blob: 3530c7e7b283e336d3bf5298eb288e2b29830a3a [file] [log] [blame]
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2012 the V8 project authors. All rights reserved.
#ifndef V8_MIPS_ASSEMBLER_MIPS_H_
#define V8_MIPS_ASSEMBLER_MIPS_H_
#include <stdio.h>
#include <set>
#include "src/assembler.h"
#include "src/mips64/constants-mips64.h"
namespace v8 {
namespace internal {
// clang-format off
#define GENERAL_REGISTERS(V) \
V(zero_reg) V(at) V(v0) V(v1) V(a0) V(a1) V(a2) V(a3) \
V(a4) V(a5) V(a6) V(a7) V(t0) V(t1) V(t2) V(t3) \
V(s0) V(s1) V(s2) V(s3) V(s4) V(s5) V(s6) V(s7) V(t8) V(t9) \
V(k0) V(k1) V(gp) V(sp) V(fp) V(ra)
#define ALLOCATABLE_GENERAL_REGISTERS(V) \
V(a0) V(a1) V(a2) V(a3) \
V(a4) V(a5) V(a6) V(a7) V(t0) V(t1) V(t2) V(s7) \
V(v0) V(v1)
#define DOUBLE_REGISTERS(V) \
V(f0) V(f1) V(f2) V(f3) V(f4) V(f5) V(f6) V(f7) \
V(f8) V(f9) V(f10) V(f11) V(f12) V(f13) V(f14) V(f15) \
V(f16) V(f17) V(f18) V(f19) V(f20) V(f21) V(f22) V(f23) \
V(f24) V(f25) V(f26) V(f27) V(f28) V(f29) V(f30) V(f31)
#define FLOAT_REGISTERS DOUBLE_REGISTERS
#define SIMD128_REGISTERS(V) \
V(w0) V(w1) V(w2) V(w3) V(w4) V(w5) V(w6) V(w7) \
V(w8) V(w9) V(w10) V(w11) V(w12) V(w13) V(w14) V(w15) \
V(w16) V(w17) V(w18) V(w19) V(w20) V(w21) V(w22) V(w23) \
V(w24) V(w25) V(w26) V(w27) V(w28) V(w29) V(w30) V(w31)
#define ALLOCATABLE_DOUBLE_REGISTERS(V) \
V(f0) V(f2) V(f4) V(f6) V(f8) V(f10) V(f12) V(f14) \
V(f16) V(f18) V(f20) V(f22) V(f24) V(f26)
// clang-format on
// Note that the bit values must match those used in actual instruction
// encoding.
const int kNumRegs = 32;
const RegList kJSCallerSaved = 1 << 2 | // v0
1 << 3 | // v1
1 << 4 | // a0
1 << 5 | // a1
1 << 6 | // a2
1 << 7 | // a3
1 << 8 | // a4
1 << 9 | // a5
1 << 10 | // a6
1 << 11 | // a7
1 << 12 | // t0
1 << 13 | // t1
1 << 14 | // t2
1 << 15; // t3
const int kNumJSCallerSaved = 14;
// Callee-saved registers preserved when switching from C to JavaScript.
const RegList kCalleeSaved = 1 << 16 | // s0
1 << 17 | // s1
1 << 18 | // s2
1 << 19 | // s3
1 << 20 | // s4
1 << 21 | // s5
1 << 22 | // s6 (roots in Javascript code)
1 << 23 | // s7 (cp in Javascript code)
1 << 30; // fp/s8
const int kNumCalleeSaved = 9;
const RegList kCalleeSavedFPU = 1 << 20 | // f20
1 << 22 | // f22
1 << 24 | // f24
1 << 26 | // f26
1 << 28 | // f28
1 << 30; // f30
const int kNumCalleeSavedFPU = 6;
const RegList kCallerSavedFPU = 1 << 0 | // f0
1 << 2 | // f2
1 << 4 | // f4
1 << 6 | // f6
1 << 8 | // f8
1 << 10 | // f10
1 << 12 | // f12
1 << 14 | // f14
1 << 16 | // f16
1 << 18; // f18
// Number of registers for which space is reserved in safepoints. Must be a
// multiple of 8.
const int kNumSafepointRegisters = 24;
// Define the list of registers actually saved at safepoints.
// Note that the number of saved registers may be smaller than the reserved
// space, i.e. kNumSafepointSavedRegisters <= kNumSafepointRegisters.
const RegList kSafepointSavedRegisters = kJSCallerSaved | kCalleeSaved;
const int kNumSafepointSavedRegisters = kNumJSCallerSaved + kNumCalleeSaved;
const int kUndefIndex = -1;
// Map with indexes on stack that corresponds to codes of saved registers.
const int kSafepointRegisterStackIndexMap[kNumRegs] = {kUndefIndex, // zero_reg
kUndefIndex, // at
0, // v0
1, // v1
2, // a0
3, // a1
4, // a2
5, // a3
6, // a4
7, // a5
8, // a6
9, // a7
10, // t0
11, // t1
12, // t2
13, // t3
14, // s0
15, // s1
16, // s2
17, // s3
18, // s4
19, // s5
20, // s6
21, // s7
kUndefIndex, // t8
kUndefIndex, // t9
kUndefIndex, // k0
kUndefIndex, // k1
kUndefIndex, // gp
kUndefIndex, // sp
22, // fp
kUndefIndex};
// CPU Registers.
//
// 1) We would prefer to use an enum, but enum values are assignment-
// compatible with int, which has caused code-generation bugs.
//
// 2) We would prefer to use a class instead of a struct but we don't like
// the register initialization to depend on the particular initialization
// order (which appears to be different on OS X, Linux, and Windows for the
// installed versions of C++ we tried). Using a struct permits C-style
// "initialization". Also, the Register objects cannot be const as this
// forces initialization stubs in MSVC, making us dependent on initialization
// order.
//
// 3) By not using an enum, we are possibly preventing the compiler from
// doing certain constant folds, which may significantly reduce the
// code generated for some assembly instructions (because they boil down
// to a few constants). If this is a problem, we could change the code
// such that we use an enum in optimized mode, and the struct in debug
// mode. This way we get the compile-time error checking in debug mode
// and best performance in optimized code.
// -----------------------------------------------------------------------------
// Implementation of Register and FPURegister.
enum RegisterCode {
#define REGISTER_CODE(R) kRegCode_##R,
GENERAL_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kRegAfterLast
};
class Register : public RegisterBase<Register, kRegAfterLast> {
public:
#if defined(V8_TARGET_LITTLE_ENDIAN)
static constexpr int kMantissaOffset = 0;
static constexpr int kExponentOffset = 4;
#elif defined(V8_TARGET_BIG_ENDIAN)
static constexpr int kMantissaOffset = 4;
static constexpr int kExponentOffset = 0;
#else
#error Unknown endianness
#endif
private:
friend class RegisterBase;
explicit constexpr Register(int code) : RegisterBase(code) {}
};
// s7: context register
// s3: lithium scratch
// s4: lithium scratch2
#define DECLARE_REGISTER(R) \
constexpr Register R = Register::from_code<kRegCode_##R>();
GENERAL_REGISTERS(DECLARE_REGISTER)
#undef DECLARE_REGISTER
constexpr Register no_reg = Register::no_reg();
int ToNumber(Register reg);
Register ToRegister(int num);
constexpr bool kPadArguments = false;
constexpr bool kSimpleFPAliasing = true;
constexpr bool kSimdMaskRegisters = false;
enum DoubleRegisterCode {
#define REGISTER_CODE(R) kDoubleCode_##R,
DOUBLE_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kDoubleAfterLast
};
// Coprocessor register.
class FPURegister : public RegisterBase<FPURegister, kDoubleAfterLast> {
public:
// TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers
// to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to
// number of Double regs (64-bit regs, or FPU-reg-pairs).
FPURegister low() const {
// TODO(plind): Create DCHECK for FR=0 mode. This usage suspect for FR=1.
// Find low reg of a Double-reg pair, which is the reg itself.
DCHECK_EQ(code() % 2, 0); // Specified Double reg must be even.
return FPURegister::from_code(code());
}
FPURegister high() const {
// TODO(plind): Create DCHECK for FR=0 mode. This usage illegal in FR=1.
// Find high reg of a Doubel-reg pair, which is reg + 1.
DCHECK_EQ(code() % 2, 0); // Specified Double reg must be even.
return FPURegister::from_code(code() + 1);
}
private:
friend class RegisterBase;
explicit constexpr FPURegister(int code) : RegisterBase(code) {}
};
enum MSARegisterCode {
#define REGISTER_CODE(R) kMsaCode_##R,
SIMD128_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kMsaAfterLast
};
// MIPS SIMD (MSA) register
class MSARegister : public RegisterBase<MSARegister, kMsaAfterLast> {
friend class RegisterBase;
explicit constexpr MSARegister(int code) : RegisterBase(code) {}
};
// A few double registers are reserved: one as a scratch register and one to
// hold 0.0.
// f28: 0.0
// f30: scratch register.
// V8 now supports the O32 ABI, and the FPU Registers are organized as 32
// 32-bit registers, f0 through f31. When used as 'double' they are used
// in pairs, starting with the even numbered register. So a double operation
// on f0 really uses f0 and f1.
// (Modern mips hardware also supports 32 64-bit registers, via setting
// (privileged) Status Register FR bit to 1. This is used by the N32 ABI,
// but it is not in common use. Someday we will want to support this in v8.)
// For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
typedef FPURegister FloatRegister;
typedef FPURegister DoubleRegister;
#define DECLARE_DOUBLE_REGISTER(R) \
constexpr DoubleRegister R = DoubleRegister::from_code<kDoubleCode_##R>();
DOUBLE_REGISTERS(DECLARE_DOUBLE_REGISTER)
#undef DECLARE_DOUBLE_REGISTER
constexpr DoubleRegister no_freg = DoubleRegister::no_reg();
// SIMD registers.
typedef MSARegister Simd128Register;
#define DECLARE_SIMD128_REGISTER(R) \
constexpr Simd128Register R = Simd128Register::from_code<kMsaCode_##R>();
SIMD128_REGISTERS(DECLARE_SIMD128_REGISTER)
#undef DECLARE_SIMD128_REGISTER
const Simd128Register no_msareg = Simd128Register::no_reg();
// Register aliases.
// cp is assumed to be a callee saved register.
constexpr Register kRootRegister = s6;
constexpr Register cp = s7;
constexpr Register kLithiumScratchReg = s3;
constexpr Register kLithiumScratchReg2 = s4;
constexpr DoubleRegister kLithiumScratchDouble = f30;
constexpr DoubleRegister kDoubleRegZero = f28;
// Used on mips64r6 for compare operations.
// We use the last non-callee saved odd register for N64 ABI
constexpr DoubleRegister kDoubleCompareReg = f23;
// MSA zero and scratch regs must have the same numbers as FPU zero and scratch
constexpr Simd128Register kSimd128RegZero = w28;
constexpr Simd128Register kSimd128ScratchReg = w30;
// FPU (coprocessor 1) control registers.
// Currently only FCSR (#31) is implemented.
struct FPUControlRegister {
bool is_valid() const { return reg_code == kFCSRRegister; }
bool is(FPUControlRegister creg) const { return reg_code == creg.reg_code; }
int code() const {
DCHECK(is_valid());
return reg_code;
}
int bit() const {
DCHECK(is_valid());
return 1 << reg_code;
}
void setcode(int f) {
reg_code = f;
DCHECK(is_valid());
}
// Unfortunately we can't make this private in a struct.
int reg_code;
};
constexpr FPUControlRegister no_fpucreg = {kInvalidFPUControlRegister};
constexpr FPUControlRegister FCSR = {kFCSRRegister};
// MSA control registers
struct MSAControlRegister {
bool is_valid() const {
return (reg_code == kMSAIRRegister) || (reg_code == kMSACSRRegister);
}
bool is(MSAControlRegister creg) const { return reg_code == creg.reg_code; }
int code() const {
DCHECK(is_valid());
return reg_code;
}
int bit() const {
DCHECK(is_valid());
return 1 << reg_code;
}
void setcode(int f) {
reg_code = f;
DCHECK(is_valid());
}
// Unfortunately we can't make this private in a struct.
int reg_code;
};
constexpr MSAControlRegister no_msacreg = {kInvalidMSAControlRegister};
constexpr MSAControlRegister MSAIR = {kMSAIRRegister};
constexpr MSAControlRegister MSACSR = {kMSACSRRegister};
// -----------------------------------------------------------------------------
// Machine instruction Operands.
constexpr int kSmiShift = kSmiTagSize + kSmiShiftSize;
constexpr uint64_t kSmiShiftMask = (1UL << kSmiShift) - 1;
// Class Operand represents a shifter operand in data processing instructions.
class Operand BASE_EMBEDDED {
public:
// Immediate.
INLINE(explicit Operand(int64_t immediate,
RelocInfo::Mode rmode = RelocInfo::NONE64))
: rm_(no_reg), rmode_(rmode) {
value_.immediate = immediate;
}
INLINE(explicit Operand(const ExternalReference& f))
: rm_(no_reg), rmode_(RelocInfo::EXTERNAL_REFERENCE) {
value_.immediate = reinterpret_cast<int64_t>(f.address());
}
INLINE(explicit Operand(const char* s));
INLINE(explicit Operand(Object** opp));
INLINE(explicit Operand(Context** cpp));
explicit Operand(Handle<HeapObject> handle);
INLINE(explicit Operand(Smi* value))
: rm_(no_reg), rmode_(RelocInfo::NONE32) {
value_.immediate = reinterpret_cast<intptr_t>(value);
}
static Operand EmbeddedNumber(double number); // Smi or HeapNumber.
static Operand EmbeddedCode(CodeStub* stub);
// Register.
INLINE(explicit Operand(Register rm)) : rm_(rm) {}
// Return true if this is a register operand.
INLINE(bool is_reg() const);
inline int64_t immediate() const;
bool IsImmediate() const { return !rm_.is_valid(); }
HeapObjectRequest heap_object_request() const {
DCHECK(IsHeapObjectRequest());
return value_.heap_object_request;
}
bool IsHeapObjectRequest() const {
DCHECK_IMPLIES(is_heap_object_request_, IsImmediate());
DCHECK_IMPLIES(is_heap_object_request_,
rmode_ == RelocInfo::EMBEDDED_OBJECT ||
rmode_ == RelocInfo::CODE_TARGET);
return is_heap_object_request_;
}
Register rm() const { return rm_; }
RelocInfo::Mode rmode() const { return rmode_; }
private:
Register rm_;
union Value {
Value() {}
HeapObjectRequest heap_object_request; // if is_heap_object_request_
int64_t immediate; // otherwise
} value_; // valid if rm_ == no_reg
bool is_heap_object_request_ = false;
RelocInfo::Mode rmode_;
friend class Assembler;
friend class MacroAssembler;
};
// On MIPS we have only one addressing mode with base_reg + offset.
// Class MemOperand represents a memory operand in load and store instructions.
class MemOperand : public Operand {
public:
// Immediate value attached to offset.
enum OffsetAddend {
offset_minus_one = -1,
offset_zero = 0
};
explicit MemOperand(Register rn, int32_t offset = 0);
explicit MemOperand(Register rn, int32_t unit, int32_t multiplier,
OffsetAddend offset_addend = offset_zero);
int32_t offset() const { return offset_; }
bool OffsetIsInt16Encodable() const {
return is_int16(offset_);
}
private:
int32_t offset_;
friend class Assembler;
};
class Assembler : public AssemblerBase {
public:
// Create an assembler. Instructions and relocation information are emitted
// into a buffer, with the instructions starting from the beginning and the
// relocation information starting from the end of the buffer. See CodeDesc
// for a detailed comment on the layout (globals.h).
//
// If the provided buffer is nullptr, the assembler allocates and grows its
// own buffer, and buffer_size determines the initial buffer size. The buffer
// is owned by the assembler and deallocated upon destruction of the
// assembler.
//
// If the provided buffer is not nullptr, the assembler uses the provided
// buffer for code generation and assumes its size to be buffer_size. If the
// buffer is too small, a fatal error occurs. No deallocation of the buffer is
// done upon destruction of the assembler.
Assembler(Isolate* isolate, void* buffer, int buffer_size)
: Assembler(IsolateData(isolate), buffer, buffer_size) {}
Assembler(IsolateData isolate_data, void* buffer, int buffer_size);
virtual ~Assembler() { }
// GetCode emits any pending (non-emitted) code and fills the descriptor
// desc. GetCode() is idempotent; it returns the same result if no other
// Assembler functions are invoked in between GetCode() calls.
void GetCode(Isolate* isolate, CodeDesc* desc);
// Label operations & relative jumps (PPUM Appendix D).
//
// Takes a branch opcode (cc) and a label (L) and generates
// either a backward branch or a forward branch and links it
// to the label fixup chain. Usage:
//
// Label L; // unbound label
// j(cc, &L); // forward branch to unbound label
// bind(&L); // bind label to the current pc
// j(cc, &L); // backward branch to bound label
// bind(&L); // illegal: a label may be bound only once
//
// Note: The same Label can be used for forward and backward branches
// but it may be bound only once.
void bind(Label* L); // Binds an unbound label L to current code position.
enum OffsetSize : int { kOffset26 = 26, kOffset21 = 21, kOffset16 = 16 };
// Determines if Label is bound and near enough so that branch instruction
// can be used to reach it, instead of jump instruction.
bool is_near(Label* L);
bool is_near(Label* L, OffsetSize bits);
bool is_near_branch(Label* L);
inline bool is_near_pre_r6(Label* L) {
DCHECK(!(kArchVariant == kMips64r6));
return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize;
}
inline bool is_near_r6(Label* L) {
DCHECK_EQ(kArchVariant, kMips64r6);
return pc_offset() - L->pos() < kMaxCompactBranchOffset - 4 * kInstrSize;
}
int BranchOffset(Instr instr);
// Returns the branch offset to the given label from the current code
// position. Links the label to the current position if it is still unbound.
// Manages the jump elimination optimization if the second parameter is true.
int32_t branch_offset_helper(Label* L, OffsetSize bits);
inline int32_t branch_offset(Label* L) {
return branch_offset_helper(L, OffsetSize::kOffset16);
}
inline int32_t branch_offset21(Label* L) {
return branch_offset_helper(L, OffsetSize::kOffset21);
}
inline int32_t branch_offset26(Label* L) {
return branch_offset_helper(L, OffsetSize::kOffset26);
}
inline int32_t shifted_branch_offset(Label* L) {
return branch_offset(L) >> 2;
}
inline int32_t shifted_branch_offset21(Label* L) {
return branch_offset21(L) >> 2;
}
inline int32_t shifted_branch_offset26(Label* L) {
return branch_offset26(L) >> 2;
}
uint64_t jump_address(Label* L);
uint64_t jump_offset(Label* L);
// Puts a labels target address at the given position.
// The high 8 bits are set to zero.
void label_at_put(Label* L, int at_offset);
// Read/Modify the code target address in the branch/call instruction at pc.
// The isolate argument is unused (and may be nullptr) when skipping flushing.
static Address target_address_at(Address pc);
INLINE(static void set_target_address_at(
Isolate* isolate, Address pc, Address target,
ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) {
set_target_value_at(isolate, pc, reinterpret_cast<uint64_t>(target),
icache_flush_mode);
}
// On MIPS there is no Constant Pool so we skip that parameter.
INLINE(static Address target_address_at(Address pc, Address constant_pool)) {
return target_address_at(pc);
}
INLINE(static void set_target_address_at(
Isolate* isolate, Address pc, Address constant_pool, Address target,
ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) {
set_target_address_at(isolate, pc, target, icache_flush_mode);
}
static void set_target_value_at(
Isolate* isolate, Address pc, uint64_t target,
ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
// Return the code target address at a call site from the return address
// of that call in the instruction stream.
inline static Address target_address_from_return_address(Address pc);
static void JumpLabelToJumpRegister(Address pc);
static void QuietNaN(HeapObject* nan);
// This sets the branch destination (which gets loaded at the call address).
// This is for calls and branches within generated code. The serializer
// has already deserialized the lui/ori instructions etc.
inline static void deserialization_set_special_target_at(
Isolate* isolate, Address instruction_payload, Code* code,
Address target);
// This sets the internal reference at the pc.
inline static void deserialization_set_target_internal_reference_at(
Isolate* isolate, Address pc, Address target,
RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
// Size of an instruction.
static constexpr int kInstrSize = sizeof(Instr);
// Difference between address of current opcode and target address offset.
static constexpr int kBranchPCOffset = 4;
// Here we are patching the address in the LUI/ORI instruction pair.
// These values are used in the serialization process and must be zero for
// MIPS platform, as Code, Embedded Object or External-reference pointers
// are split across two consecutive instructions and don't exist separately
// in the code, so the serializer should not step forwards in memory after
// a target is resolved and written.
static constexpr int kSpecialTargetSize = 0;
// Number of consecutive instructions used to store 32bit/64bit constant.
// This constant was used in RelocInfo::target_address_address() function
// to tell serializer address of the instruction that follows
// LUI/ORI instruction pair.
static constexpr int kInstructionsFor32BitConstant = 2;
static constexpr int kInstructionsFor64BitConstant = 4;
// Distance between the instruction referring to the address of the call
// target and the return address.
#ifdef _MIPS_ARCH_MIPS64R6
static constexpr int kCallTargetAddressOffset = 5 * kInstrSize;
#else
static constexpr int kCallTargetAddressOffset = 6 * kInstrSize;
#endif
// Difference between address of current opcode and value read from pc
// register.
static constexpr int kPcLoadDelta = 4;
// Max offset for instructions with 16-bit offset field
static constexpr int kMaxBranchOffset = (1 << (18 - 1)) - 1;
// Max offset for compact branch instructions with 26-bit offset field
static constexpr int kMaxCompactBranchOffset = (1 << (28 - 1)) - 1;
static constexpr int kTrampolineSlotsSize = 2 * kInstrSize;
RegList* GetScratchRegisterList() { return &scratch_register_list_; }
// ---------------------------------------------------------------------------
// Code generation.
// Insert the smallest number of nop instructions
// possible to align the pc offset to a multiple
// of m. m must be a power of 2 (>= 4).
void Align(int m);
// Insert the smallest number of zero bytes possible to align the pc offset
// to a mulitple of m. m must be a power of 2 (>= 2).
void DataAlign(int m);
// Aligns code to something that's optimal for a jump target for the platform.
void CodeTargetAlign();
// Different nop operations are used by the code generator to detect certain
// states of the generated code.
enum NopMarkerTypes {
NON_MARKING_NOP = 0,
DEBUG_BREAK_NOP,
// IC markers.
PROPERTY_ACCESS_INLINED,
PROPERTY_ACCESS_INLINED_CONTEXT,
PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
// Helper values.
LAST_CODE_MARKER,
FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED,
// Code aging
CODE_AGE_MARKER_NOP = 6,
CODE_AGE_SEQUENCE_NOP
};
// Type == 0 is the default non-marking nop. For mips this is a
// sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero
// marking, to avoid conflict with ssnop and ehb instructions.
void nop(unsigned int type = 0) {
DCHECK_LT(type, 32);
Register nop_rt_reg = (type == 0) ? zero_reg : at;
sll(zero_reg, nop_rt_reg, type, true);
}
// --------Branch-and-jump-instructions----------
// We don't use likely variant of instructions.
void b(int16_t offset);
inline void b(Label* L) { b(shifted_branch_offset(L)); }
void bal(int16_t offset);
inline void bal(Label* L) { bal(shifted_branch_offset(L)); }
void bc(int32_t offset);
inline void bc(Label* L) { bc(shifted_branch_offset26(L)); }
void balc(int32_t offset);
inline void balc(Label* L) { balc(shifted_branch_offset26(L)); }
void beq(Register rs, Register rt, int16_t offset);
inline void beq(Register rs, Register rt, Label* L) {
beq(rs, rt, shifted_branch_offset(L));
}
void bgez(Register rs, int16_t offset);
void bgezc(Register rt, int16_t offset);
inline void bgezc(Register rt, Label* L) {
bgezc(rt, shifted_branch_offset(L));
}
void bgeuc(Register rs, Register rt, int16_t offset);
inline void bgeuc(Register rs, Register rt, Label* L) {
bgeuc(rs, rt, shifted_branch_offset(L));
}
void bgec(Register rs, Register rt, int16_t offset);
inline void bgec(Register rs, Register rt, Label* L) {
bgec(rs, rt, shifted_branch_offset(L));
}
void bgezal(Register rs, int16_t offset);
void bgezalc(Register rt, int16_t offset);
inline void bgezalc(Register rt, Label* L) {
bgezalc(rt, shifted_branch_offset(L));
}
void bgezall(Register rs, int16_t offset);
inline void bgezall(Register rs, Label* L) {
bgezall(rs, branch_offset(L) >> 2);
}
void bgtz(Register rs, int16_t offset);
void bgtzc(Register rt, int16_t offset);
inline void bgtzc(Register rt, Label* L) {
bgtzc(rt, shifted_branch_offset(L));
}
void blez(Register rs, int16_t offset);
void blezc(Register rt, int16_t offset);
inline void blezc(Register rt, Label* L) {
blezc(rt, shifted_branch_offset(L));
}
void bltz(Register rs, int16_t offset);
void bltzc(Register rt, int16_t offset);
inline void bltzc(Register rt, Label* L) {
bltzc(rt, shifted_branch_offset(L));
}
void bltuc(Register rs, Register rt, int16_t offset);
inline void bltuc(Register rs, Register rt, Label* L) {
bltuc(rs, rt, shifted_branch_offset(L));
}
void bltc(Register rs, Register rt, int16_t offset);
inline void bltc(Register rs, Register rt, Label* L) {
bltc(rs, rt, shifted_branch_offset(L));
}
void bltzal(Register rs, int16_t offset);
void blezalc(Register rt, int16_t offset);
inline void blezalc(Register rt, Label* L) {
blezalc(rt, shifted_branch_offset(L));
}
void bltzalc(Register rt, int16_t offset);
inline void bltzalc(Register rt, Label* L) {
bltzalc(rt, shifted_branch_offset(L));
}
void bgtzalc(Register rt, int16_t offset);
inline void bgtzalc(Register rt, Label* L) {
bgtzalc(rt, shifted_branch_offset(L));
}
void beqzalc(Register rt, int16_t offset);
inline void beqzalc(Register rt, Label* L) {
beqzalc(rt, shifted_branch_offset(L));
}
void beqc(Register rs, Register rt, int16_t offset);
inline void beqc(Register rs, Register rt, Label* L) {
beqc(rs, rt, shifted_branch_offset(L));
}
void beqzc(Register rs, int32_t offset);
inline void beqzc(Register rs, Label* L) {
beqzc(rs, shifted_branch_offset21(L));
}
void bnezalc(Register rt, int16_t offset);
inline void bnezalc(Register rt, Label* L) {
bnezalc(rt, shifted_branch_offset(L));
}
void bnec(Register rs, Register rt, int16_t offset);
inline void bnec(Register rs, Register rt, Label* L) {
bnec(rs, rt, shifted_branch_offset(L));
}
void bnezc(Register rt, int32_t offset);
inline void bnezc(Register rt, Label* L) {
bnezc(rt, shifted_branch_offset21(L));
}
void bne(Register rs, Register rt, int16_t offset);
inline void bne(Register rs, Register rt, Label* L) {
bne(rs, rt, shifted_branch_offset(L));
}
void bovc(Register rs, Register rt, int16_t offset);
inline void bovc(Register rs, Register rt, Label* L) {
bovc(rs, rt, shifted_branch_offset(L));
}
void bnvc(Register rs, Register rt, int16_t offset);
inline void bnvc(Register rs, Register rt, Label* L) {
bnvc(rs, rt, shifted_branch_offset(L));
}
// Never use the int16_t b(l)cond version with a branch offset
// instead of using the Label* version.
// Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits.
void j(int64_t target);
void jal(int64_t target);
void j(Label* target);
void jal(Label* target);
void jalr(Register rs, Register rd = ra);
void jr(Register target);
void jic(Register rt, int16_t offset);
void jialc(Register rt, int16_t offset);
// -------Data-processing-instructions---------
// Arithmetic.
void addu(Register rd, Register rs, Register rt);
void subu(Register rd, Register rs, Register rt);
void div(Register rs, Register rt);
void divu(Register rs, Register rt);
void ddiv(Register rs, Register rt);
void ddivu(Register rs, Register rt);
void div(Register rd, Register rs, Register rt);
void divu(Register rd, Register rs, Register rt);
void ddiv(Register rd, Register rs, Register rt);
void ddivu(Register rd, Register rs, Register rt);
void mod(Register rd, Register rs, Register rt);
void modu(Register rd, Register rs, Register rt);
void dmod(Register rd, Register rs, Register rt);
void dmodu(Register rd, Register rs, Register rt);
void mul(Register rd, Register rs, Register rt);
void muh(Register rd, Register rs, Register rt);
void mulu(Register rd, Register rs, Register rt);
void muhu(Register rd, Register rs, Register rt);
void mult(Register rs, Register rt);
void multu(Register rs, Register rt);
void dmul(Register rd, Register rs, Register rt);
void dmuh(Register rd, Register rs, Register rt);
void dmulu(Register rd, Register rs, Register rt);
void dmuhu(Register rd, Register rs, Register rt);
void daddu(Register rd, Register rs, Register rt);
void dsubu(Register rd, Register rs, Register rt);
void dmult(Register rs, Register rt);
void dmultu(Register rs, Register rt);
void addiu(Register rd, Register rs, int32_t j);
void daddiu(Register rd, Register rs, int32_t j);
// Logical.
void and_(Register rd, Register rs, Register rt);
void or_(Register rd, Register rs, Register rt);
void xor_(Register rd, Register rs, Register rt);
void nor(Register rd, Register rs, Register rt);
void andi(Register rd, Register rs, int32_t j);
void ori(Register rd, Register rs, int32_t j);
void xori(Register rd, Register rs, int32_t j);
void lui(Register rd, int32_t j);
void aui(Register rt, Register rs, int32_t j);
void daui(Register rt, Register rs, int32_t j);
void dahi(Register rs, int32_t j);
void dati(Register rs, int32_t j);
// Shifts.
// Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
// and may cause problems in normal code. coming_from_nop makes sure this
// doesn't happen.
void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
void sllv(Register rd, Register rt, Register rs);
void srl(Register rd, Register rt, uint16_t sa);
void srlv(Register rd, Register rt, Register rs);
void sra(Register rt, Register rd, uint16_t sa);
void srav(Register rt, Register rd, Register rs);
void rotr(Register rd, Register rt, uint16_t sa);
void rotrv(Register rd, Register rt, Register rs);
void dsll(Register rd, Register rt, uint16_t sa);
void dsllv(Register rd, Register rt, Register rs);
void dsrl(Register rd, Register rt, uint16_t sa);
void dsrlv(Register rd, Register rt, Register rs);
void drotr(Register rd, Register rt, uint16_t sa);
void drotr32(Register rd, Register rt, uint16_t sa);
void drotrv(Register rd, Register rt, Register rs);
void dsra(Register rt, Register rd, uint16_t sa);
void dsrav(Register rd, Register rt, Register rs);
void dsll32(Register rt, Register rd, uint16_t sa);
void dsrl32(Register rt, Register rd, uint16_t sa);
void dsra32(Register rt, Register rd, uint16_t sa);
// ------------Memory-instructions-------------
void lb(Register rd, const MemOperand& rs);
void lbu(Register rd, const MemOperand& rs);
void lh(Register rd, const MemOperand& rs);
void lhu(Register rd, const MemOperand& rs);
void lw(Register rd, const MemOperand& rs);
void lwu(Register rd, const MemOperand& rs);
void lwl(Register rd, const MemOperand& rs);
void lwr(Register rd, const MemOperand& rs);
void sb(Register rd, const MemOperand& rs);
void sh(Register rd, const MemOperand& rs);
void sw(Register rd, const MemOperand& rs);
void swl(Register rd, const MemOperand& rs);
void swr(Register rd, const MemOperand& rs);
void ldl(Register rd, const MemOperand& rs);
void ldr(Register rd, const MemOperand& rs);
void sdl(Register rd, const MemOperand& rs);
void sdr(Register rd, const MemOperand& rs);
void ld(Register rd, const MemOperand& rs);
void sd(Register rd, const MemOperand& rs);
// ----------Atomic instructions--------------
void ll(Register rd, const MemOperand& rs);
void sc(Register rd, const MemOperand& rs);
void lld(Register rd, const MemOperand& rs);
void scd(Register rd, const MemOperand& rs);
// ---------PC-Relative-instructions-----------
void addiupc(Register rs, int32_t imm19);
void lwpc(Register rs, int32_t offset19);
void lwupc(Register rs, int32_t offset19);
void ldpc(Register rs, int32_t offset18);
void auipc(Register rs, int16_t imm16);
void aluipc(Register rs, int16_t imm16);
// ----------------Prefetch--------------------
void pref(int32_t hint, const MemOperand& rs);
// -------------Misc-instructions--------------
// Break / Trap instructions.
void break_(uint32_t code, bool break_as_stop = false);
void stop(const char* msg, uint32_t code = kMaxStopCode);
void tge(Register rs, Register rt, uint16_t code);
void tgeu(Register rs, Register rt, uint16_t code);
void tlt(Register rs, Register rt, uint16_t code);
void tltu(Register rs, Register rt, uint16_t code);
void teq(Register rs, Register rt, uint16_t code);
void tne(Register rs, Register rt, uint16_t code);
// Memory barrier instruction.
void sync();
// Move from HI/LO register.
void mfhi(Register rd);
void mflo(Register rd);
// Set on less than.
void slt(Register rd, Register rs, Register rt);
void sltu(Register rd, Register rs, Register rt);
void slti(Register rd, Register rs, int32_t j);
void sltiu(Register rd, Register rs, int32_t j);
// Conditional move.
void movz(Register rd, Register rs, Register rt);
void movn(Register rd, Register rs, Register rt);
void movt(Register rd, Register rs, uint16_t cc = 0);
void movf(Register rd, Register rs, uint16_t cc = 0);
void sel(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
void sel_s(FPURegister fd, FPURegister fs, FPURegister ft);
void sel_d(FPURegister fd, FPURegister fs, FPURegister ft);
void seleqz(Register rd, Register rs, Register rt);
void seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs,
FPURegister ft);
void selnez(Register rs, Register rt, Register rd);
void selnez(SecondaryField fmt, FPURegister fd, FPURegister fs,
FPURegister ft);
void seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft);
void seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft);
void selnez_d(FPURegister fd, FPURegister fs, FPURegister ft);
void selnez_s(FPURegister fd, FPURegister fs, FPURegister ft);
void movz_s(FPURegister fd, FPURegister fs, Register rt);
void movz_d(FPURegister fd, FPURegister fs, Register rt);
void movt_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
void movt_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
void movf_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
void movf_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
void movn_s(FPURegister fd, FPURegister fs, Register rt);
void movn_d(FPURegister fd, FPURegister fs, Register rt);
// Bit twiddling.
void clz(Register rd, Register rs);
void dclz(Register rd, Register rs);
void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
void dext_(Register rt, Register rs, uint16_t pos, uint16_t size);
void dextm_(Register rt, Register rs, uint16_t pos, uint16_t size);
void dextu_(Register rt, Register rs, uint16_t pos, uint16_t size);
void dins_(Register rt, Register rs, uint16_t pos, uint16_t size);
void dinsm_(Register rt, Register rs, uint16_t pos, uint16_t size);
void dinsu_(Register rt, Register rs, uint16_t pos, uint16_t size);
void bitswap(Register rd, Register rt);
void dbitswap(Register rd, Register rt);
void align(Register rd, Register rs, Register rt, uint8_t bp);
void dalign(Register rd, Register rs, Register rt, uint8_t bp);
void wsbh(Register rd, Register rt);
void dsbh(Register rd, Register rt);
void dshd(Register rd, Register rt);
void seh(Register rd, Register rt);
void seb(Register rd, Register rt);
// --------Coprocessor-instructions----------------
// Load, store, and move.
void lwc1(FPURegister fd, const MemOperand& src);
void ldc1(FPURegister fd, const MemOperand& src);
void swc1(FPURegister fs, const MemOperand& dst);
void sdc1(FPURegister fs, const MemOperand& dst);
void mtc1(Register rt, FPURegister fs);
void mthc1(Register rt, FPURegister fs);
void dmtc1(Register rt, FPURegister fs);
void mfc1(Register rt, FPURegister fs);
void mfhc1(Register rt, FPURegister fs);
void dmfc1(Register rt, FPURegister fs);
void ctc1(Register rt, FPUControlRegister fs);
void cfc1(Register rt, FPUControlRegister fs);
// Arithmetic.
void add_s(FPURegister fd, FPURegister fs, FPURegister ft);
void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
void sub_s(FPURegister fd, FPURegister fs, FPURegister ft);
void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
void mul_s(FPURegister fd, FPURegister fs, FPURegister ft);
void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
void madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
void msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
void msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
void maddf_s(FPURegister fd, FPURegister fs, FPURegister ft);
void maddf_d(FPURegister fd, FPURegister fs, FPURegister ft);
void msubf_s(FPURegister fd, FPURegister fs, FPURegister ft);
void msubf_d(FPURegister fd, FPURegister fs, FPURegister ft);
void div_s(FPURegister fd, FPURegister fs, FPURegister ft);
void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
void abs_s(FPURegister fd, FPURegister fs);
void abs_d(FPURegister fd, FPURegister fs);
void mov_d(FPURegister fd, FPURegister fs);
void mov_s(FPURegister fd, FPURegister fs);
void neg_s(FPURegister fd, FPURegister fs);
void neg_d(FPURegister fd, FPURegister fs);
void sqrt_s(FPURegister fd, FPURegister fs);
void sqrt_d(FPURegister fd, FPURegister fs);
void rsqrt_s(FPURegister fd, FPURegister fs);
void rsqrt_d(FPURegister fd, FPURegister fs);
void recip_d(FPURegister fd, FPURegister fs);
void recip_s(FPURegister fd, FPURegister fs);
// Conversion.
void cvt_w_s(FPURegister fd, FPURegister fs);
void cvt_w_d(FPURegister fd, FPURegister fs);
void trunc_w_s(FPURegister fd, FPURegister fs);
void trunc_w_d(FPURegister fd, FPURegister fs);
void round_w_s(FPURegister fd, FPURegister fs);
void round_w_d(FPURegister fd, FPURegister fs);
void floor_w_s(FPURegister fd, FPURegister fs);
void floor_w_d(FPURegister fd, FPURegister fs);
void ceil_w_s(FPURegister fd, FPURegister fs);
void ceil_w_d(FPURegister fd, FPURegister fs);
void rint_s(FPURegister fd, FPURegister fs);
void rint_d(FPURegister fd, FPURegister fs);
void rint(SecondaryField fmt, FPURegister fd, FPURegister fs);
void cvt_l_s(FPURegister fd, FPURegister fs);
void cvt_l_d(FPURegister fd, FPURegister fs);
void trunc_l_s(FPURegister fd, FPURegister fs);
void trunc_l_d(FPURegister fd, FPURegister fs);
void round_l_s(FPURegister fd, FPURegister fs);
void round_l_d(FPURegister fd, FPURegister fs);
void floor_l_s(FPURegister fd, FPURegister fs);
void floor_l_d(FPURegister fd, FPURegister fs);
void ceil_l_s(FPURegister fd, FPURegister fs);
void ceil_l_d(FPURegister fd, FPURegister fs);
void class_s(FPURegister fd, FPURegister fs);
void class_d(FPURegister fd, FPURegister fs);
void min(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
void mina(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
void max(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
void maxa(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
void min_s(FPURegister fd, FPURegister fs, FPURegister ft);
void min_d(FPURegister fd, FPURegister fs, FPURegister ft);
void max_s(FPURegister fd, FPURegister fs, FPURegister ft);
void max_d(FPURegister fd, FPURegister fs, FPURegister ft);
void mina_s(FPURegister fd, FPURegister fs, FPURegister ft);
void mina_d(FPURegister fd, FPURegister fs, FPURegister ft);
void maxa_s(FPURegister fd, FPURegister fs, FPURegister ft);
void maxa_d(FPURegister fd, FPURegister fs, FPURegister ft);
void cvt_s_w(FPURegister fd, FPURegister fs);
void cvt_s_l(FPURegister fd, FPURegister fs);
void cvt_s_d(FPURegister fd, FPURegister fs);
void cvt_d_w(FPURegister fd, FPURegister fs);
void cvt_d_l(FPURegister fd, FPURegister fs);
void cvt_d_s(FPURegister fd, FPURegister fs);
// Conditions and branches for MIPSr6.
void cmp(FPUCondition cond, SecondaryField fmt,
FPURegister fd, FPURegister ft, FPURegister fs);
void cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
void cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
void bc1eqz(int16_t offset, FPURegister ft);
inline void bc1eqz(Label* L, FPURegister ft) {
bc1eqz(shifted_branch_offset(L), ft);
}
void bc1nez(int16_t offset, FPURegister ft);
inline void bc1nez(Label* L, FPURegister ft) {
bc1nez(shifted_branch_offset(L), ft);
}
// Conditions and branches for non MIPSr6.
void c(FPUCondition cond, SecondaryField fmt,
FPURegister ft, FPURegister fs, uint16_t cc = 0);
void c_s(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
void c_d(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
void bc1f(int16_t offset, uint16_t cc = 0);
inline void bc1f(Label* L, uint16_t cc = 0) {
bc1f(shifted_branch_offset(L), cc);
}
void bc1t(int16_t offset, uint16_t cc = 0);
inline void bc1t(Label* L, uint16_t cc = 0) {
bc1t(shifted_branch_offset(L), cc);
}
void fcmp(FPURegister src1, const double src2, FPUCondition cond);
// MSA instructions
void bz_v(MSARegister wt, int16_t offset);
inline void bz_v(MSARegister wt, Label* L) {
bz_v(wt, shifted_branch_offset(L));
}
void bz_b(MSARegister wt, int16_t offset);
inline void bz_b(MSARegister wt, Label* L) {
bz_b(wt, shifted_branch_offset(L));
}
void bz_h(MSARegister wt, int16_t offset);
inline void bz_h(MSARegister wt, Label* L) {
bz_h(wt, shifted_branch_offset(L));
}
void bz_w(MSARegister wt, int16_t offset);
inline void bz_w(MSARegister wt, Label* L) {
bz_w(wt, shifted_branch_offset(L));
}
void bz_d(MSARegister wt, int16_t offset);
inline void bz_d(MSARegister wt, Label* L) {
bz_d(wt, shifted_branch_offset(L));
}
void bnz_v(MSARegister wt, int16_t offset);
inline void bnz_v(MSARegister wt, Label* L) {
bnz_v(wt, shifted_branch_offset(L));
}
void bnz_b(MSARegister wt, int16_t offset);
inline void bnz_b(MSARegister wt, Label* L) {
bnz_b(wt, shifted_branch_offset(L));
}
void bnz_h(MSARegister wt, int16_t offset);
inline void bnz_h(MSARegister wt, Label* L) {
bnz_h(wt, shifted_branch_offset(L));
}
void bnz_w(MSARegister wt, int16_t offset);
inline void bnz_w(MSARegister wt, Label* L) {
bnz_w(wt, shifted_branch_offset(L));
}
void bnz_d(MSARegister wt, int16_t offset);
inline void bnz_d(MSARegister wt, Label* L) {
bnz_d(wt, shifted_branch_offset(L));
}
void ld_b(MSARegister wd, const MemOperand& rs);
void ld_h(MSARegister wd, const MemOperand& rs);
void ld_w(MSARegister wd, const MemOperand& rs);
void ld_d(MSARegister wd, const MemOperand& rs);
void st_b(MSARegister wd, const MemOperand& rs);
void st_h(MSARegister wd, const MemOperand& rs);
void st_w(MSARegister wd, const MemOperand& rs);
void st_d(MSARegister wd, const MemOperand& rs);
void ldi_b(MSARegister wd, int32_t imm10);
void ldi_h(MSARegister wd, int32_t imm10);
void ldi_w(MSARegister wd, int32_t imm10);
void ldi_d(MSARegister wd, int32_t imm10);
void addvi_b(MSARegister wd, MSARegister ws, uint32_t imm5);
void addvi_h(MSARegister wd, MSARegister ws, uint32_t imm5);
void addvi_w(MSARegister wd, MSARegister ws, uint32_t imm5);
void addvi_d(MSARegister wd, MSARegister ws, uint32_t imm5);
void subvi_b(MSARegister wd, MSARegister ws, uint32_t imm5);
void subvi_h(MSARegister wd, MSARegister ws, uint32_t imm5);
void subvi_w(MSARegister wd, MSARegister ws, uint32_t imm5);
void subvi_d(MSARegister wd, MSARegister ws, uint32_t imm5);
void maxi_s_b(MSARegister wd, MSARegister ws, uint32_t imm5);
void maxi_s_h(MSARegister wd, MSARegister ws, uint32_t imm5);
void maxi_s_w(MSARegister wd, MSARegister ws, uint32_t imm5);
void maxi_s_d(MSARegister wd, MSARegister ws, uint32_t imm5);
void maxi_u_b(MSARegister wd, MSARegister ws, uint32_t imm5);
void maxi_u_h(MSARegister wd, MSARegister ws, uint32_t imm5);
void maxi_u_w(MSARegister wd, MSARegister ws, uint32_t imm5);
void maxi_u_d(MSARegister wd, MSARegister ws, uint32_t imm5);
void mini_s_b(MSARegister wd, MSARegister ws, uint32_t imm5);
void mini_s_h(MSARegister wd, MSARegister ws, uint32_t imm5);
void mini_s_w(MSARegister wd, MSARegister ws, uint32_t imm5);
void mini_s_d(MSARegister wd, MSARegister ws, uint32_t imm5);
void mini_u_b(MSARegister wd, MSARegister ws, uint32_t imm5);
void mini_u_h(MSARegister wd, MSARegister ws, uint32_t imm5);
void mini_u_w(MSARegister wd, MSARegister ws, uint32_t imm5);
void mini_u_d(MSARegister wd, MSARegister ws, uint32_t imm5);
void ceqi_b(MSARegister wd, MSARegister ws, uint32_t imm5);
void ceqi_h(MSARegister wd, MSARegister ws, uint32_t imm5);
void ceqi_w(MSARegister wd, MSARegister ws, uint32_t imm5);
void ceqi_d(MSARegister wd, MSARegister ws, uint32_t imm5);
void clti_s_b(MSARegister wd, MSARegister ws, uint32_t imm5);
void clti_s_h(MSARegister wd, MSARegister ws, uint32_t imm5);
void clti_s_w(MSARegister wd, MSARegister ws, uint32_t imm5);
void clti_s_d(MSARegister wd, MSARegister ws, uint32_t imm5);
void clti_u_b(MSARegister wd, MSARegister ws, uint32_t imm5);
void clti_u_h(MSARegister wd, MSARegister ws, uint32_t imm5);
void clti_u_w(MSARegister wd, MSARegister ws, uint32_t imm5);
void clti_u_d(MSARegister wd, MSARegister ws, uint32_t imm5);
void clei_s_b(MSARegister wd, MSARegister ws, uint32_t imm5);
void clei_s_h(MSARegister wd, MSARegister ws, uint32_t imm5);
void clei_s_w(MSARegister wd, MSARegister ws, uint32_t imm5);
void clei_s_d(MSARegister wd, MSARegister ws, uint32_t imm5);
void clei_u_b(MSARegister wd, MSARegister ws, uint32_t imm5);
void clei_u_h(MSARegister wd, MSARegister ws, uint32_t imm5);
void clei_u_w(MSARegister wd, MSARegister ws, uint32_t imm5);
void clei_u_d(MSARegister wd, MSARegister ws, uint32_t imm5);
void andi_b(MSARegister wd, MSARegister ws, uint32_t imm8);
void ori_b(MSARegister wd, MSARegister ws, uint32_t imm8);
void nori_b(MSARegister wd, MSARegister ws, uint32_t imm8);
void xori_b(MSARegister wd, MSARegister ws, uint32_t imm8);
void bmnzi_b(MSARegister wd, MSARegister ws, uint32_t imm8);
void bmzi_b(MSARegister wd, MSARegister ws, uint32_t imm8);
void bseli_b(MSARegister wd, MSARegister ws, uint32_t imm8);
void shf_b(MSARegister wd, MSARegister ws, uint32_t imm8);
void shf_h(MSARegister wd, MSARegister ws, uint32_t imm8);
void shf_w(MSARegister wd, MSARegister ws, uint32_t imm8);
void and_v(MSARegister wd, MSARegister ws, MSARegister wt);
void or_v(MSARegister wd, MSARegister ws, MSARegister wt);
void nor_v(MSARegister wd, MSARegister ws, MSARegister wt);
void xor_v(MSARegister wd, MSARegister ws, MSARegister wt);
void bmnz_v(MSARegister wd, MSARegister ws, MSARegister wt);
void bmz_v(MSARegister wd, MSARegister ws, MSARegister wt);
void bsel_v(MSARegister wd, MSARegister ws, MSARegister wt);
void fill_b(MSARegister wd, Register rs);
void fill_h(MSARegister wd, Register rs);
void fill_w(MSARegister wd, Register rs);
void fill_d(MSARegister wd, Register rs);
void pcnt_b(MSARegister wd, MSARegister ws);
void pcnt_h(MSARegister wd, MSARegister ws);
void pcnt_w(MSARegister wd, MSARegister ws);
void pcnt_d(MSARegister wd, MSARegister ws);
void nloc_b(MSARegister wd, MSARegister ws);
void nloc_h(MSARegister wd, MSARegister ws);
void nloc_w(MSARegister wd, MSARegister ws);
void nloc_d(MSARegister wd, MSARegister ws);
void nlzc_b(MSARegister wd, MSARegister ws);
void nlzc_h(MSARegister wd, MSARegister ws);
void nlzc_w(MSARegister wd, MSARegister ws);
void nlzc_d(MSARegister wd, MSARegister ws);
void fclass_w(MSARegister wd, MSARegister ws);
void fclass_d(MSARegister wd, MSARegister ws);
void ftrunc_s_w(MSARegister wd, MSARegister ws);
void ftrunc_s_d(MSARegister wd, MSARegister ws);
void ftrunc_u_w(MSARegister wd, MSARegister ws);
void ftrunc_u_d(MSARegister wd, MSARegister ws);
void fsqrt_w(MSARegister wd, MSARegister ws);
void fsqrt_d(MSARegister wd, MSARegister ws);
void frsqrt_w(MSARegister wd, MSARegister ws);
void frsqrt_d(MSARegister wd, MSARegister ws);
void frcp_w(MSARegister wd, MSARegister ws);
void frcp_d(MSARegister wd, MSARegister ws);
void frint_w(MSARegister wd, MSARegister ws);
void frint_d(MSARegister wd, MSARegister ws);
void flog2_w(MSARegister wd, MSARegister ws);
void flog2_d(MSARegister wd, MSARegister ws);
void fexupl_w(MSARegister wd, MSARegister ws);
void fexupl_d(MSARegister wd, MSARegister ws);
void fexupr_w(MSARegister wd, MSARegister ws);
void fexupr_d(MSARegister wd, MSARegister ws);
void ffql_w(MSARegister wd, MSARegister ws);
void ffql_d(MSARegister wd, MSARegister ws);
void ffqr_w(MSARegister wd, MSARegister ws);
void ffqr_d(MSARegister wd, MSARegister ws);
void ftint_s_w(MSARegister wd, MSARegister ws);
void ftint_s_d(MSARegister wd, MSARegister ws);
void ftint_u_w(MSARegister wd, MSARegister ws);
void ftint_u_d(MSARegister wd, MSARegister ws);
void ffint_s_w(MSARegister wd, MSARegister ws);
void ffint_s_d(MSARegister wd, MSARegister ws);
void ffint_u_w(MSARegister wd, MSARegister ws);
void ffint_u_d(MSARegister wd, MSARegister ws);
void sll_b(MSARegister wd, MSARegister ws, MSARegister wt);
void sll_h(MSARegister wd, MSARegister ws, MSARegister wt);
void sll_w(MSARegister wd, MSARegister ws, MSARegister wt);
void sll_d(MSARegister wd, MSARegister ws, MSARegister wt);
void sra_b(MSARegister wd, MSARegister ws, MSARegister wt);
void sra_h(MSARegister wd, MSARegister ws, MSARegister wt);
void sra_w(MSARegister wd, MSARegister ws, MSARegister wt);
void sra_d(MSARegister wd, MSARegister ws, MSARegister wt);
void srl_b(MSARegister wd, MSARegister ws, MSARegister wt);
void srl_h(MSARegister wd, MSARegister ws, MSARegister wt);
void srl_w(MSARegister wd, MSARegister ws, MSARegister wt);
void srl_d(MSARegister wd, MSARegister ws, MSARegister wt);
void bclr_b(MSARegister wd, MSARegister ws, MSARegister wt);
void bclr_h(MSARegister wd, MSARegister ws, MSARegister wt);
void bclr_w(MSARegister wd, MSARegister ws, MSARegister wt);
void bclr_d(MSARegister wd, MSARegister ws, MSARegister wt);
void bset_b(MSARegister wd, MSARegister ws, MSARegister wt);
void bset_h(MSARegister wd, MSARegister ws, MSARegister wt);
void bset_w(MSARegister wd, MSARegister ws, MSARegister wt);
void bset_d(MSARegister wd, MSARegister ws, MSARegister wt);
void bneg_b(MSARegister wd, MSARegister ws, MSARegister wt);
void bneg_h(MSARegister wd, MSARegister ws, MSARegister wt);
void bneg_w(MSARegister wd, MSARegister ws, MSARegister wt);
void bneg_d(MSARegister wd, MSARegister ws, MSARegister wt);
void binsl_b(MSARegister wd, MSARegister ws, MSARegister wt);
void binsl_h(MSARegister wd, MSARegister ws, MSARegister wt);
void binsl_w(MSARegister wd, MSARegister ws, MSARegister wt);
void binsl_d(MSARegister wd, MSARegister ws, MSARegister wt);
void binsr_b(MSARegister wd, MSARegister ws, MSARegister wt);
void binsr_h(MSARegister wd, MSARegister ws, MSARegister wt);
void binsr_w(MSARegister wd, MSARegister ws, MSARegister wt);
void binsr_d(MSARegister wd, MSARegister ws, MSARegister wt);
void addv_b(MSARegister wd, MSARegister ws, MSARegister wt);
void addv_h(MSARegister wd, MSARegister ws, MSARegister wt);
void addv_w(MSARegister wd, MSARegister ws, MSARegister wt);
void addv_d(MSARegister wd, MSARegister ws, MSARegister wt);
void subv_b(MSARegister wd, MSARegister ws, MSARegister wt);
void subv_h(MSARegister wd, MSARegister ws, MSARegister wt);
void subv_w(MSARegister wd, MSARegister ws, MSARegister wt);
void subv_d(MSARegister wd, MSARegister ws, MSARegister wt);
void max_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
void max_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
void max_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
void max_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
void max_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
void max_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
void max_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
void max_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
void min_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
void min_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
void min_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
void min_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
void min_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
void min_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
void min_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
void min_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
void max_a_b(MSARegister wd, MSARegister ws, MSARegister wt);
void max_a_h(MSARegister wd, MSARegister ws, MSARegister wt);
void max_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
void max_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
void min_a_b(MSARegister wd, MSARegister ws, MSARegister wt);
void min_a_h(MSARegister wd, MSARegister ws, MSARegister wt);
void min_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
void min_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
void ceq_b(MSARegister wd, MSARegister ws, MSARegister wt);
void ceq_h(MSARegister wd, MSARegister ws, MSARegister wt);
void ceq_w(MSARegister wd, MSARegister ws, MSARegister wt);
void ceq_d(MSARegister wd, MSARegister ws, MSARegister wt);
void clt_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
void clt_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
void clt_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
void clt_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
void clt_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
void clt_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
void clt_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
void clt_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
void cle_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
void cle_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
void cle_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
void cle_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
void cle_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
void cle_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
void cle_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
void cle_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
void add_a_b(MSARegister wd, MSARegister ws, MSARegister wt);
void add_a_h(MSARegister wd, MSARegister ws, MSARegister wt);
void add_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
void add_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
void adds_a_b(MSARegister wd, MSARegister ws, MSARegister wt);
void adds_a_h(MSARegister wd, MSARegister ws, MSARegister wt);
void adds_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
void adds_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
void adds_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
void adds_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
void adds_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
void adds_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
void adds_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
void adds_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
void adds_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
void adds_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
void ave_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
void ave_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
void ave_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
void ave_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
void ave_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
void ave_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
void ave_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
void ave_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
void aver_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
void aver_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
void aver_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
void aver_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
void aver_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
void aver_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
void aver_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
void aver_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
void subs_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
void subs_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
void subs_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
void subs_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
void subs_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
void subs_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
void subs_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
void subs_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
void subsus_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
void subsus_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
void subsus_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
void subsus_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
void subsus_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
void subsus_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
void subsus_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
void subsus_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
void subsuu_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
void subsuu_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
void subsuu_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
void subsuu_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
void subsuu_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
void subsuu_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
void subsuu_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
void subsuu_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
void asub_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
void asub_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
void asub_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
void asub_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
void asub_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
void asub_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
void asub_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
void asub_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
void mulv_b(MSARegister wd, MSARegister ws, MSARegister wt);
void mulv_h(MSARegister wd, MSARegister ws, MSARegister wt);
void mulv_w(MSARegister wd, MSARegister ws, MSARegister wt);
void mulv_d(MSARegister wd, MSARegister ws, MSARegister wt);
void maddv_b(MSARegister wd, MSARegister ws, MSARegister wt);
void maddv_h(MSARegister wd, MSARegister ws, MSARegister wt);
void maddv_w(MSARegister wd, MSARegister ws, MSARegister wt);
void maddv_d(MSARegister wd, MSARegister ws, MSARegister wt);
void msubv_b(MSARegister wd, MSARegister ws, MSARegister wt);
void msubv_h(MSARegister wd, MSARegister ws, MSARegister wt);
void msubv_w(MSARegister wd, MSARegister ws, MSARegister wt);
void msubv_d(MSARegister wd, MSARegister ws, MSARegister wt);
void div_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
void div_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
void div_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
void div_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
void div_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
void div_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
void div_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
void div_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
void mod_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
void mod_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
void mod_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
void mod_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
void mod_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
void mod_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
void mod_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
void mod_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
void dotp_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
void dotp_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
void dotp_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
void dotp_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
void dotp_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
void dotp_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
void dotp_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
void dotp_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
void dpadd_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
void dpadd_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
void dpadd_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
void dpadd_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
void dpadd_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
void dpadd_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
void dpadd_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
void dpadd_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
void dpsub_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
void dpsub_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
void dpsub_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
void dpsub_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
void dpsub_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
void dpsub_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
void dpsub_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
void dpsub_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
void sld_b(MSARegister wd, MSARegister ws, Register rt);
void sld_h(MSARegister wd, MSARegister ws, Register rt);
void sld_w(MSARegister wd, MSARegister ws, Register rt);
void sld_d(MSARegister wd, MSARegister ws, Register rt);
void splat_b(MSARegister wd, MSARegister ws, Register rt);
void splat_h(MSARegister wd, MSARegister ws, Register rt);
void splat_w(MSARegister wd, MSARegister ws, Register rt);
void splat_d(MSARegister wd, MSARegister ws, Register rt);
void pckev_b(MSARegister wd, MSARegister ws, MSARegister wt);
void pckev_h(MSARegister wd, MSARegister ws, MSARegister wt);
void pckev_w(MSARegister wd, MSARegister ws, MSARegister wt);
void pckev_d(MSARegister wd, MSARegister ws, MSARegister wt);
void pckod_b(MSARegister wd, MSARegister ws, MSARegister wt);
void pckod_h(MSARegister wd, MSARegister ws, MSARegister wt);
void pckod_w(MSARegister wd, MSARegister ws, MSARegister wt);
void pckod_d(MSARegister wd, MSARegister ws, MSARegister wt);
void ilvl_b(MSARegister wd, MSARegister ws, MSARegister wt);
void ilvl_h(MSARegister wd, MSARegister ws, MSARegister wt);
void ilvl_w(MSARegister wd, MSARegister ws, MSARegister wt);
void ilvl_d(MSARegister wd, MSARegister ws, MSARegister wt);
void ilvr_b(MSARegister wd, MSARegister ws, MSARegister wt);
void ilvr_h(MSARegister wd, MSARegister ws, MSARegister wt);
void ilvr_w(MSARegister wd, MSARegister ws, MSARegister wt);
void ilvr_d(MSARegister wd, MSARegister ws, MSARegister wt);
void ilvev_b(MSARegister wd, MSARegister ws, MSARegister wt);
void ilvev_h(MSARegister wd, MSARegister ws, MSARegister wt);
void ilvev_w(MSARegister wd, MSARegister ws, MSARegister wt);
void ilvev_d(MSARegister wd, MSARegister ws, MSARegister wt);
void ilvod_b(MSARegister wd, MSARegister ws, MSARegister wt);
void ilvod_h(MSARegister wd, MSARegister ws, MSARegister wt);
void ilvod_w(MSARegister wd, MSARegister ws, MSARegister wt);
void ilvod_d(MSARegister wd, MSARegister ws, MSARegister wt);
void vshf_b(MSARegister wd, MSARegister ws, MSARegister wt);
void vshf_h(MSARegister wd, MSARegister ws, MSARegister wt);
void vshf_w(MSARegister wd, MSARegister ws, MSARegister wt);
void vshf_d(MSARegister wd, MSARegister ws, MSARegister wt);
void srar_b(MSARegister wd, MSARegister ws, MSARegister wt);
void srar_h(MSARegister wd, MSARegister ws, MSARegister wt);
void srar_w(MSARegister wd, MSARegister ws, MSARegister wt);
void srar_d(MSARegister wd, MSARegister ws, MSARegister wt);
void srlr_b(MSARegister wd, MSARegister ws, MSARegister wt);
void srlr_h(MSARegister wd, MSARegister ws, MSARegister wt);
void srlr_w(MSARegister wd, MSARegister ws, MSARegister wt);
void srlr_d(MSARegister wd, MSARegister ws, MSARegister wt);
void hadd_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
void hadd_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
void hadd_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
void hadd_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
void hadd_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
void hadd_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
void hadd_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
void hadd_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
void hsub_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
void hsub_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
void hsub_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
void hsub_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
void hsub_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
void hsub_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
void hsub_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
void hsub_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fcaf_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fcaf_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fcun_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fcun_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fceq_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fceq_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fcueq_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fcueq_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fclt_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fclt_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fcult_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fcult_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fcle_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fcle_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fcule_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fcule_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fsaf_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fsaf_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fsun_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fsun_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fseq_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fseq_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fsueq_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fsueq_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fslt_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fslt_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fsult_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fsult_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fsle_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fsle_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fsule_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fsule_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fadd_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fadd_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fsub_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fsub_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fmul_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fmul_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fdiv_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fdiv_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fmadd_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fmadd_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fmsub_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fmsub_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fexp2_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fexp2_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fexdo_h(MSARegister wd, MSARegister ws, MSARegister wt);
void fexdo_w(MSARegister wd, MSARegister ws, MSARegister wt);
void ftq_h(MSARegister wd, MSARegister ws, MSARegister wt);
void ftq_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fmin_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fmin_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fmin_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fmin_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fmax_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fmax_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fmax_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fmax_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fcor_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fcor_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fcune_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fcune_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fcne_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fcne_d(MSARegister wd, MSARegister ws, MSARegister wt);
void mul_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
void mul_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
void madd_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
void madd_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
void msub_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
void msub_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fsor_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fsor_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fsune_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fsune_d(MSARegister wd, MSARegister ws, MSARegister wt);
void fsne_w(MSARegister wd, MSARegister ws, MSARegister wt);
void fsne_d(MSARegister wd, MSARegister ws, MSARegister wt);
void mulr_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
void mulr_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
void maddr_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
void maddr_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
void msubr_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
void msubr_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
void sldi_b(MSARegister wd, MSARegister ws, uint32_t n);
void sldi_h(MSARegister wd, MSARegister ws, uint32_t n);
void sldi_w(MSARegister wd, MSARegister ws, uint32_t n);
void sldi_d(MSARegister wd, MSARegister ws, uint32_t n);
void splati_b(MSARegister wd, MSARegister ws, uint32_t n);
void splati_h(MSARegister wd, MSARegister ws, uint32_t n);
void splati_w(MSARegister wd, MSARegister ws, uint32_t n);
void splati_d(MSARegister wd, MSARegister ws, uint32_t n);
void copy_s_b(Register rd, MSARegister ws, uint32_t n);
void copy_s_h(Register rd, MSARegister ws, uint32_t n);
void copy_s_w(Register rd, MSARegister ws, uint32_t n);
void copy_s_d(Register rd, MSARegister ws, uint32_t n);
void copy_u_b(Register rd, MSARegister ws, uint32_t n);
void copy_u_h(Register rd, MSARegister ws, uint32_t n);
void copy_u_w(Register rd, MSARegister ws, uint32_t n);
void insert_b(MSARegister wd, uint32_t n, Register rs);
void insert_h(MSARegister wd, uint32_t n, Register rs);
void insert_w(MSARegister wd, uint32_t n, Register rs);
void insert_d(MSARegister wd, uint32_t n, Register rs);
void insve_b(MSARegister wd, uint32_t n, MSARegister ws);
void insve_h(MSARegister wd, uint32_t n, MSARegister ws);
void insve_w(MSARegister wd, uint32_t n, MSARegister ws);
void insve_d(MSARegister wd, uint32_t n, MSARegister ws);
void move_v(MSARegister wd, MSARegister ws);
void ctcmsa(MSAControlRegister cd, Register rs);
void cfcmsa(Register rd, MSAControlRegister cs);
void slli_b(MSARegister wd, MSARegister ws, uint32_t m);
void slli_h(MSARegister wd, MSARegister ws, uint32_t m);
void slli_w(MSARegister wd, MSARegister ws, uint32_t m);
void slli_d(MSARegister wd, MSARegister ws, uint32_t m);
void srai_b(MSARegister wd, MSARegister ws, uint32_t m);
void srai_h(MSARegister wd, MSARegister ws, uint32_t m);
void srai_w(MSARegister wd, MSARegister ws, uint32_t m);
void srai_d(MSARegister wd, MSARegister ws, uint32_t m);
void srli_b(MSARegister wd, MSARegister ws, uint32_t m);
void srli_h(MSARegister wd, MSARegister ws, uint32_t m);
void srli_w(MSARegister wd, MSARegister ws, uint32_t m);
void srli_d(MSARegister wd, MSARegister ws, uint32_t m);
void bclri_b(MSARegister wd, MSARegister ws, uint32_t m);
void bclri_h(MSARegister wd, MSARegister ws, uint32_t m);
void bclri_w(MSARegister wd, MSARegister ws, uint32_t m);
void bclri_d(MSARegister wd, MSARegister ws, uint32_t m);
void bseti_b(MSARegister wd, MSARegister ws, uint32_t m);
void bseti_h(MSARegister wd, MSARegister ws, uint32_t m);
void bseti_w(MSARegister wd, MSARegister ws, uint32_t m);
void bseti_d(MSARegister wd, MSARegister ws, uint32_t m);
void bnegi_b(MSARegister wd, MSARegister ws, uint32_t m);
void bnegi_h(MSARegister wd, MSARegister ws, uint32_t m);
void bnegi_w(MSARegister wd, MSARegister ws, uint32_t m);
void bnegi_d(MSARegister wd, MSARegister ws, uint32_t m);
void binsli_b(MSARegister wd, MSARegister ws, uint32_t m);
void binsli_h(MSARegister wd, MSARegister ws, uint32_t m);
void binsli_w(MSARegister wd, MSARegister ws, uint32_t m);
void binsli_d(MSARegister wd, MSARegister ws, uint32_t m);
void binsri_b(MSARegister wd, MSARegister ws, uint32_t m);
void binsri_h(MSARegister wd, MSARegister ws, uint32_t m);
void binsri_w(MSARegister wd, MSARegister ws, uint32_t m);
void binsri_d(MSARegister wd, MSARegister ws, uint32_t m);
void sat_s_b(MSARegister wd, MSARegister ws, uint32_t m);
void sat_s_h(MSARegister wd, MSARegister ws, uint32_t m);
void sat_s_w(MSARegister wd, MSARegister ws, uint32_t m);
void sat_s_d(MSARegister wd, MSARegister ws, uint32_t m);
void sat_u_b(MSARegister wd, MSARegister ws, uint32_t m);
void sat_u_h(MSARegister wd, MSARegister ws, uint32_t m);
void sat_u_w(MSARegister wd, MSARegister ws, uint32_t m);
void sat_u_d(MSARegister wd, MSARegister ws, uint32_t m);
void srari_b(MSARegister wd, MSARegister ws, uint32_t m);
void srari_h(MSARegister wd, MSARegister ws, uint32_t m);
void srari_w(MSARegister wd, MSARegister ws, uint32_t m);
void srari_d(MSARegister wd, MSARegister ws, uint32_t m);
void srlri_b(MSARegister wd, MSARegister ws, uint32_t m);
void srlri_h(MSARegister wd, MSARegister ws, uint32_t m);
void srlri_w(MSARegister wd, MSARegister ws, uint32_t m);
void srlri_d(MSARegister wd, MSARegister ws, uint32_t m);
// Check the code size generated from label to here.
int SizeOfCodeGeneratedSince(Label* label) {
return pc_offset() - label->pos();
}
// Check the number of instructions generated from label to here.
int InstructionsGeneratedSince(Label* label) {
return SizeOfCodeGeneratedSince(label) / kInstrSize;
}
// Class for scoping postponing the trampoline pool generation.
class BlockTrampolinePoolScope {
public:
explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
assem_->StartBlockTrampolinePool();
}
~BlockTrampolinePoolScope() {
assem_->EndBlockTrampolinePool();
}
private:
Assembler* assem_;
DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
};
// Class for postponing the assembly buffer growth. Typically used for
// sequences of instructions that must be emitted as a unit, before
// buffer growth (and relocation) can occur.
// This blocking scope is not nestable.
class BlockGrowBufferScope {
public:
explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
assem_->StartBlockGrowBuffer();
}
~BlockGrowBufferScope() {
assem_->EndBlockGrowBuffer();
}
private:
Assembler* assem_;
DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
};
// Record a comment relocation entry that can be used by a disassembler.
// Use --code-comments to enable.
void RecordComment(const char* msg);
// Record a deoptimization reason that can be used by a log or cpu profiler.
// Use --trace-deopt to enable.
void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
int id);
static int RelocateInternalReference(RelocInfo::Mode rmode, byte* pc,
intptr_t pc_delta);
// Writes a single byte or word of data in the code stream. Used for
// inline tables, e.g., jump-tables.
void db(uint8_t data);
void dd(uint32_t data);
void dq(uint64_t data);
void dp(uintptr_t data) { dq(data); }
void dd(Label* label);
// Postpone the generation of the trampoline pool for the specified number of
// instructions.
void BlockTrampolinePoolFor(int instructions);
// Check if there is less than kGap bytes available in the buffer.
// If this is the case, we need to grow the buffer before emitting
// an instruction or relocation information.
inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
// Get the number of bytes available in the buffer.
inline intptr_t available_space() const {
return reloc_info_writer.pos() - pc_;
}
// Read/patch instructions.
static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
static void instr_at_put(byte* pc, Instr instr) {
*reinterpret_cast<Instr*>(pc) = instr;
}
Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
void instr_at_put(int pos, Instr instr) {
*reinterpret_cast<Instr*>(buffer_ + pos) = instr;
}
// Check if an instruction is a branch of some kind.
static bool IsBranch(Instr instr);
static bool IsMsaBranch(Instr instr);
static bool IsBc(Instr instr);
static bool IsBzc(Instr instr);
static bool IsBeq(Instr instr);
static bool IsBne(Instr instr);
static bool IsBeqzc(Instr instr);
static bool IsBnezc(Instr instr);
static bool IsBeqc(Instr instr);
static bool IsBnec(Instr instr);
static bool IsJump(Instr instr);
static bool IsJ(Instr instr);
static bool IsLui(Instr instr);
static bool IsOri(Instr instr);
static bool IsJal(Instr instr);
static bool IsJr(Instr instr);
static bool IsJalr(Instr instr);
static bool IsNop(Instr instr, unsigned int type);
static bool IsPop(Instr instr);
static bool IsPush(Instr instr);
static bool IsLwRegFpOffset(Instr instr);
static bool IsSwRegFpOffset(Instr instr);
static bool IsLwRegFpNegOffset(Instr instr);
static bool IsSwRegFpNegOffset(Instr instr);
static Register GetRtReg(Instr instr);
static Register GetRsReg(Instr instr);
static Register GetRdReg(Instr instr);
static uint32_t GetRt(Instr instr);
static uint32_t GetRtField(Instr instr);
static uint32_t GetRs(Instr instr);
static uint32_t GetRsField(Instr instr);
static uint32_t GetRd(Instr instr);
static uint32_t GetRdField(Instr instr);
static uint32_t GetSa(Instr instr);
static uint32_t GetSaField(Instr instr);
static uint32_t GetOpcodeField(Instr instr);
static uint32_t GetFunction(Instr instr);
static uint32_t GetFunctionField(Instr instr);
static uint32_t GetImmediate16(Instr instr);
static uint32_t GetLabelConst(Instr instr);
static int32_t GetBranchOffset(Instr instr);
static bool IsLw(Instr instr);
static int16_t GetLwOffset(Instr instr);
static Instr SetLwOffset(Instr instr, int16_t offset);
static bool IsSw(Instr instr);
static Instr SetSwOffset(Instr instr, int16_t offset);
static bool IsAddImmediate(Instr instr);
static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
static bool IsAndImmediate(Instr instr);
static bool IsEmittedConstant(Instr instr);
void CheckTrampolinePool();
void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
ConstantPoolEntry::Access access,
ConstantPoolEntry::Type type) {
// No embedded constant pool support.
UNREACHABLE();
}
bool IsPrevInstrCompactBranch() { return prev_instr_compact_branch_; }
static bool IsCompactBranchSupported() { return kArchVariant == kMips64r6; }
inline int UnboundLabelsCount() { return unbound_labels_count_; }
protected:
// Load Scaled Address instructions.
void lsa(Register rd, Register rt, Register rs, uint8_t sa);
void dlsa(Register rd, Register rt, Register rs, uint8_t sa);
// Readable constants for base and offset adjustment helper, these indicate if
// aside from offset, another value like offset + 4 should fit into int16.
enum class OffsetAccessType : bool {
SINGLE_ACCESS = false,
TWO_ACCESSES = true
};
// Helper function for memory load/store using base register and offset.
void AdjustBaseAndOffset(
MemOperand& src,
OffsetAccessType access_type = OffsetAccessType::SINGLE_ACCESS,
int second_access_add_to_offset = 4);
inline static void set_target_internal_reference_encoded_at(Address pc,
Address target);
int64_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
// Decode branch instruction at pos and return branch target pos.
int target_at(int pos, bool is_internal);
// Patch branch instruction at pos to branch to given branch target pos.
void target_at_put(int pos, int target_pos, bool is_internal);
// Say if we need to relocate with this mode.
bool MustUseReg(RelocInfo::Mode rmode);
// Record reloc info for current pc_.
void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
// Block the emission of the trampoline pool before pc_offset.
void BlockTrampolinePoolBefore(int pc_offset) {
if (no_trampoline_pool_before_ < pc_offset)
no_trampoline_pool_before_ = pc_offset;
}
void StartBlockTrampolinePool() {
trampoline_pool_blocked_nesting_++;
}
void EndBlockTrampolinePool() {
trampoline_pool_blocked_nesting_--;
}
bool is_trampoline_pool_blocked() const {
return trampoline_pool_blocked_nesting_ > 0;
}
bool has_exception() const {
return internal_trampoline_exception_;
}
void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi);
bool is_trampoline_emitted() const {
return trampoline_emitted_;
}
// Temporarily block automatic assembly buffer growth.
void StartBlockGrowBuffer() {
DCHECK(!block_buffer_growth_);
block_buffer_growth_ = true;
}
void EndBlockGrowBuffer() {
DCHECK(block_buffer_growth_);
block_buffer_growth_ = false;
}
bool is_buffer_growth_blocked() const {
return block_buffer_growth_;
}
void EmitForbiddenSlotInstruction() {
if (IsPrevInstrCompactBranch()) {
nop();
}
}
inline void CheckTrampolinePoolQuick(int extra_instructions = 0);
private:
// Avoid overflows for displacements etc.
static const int kMaximalBufferSize = 512 * MB;
// Buffer size and constant pool distance are checked together at regular
// intervals of kBufferCheckInterval emitted bytes.
static constexpr int kBufferCheckInterval = 1 * KB / 2;
// Code generation.
// The relocation writer's position is at least kGap bytes below the end of
// the generated instructions. This is so that multi-instruction sequences do
// not have to check for overflow. The same is true for writes of large
// relocation info entries.
static constexpr int kGap = 128;
// Repeated checking whether the trampoline pool should be emitted is rather
// expensive. By default we only check again once a number of instructions
// has been generated.
static constexpr int kCheckConstIntervalInst = 32;
static constexpr int kCheckConstInterval =
kCheckConstIntervalInst * kInstrSize;
int next_buffer_check_; // pc offset of next buffer check.
// Emission of the trampoline pool may be blocked in some code sequences.
int trampoline_pool_blocked_nesting_; // Block emission if this is not zero.
int no_trampoline_pool_before_; // Block emission before this pc offset.
// Keep track of the last emitted pool to guarantee a maximal distance.
int last_trampoline_pool_end_; // pc offset of the end of the last pool.
// Automatic growth of the assembly buffer may be blocked for some sequences.
bool block_buffer_growth_; // Block growth when true.
// Relocation information generation.
// Each relocation is encoded as a variable size value.
static constexpr int kMaxRelocSize = RelocInfoWriter::kMaxSize;
RelocInfoWriter reloc_info_writer;
// The bound position, before this we cannot do instruction elimination.
int last_bound_pos_;
// Readable constants for compact branch handling in emit()
enum class CompactBranchType : bool { NO = false, COMPACT_BRANCH = true };
// Code emission.
inline void CheckBuffer();
void GrowBuffer();
inline void emit(Instr x,
CompactBranchType is_compact_branch = CompactBranchType::NO);
inline void emit(uint64_t x);
inline void CheckForEmitInForbiddenSlot();
template <typename T>
inline void EmitHelper(T x);
inline void EmitHelper(Instr x, CompactBranchType is_compact_branch);
// Instruction generation.
// We have 3 different kind of encoding layout on MIPS.
// However due to many different types of objects encoded in the same fields
// we have quite a few aliases for each mode.
// Using the same structure to refer to Register and FPURegister would spare a
// few aliases, but mixing both does not look clean to me.
// Anyway we could surely implement this differently.
void GenInstrRegister(Opcode opcode, Register rs, Register rt, Register rd,
uint16_t sa = 0, SecondaryField func = nullptrSF);
void GenInstrRegister(Opcode opcode,
Register rs,
Register rt,
uint16_t msb,
uint16_t lsb,
SecondaryField func);
void GenInstrRegister(Opcode opcode, SecondaryField fmt, FPURegister ft,
FPURegister fs, FPURegister fd,
SecondaryField func = nullptrSF);
void GenInstrRegister(Opcode opcode, FPURegister fr, FPURegister ft,
FPURegister fs, FPURegister fd,
SecondaryField func = nullptrSF);
void GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt,
FPURegister fs, FPURegister fd,
SecondaryField func = nullptrSF);
void GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt,
FPUControlRegister fs, SecondaryField func = nullptrSF);
void GenInstrImmediate(
Opcode opcode, Register rs, Register rt, int32_t j,
CompactBranchType is_compact_branch = CompactBranchType::NO);
void GenInstrImmediate(
Opcode opcode, Register rs, SecondaryField SF, int32_t j,
CompactBranchType is_compact_branch = CompactBranchType::NO);
void GenInstrImmediate(
Opcode opcode, Register r1, FPURegister r2, int32_t j,
CompactBranchType is_compact_branch = CompactBranchType::NO);
void GenInstrImmediate(Opcode opcode, Register base, Register rt,
int32_t offset9, int bit6, SecondaryField func);
void GenInstrImmediate(
Opcode opcode, Register rs, int32_t offset21,
CompactBranchType is_compact_branch = CompactBranchType::NO);
void GenInstrImmediate(Opcode opcode, Register rs, uint32_t offset21);
void GenInstrImmediate(
Opcode opcode, int32_t offset26,
CompactBranchType is_compact_branch = CompactBranchType::NO);
void GenInstrJump(Opcode opcode,
uint32_t address);
// MSA
void GenInstrMsaI8(SecondaryField operation, uint32_t imm8, MSARegister ws,
MSARegister wd);
void GenInstrMsaI5(SecondaryField operation, SecondaryField df, int32_t imm5,
MSARegister ws, MSARegister wd);
void GenInstrMsaBit(SecondaryField operation, SecondaryField df, uint32_t m,
MSARegister ws, MSARegister wd);
void GenInstrMsaI10(SecondaryField operation, SecondaryField df,
int32_t imm10, MSARegister wd);
template <typename RegType>
void GenInstrMsa3R(SecondaryField operation, SecondaryField df, RegType t,
MSARegister ws, MSARegister wd);
template <typename DstType, typename SrcType>
void GenInstrMsaElm(SecondaryField operation, SecondaryField df, uint32_t n,
SrcType src, DstType dst);
void GenInstrMsa3RF(SecondaryField operation, uint32_t df, MSARegister wt,
MSARegister ws, MSARegister wd);
void GenInstrMsaVec(SecondaryField operation, MSARegister wt, MSARegister ws,
MSARegister wd);
void GenInstrMsaMI10(SecondaryField operation, int32_t s10, Register rs,
MSARegister wd);
void GenInstrMsa2R(SecondaryField operation, SecondaryField df,
MSARegister ws, MSARegister wd);
void GenInstrMsa2RF(SecondaryField operation, SecondaryField df,
MSARegister ws, MSARegister wd);
void GenInstrMsaBranch(SecondaryField operation, MSARegister wt,
int32_t offset16);
inline bool is_valid_msa_df_m(SecondaryField bit_df, uint32_t m) {
switch (bit_df) {
case BIT_DF_b:
return is_uint3(m);
case BIT_DF_h:
return is_uint4(m);
case BIT_DF_w:
return is_uint5(m);
case BIT_DF_d:
return is_uint6(m);
default:
return false;
}
}
inline bool is_valid_msa_df_n(SecondaryField elm_df, uint32_t n) {
switch (elm_df) {
case ELM_DF_B:
return is_uint4(n);
case ELM_DF_H:
return is_uint3(n);
case ELM_DF_W:
return is_uint2(n);
case ELM_DF_D:
return is_uint1(n);
default:
return false;
}
}
// Labels.
void print(const Label* L);
void bind_to(Label* L, int pos);
void next(Label* L, bool is_internal);
// One trampoline consists of:
// - space for trampoline slots,
// - space for labels.
//
// Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
// Space for trampoline slots precedes space for labels. Each label is of one
// instruction size, so total amount for labels is equal to
// label_count * kInstrSize.
class Trampoline {
public:
Trampoline() {
start_ = 0;
next_slot_ = 0;
free_slot_count_ = 0;
end_ = 0;
}
Trampoline(int start, int slot_count) {
start_ = start;
next_slot_ = start;
free_slot_count_ = slot_count;
end_ = start + slot_count * kTrampolineSlotsSize;
}
int start() {
return start_;
}
int end() {
return end_;
}
int take_slot() {
int trampoline_slot = kInvalidSlotPos;
if (free_slot_count_ <= 0) {
// We have run out of space on trampolines.
// Make sure we fail in debug mode, so we become aware of each case
// when this happens.
DCHECK(0);
// Internal exception will be caught.
} else {
trampoline_slot = next_slot_;
free_slot_count_--;
next_slot_ += kTrampolineSlotsSize;
}
return trampoline_slot;
}
private:
int start_;
int end_;
int next_slot_;
int free_slot_count_;
};
int32_t get_trampoline_entry(int32_t pos);
int unbound_labels_count_;
// After trampoline is emitted, long branches are used in generated code for
// the forward branches whose target offsets could be beyond reach of branch
// instruction. We use this information to trigger different mode of
// branch instruction generation, where we use jump instructions rather
// than regular branch instructions.
bool trampoline_emitted_;
static constexpr int kInvalidSlotPos = -1;
// Internal reference positions, required for unbounded internal reference
// labels.
std::set<int64_t> internal_reference_positions_;
bool is_internal_reference(Label* L) {
return internal_reference_positions_.find(L->pos()) !=
internal_reference_positions_.end();
}
void EmittedCompactBranchInstruction() { prev_instr_compact_branch_ = true; }
void ClearCompactBranchState() { prev_instr_compact_branch_ = false; }
bool prev_instr_compact_branch_ = false;
Trampoline trampoline_;
bool internal_trampoline_exception_;
RegList scratch_register_list_;
// The following functions help with avoiding allocations of embedded heap
// objects during the code assembly phase. {RequestHeapObject} records the
// need for a future heap number allocation or code stub generation. After
// code assembly, {AllocateAndInstallRequestedHeapObjects} will allocate these
// objects and place them where they are expected (determined by the pc offset
// associated with each request). That is, for each request, it will patch the
// dummy heap object handle that we emitted during code assembly with the
// actual heap object handle.
protected:
// TODO(neis): Make private if its use can be moved out of TurboAssembler.
void RequestHeapObject(HeapObjectRequest request);
private:
void AllocateAndInstallRequestedHeapObjects(Isolate* isolate);
std::forward_list<HeapObjectRequest> heap_object_requests_;
friend class RegExpMacroAssemblerMIPS;
friend class RelocInfo;
friend class BlockTrampolinePoolScope;
friend class EnsureSpace;
};
class EnsureSpace BASE_EMBEDDED {
public:
explicit inline EnsureSpace(Assembler* assembler);
};
class UseScratchRegisterScope {
public:
explicit UseScratchRegisterScope(Assembler* assembler);
~UseScratchRegisterScope();
Register Acquire();
bool hasAvailable() const;
private:
RegList* available_;
RegList old_available_;
};
} // namespace internal
} // namespace v8
#endif // V8_ARM_ASSEMBLER_MIPS_H_