blob: 8b7214880396048fed497b700deebca5e7d442f8 [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/base/platform/time.h"
#if V8_OS_POSIX
#include <fcntl.h> // for O_RDONLY
#include <sys/time.h>
#include <unistd.h>
#endif
#if V8_OS_MACOSX
#include <mach/mach.h>
#include <mach/mach_time.h>
#include <pthread.h>
#endif
#include <cstring>
#include <ostream>
#if V8_OS_WIN
#include "src/base/lazy-instance.h"
#include "src/base/win32-headers.h"
#endif
#include "src/base/cpu.h"
#include "src/base/logging.h"
#include "src/base/platform/platform.h"
#if V8_OS_STARBOARD
#include "starboard/time.h"
#endif
namespace {
#if V8_OS_MACOSX
int64_t ComputeThreadTicks() {
mach_msg_type_number_t thread_info_count = THREAD_BASIC_INFO_COUNT;
thread_basic_info_data_t thread_info_data;
kern_return_t kr = thread_info(
pthread_mach_thread_np(pthread_self()),
THREAD_BASIC_INFO,
reinterpret_cast<thread_info_t>(&thread_info_data),
&thread_info_count);
CHECK_EQ(kr, KERN_SUCCESS);
// We can add the seconds into a {int64_t} without overflow.
CHECK_LE(thread_info_data.user_time.seconds,
std::numeric_limits<int64_t>::max() -
thread_info_data.system_time.seconds);
int64_t seconds =
thread_info_data.user_time.seconds + thread_info_data.system_time.seconds;
// Multiplying the seconds by {kMicrosecondsPerSecond}, and adding something
// in [0, 2 * kMicrosecondsPerSecond) must result in a valid {int64_t}.
static constexpr int64_t kSecondsLimit =
(std::numeric_limits<int64_t>::max() /
v8::base::Time::kMicrosecondsPerSecond) -
2;
CHECK_GT(kSecondsLimit, seconds);
int64_t micros = seconds * v8::base::Time::kMicrosecondsPerSecond;
micros += (thread_info_data.user_time.microseconds +
thread_info_data.system_time.microseconds);
return micros;
}
#elif V8_OS_POSIX
// Helper function to get results from clock_gettime() and convert to a
// microsecond timebase. Minimum requirement is MONOTONIC_CLOCK to be supported
// on the system. FreeBSD 6 has CLOCK_MONOTONIC but defines
// _POSIX_MONOTONIC_CLOCK to -1.
V8_INLINE int64_t ClockNow(clockid_t clk_id) {
#if (defined(_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0) || \
defined(V8_OS_BSD) || defined(V8_OS_ANDROID)
// On AIX clock_gettime for CLOCK_THREAD_CPUTIME_ID outputs time with
// resolution of 10ms. thread_cputime API provides the time in ns
#if defined(V8_OS_AIX)
thread_cputime_t tc;
if (clk_id == CLOCK_THREAD_CPUTIME_ID) {
if (thread_cputime(-1, &tc) != 0) {
UNREACHABLE();
}
}
#endif
struct timespec ts;
if (clock_gettime(clk_id, &ts) != 0) {
UNREACHABLE();
}
// Multiplying the seconds by {kMicrosecondsPerSecond}, and adding something
// in [0, kMicrosecondsPerSecond) must result in a valid {int64_t}.
static constexpr int64_t kSecondsLimit =
(std::numeric_limits<int64_t>::max() /
v8::base::Time::kMicrosecondsPerSecond) -
1;
CHECK_GT(kSecondsLimit, ts.tv_sec);
int64_t result = int64_t{ts.tv_sec} * v8::base::Time::kMicrosecondsPerSecond;
#if defined(V8_OS_AIX)
if (clk_id == CLOCK_THREAD_CPUTIME_ID) {
result += (tc.stime / v8::base::Time::kNanosecondsPerMicrosecond);
} else {
result += (ts.tv_nsec / v8::base::Time::kNanosecondsPerMicrosecond);
}
#else
result += (ts.tv_nsec / v8::base::Time::kNanosecondsPerMicrosecond);
#endif
return result;
#else // Monotonic clock not supported.
return 0;
#endif
}
V8_INLINE bool IsHighResolutionTimer(clockid_t clk_id) {
// Limit duration of timer resolution measurement to 100 ms. If we cannot
// measure timer resoltuion within this time, we assume a low resolution
// timer.
int64_t end =
ClockNow(clk_id) + 100 * v8::base::Time::kMicrosecondsPerMillisecond;
int64_t start, delta;
do {
start = ClockNow(clk_id);
// Loop until we can detect that the clock has changed. Non-HighRes timers
// will increment in chunks, i.e. 15ms. By spinning until we see a clock
// change, we detect the minimum time between measurements.
do {
delta = ClockNow(clk_id) - start;
} while (delta == 0);
} while (delta > 1 && start < end);
return delta <= 1;
}
#elif V8_OS_WIN
V8_INLINE bool IsQPCReliable() {
v8::base::CPU cpu;
// On Athlon X2 CPUs (e.g. model 15) QueryPerformanceCounter is unreliable.
return strcmp(cpu.vendor(), "AuthenticAMD") == 0 && cpu.family() == 15;
}
// Returns the current value of the performance counter.
V8_INLINE uint64_t QPCNowRaw() {
LARGE_INTEGER perf_counter_now = {};
// According to the MSDN documentation for QueryPerformanceCounter(), this
// will never fail on systems that run XP or later.
// https://msdn.microsoft.com/library/windows/desktop/ms644904.aspx
BOOL result = ::QueryPerformanceCounter(&perf_counter_now);
DCHECK(result);
USE(result);
return perf_counter_now.QuadPart;
}
#endif // V8_OS_MACOSX
} // namespace
namespace v8 {
namespace base {
int TimeDelta::InDays() const {
if (IsMax()) {
// Preserve max to prevent overflow.
return std::numeric_limits<int>::max();
}
return static_cast<int>(delta_ / Time::kMicrosecondsPerDay);
}
int TimeDelta::InHours() const {
if (IsMax()) {
// Preserve max to prevent overflow.
return std::numeric_limits<int>::max();
}
return static_cast<int>(delta_ / Time::kMicrosecondsPerHour);
}
int TimeDelta::InMinutes() const {
if (IsMax()) {
// Preserve max to prevent overflow.
return std::numeric_limits<int>::max();
}
return static_cast<int>(delta_ / Time::kMicrosecondsPerMinute);
}
double TimeDelta::InSecondsF() const {
if (IsMax()) {
// Preserve max to prevent overflow.
return std::numeric_limits<double>::infinity();
}
return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond;
}
int64_t TimeDelta::InSeconds() const {
if (IsMax()) {
// Preserve max to prevent overflow.
return std::numeric_limits<int64_t>::max();
}
return delta_ / Time::kMicrosecondsPerSecond;
}
double TimeDelta::InMillisecondsF() const {
if (IsMax()) {
// Preserve max to prevent overflow.
return std::numeric_limits<double>::infinity();
}
return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond;
}
int64_t TimeDelta::InMilliseconds() const {
if (IsMax()) {
// Preserve max to prevent overflow.
return std::numeric_limits<int64_t>::max();
}
return delta_ / Time::kMicrosecondsPerMillisecond;
}
int64_t TimeDelta::InMillisecondsRoundedUp() const {
if (IsMax()) {
// Preserve max to prevent overflow.
return std::numeric_limits<int64_t>::max();
}
return (delta_ + Time::kMicrosecondsPerMillisecond - 1) /
Time::kMicrosecondsPerMillisecond;
}
int64_t TimeDelta::InMicroseconds() const {
if (IsMax()) {
// Preserve max to prevent overflow.
return std::numeric_limits<int64_t>::max();
}
return delta_;
}
int64_t TimeDelta::InNanoseconds() const {
if (IsMax()) {
// Preserve max to prevent overflow.
return std::numeric_limits<int64_t>::max();
}
return delta_ * Time::kNanosecondsPerMicrosecond;
}
#if V8_OS_MACOSX
TimeDelta TimeDelta::FromMachTimespec(struct mach_timespec ts) {
DCHECK_GE(ts.tv_nsec, 0);
DCHECK_LT(ts.tv_nsec,
static_cast<long>(Time::kNanosecondsPerSecond)); // NOLINT
return TimeDelta(ts.tv_sec * Time::kMicrosecondsPerSecond +
ts.tv_nsec / Time::kNanosecondsPerMicrosecond);
}
struct mach_timespec TimeDelta::ToMachTimespec() const {
struct mach_timespec ts;
DCHECK_GE(delta_, 0);
ts.tv_sec = static_cast<unsigned>(delta_ / Time::kMicrosecondsPerSecond);
ts.tv_nsec = (delta_ % Time::kMicrosecondsPerSecond) *
Time::kNanosecondsPerMicrosecond;
return ts;
}
#endif // V8_OS_MACOSX
#if V8_OS_POSIX
TimeDelta TimeDelta::FromTimespec(struct timespec ts) {
DCHECK_GE(ts.tv_nsec, 0);
DCHECK_LT(ts.tv_nsec,
static_cast<long>(Time::kNanosecondsPerSecond)); // NOLINT
return TimeDelta(ts.tv_sec * Time::kMicrosecondsPerSecond +
ts.tv_nsec / Time::kNanosecondsPerMicrosecond);
}
struct timespec TimeDelta::ToTimespec() const {
struct timespec ts;
ts.tv_sec = static_cast<time_t>(delta_ / Time::kMicrosecondsPerSecond);
ts.tv_nsec = (delta_ % Time::kMicrosecondsPerSecond) *
Time::kNanosecondsPerMicrosecond;
return ts;
}
#endif // V8_OS_POSIX
#if V8_OS_WIN
// We implement time using the high-resolution timers so that we can get
// timeouts which are smaller than 10-15ms. To avoid any drift, we
// periodically resync the internal clock to the system clock.
class Clock final {
public:
Clock() : initial_ticks_(GetSystemTicks()), initial_time_(GetSystemTime()) {}
Time Now() {
// Time between resampling the un-granular clock for this API (1 minute).
const TimeDelta kMaxElapsedTime = TimeDelta::FromMinutes(1);
MutexGuard lock_guard(&mutex_);
// Determine current time and ticks.
TimeTicks ticks = GetSystemTicks();
Time time = GetSystemTime();
// Check if we need to synchronize with the system clock due to a backwards
// time change or the amount of time elapsed.
TimeDelta elapsed = ticks - initial_ticks_;
if (time < initial_time_ || elapsed > kMaxElapsedTime) {
initial_ticks_ = ticks;
initial_time_ = time;
return time;
}
return initial_time_ + elapsed;
}
Time NowFromSystemTime() {
MutexGuard lock_guard(&mutex_);
initial_ticks_ = GetSystemTicks();
initial_time_ = GetSystemTime();
return initial_time_;
}
private:
static TimeTicks GetSystemTicks() {
return TimeTicks::Now();
}
static Time GetSystemTime() {
FILETIME ft;
::GetSystemTimeAsFileTime(&ft);
return Time::FromFiletime(ft);
}
TimeTicks initial_ticks_;
Time initial_time_;
Mutex mutex_;
};
namespace {
DEFINE_LAZY_LEAKY_OBJECT_GETTER(Clock, GetClock)
}
Time Time::Now() { return GetClock()->Now(); }
Time Time::NowFromSystemTime() { return GetClock()->NowFromSystemTime(); }
// Time between windows epoch and standard epoch.
static const int64_t kTimeToEpochInMicroseconds = int64_t{11644473600000000};
Time Time::FromFiletime(FILETIME ft) {
if (ft.dwLowDateTime == 0 && ft.dwHighDateTime == 0) {
return Time();
}
if (ft.dwLowDateTime == std::numeric_limits<DWORD>::max() &&
ft.dwHighDateTime == std::numeric_limits<DWORD>::max()) {
return Max();
}
int64_t us = (static_cast<uint64_t>(ft.dwLowDateTime) +
(static_cast<uint64_t>(ft.dwHighDateTime) << 32)) / 10;
return Time(us - kTimeToEpochInMicroseconds);
}
FILETIME Time::ToFiletime() const {
DCHECK_GE(us_, 0);
FILETIME ft;
if (IsNull()) {
ft.dwLowDateTime = 0;
ft.dwHighDateTime = 0;
return ft;
}
if (IsMax()) {
ft.dwLowDateTime = std::numeric_limits<DWORD>::max();
ft.dwHighDateTime = std::numeric_limits<DWORD>::max();
return ft;
}
uint64_t us = static_cast<uint64_t>(us_ + kTimeToEpochInMicroseconds) * 10;
ft.dwLowDateTime = static_cast<DWORD>(us);
ft.dwHighDateTime = static_cast<DWORD>(us >> 32);
return ft;
}
#elif V8_OS_POSIX
Time Time::Now() {
struct timeval tv;
int result = gettimeofday(&tv, nullptr);
DCHECK_EQ(0, result);
USE(result);
return FromTimeval(tv);
}
Time Time::NowFromSystemTime() {
return Now();
}
Time Time::FromTimespec(struct timespec ts) {
DCHECK_GE(ts.tv_nsec, 0);
DCHECK_LT(ts.tv_nsec, kNanosecondsPerSecond);
if (ts.tv_nsec == 0 && ts.tv_sec == 0) {
return Time();
}
if (ts.tv_nsec == static_cast<long>(kNanosecondsPerSecond - 1) && // NOLINT
ts.tv_sec == std::numeric_limits<time_t>::max()) {
return Max();
}
return Time(ts.tv_sec * kMicrosecondsPerSecond +
ts.tv_nsec / kNanosecondsPerMicrosecond);
}
struct timespec Time::ToTimespec() const {
struct timespec ts;
if (IsNull()) {
ts.tv_sec = 0;
ts.tv_nsec = 0;
return ts;
}
if (IsMax()) {
ts.tv_sec = std::numeric_limits<time_t>::max();
ts.tv_nsec = static_cast<long>(kNanosecondsPerSecond - 1); // NOLINT
return ts;
}
ts.tv_sec = static_cast<time_t>(us_ / kMicrosecondsPerSecond);
ts.tv_nsec = (us_ % kMicrosecondsPerSecond) * kNanosecondsPerMicrosecond;
return ts;
}
Time Time::FromTimeval(struct timeval tv) {
DCHECK_GE(tv.tv_usec, 0);
DCHECK(tv.tv_usec < static_cast<suseconds_t>(kMicrosecondsPerSecond));
if (tv.tv_usec == 0 && tv.tv_sec == 0) {
return Time();
}
if (tv.tv_usec == static_cast<suseconds_t>(kMicrosecondsPerSecond - 1) &&
tv.tv_sec == std::numeric_limits<time_t>::max()) {
return Max();
}
return Time(tv.tv_sec * kMicrosecondsPerSecond + tv.tv_usec);
}
struct timeval Time::ToTimeval() const {
struct timeval tv;
if (IsNull()) {
tv.tv_sec = 0;
tv.tv_usec = 0;
return tv;
}
if (IsMax()) {
tv.tv_sec = std::numeric_limits<time_t>::max();
tv.tv_usec = static_cast<suseconds_t>(kMicrosecondsPerSecond - 1);
return tv;
}
tv.tv_sec = static_cast<time_t>(us_ / kMicrosecondsPerSecond);
tv.tv_usec = us_ % kMicrosecondsPerSecond;
return tv;
}
#elif V8_OS_STARBOARD
Time Time::Now() {
return Time(SbTimeToPosix(SbTimeGetNow()));
}
Time Time::NowFromSystemTime() {
return Now();
}
#endif // V8_OS_WIN
// static
TimeTicks TimeTicks::HighResolutionNow() {
// a DCHECK of TimeTicks::IsHighResolution() was removed from here
// as it turns out this path is used in the wild for logs and counters.
//
// TODO(hpayer) We may eventually want to split TimedHistograms based
// on low resolution clocks to avoid polluting metrics
return TimeTicks::Now();
}
Time Time::FromJsTime(double ms_since_epoch) {
// The epoch is a valid time, so this constructor doesn't interpret
// 0 as the null time.
if (ms_since_epoch == std::numeric_limits<double>::max()) {
return Max();
}
return Time(
static_cast<int64_t>(ms_since_epoch * kMicrosecondsPerMillisecond));
}
double Time::ToJsTime() const {
if (IsNull()) {
// Preserve 0 so the invalid result doesn't depend on the platform.
return 0;
}
if (IsMax()) {
// Preserve max without offset to prevent overflow.
return std::numeric_limits<double>::max();
}
return static_cast<double>(us_) / kMicrosecondsPerMillisecond;
}
std::ostream& operator<<(std::ostream& os, const Time& time) {
return os << time.ToJsTime();
}
#if V8_OS_WIN
namespace {
// We define a wrapper to adapt between the __stdcall and __cdecl call of the
// mock function, and to avoid a static constructor. Assigning an import to a
// function pointer directly would require setup code to fetch from the IAT.
DWORD timeGetTimeWrapper() { return timeGetTime(); }
DWORD (*g_tick_function)(void) = &timeGetTimeWrapper;
// A structure holding the most significant bits of "last seen" and a
// "rollover" counter.
union LastTimeAndRolloversState {
// The state as a single 32-bit opaque value.
int32_t as_opaque_32;
// The state as usable values.
struct {
// The top 8-bits of the "last" time. This is enough to check for rollovers
// and the small bit-size means fewer CompareAndSwap operations to store
// changes in state, which in turn makes for fewer retries.
uint8_t last_8;
// A count of the number of detected rollovers. Using this as bits 47-32
// of the upper half of a 64-bit value results in a 48-bit tick counter.
// This extends the total rollover period from about 49 days to about 8800
// years while still allowing it to be stored with last_8 in a single
// 32-bit value.
uint16_t rollovers;
} as_values;
};
std::atomic<int32_t> g_last_time_and_rollovers{0};
static_assert(sizeof(LastTimeAndRolloversState) <=
sizeof(g_last_time_and_rollovers),
"LastTimeAndRolloversState does not fit in a single atomic word");
// We use timeGetTime() to implement TimeTicks::Now(). This can be problematic
// because it returns the number of milliseconds since Windows has started,
// which will roll over the 32-bit value every ~49 days. We try to track
// rollover ourselves, which works if TimeTicks::Now() is called at least every
// 48.8 days (not 49 days because only changes in the top 8 bits get noticed).
TimeTicks RolloverProtectedNow() {
LastTimeAndRolloversState state;
DWORD now; // DWORD is always unsigned 32 bits.
// Fetch the "now" and "last" tick values, updating "last" with "now" and
// incrementing the "rollovers" counter if the tick-value has wrapped back
// around. Atomic operations ensure that both "last" and "rollovers" are
// always updated together.
int32_t original = g_last_time_and_rollovers.load(std::memory_order_acquire);
while (true) {
state.as_opaque_32 = original;
now = g_tick_function();
uint8_t now_8 = static_cast<uint8_t>(now >> 24);
if (now_8 < state.as_values.last_8) ++state.as_values.rollovers;
state.as_values.last_8 = now_8;
// If the state hasn't changed, exit the loop.
if (state.as_opaque_32 == original) break;
// Save the changed state. If the existing value is unchanged from the
// original, exit the loop.
if (g_last_time_and_rollovers.compare_exchange_weak(
original, state.as_opaque_32, std::memory_order_acq_rel)) {
break;
}
// Another thread has done something in between so retry from the top.
// {original} has been updated by the {compare_exchange_weak}.
}
return TimeTicks() +
TimeDelta::FromMilliseconds(
now + (static_cast<uint64_t>(state.as_values.rollovers) << 32));
}
// Discussion of tick counter options on Windows:
//
// (1) CPU cycle counter. (Retrieved via RDTSC)
// The CPU counter provides the highest resolution time stamp and is the least
// expensive to retrieve. However, on older CPUs, two issues can affect its
// reliability: First it is maintained per processor and not synchronized
// between processors. Also, the counters will change frequency due to thermal
// and power changes, and stop in some states.
//
// (2) QueryPerformanceCounter (QPC). The QPC counter provides a high-
// resolution (<1 microsecond) time stamp. On most hardware running today, it
// auto-detects and uses the constant-rate RDTSC counter to provide extremely
// efficient and reliable time stamps.
//
// On older CPUs where RDTSC is unreliable, it falls back to using more
// expensive (20X to 40X more costly) alternate clocks, such as HPET or the ACPI
// PM timer, and can involve system calls; and all this is up to the HAL (with
// some help from ACPI). According to
// http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx, in the
// worst case, it gets the counter from the rollover interrupt on the
// programmable interrupt timer. In best cases, the HAL may conclude that the
// RDTSC counter runs at a constant frequency, then it uses that instead. On
// multiprocessor machines, it will try to verify the values returned from
// RDTSC on each processor are consistent with each other, and apply a handful
// of workarounds for known buggy hardware. In other words, QPC is supposed to
// give consistent results on a multiprocessor computer, but for older CPUs it
// can be unreliable due bugs in BIOS or HAL.
//
// (3) System time. The system time provides a low-resolution (from ~1 to ~15.6
// milliseconds) time stamp but is comparatively less expensive to retrieve and
// more reliable. Time::EnableHighResolutionTimer() and
// Time::ActivateHighResolutionTimer() can be called to alter the resolution of
// this timer; and also other Windows applications can alter it, affecting this
// one.
TimeTicks InitialTimeTicksNowFunction();
// See "threading notes" in InitializeNowFunctionPointer() for details on how
// concurrent reads/writes to these globals has been made safe.
using TimeTicksNowFunction = decltype(&TimeTicks::Now);
TimeTicksNowFunction g_time_ticks_now_function = &InitialTimeTicksNowFunction;
int64_t g_qpc_ticks_per_second = 0;
// As of January 2015, use of <atomic> is forbidden in Chromium code. This is
// what std::atomic_thread_fence does on Windows on all Intel architectures when
// the memory_order argument is anything but std::memory_order_seq_cst:
#define ATOMIC_THREAD_FENCE(memory_order) _ReadWriteBarrier();
TimeDelta QPCValueToTimeDelta(LONGLONG qpc_value) {
// Ensure that the assignment to |g_qpc_ticks_per_second|, made in
// InitializeNowFunctionPointer(), has happened by this point.
ATOMIC_THREAD_FENCE(memory_order_acquire);
DCHECK_GT(g_qpc_ticks_per_second, 0);
// If the QPC Value is below the overflow threshold, we proceed with
// simple multiply and divide.
if (qpc_value < TimeTicks::kQPCOverflowThreshold) {
return TimeDelta::FromMicroseconds(
qpc_value * TimeTicks::kMicrosecondsPerSecond / g_qpc_ticks_per_second);
}
// Otherwise, calculate microseconds in a round about manner to avoid
// overflow and precision issues.
int64_t whole_seconds = qpc_value / g_qpc_ticks_per_second;
int64_t leftover_ticks = qpc_value - (whole_seconds * g_qpc_ticks_per_second);
return TimeDelta::FromMicroseconds(
(whole_seconds * TimeTicks::kMicrosecondsPerSecond) +
((leftover_ticks * TimeTicks::kMicrosecondsPerSecond) /
g_qpc_ticks_per_second));
}
TimeTicks QPCNow() { return TimeTicks() + QPCValueToTimeDelta(QPCNowRaw()); }
bool IsBuggyAthlon(const CPU& cpu) {
// On Athlon X2 CPUs (e.g. model 15) QueryPerformanceCounter is unreliable.
return strcmp(cpu.vendor(), "AuthenticAMD") == 0 && cpu.family() == 15;
}
void InitializeTimeTicksNowFunctionPointer() {
LARGE_INTEGER ticks_per_sec = {};
if (!QueryPerformanceFrequency(&ticks_per_sec)) ticks_per_sec.QuadPart = 0;
// If Windows cannot provide a QPC implementation, TimeTicks::Now() must use
// the low-resolution clock.
//
// If the QPC implementation is expensive and/or unreliable, TimeTicks::Now()
// will still use the low-resolution clock. A CPU lacking a non-stop time
// counter will cause Windows to provide an alternate QPC implementation that
// works, but is expensive to use. Certain Athlon CPUs are known to make the
// QPC implementation unreliable.
//
// Otherwise, Now uses the high-resolution QPC clock. As of 21 August 2015,
// ~72% of users fall within this category.
TimeTicksNowFunction now_function;
CPU cpu;
if (ticks_per_sec.QuadPart <= 0 || !cpu.has_non_stop_time_stamp_counter() ||
IsBuggyAthlon(cpu)) {
now_function = &RolloverProtectedNow;
} else {
now_function = &QPCNow;
}
// Threading note 1: In an unlikely race condition, it's possible for two or
// more threads to enter InitializeNowFunctionPointer() in parallel. This is
// not a problem since all threads should end up writing out the same values
// to the global variables.
//
// Threading note 2: A release fence is placed here to ensure, from the
// perspective of other threads using the function pointers, that the
// assignment to |g_qpc_ticks_per_second| happens before the function pointers
// are changed.
g_qpc_ticks_per_second = ticks_per_sec.QuadPart;
ATOMIC_THREAD_FENCE(memory_order_release);
g_time_ticks_now_function = now_function;
}
TimeTicks InitialTimeTicksNowFunction() {
InitializeTimeTicksNowFunctionPointer();
return g_time_ticks_now_function();
}
#undef ATOMIC_THREAD_FENCE
} // namespace
// static
TimeTicks TimeTicks::Now() {
// Make sure we never return 0 here.
TimeTicks ticks(g_time_ticks_now_function());
DCHECK(!ticks.IsNull());
return ticks;
}
// static
bool TimeTicks::IsHighResolution() {
if (g_time_ticks_now_function == &InitialTimeTicksNowFunction)
InitializeTimeTicksNowFunctionPointer();
return g_time_ticks_now_function == &QPCNow;
}
#else // V8_OS_WIN
TimeTicks TimeTicks::Now() {
int64_t ticks;
#if V8_OS_MACOSX
static struct mach_timebase_info info;
if (info.denom == 0) {
kern_return_t result = mach_timebase_info(&info);
DCHECK_EQ(KERN_SUCCESS, result);
USE(result);
}
ticks = (mach_absolute_time() / Time::kNanosecondsPerMicrosecond *
info.numer / info.denom);
#elif V8_OS_SOLARIS
ticks = (gethrtime() / Time::kNanosecondsPerMicrosecond);
#elif V8_OS_POSIX
ticks = ClockNow(CLOCK_MONOTONIC);
#elif V8_OS_STARBOARD
ticks = SbTimeGetMonotonicNow();
#else
#error platform does not implement TimeTicks::HighResolutionNow.
#endif // V8_OS_MACOSX
// Make sure we never return 0 here.
return TimeTicks(ticks + 1);
}
// static
bool TimeTicks::IsHighResolution() {
#if V8_OS_MACOSX
return true;
#elif V8_OS_POSIX
static bool is_high_resolution = IsHighResolutionTimer(CLOCK_MONOTONIC);
return is_high_resolution;
#else
return true;
#endif
}
#endif // V8_OS_WIN
bool ThreadTicks::IsSupported() {
#if V8_OS_STARBOARD
#if SB_API_VERSION >= SB_TIME_THREAD_NOW_REQUIRED_VERSION
return SbTimeIsTimeThreadNowSupported();
#elif SB_HAS(TIME_THREAD_NOW)
return true;
#else
return false;
#endif
#elif (defined(_POSIX_THREAD_CPUTIME) && (_POSIX_THREAD_CPUTIME >= 0)) || \
defined(V8_OS_MACOSX) || defined(V8_OS_ANDROID) || defined(V8_OS_SOLARIS)
return true;
#elif defined(V8_OS_WIN)
return IsSupportedWin();
#else
return false;
#endif
}
ThreadTicks ThreadTicks::Now() {
#if V8_OS_STARBOARD
#if SB_API_VERSION >= SB_TIME_THREAD_NOW_REQUIRED_VERSION
if (SbTimeIsTimeThreadNowSupported())
return ThreadTicks(SbTimeGetMonotonicThreadNow());
UNREACHABLE();
#elif SB_HAS(TIME_THREAD_NOW)
return ThreadTicks(SbTimeGetMonotonicThreadNow());
#else
UNREACHABLE();
#endif
#elif V8_OS_MACOSX
return ThreadTicks(ComputeThreadTicks());
#elif(defined(_POSIX_THREAD_CPUTIME) && (_POSIX_THREAD_CPUTIME >= 0)) || \
defined(V8_OS_ANDROID)
return ThreadTicks(ClockNow(CLOCK_THREAD_CPUTIME_ID));
#elif V8_OS_SOLARIS
return ThreadTicks(gethrvtime() / Time::kNanosecondsPerMicrosecond);
#elif V8_OS_WIN
return ThreadTicks::GetForThread(::GetCurrentThread());
#else
UNREACHABLE();
#endif
}
#if V8_OS_WIN
ThreadTicks ThreadTicks::GetForThread(const HANDLE& thread_handle) {
DCHECK(IsSupported());
// Get the number of TSC ticks used by the current thread.
ULONG64 thread_cycle_time = 0;
::QueryThreadCycleTime(thread_handle, &thread_cycle_time);
// Get the frequency of the TSC.
double tsc_ticks_per_second = TSCTicksPerSecond();
if (tsc_ticks_per_second == 0)
return ThreadTicks();
// Return the CPU time of the current thread.
double thread_time_seconds = thread_cycle_time / tsc_ticks_per_second;
return ThreadTicks(
static_cast<int64_t>(thread_time_seconds * Time::kMicrosecondsPerSecond));
}
// static
bool ThreadTicks::IsSupportedWin() {
static bool is_supported = base::CPU().has_non_stop_time_stamp_counter() &&
!IsQPCReliable();
return is_supported;
}
// static
void ThreadTicks::WaitUntilInitializedWin() {
while (TSCTicksPerSecond() == 0)
::Sleep(10);
}
#ifdef V8_HOST_ARCH_ARM64
#define ReadCycleCounter() _ReadStatusReg(ARM64_PMCCNTR_EL0)
#else
#define ReadCycleCounter() __rdtsc()
#endif
double ThreadTicks::TSCTicksPerSecond() {
DCHECK(IsSupported());
// The value returned by QueryPerformanceFrequency() cannot be used as the TSC
// frequency, because there is no guarantee that the TSC frequency is equal to
// the performance counter frequency.
// The TSC frequency is cached in a static variable because it takes some time
// to compute it.
static double tsc_ticks_per_second = 0;
if (tsc_ticks_per_second != 0)
return tsc_ticks_per_second;
// Increase the thread priority to reduces the chances of having a context
// switch during a reading of the TSC and the performance counter.
int previous_priority = ::GetThreadPriority(::GetCurrentThread());
::SetThreadPriority(::GetCurrentThread(), THREAD_PRIORITY_HIGHEST);
// The first time that this function is called, make an initial reading of the
// TSC and the performance counter.
static const uint64_t tsc_initial = ReadCycleCounter();
static const uint64_t perf_counter_initial = QPCNowRaw();
// Make a another reading of the TSC and the performance counter every time
// that this function is called.
uint64_t tsc_now = ReadCycleCounter();
uint64_t perf_counter_now = QPCNowRaw();
// Reset the thread priority.
::SetThreadPriority(::GetCurrentThread(), previous_priority);
// Make sure that at least 50 ms elapsed between the 2 readings. The first
// time that this function is called, we don't expect this to be the case.
// Note: The longer the elapsed time between the 2 readings is, the more
// accurate the computed TSC frequency will be. The 50 ms value was
// chosen because local benchmarks show that it allows us to get a
// stddev of less than 1 tick/us between multiple runs.
// Note: According to the MSDN documentation for QueryPerformanceFrequency(),
// this will never fail on systems that run XP or later.
// https://msdn.microsoft.com/library/windows/desktop/ms644905.aspx
LARGE_INTEGER perf_counter_frequency = {};
::QueryPerformanceFrequency(&perf_counter_frequency);
DCHECK_GE(perf_counter_now, perf_counter_initial);
uint64_t perf_counter_ticks = perf_counter_now - perf_counter_initial;
double elapsed_time_seconds =
perf_counter_ticks / static_cast<double>(perf_counter_frequency.QuadPart);
const double kMinimumEvaluationPeriodSeconds = 0.05;
if (elapsed_time_seconds < kMinimumEvaluationPeriodSeconds)
return 0;
// Compute the frequency of the TSC.
DCHECK_GE(tsc_now, tsc_initial);
uint64_t tsc_ticks = tsc_now - tsc_initial;
tsc_ticks_per_second = tsc_ticks / elapsed_time_seconds;
return tsc_ticks_per_second;
}
#undef ReadCycleCounter
#endif // V8_OS_WIN
} // namespace base
} // namespace v8