig->parameters()) {
append_name_char(wasm::WasmOpcodes::ShortNameOf(t));
}
append_name_char(':');
for (wasm::ValueType t : sig->returns()) {
append_name_char(wasm::WasmOpcodes::ShortNameOf(t));
}
debug_name[name_len] = '\0';
Vector<const char> debug_name_vec(debug_name, name_len);
CompilationInfo info(debug_name_vec, &zone, Code::C_WASM_ENTRY);
Handle<Code> code =
Pipeline::GenerateCodeForTesting(&info, isolate, incoming, &graph);
#ifdef ENABLE_DISASSEMBLER
if (FLAG_print_opt_code && !code.is_null()) {
OFStream os(stdout);
code->Disassemble(debug_name, os);
}
#endif
return code;
}
SourcePositionTable* WasmCompilationUnit::BuildGraphForWasmFunction(
double* decode_ms) {
base::ElapsedTimer decode_timer;
if (FLAG_trace_wasm_decode_time) {
decode_timer.Start();
}
// Create a TF graph during decoding.
SourcePositionTable* source_position_table =
new (tf_.jsgraph_->zone()) SourcePositionTable(tf_.jsgraph_->graph());
WasmGraphBuilder builder(env_, tf_.jsgraph_->zone(), tf_.jsgraph_,
centry_stub_, func_body_.sig, source_position_table,
runtime_exception_support_);
tf_.graph_construction_result_ =
wasm::BuildTFGraph(isolate_->allocator(), &builder, func_body_);
if (tf_.graph_construction_result_.failed()) {
if (FLAG_trace_wasm_compiler) {
OFStream os(stdout);
os << "Compilation failed: " << tf_.graph_construction_result_.error_msg()
<< std::endl;
}
return nullptr;
}
builder.LowerInt64();
if (builder.has_simd() &&
(!CpuFeatures::SupportsWasmSimd128() || lower_simd_)) {
SimdScalarLowering(tf_.jsgraph_, func_body_.sig).LowerGraph();
}
if (func_index_ >= FLAG_trace_wasm_ast_start &&
func_index_ < FLAG_trace_wasm_ast_end) {
PrintRawWasmCode(isolate_->allocator(), func_body_, env_->module,
wasm::kPrintLocals);
}
if (FLAG_trace_wasm_decode_time) {
*decode_ms = decode_timer.Elapsed().InMillisecondsF();
}
return source_position_table;
}
namespace {
Vector<const char> GetDebugName(Zone* zone, wasm::WasmName name, int index) {
if (!name.is_empty()) {
return name;
}
#ifdef DEBUG
constexpr int kBufferLength = 15;
EmbeddedVector<char, kBufferLength> name_vector;
int name_len = SNPrintF(name_vector, "wasm#%d", index);
DCHECK(name_len > 0 && name_len < name_vector.length());
char* index_name = zone->NewArray<char>(name_len);
memcpy(index_name, name_vector.start(), name_len);
return Vector<const char>(index_name, name_len);
#else
return {};
#endif
}
} // namespace
// static
WasmCompilationUnit::CompilationMode
WasmCompilationUnit::GetDefaultCompilationMode() {
return FLAG_liftoff ? WasmCompilationUnit::CompilationMode::kLiftoff
: WasmCompilationUnit::CompilationMode::kTurbofan;
}
WasmCompilationUnit::WasmCompilationUnit(
Isolate* isolate, ModuleEnv* env, wasm::NativeModule* native_module,
wasm::FunctionBody body, wasm::WasmName name, int index,
Handle<Code> centry_stub, CompilationMode mode, Counters* counters,
RuntimeExceptionSupport exception_support, bool lower_simd)
: isolate_(isolate),
env_(env),
func_body_(body),
func_name_(name),
counters_(counters ? counters : isolate->counters()),
centry_stub_(centry_stub),
func_index_(index),
runtime_exception_support_(exception_support),
native_module_(native_module),
lower_simd_(lower_simd),
protected_instructions_(
new std::vector<trap_handler::ProtectedInstructionData>()),
mode_(mode) {
switch (mode_) {
case WasmCompilationUnit::CompilationMode::kLiftoff:
new (&liftoff_) LiftoffData(isolate);
break;
case WasmCompilationUnit::CompilationMode::kTurbofan:
new (&tf_) TurbofanData();
break;
}
}
WasmCompilationUnit::~WasmCompilationUnit() {
switch (mode_) {
case WasmCompilationUnit::CompilationMode::kLiftoff:
liftoff_.~LiftoffData();
break;
case WasmCompilationUnit::CompilationMode::kTurbofan:
tf_.~TurbofanData();
break;
}
}
void WasmCompilationUnit::ExecuteCompilation() {
auto size_histogram = env_->module->is_wasm()
? counters()->wasm_wasm_function_size_bytes()
: counters()->wasm_asm_function_size_bytes();
size_histogram->AddSample(
static_cast<int>(func_body_.end - func_body_.start));
auto timed_histogram = env_->module->is_wasm()
? counters()->wasm_compile_wasm_function_time()
: counters()->wasm_compile_asm_function_time();
TimedHistogramScope wasm_compile_function_time_scope(timed_histogram);
if (FLAG_trace_wasm_compiler) {
if (func_name_.start() != nullptr) {
PrintF("Compiling wasm function %d:'%.*s'\n\n", func_index(),
func_name_.length(), func_name_.start());
} else {
PrintF("Compiling wasm function %d:<unnamed>\n\n", func_index());
}
}
switch (mode_) {
case WasmCompilationUnit::CompilationMode::kLiftoff:
if (ExecuteLiftoffCompilation()) break;
// Otherwise, fall back to turbofan.
liftoff_.~LiftoffData();
mode_ = WasmCompilationUnit::CompilationMode::kTurbofan;
new (&tf_) TurbofanData();
// fall-through
case WasmCompilationUnit::CompilationMode::kTurbofan:
ExecuteTurbofanCompilation();
break;
}
}
void WasmCompilationUnit::ExecuteTurbofanCompilation() {
double decode_ms = 0;
size_t node_count = 0;
// Scope for the {graph_zone}.
{
Zone graph_zone(isolate_->allocator(), ZONE_NAME);
tf_.jsgraph_ = new (&graph_zone) JSGraph(
isolate_, new (&graph_zone) Graph(&graph_zone),
new (&graph_zone) CommonOperatorBuilder(&graph_zone), nullptr, nullptr,
new (&graph_zone) MachineOperatorBuilder(
&graph_zone, MachineType::PointerRepresentation(),
InstructionSelector::SupportedMachineOperatorFlags(),
InstructionSelector::AlignmentRequirements()));
SourcePositionTable* source_positions =
BuildGraphForWasmFunction(&decode_ms);
if (tf_.graph_construction_result_.failed()) {
ok_ = false;
return;
}
base::ElapsedTimer pipeline_timer;
if (FLAG_trace_wasm_decode_time) {
node_count = tf_.jsgraph_->graph()->NodeCount();
pipeline_timer.Start();
}
tf_.compilation_zone_.reset(new Zone(isolate_->allocator(), ZONE_NAME));
// Run the compiler pipeline to generate machine code.
CallDescriptor* descriptor =
GetWasmCallDescriptor(tf_.compilation_zone_.get(), func_body_.sig);
if (tf_.jsgraph_->machine()->Is32()) {
descriptor =
GetI32WasmCallDescriptor(tf_.compilation_zone_.get(), descriptor);
}
tf_.info_.reset(new CompilationInfo(
GetDebugName(tf_.compilation_zone_.get(), func_name_, func_index_),
tf_.compilation_zone_.get(), Code::WASM_FUNCTION));
tf_.job_.reset(Pipeline::NewWasmCompilationJob(
tf_.info_.get(), isolate_, tf_.jsgraph_, descriptor, source_positions,
protected_instructions_.get(), env_->module->origin()));
ok_ = tf_.job_->ExecuteJob() == CompilationJob::SUCCEEDED;
// TODO(bradnelson): Improve histogram handling of size_t.
counters()->wasm_compile_function_peak_memory_bytes()->AddSample(
static_cast<int>(tf_.jsgraph_->graph()->zone()->allocation_size()));
if (FLAG_trace_wasm_decode_time) {
double pipeline_ms = pipeline_timer.Elapsed().InMillisecondsF();
PrintF(
"wasm-compilation phase 1 ok: %u bytes, %0.3f ms decode, %zu nodes, "
"%0.3f ms pipeline\n",
static_cast<unsigned>(func_body_.end - func_body_.start), decode_ms,
node_count, pipeline_ms);
}
// The graph zone is about to get out of scope. Avoid invalid references.
tf_.jsgraph_ = nullptr;
}
// Record the memory cost this unit places on the system until
// it is finalized.
memory_cost_ = tf_.job_->AllocatedMemory();
}
// WasmCompilationUnit::ExecuteLiftoffCompilation() is defined in
// liftoff-compiler.cc.
WasmCodeWrapper WasmCompilationUnit::FinishCompilation(
wasm::ErrorThrower* thrower) {
WasmCodeWrapper ret;
switch (mode_) {
case WasmCompilationUnit::CompilationMode::kLiftoff:
ret = FinishLiftoffCompilation(thrower);
break;
case WasmCompilationUnit::CompilationMode::kTurbofan:
ret = FinishTurbofanCompilation(thrower);
break;
default:
UNREACHABLE();
}
if (!ret.IsCodeObject() && ret.is_null()) {
thrower->RuntimeError("Error finalizing code.");
}
return ret;
}
WasmCodeWrapper WasmCompilationUnit::FinishTurbofanCompilation(
wasm::ErrorThrower* thrower) {
if (!ok_) {
if (tf_.graph_construction_result_.failed()) {
// Add the function as another context for the exception.
EmbeddedVector<char, 128> message;
if (func_name_.start() == nullptr) {
SNPrintF(message, "Compiling wasm function #%d failed", func_index_);
} else {
wasm::TruncatedUserString<> trunc_name(func_name_);
SNPrintF(message, "Compiling wasm function #%d:%.*s failed",
func_index_, trunc_name.length(), trunc_name.start());
}
thrower->CompileFailed(message.start(), tf_.graph_construction_result_);
}
return {};
}
base::ElapsedTimer codegen_timer;
if (FLAG_trace_wasm_decode_time) {
codegen_timer.Start();
}
if (tf_.job_->FinalizeJob(isolate_) != CompilationJob::SUCCEEDED) {
return {};
}
if (!FLAG_wasm_jit_to_native) {
Handle<Code> code = tf_.info_->code();
DCHECK(!code.is_null());
if (FLAG_trace_wasm_decode_time) {
double codegen_ms = codegen_timer.Elapsed().InMillisecondsF();
PrintF("wasm-code-generation ok: %u bytes, %0.3f ms code generation\n",
static_cast<unsigned>(func_body_.end - func_body_.start),
codegen_ms);
}
PackProtectedInstructions(code);
return WasmCodeWrapper(code);
} else {
// TODO(mtrofin): when we crystalize a design in lieu of WasmCodeDesc, that
// works for both wasm and non-wasm, we can simplify AddCode to just take
// that as a parameter.
const CodeDesc& desc =
tf_.job_->compilation_info()->wasm_code_desc()->code_desc;
wasm::WasmCode* code = native_module_->AddCode(
desc, tf_.job_->compilation_info()->wasm_code_desc()->frame_slot_count,
func_index_,
tf_.job_->compilation_info()->wasm_code_desc()->safepoint_table_offset,
std::move(protected_instructions_));
if (!code) {
return WasmCodeWrapper(code);
}
// TODO(mtrofin): add CodeEventListener call - see the non-native case.
if (FLAG_trace_wasm_decode_time) {
double codegen_ms = codegen_timer.Elapsed().InMillisecondsF();
PrintF("wasm-code-generation ok: %u bytes, %0.3f ms code generation\n",
static_cast<unsigned>(func_body_.end - func_body_.start),
codegen_ms);
}
Handle<ByteArray> source_positions =
tf_.job_->compilation_info()->wasm_code_desc()->source_positions_table;
MaybeHandle<HandlerTable> handler_table =
tf_.job_->compilation_info()->wasm_code_desc()->handler_table;
native_module_->compiled_module()->source_positions()->set(
func_index_, *source_positions);
if (!handler_table.is_null()) {
native_module_->compiled_module()->handler_table()->set(
func_index_, *handler_table.ToHandleChecked());
}
#ifdef ENABLE_DISASSEMBLER
// Note: only do this after setting source positions, as this will be
// accessed and printed here.
if (FLAG_print_code || FLAG_print_wasm_code) {
// TODO(wasm): Use proper log files, here and elsewhere.
PrintF("--- Native Wasm code ---\n");
code->Print(isolate_);
PrintF("--- End code ---\n");
}
#endif
// TODO(mtrofin): this should probably move up in the common caller,
// once liftoff has source positions. Until then, we'd need to handle
// undefined values, which is complicating the code.
LOG_CODE_EVENT(isolate_,
CodeLinePosInfoRecordEvent(code->instructions().start(),
*source_positions));
return WasmCodeWrapper(code);
}
}
// TODO(mtrofin): remove when FLAG_wasm_jit_to_native is not needed
void WasmCompilationUnit::PackProtectedInstructions(Handle<Code> code) const {
if (protected_instructions_->empty()) return;
DCHECK_LT(protected_instructions_->size(), std::numeric_limits<int>::max());
const int num_instructions =
static_cast<int>(protected_instructions_->size());
Handle<FixedArray> fn_protected = isolate_->factory()->NewFixedArray(
num_instructions * Code::kTrapDataSize, TENURED);
for (int i = 0; i < num_instructions; ++i) {
const trap_handler::ProtectedInstructionData& instruction =
protected_instructions_->at(i);
fn_protected->set(Code::kTrapDataSize * i + Code::kTrapCodeOffset,
Smi::FromInt(instruction.instr_offset));
fn_protected->set(Code::kTrapDataSize * i + Code::kTrapLandingOffset,
Smi::FromInt(instruction.landing_offset));
}
code->set_protected_instructions(*fn_protected);
}
WasmCodeWrapper WasmCompilationUnit::FinishLiftoffCompilation(
wasm::ErrorThrower* thrower) {
CodeDesc desc;
liftoff_.asm_.GetCode(isolate_, &desc);
Handle<ByteArray> source_positions =
liftoff_.source_position_table_builder_.ToSourcePositionTable(isolate_);
WasmCodeWrapper ret;
if (!FLAG_wasm_jit_to_native) {
Handle<Code> code;
code = isolate_->factory()->NewCode(
desc, Code::WASM_FUNCTION, code, Builtins::kNoBuiltinId,
MaybeHandle<HandlerTable>(), source_positions,
MaybeHandle<DeoptimizationData>(), kMovable,
0, // stub_key
false, // is_turbofanned
liftoff_.asm_.GetTotalFrameSlotCount(), // stack_slots
liftoff_.safepoint_table_offset_);
if (isolate_->logger()->is_logging_code_events() ||
isolate_->is_profiling()) {
RecordFunctionCompilation(CodeEventListener::FUNCTION_TAG, isolate_, code,
"wasm#%d-liftoff", func_index_);
}
PackProtectedInstructions(code);
ret = WasmCodeWrapper(code);
} else {
// TODO(mtrofin): figure a way to raise events.
// Consider lifting it to FinishCompilation.
native_module_->compiled_module()->source_positions()->set(
func_index_, *source_positions);
ret = WasmCodeWrapper(
native_module_->AddCode(desc, liftoff_.asm_.GetTotalFrameSlotCount(),
func_index_, liftoff_.safepoint_table_offset_,
std::move(protected_instructions_), true));
}
#ifdef ENABLE_DISASSEMBLER
if (FLAG_print_code || FLAG_print_wasm_code) {
// TODO(wasm): Use proper log files, here and elsewhere.
OFStream os(stdout);
os << "--- Wasm liftoff code ---\n";
EmbeddedVector<char, 64> func_name;
if (func_name_.start() != nullptr) {
SNPrintF(func_name, "#%d:%.*s", func_index(), func_name_.length(),
func_name_.start());
} else {
SNPrintF(func_name, "wasm#%d", func_index());
}
ret.Disassemble(func_name.start(), isolate_, os);
os << "--- End code ---\n";
}
#endif
return ret;
}
// static
WasmCodeWrapper WasmCompilationUnit::CompileWasmFunction(
wasm::NativeModule* native_module, wasm::ErrorThrower* thrower,
Isolate* isolate, const wasm::ModuleWireBytes& wire_bytes, ModuleEnv* env,
const wasm::WasmFunction* function, CompilationMode mode) {
wasm::FunctionBody function_body{
function->sig, function->code.offset(),
wire_bytes.start() + function->code.offset(),
wire_bytes.start() + function->code.end_offset()};
WasmCompilationUnit unit(isolate, env, native_module, function_body,
wire_bytes.GetNameOrNull(function),
function->func_index,
CEntryStub(isolate, 1).GetCode(), mode);
unit.ExecuteCompilation();
return unit.FinishCompilation(thrower);
}
#undef WASM_64
#undef FATAL_UNSUPPORTED_OPCODE
} // namespace compiler
} // namespace internal
} // namespace v8