blob: 07ed997f6381a975e2f2917dcf68faadb48f6f41 [file] [log] [blame]
//===- llvm/unittest/IR/BasicBlockTest.cpp - BasicBlock unit tests --------===//
// The LLVM Compiler Infrastructure
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
#include "llvm/IR/BasicBlock.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/NoFolder.h"
#include "gmock/gmock-matchers.h"
#include "gtest/gtest.h"
#include <memory>
namespace llvm {
namespace {
TEST(BasicBlockTest, PhiRange) {
LLVMContext Context;
// Create the main block.
std::unique_ptr<BasicBlock> BB(BasicBlock::Create(Context));
// Create some predecessors of it.
std::unique_ptr<BasicBlock> BB1(BasicBlock::Create(Context));
BranchInst::Create(BB.get(), BB1.get());
std::unique_ptr<BasicBlock> BB2(BasicBlock::Create(Context));
BranchInst::Create(BB.get(), BB2.get());
// Make sure this doesn't crash if there are no phis.
for (auto &PN : BB->phis()) {
EXPECT_TRUE(false) << "empty block should have no phis";
// Make it a cycle.
auto *BI = BranchInst::Create(BB.get(), BB.get());
// Now insert some PHI nodes.
auto *Int32Ty = Type::getInt32Ty(Context);
auto *P1 = PHINode::Create(Int32Ty, /*NumReservedValues*/ 3, "phi.1", BI);
auto *P2 = PHINode::Create(Int32Ty, /*NumReservedValues*/ 3, "phi.2", BI);
auto *P3 = PHINode::Create(Int32Ty, /*NumReservedValues*/ 3, "phi.3", BI);
// Some non-PHI nodes.
auto *Sum = BinaryOperator::CreateAdd(P1, P2, "sum", BI);
// Now wire up the incoming values that are interesting.
P1->addIncoming(P2, BB.get());
P2->addIncoming(P1, BB.get());
P3->addIncoming(Sum, BB.get());
// Finally, let's iterate them, which is the thing we're trying to test.
// We'll use this to wire up the rest of the incoming values.
for (auto &PN : BB->phis()) {
PN.addIncoming(UndefValue::get(Int32Ty), BB1.get());
PN.addIncoming(UndefValue::get(Int32Ty), BB2.get());
// Test that we can use const iterators and generally that the iterators
// behave like iterators.
BasicBlock::const_phi_iterator CI;
CI = BB->phis().begin();
EXPECT_NE(CI, BB->phis().end());
// Test that filtering iterators work with basic blocks.
auto isPhi = [](Instruction &I) { return isa<PHINode>(&I); };
auto Phis = make_filter_range(*BB, isPhi);
auto ReversedPhis = reverse(make_filter_range(*BB, isPhi));
EXPECT_EQ(std::distance(Phis.begin(), Phis.end()), 3);
EXPECT_EQ(&*Phis.begin(), P1);
EXPECT_EQ(std::distance(ReversedPhis.begin(), ReversedPhis.end()), 3);
EXPECT_EQ(&*ReversedPhis.begin(), P3);
// And iterate a const range.
for (const auto &PN : const_cast<const BasicBlock *>(BB.get())->phis()) {
EXPECT_EQ(BB.get(), PN.getIncomingBlock(0));
EXPECT_EQ(BB1.get(), PN.getIncomingBlock(1));
EXPECT_EQ(BB2.get(), PN.getIncomingBlock(2));
#define CHECK_ITERATORS(Range1, Range2) \
EXPECT_EQ(std::distance(Range1.begin(), Range1.end()), \
std::distance(Range2.begin(), Range2.end())); \
for (auto Pair : zip(Range1, Range2)) \
EXPECT_EQ(&std::get<0>(Pair), std::get<1>(Pair));
TEST(BasicBlockTest, TestInstructionsWithoutDebug) {
LLVMContext Ctx;
Module *M = new Module("MyModule", Ctx);
Type *ArgTy1[] = {Type::getInt32PtrTy(Ctx)};
FunctionType *FT = FunctionType::get(Type::getVoidTy(Ctx), ArgTy1, false);
Argument *V = new Argument(Type::getInt32Ty(Ctx));
Function *F = Function::Create(FT, Function::ExternalLinkage, "", M);
Value *DbgAddr = Intrinsic::getDeclaration(M, Intrinsic::dbg_addr);
Value *DbgDeclare =
Intrinsic::getDeclaration(M, Intrinsic::dbg_declare);
Value *DbgValue = Intrinsic::getDeclaration(M, Intrinsic::dbg_value);
Value *DIV = MetadataAsValue::get(Ctx, (Metadata *)nullptr);
SmallVector<Value *, 3> Args = {DIV, DIV, DIV};
BasicBlock *BB1 = BasicBlock::Create(Ctx, "", F);
const BasicBlock *BBConst = BB1;
IRBuilder<> Builder1(BB1);
AllocaInst *Var = Builder1.CreateAlloca(Builder1.getInt8Ty());
Builder1.CreateCall(DbgValue, Args);
Instruction *AddInst = cast<Instruction>(Builder1.CreateAdd(V, V));
Instruction *MulInst = cast<Instruction>(Builder1.CreateMul(AddInst, V));
Builder1.CreateCall(DbgDeclare, Args);
Instruction *SubInst = cast<Instruction>(Builder1.CreateSub(MulInst, V));
Builder1.CreateCall(DbgAddr, Args);
SmallVector<Instruction *, 4> Exp = {Var, AddInst, MulInst, SubInst};
CHECK_ITERATORS(BB1->instructionsWithoutDebug(), Exp);
CHECK_ITERATORS(BBConst->instructionsWithoutDebug(), Exp);
delete M;
delete V;
} // End anonymous namespace.
} // End llvm namespace.