blob: 5e96648ee37e4782834824294ac38cdfdd3d5654 [file] [log] [blame]
// Copyright 2019 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "test/wasm-api-tests/wasm-api-test.h"
#include "src/execution/isolate.h"
#include "src/heap/heap.h"
#include "src/wasm/c-api.h"
namespace v8 {
namespace internal {
namespace wasm {
namespace {
own<Trap> Stage2(void* env, const Val args[], Val results[]) {
printf("Stage2...\n");
WasmCapiTest* self = reinterpret_cast<WasmCapiTest*>(env);
Func* stage3 = self->GetExportedFunction(1);
own<Trap> trap = stage3->call(args, results);
if (trap) {
printf("Stage2: got exception: %s\n", trap->message().get());
} else {
printf("Stage2: call successful\n");
}
return trap;
}
own<Trap> Stage4_GC(void* env, const Val args[], Val results[]) {
printf("Stage4...\n");
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(env);
isolate->heap()->PreciseCollectAllGarbage(
i::Heap::kForcedGC, i::GarbageCollectionReason::kTesting,
v8::kNoGCCallbackFlags);
results[0] = Val::i32(args[0].i32() + 1);
return nullptr;
}
class WasmCapiCallbacksTest : public WasmCapiTest {
public:
WasmCapiCallbacksTest() : WasmCapiTest() {
// Build the following function:
// int32 stage1(int32 arg0) { return stage2(arg0); }
uint32_t stage2_index =
builder()->AddImport(CStrVector("stage2"), wasm_i_i_sig());
byte code[] = {WASM_CALL_FUNCTION(stage2_index, WASM_GET_LOCAL(0))};
AddExportedFunction(CStrVector("stage1"), code, sizeof(code));
stage2_ = Func::make(store(), cpp_i_i_sig(), Stage2, this);
}
Func* stage2() { return stage2_.get(); }
void AddExportedFunction(Vector<const char> name, byte code[],
size_t code_size) {
WasmCapiTest::AddExportedFunction(name, code, code_size, wasm_i_i_sig());
}
private:
own<Func> stage2_;
};
} // namespace
TEST_F(WasmCapiCallbacksTest, Trap) {
// Build the following function:
// int32 stage3_trap(int32 arg0) { unreachable(); }
byte code[] = {WASM_UNREACHABLE};
AddExportedFunction(CStrVector("stage3_trap"), code, sizeof(code));
Extern* imports[] = {stage2()};
Instantiate(imports);
Val args[] = {Val::i32(42)};
Val results[1];
own<Trap> trap = GetExportedFunction(0)->call(args, results);
EXPECT_NE(trap, nullptr);
printf("Stage0: Got trap as expected: %s\n", trap->message().get());
}
TEST_F(WasmCapiCallbacksTest, GC) {
// Build the following function:
// int32 stage3_to4(int32 arg0) { return stage4(arg0); }
uint32_t stage4_index =
builder()->AddImport(CStrVector("stage4"), wasm_i_i_sig());
byte code[] = {WASM_CALL_FUNCTION(stage4_index, WASM_GET_LOCAL(0))};
AddExportedFunction(CStrVector("stage3_to4"), code, sizeof(code));
i::Isolate* isolate =
reinterpret_cast<::wasm::StoreImpl*>(store())->i_isolate();
own<Func> stage4 = Func::make(store(), cpp_i_i_sig(), Stage4_GC, isolate);
EXPECT_EQ(cpp_i_i_sig()->params().size(), stage4->type()->params().size());
EXPECT_EQ(cpp_i_i_sig()->results().size(), stage4->type()->results().size());
Extern* imports[] = {stage2(), stage4.get()};
Instantiate(imports);
Val args[] = {Val::i32(42)};
Val results[1];
own<Trap> trap = GetExportedFunction(0)->call(args, results);
EXPECT_EQ(trap, nullptr);
EXPECT_EQ(43, results[0].i32());
}
namespace {
own<Trap> FibonacciC(void* env, const Val args[], Val results[]) {
int32_t x = args[0].i32();
if (x == 0 || x == 1) {
results[0] = Val::i32(x);
return nullptr;
}
WasmCapiTest* self = reinterpret_cast<WasmCapiTest*>(env);
Func* fibo_wasm = self->GetExportedFunction(0);
// Aggressively re-use existing arrays. That's maybe not great coding
// style, but this test intentionally ensures that it works if someone
// insists on doing it.
Val recursive_args[] = {Val::i32(x - 1)};
own<Trap> trap = fibo_wasm->call(recursive_args, results);
DCHECK_NULL(trap);
int32_t x1 = results[0].i32();
recursive_args[0] = Val::i32(x - 2);
trap = fibo_wasm->call(recursive_args, results);
DCHECK_NULL(trap);
int32_t x2 = results[0].i32();
results[0] = Val::i32(x1 + x2);
return nullptr;
}
} // namespace
TEST_F(WasmCapiTest, Recursion) {
// Build the following function:
// int32 fibonacci_wasm(int32 arg0) {
// if (arg0 == 0) return 0;
// if (arg0 == 1) return 1;
// return fibonacci_c(arg0 - 1) + fibonacci_c(arg0 - 2);
// }
uint32_t fibo_c_index =
builder()->AddImport(CStrVector("fibonacci_c"), wasm_i_i_sig());
byte code_fibo[] = {
WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_ZERO),
WASM_RETURN1(WASM_ZERO)),
WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_ONE), WASM_RETURN1(WASM_ONE)),
// Muck with the parameter to ensure callers don't depend on its value.
WASM_SET_LOCAL(0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_ONE)),
WASM_RETURN1(WASM_I32_ADD(
WASM_CALL_FUNCTION(fibo_c_index, WASM_GET_LOCAL(0)),
WASM_CALL_FUNCTION(fibo_c_index,
WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_ONE))))};
AddExportedFunction(CStrVector("fibonacci_wasm"), code_fibo,
sizeof(code_fibo), wasm_i_i_sig());
own<Func> fibonacci = Func::make(store(), cpp_i_i_sig(), FibonacciC, this);
Extern* imports[] = {fibonacci.get()};
Instantiate(imports);
// Enough iterations to make it interesting, few enough to keep it fast.
Val args[] = {Val::i32(15)};
Val results[1];
own<Trap> result = GetExportedFunction(0)->call(args, results);
EXPECT_EQ(result, nullptr);
EXPECT_EQ(610, results[0].i32());
}
namespace {
own<Trap> PlusOne(const Val args[], Val results[]) {
int32_t a0 = args[0].i32();
results[0] = Val::i32(a0 + 1);
int64_t a1 = args[1].i64();
results[1] = Val::i64(a1 + 1);
float a2 = args[2].f32();
results[2] = Val::f32(a2 + 1);
double a3 = args[3].f64();
results[3] = Val::f64(a3 + 1);
results[4] = Val::ref(args[4].ref()->copy()); // No +1 for Refs.
return nullptr;
}
} // namespace
TEST_F(WasmCapiTest, DirectCallCapiFunction) {
own<FuncType> cpp_sig =
FuncType::make(ownvec<ValType>::make(
ValType::make(::wasm::I32), ValType::make(::wasm::I64),
ValType::make(::wasm::F32), ValType::make(::wasm::F64),
ValType::make(::wasm::ANYREF)),
ownvec<ValType>::make(
ValType::make(::wasm::I32), ValType::make(::wasm::I64),
ValType::make(::wasm::F32), ValType::make(::wasm::F64),
ValType::make(::wasm::ANYREF)));
own<Func> func = Func::make(store(), cpp_sig.get(), PlusOne);
Extern* imports[] = {func.get()};
ValueType wasm_types[] = {kWasmI32, kWasmI64, kWasmF32, kWasmF64,
kWasmExternRef, kWasmI32, kWasmI64, kWasmF32,
kWasmF64, kWasmExternRef};
FunctionSig wasm_sig(5, 5, wasm_types);
int func_index = builder()->AddImport(CStrVector("func"), &wasm_sig);
builder()->ExportImportedFunction(CStrVector("func"), func_index);
Instantiate(imports);
int32_t a0 = 42;
int64_t a1 = 0x1234c0ffee;
float a2 = 1234.5;
double a3 = 123.45;
Val args[] = {Val::i32(a0), Val::i64(a1), Val::f32(a2), Val::f64(a3),
Val::ref(func->copy())};
Val results[5];
// Test that {func} can be called directly.
own<Trap> trap = func->call(args, results);
EXPECT_EQ(nullptr, trap);
EXPECT_EQ(a0 + 1, results[0].i32());
EXPECT_EQ(a1 + 1, results[1].i64());
EXPECT_EQ(a2 + 1, results[2].f32());
EXPECT_EQ(a3 + 1, results[3].f64());
EXPECT_TRUE(func->same(results[4].ref()));
// Test that {func} can be called after import/export round-tripping.
trap = GetExportedFunction(0)->call(args, results);
EXPECT_EQ(nullptr, trap);
EXPECT_EQ(a0 + 1, results[0].i32());
EXPECT_EQ(a1 + 1, results[1].i64());
EXPECT_EQ(a2 + 1, results[2].f32());
EXPECT_EQ(a3 + 1, results[3].f64());
EXPECT_TRUE(func->same(results[4].ref()));
}
} // namespace wasm
} // namespace internal
} // namespace v8