blob: 697539713a321b4c4d5891e484a55b2c3957d61e [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_IA32
#include "src/api-arguments.h"
#include "src/assembler-inl.h"
#include "src/base/bits.h"
#include "src/bootstrapper.h"
#include "src/code-stubs.h"
#include "src/frame-constants.h"
#include "src/frames.h"
#include "src/heap/heap-inl.h"
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
#include "src/isolate.h"
#include "src/regexp/jsregexp.h"
#include "src/regexp/regexp-macro-assembler.h"
#include "src/runtime/runtime.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) {
__ pop(ecx);
__ mov(MemOperand(esp, eax, times_4, 0), edi);
__ push(edi);
__ push(ebx);
__ push(ecx);
__ add(eax, Immediate(3));
__ TailCallRuntime(Runtime::kNewArray);
}
void DoubleToIStub::Generate(MacroAssembler* masm) {
Register final_result_reg = this->destination();
Label check_negative, process_64_bits, done;
// Account for return address and saved regs.
const int kArgumentOffset = 3 * kPointerSize;
MemOperand mantissa_operand(MemOperand(esp, kArgumentOffset));
MemOperand exponent_operand(
MemOperand(esp, kArgumentOffset + kDoubleSize / 2));
Register scratch1 = no_reg;
{
Register scratch_candidates[3] = { ebx, edx, edi };
for (int i = 0; i < 3; i++) {
scratch1 = scratch_candidates[i];
if (final_result_reg != scratch1) break;
}
}
// Since we must use ecx for shifts below, use some other register (eax)
// to calculate the result if ecx is the requested return register.
Register result_reg = final_result_reg == ecx ? eax : final_result_reg;
// Save ecx if it isn't the return register and therefore volatile, or if it
// is the return register, then save the temp register we use in its stead for
// the result.
Register save_reg = final_result_reg == ecx ? eax : ecx;
__ push(scratch1);
__ push(save_reg);
__ mov(scratch1, mantissa_operand);
if (CpuFeatures::IsSupported(SSE3)) {
CpuFeatureScope scope(masm, SSE3);
// Load x87 register with heap number.
__ fld_d(mantissa_operand);
}
__ mov(ecx, exponent_operand);
__ and_(ecx, HeapNumber::kExponentMask);
__ shr(ecx, HeapNumber::kExponentShift);
__ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias));
__ cmp(result_reg, Immediate(HeapNumber::kMantissaBits));
__ j(below, &process_64_bits);
// Result is entirely in lower 32-bits of mantissa
int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
if (CpuFeatures::IsSupported(SSE3)) {
__ fstp(0);
}
__ sub(ecx, Immediate(delta));
__ xor_(result_reg, result_reg);
__ cmp(ecx, Immediate(31));
__ j(above, &done);
__ shl_cl(scratch1);
__ jmp(&check_negative);
__ bind(&process_64_bits);
if (CpuFeatures::IsSupported(SSE3)) {
CpuFeatureScope scope(masm, SSE3);
// Reserve space for 64 bit answer.
__ sub(esp, Immediate(kDoubleSize)); // Nolint.
// Do conversion, which cannot fail because we checked the exponent.
__ fisttp_d(Operand(esp, 0));
__ mov(result_reg, Operand(esp, 0)); // Load low word of answer as result
__ add(esp, Immediate(kDoubleSize));
__ jmp(&done);
} else {
// Result must be extracted from shifted 32-bit mantissa
__ sub(ecx, Immediate(delta));
__ neg(ecx);
__ mov(result_reg, exponent_operand);
__ and_(result_reg,
Immediate(static_cast<uint32_t>(Double::kSignificandMask >> 32)));
__ add(result_reg,
Immediate(static_cast<uint32_t>(Double::kHiddenBit >> 32)));
__ shrd_cl(scratch1, result_reg);
__ shr_cl(result_reg);
__ test(ecx, Immediate(32));
__ cmov(not_equal, scratch1, result_reg);
}
// If the double was negative, negate the integer result.
__ bind(&check_negative);
__ mov(result_reg, scratch1);
__ neg(result_reg);
__ cmp(exponent_operand, Immediate(0));
__ cmov(greater, result_reg, scratch1);
// Restore registers
__ bind(&done);
if (final_result_reg != result_reg) {
DCHECK(final_result_reg == ecx);
__ mov(final_result_reg, result_reg);
}
__ pop(save_reg);
__ pop(scratch1);
__ ret(0);
}
void MathPowStub::Generate(MacroAssembler* masm) {
const Register exponent = MathPowTaggedDescriptor::exponent();
DCHECK(exponent == eax);
const Register scratch = ecx;
const XMMRegister double_result = xmm3;
const XMMRegister double_base = xmm2;
const XMMRegister double_exponent = xmm1;
const XMMRegister double_scratch = xmm4;
Label call_runtime, done, exponent_not_smi, int_exponent;
// Save 1 in double_result - we need this several times later on.
__ mov(scratch, Immediate(1));
__ Cvtsi2sd(double_result, scratch);
if (exponent_type() == TAGGED) {
__ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
__ SmiUntag(exponent);
__ jmp(&int_exponent);
__ bind(&exponent_not_smi);
__ movsd(double_exponent,
FieldOperand(exponent, HeapNumber::kValueOffset));
}
if (exponent_type() != INTEGER) {
Label fast_power, try_arithmetic_simplification;
__ DoubleToI(exponent, double_exponent, double_scratch,
TREAT_MINUS_ZERO_AS_ZERO, &try_arithmetic_simplification,
&try_arithmetic_simplification,
&try_arithmetic_simplification);
__ jmp(&int_exponent);
__ bind(&try_arithmetic_simplification);
// Skip to runtime if possibly NaN (indicated by the indefinite integer).
__ cvttsd2si(exponent, Operand(double_exponent));
__ cmp(exponent, Immediate(0x1));
__ j(overflow, &call_runtime);
// Using FPU instructions to calculate power.
Label fast_power_failed;
__ bind(&fast_power);
__ fnclex(); // Clear flags to catch exceptions later.
// Transfer (B)ase and (E)xponent onto the FPU register stack.
__ sub(esp, Immediate(kDoubleSize));
__ movsd(Operand(esp, 0), double_exponent);
__ fld_d(Operand(esp, 0)); // E
__ movsd(Operand(esp, 0), double_base);
__ fld_d(Operand(esp, 0)); // B, E
// Exponent is in st(1) and base is in st(0)
// B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B)
// FYL2X calculates st(1) * log2(st(0))
__ fyl2x(); // X
__ fld(0); // X, X
__ frndint(); // rnd(X), X
__ fsub(1); // rnd(X), X-rnd(X)
__ fxch(1); // X - rnd(X), rnd(X)
// F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1
__ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X)
__ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X)
__ faddp(1); // 2^(X-rnd(X)), rnd(X)
// FSCALE calculates st(0) * 2^st(1)
__ fscale(); // 2^X, rnd(X)
__ fstp(1); // 2^X
// Bail out to runtime in case of exceptions in the status word.
__ fnstsw_ax();
__ test_b(eax,
Immediate(0x5F)); // We check for all but precision exception.
__ j(not_zero, &fast_power_failed, Label::kNear);
__ fstp_d(Operand(esp, 0));
__ movsd(double_result, Operand(esp, 0));
__ add(esp, Immediate(kDoubleSize));
__ jmp(&done);
__ bind(&fast_power_failed);
__ fninit();
__ add(esp, Immediate(kDoubleSize));
__ jmp(&call_runtime);
}
// Calculate power with integer exponent.
__ bind(&int_exponent);
const XMMRegister double_scratch2 = double_exponent;
__ mov(scratch, exponent); // Back up exponent.
__ movsd(double_scratch, double_base); // Back up base.
__ movsd(double_scratch2, double_result); // Load double_exponent with 1.
// Get absolute value of exponent.
Label no_neg, while_true, while_false;
__ test(scratch, scratch);
__ j(positive, &no_neg, Label::kNear);
__ neg(scratch);
__ bind(&no_neg);
__ j(zero, &while_false, Label::kNear);
__ shr(scratch, 1);
// Above condition means CF==0 && ZF==0. This means that the
// bit that has been shifted out is 0 and the result is not 0.
__ j(above, &while_true, Label::kNear);
__ movsd(double_result, double_scratch);
__ j(zero, &while_false, Label::kNear);
__ bind(&while_true);
__ shr(scratch, 1);
__ mulsd(double_scratch, double_scratch);
__ j(above, &while_true, Label::kNear);
__ mulsd(double_result, double_scratch);
__ j(not_zero, &while_true);
__ bind(&while_false);
// scratch has the original value of the exponent - if the exponent is
// negative, return 1/result.
__ test(exponent, exponent);
__ j(positive, &done);
__ divsd(double_scratch2, double_result);
__ movsd(double_result, double_scratch2);
// Test whether result is zero. Bail out to check for subnormal result.
// Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
__ xorps(double_scratch2, double_scratch2);
__ ucomisd(double_scratch2, double_result); // Result cannot be NaN.
// double_exponent aliased as double_scratch2 has already been overwritten
// and may not have contained the exponent value in the first place when the
// exponent is a smi. We reset it with exponent value before bailing out.
__ j(not_equal, &done);
__ Cvtsi2sd(double_exponent, exponent);
// Returning or bailing out.
__ bind(&call_runtime);
{
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(4, scratch);
__ movsd(Operand(esp, 0 * kDoubleSize), double_base);
__ movsd(Operand(esp, 1 * kDoubleSize), double_exponent);
__ CallCFunction(ExternalReference::power_double_double_function(isolate()),
4);
}
// Return value is in st(0) on ia32.
// Store it into the (fixed) result register.
__ sub(esp, Immediate(kDoubleSize));
__ fstp_d(Operand(esp, 0));
__ movsd(double_result, Operand(esp, 0));
__ add(esp, Immediate(kDoubleSize));
__ bind(&done);
__ ret(0);
}
Movability CEntryStub::NeedsImmovableCode() { return kMovable; }
void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
CEntryStub::GenerateAheadOfTime(isolate);
// It is important that the store buffer overflow stubs are generated first.
CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate);
StoreFastElementStub::GenerateAheadOfTime(isolate);
}
void CodeStub::GenerateFPStubs(Isolate* isolate) {
// Generate if not already in cache.
CEntryStub(isolate, 1, kSaveFPRegs).GetCode();
}
void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
CEntryStub stub(isolate, 1, kDontSaveFPRegs);
stub.GetCode();
}
void CEntryStub::Generate(MacroAssembler* masm) {
// eax: number of arguments including receiver
// ebx: pointer to C function (C callee-saved)
// ebp: frame pointer (restored after C call)
// esp: stack pointer (restored after C call)
// esi: current context (C callee-saved)
// edi: JS function of the caller (C callee-saved)
//
// If argv_in_register():
// ecx: pointer to the first argument
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Reserve space on the stack for the three arguments passed to the call. If
// result size is greater than can be returned in registers, also reserve
// space for the hidden argument for the result location, and space for the
// result itself.
int arg_stack_space = 3;
// Enter the exit frame that transitions from JavaScript to C++.
if (argv_in_register()) {
DCHECK(!save_doubles());
DCHECK(!is_builtin_exit());
__ EnterApiExitFrame(arg_stack_space);
// Move argc and argv into the correct registers.
__ mov(esi, ecx);
__ mov(edi, eax);
} else {
__ EnterExitFrame(
arg_stack_space, save_doubles(),
is_builtin_exit() ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);
}
// ebx: pointer to C function (C callee-saved)
// ebp: frame pointer (restored after C call)
// esp: stack pointer (restored after C call)
// edi: number of arguments including receiver (C callee-saved)
// esi: pointer to the first argument (C callee-saved)
// Result returned in eax, or eax+edx if result size is 2.
// Check stack alignment.
if (FLAG_debug_code) {
__ CheckStackAlignment();
}
// Call C function.
__ mov(Operand(esp, 0 * kPointerSize), edi); // argc.
__ mov(Operand(esp, 1 * kPointerSize), esi); // argv.
__ mov(Operand(esp, 2 * kPointerSize),
Immediate(ExternalReference::isolate_address(isolate())));
__ call(ebx);
// Result is in eax or edx:eax - do not destroy these registers!
// Check result for exception sentinel.
Label exception_returned;
__ cmp(eax, isolate()->factory()->exception());
__ j(equal, &exception_returned);
// Check that there is no pending exception, otherwise we
// should have returned the exception sentinel.
if (FLAG_debug_code) {
__ push(edx);
__ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
Label okay;
ExternalReference pending_exception_address(
IsolateAddressId::kPendingExceptionAddress, isolate());
__ cmp(edx, Operand::StaticVariable(pending_exception_address));
// Cannot use check here as it attempts to generate call into runtime.
__ j(equal, &okay, Label::kNear);
__ int3();
__ bind(&okay);
__ pop(edx);
}
// Exit the JavaScript to C++ exit frame.
__ LeaveExitFrame(save_doubles(), !argv_in_register());
__ ret(0);
// Handling of exception.
__ bind(&exception_returned);
ExternalReference pending_handler_context_address(
IsolateAddressId::kPendingHandlerContextAddress, isolate());
ExternalReference pending_handler_entrypoint_address(
IsolateAddressId::kPendingHandlerEntrypointAddress, isolate());
ExternalReference pending_handler_fp_address(
IsolateAddressId::kPendingHandlerFPAddress, isolate());
ExternalReference pending_handler_sp_address(
IsolateAddressId::kPendingHandlerSPAddress, isolate());
// Ask the runtime for help to determine the handler. This will set eax to
// contain the current pending exception, don't clobber it.
ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
isolate());
{
FrameScope scope(masm, StackFrame::MANUAL);
__ PrepareCallCFunction(3, eax);
__ mov(Operand(esp, 0 * kPointerSize), Immediate(0)); // argc.
__ mov(Operand(esp, 1 * kPointerSize), Immediate(0)); // argv.
__ mov(Operand(esp, 2 * kPointerSize),
Immediate(ExternalReference::isolate_address(isolate())));
__ CallCFunction(find_handler, 3);
}
// Retrieve the handler context, SP and FP.
__ mov(esi, Operand::StaticVariable(pending_handler_context_address));
__ mov(esp, Operand::StaticVariable(pending_handler_sp_address));
__ mov(ebp, Operand::StaticVariable(pending_handler_fp_address));
// If the handler is a JS frame, restore the context to the frame. Note that
// the context will be set to (esi == 0) for non-JS frames.
Label skip;
__ test(esi, esi);
__ j(zero, &skip, Label::kNear);
__ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
__ bind(&skip);
// Compute the handler entry address and jump to it.
__ mov(edi, Operand::StaticVariable(pending_handler_entrypoint_address));
__ jmp(edi);
}
void JSEntryStub::Generate(MacroAssembler* masm) {
Label invoke, handler_entry, exit;
Label not_outermost_js, not_outermost_js_2;
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Set up frame.
__ push(ebp);
__ mov(ebp, esp);
// Push marker in two places.
StackFrame::Type marker = type();
__ push(Immediate(StackFrame::TypeToMarker(marker))); // marker
ExternalReference context_address(IsolateAddressId::kContextAddress,
isolate());
__ push(Operand::StaticVariable(context_address)); // context
// Save callee-saved registers (C calling conventions).
__ push(edi);
__ push(esi);
__ push(ebx);
// Save copies of the top frame descriptor on the stack.
ExternalReference c_entry_fp(IsolateAddressId::kCEntryFPAddress, isolate());
__ push(Operand::StaticVariable(c_entry_fp));
// If this is the outermost JS call, set js_entry_sp value.
ExternalReference js_entry_sp(IsolateAddressId::kJSEntrySPAddress, isolate());
__ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0));
__ j(not_equal, &not_outermost_js, Label::kNear);
__ mov(Operand::StaticVariable(js_entry_sp), ebp);
__ push(Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME));
__ jmp(&invoke, Label::kNear);
__ bind(&not_outermost_js);
__ push(Immediate(StackFrame::INNER_JSENTRY_FRAME));
// Jump to a faked try block that does the invoke, with a faked catch
// block that sets the pending exception.
__ jmp(&invoke);
__ bind(&handler_entry);
handler_offset_ = handler_entry.pos();
// Caught exception: Store result (exception) in the pending exception
// field in the JSEnv and return a failure sentinel.
ExternalReference pending_exception(
IsolateAddressId::kPendingExceptionAddress, isolate());
__ mov(Operand::StaticVariable(pending_exception), eax);
__ mov(eax, Immediate(isolate()->factory()->exception()));
__ jmp(&exit);
// Invoke: Link this frame into the handler chain.
__ bind(&invoke);
__ PushStackHandler();
// Invoke the function by calling through JS entry trampoline builtin and
// pop the faked function when we return. Notice that we cannot store a
// reference to the trampoline code directly in this stub, because the
// builtin stubs may not have been generated yet.
__ Call(EntryTrampoline(), RelocInfo::CODE_TARGET);
// Unlink this frame from the handler chain.
__ PopStackHandler();
__ bind(&exit);
// Check if the current stack frame is marked as the outermost JS frame.
__ pop(ebx);
__ cmp(ebx, Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME));
__ j(not_equal, &not_outermost_js_2);
__ mov(Operand::StaticVariable(js_entry_sp), Immediate(0));
__ bind(&not_outermost_js_2);
// Restore the top frame descriptor from the stack.
__ pop(Operand::StaticVariable(
ExternalReference(IsolateAddressId::kCEntryFPAddress, isolate())));
// Restore callee-saved registers (C calling conventions).
__ pop(ebx);
__ pop(esi);
__ pop(edi);
__ add(esp, Immediate(2 * kPointerSize)); // remove markers
// Restore frame pointer and return.
__ pop(ebp);
__ ret(0);
}
void ProfileEntryHookStub::MaybeCallEntryHookDelayed(TurboAssembler* tasm,
Zone* zone) {
if (tasm->isolate()->function_entry_hook() != nullptr) {
tasm->CallStubDelayed(new (zone) ProfileEntryHookStub(nullptr));
}
}
void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
if (masm->isolate()->function_entry_hook() != nullptr) {
ProfileEntryHookStub stub(masm->isolate());
masm->CallStub(&stub);
}
}
void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
// Save volatile registers.
const int kNumSavedRegisters = 3;
__ push(eax);
__ push(ecx);
__ push(edx);
// Calculate and push the original stack pointer.
__ lea(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
__ push(eax);
// Retrieve our return address and use it to calculate the calling
// function's address.
__ mov(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
__ sub(eax, Immediate(Assembler::kCallInstructionLength));
__ push(eax);
// Call the entry hook.
DCHECK_NOT_NULL(isolate()->function_entry_hook());
__ call(FUNCTION_ADDR(isolate()->function_entry_hook()),
RelocInfo::RUNTIME_ENTRY);
__ add(esp, Immediate(2 * kPointerSize));
// Restore ecx.
__ pop(edx);
__ pop(ecx);
__ pop(eax);
__ ret(0);
}
template<class T>
static void CreateArrayDispatch(MacroAssembler* masm,
AllocationSiteOverrideMode mode) {
if (mode == DISABLE_ALLOCATION_SITES) {
T stub(masm->isolate(),
GetInitialFastElementsKind(),
mode);
__ TailCallStub(&stub);
} else if (mode == DONT_OVERRIDE) {
int last_index =
GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= last_index; ++i) {
Label next;
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
__ cmp(edx, kind);
__ j(not_equal, &next);
T stub(masm->isolate(), kind);
__ TailCallStub(&stub);
__ bind(&next);
}
// If we reached this point there is a problem.
__ Abort(AbortReason::kUnexpectedElementsKindInArrayConstructor);
} else {
UNREACHABLE();
}
}
static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
AllocationSiteOverrideMode mode) {
// ebx - allocation site (if mode != DISABLE_ALLOCATION_SITES)
// edx - kind (if mode != DISABLE_ALLOCATION_SITES)
// eax - number of arguments
// edi - constructor?
// esp[0] - return address
// esp[4] - last argument
STATIC_ASSERT(PACKED_SMI_ELEMENTS == 0);
STATIC_ASSERT(HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(PACKED_ELEMENTS == 2);
STATIC_ASSERT(HOLEY_ELEMENTS == 3);
STATIC_ASSERT(PACKED_DOUBLE_ELEMENTS == 4);
STATIC_ASSERT(HOLEY_DOUBLE_ELEMENTS == 5);
if (mode == DISABLE_ALLOCATION_SITES) {
ElementsKind initial = GetInitialFastElementsKind();
ElementsKind holey_initial = GetHoleyElementsKind(initial);
ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
holey_initial,
DISABLE_ALLOCATION_SITES);
__ TailCallStub(&stub_holey);
} else if (mode == DONT_OVERRIDE) {
// is the low bit set? If so, we are holey and that is good.
Label normal_sequence;
__ test_b(edx, Immediate(1));
__ j(not_zero, &normal_sequence);
// We are going to create a holey array, but our kind is non-holey.
// Fix kind and retry.
__ inc(edx);
if (FLAG_debug_code) {
Handle<Map> allocation_site_map =
masm->isolate()->factory()->allocation_site_map();
__ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
__ Assert(equal, AbortReason::kExpectedAllocationSite);
}
// Save the resulting elements kind in type info. We can't just store r3
// in the AllocationSite::transition_info field because elements kind is
// restricted to a portion of the field...upper bits need to be left alone.
STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
__ add(
FieldOperand(ebx, AllocationSite::kTransitionInfoOrBoilerplateOffset),
Immediate(Smi::FromInt(kFastElementsKindPackedToHoley)));
__ bind(&normal_sequence);
int last_index =
GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= last_index; ++i) {
Label next;
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
__ cmp(edx, kind);
__ j(not_equal, &next);
ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
__ TailCallStub(&stub);
__ bind(&next);
}
// If we reached this point there is a problem.
__ Abort(AbortReason::kUnexpectedElementsKindInArrayConstructor);
} else {
UNREACHABLE();
}
}
template<class T>
static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
int to_index =
GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= to_index; ++i) {
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
T stub(isolate, kind);
stub.GetCode();
if (AllocationSite::ShouldTrack(kind)) {
T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
stub1.GetCode();
}
}
}
void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) {
ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
isolate);
ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
isolate);
ArrayNArgumentsConstructorStub stub(isolate);
stub.GetCode();
ElementsKind kinds[2] = {PACKED_ELEMENTS, HOLEY_ELEMENTS};
for (int i = 0; i < 2; i++) {
// For internal arrays we only need a few things
InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
stubh1.GetCode();
InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
stubh2.GetCode();
}
}
void ArrayConstructorStub::GenerateDispatchToArrayStub(
MacroAssembler* masm, AllocationSiteOverrideMode mode) {
Label not_zero_case, not_one_case;
__ test(eax, eax);
__ j(not_zero, &not_zero_case);
CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
__ bind(&not_zero_case);
__ cmp(eax, 1);
__ j(greater, &not_one_case);
CreateArrayDispatchOneArgument(masm, mode);
__ bind(&not_one_case);
ArrayNArgumentsConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
void ArrayConstructorStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argc (only if argument_count() is ANY or MORE_THAN_ONE)
// -- ebx : AllocationSite or undefined
// -- edi : constructor
// -- edx : Original constructor
// -- esp[0] : return address
// -- esp[4] : last argument
// -----------------------------------
if (FLAG_debug_code) {
// The array construct code is only set for the global and natives
// builtin Array functions which always have maps.
// Initial map for the builtin Array function should be a map.
__ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a nullptr and a Smi.
__ test(ecx, Immediate(kSmiTagMask));
__ Assert(not_zero, AbortReason::kUnexpectedInitialMapForArrayFunction);
__ CmpObjectType(ecx, MAP_TYPE, ecx);
__ Assert(equal, AbortReason::kUnexpectedInitialMapForArrayFunction);
// We should either have undefined in ebx or a valid AllocationSite
__ AssertUndefinedOrAllocationSite(ebx);
}
Label subclassing;
// Enter the context of the Array function.
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
__ cmp(edx, edi);
__ j(not_equal, &subclassing);
Label no_info;
// If the feedback vector is the undefined value call an array constructor
// that doesn't use AllocationSites.
__ cmp(ebx, isolate()->factory()->undefined_value());
__ j(equal, &no_info);
// Only look at the lower 16 bits of the transition info.
__ mov(edx,
FieldOperand(ebx, AllocationSite::kTransitionInfoOrBoilerplateOffset));
__ SmiUntag(edx);
STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
__ and_(edx, Immediate(AllocationSite::ElementsKindBits::kMask));
GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
__ bind(&no_info);
GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
// Subclassing.
__ bind(&subclassing);
__ mov(Operand(esp, eax, times_pointer_size, kPointerSize), edi);
__ add(eax, Immediate(3));
__ PopReturnAddressTo(ecx);
__ Push(edx);
__ Push(ebx);
__ PushReturnAddressFrom(ecx);
__ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
}
void InternalArrayConstructorStub::GenerateCase(
MacroAssembler* masm, ElementsKind kind) {
Label not_zero_case, not_one_case;
Label normal_sequence;
__ test(eax, eax);
__ j(not_zero, &not_zero_case);
InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
__ TailCallStub(&stub0);
__ bind(&not_zero_case);
__ cmp(eax, 1);
__ j(greater, &not_one_case);
if (IsFastPackedElementsKind(kind)) {
// We might need to create a holey array
// look at the first argument
__ mov(ecx, Operand(esp, kPointerSize));
__ test(ecx, ecx);
__ j(zero, &normal_sequence);
InternalArraySingleArgumentConstructorStub
stub1_holey(isolate(), GetHoleyElementsKind(kind));
__ TailCallStub(&stub1_holey);
}
__ bind(&normal_sequence);
InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
__ TailCallStub(&stub1);
__ bind(&not_one_case);
ArrayNArgumentsConstructorStub stubN(isolate());
__ TailCallStub(&stubN);
}
void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argc
// -- edi : constructor
// -- esp[0] : return address
// -- esp[4] : last argument
// -----------------------------------
if (FLAG_debug_code) {
// The array construct code is only set for the global and natives
// builtin Array functions which always have maps.
// Initial map for the builtin Array function should be a map.
__ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a nullptr and a Smi.
__ test(ecx, Immediate(kSmiTagMask));
__ Assert(not_zero, AbortReason::kUnexpectedInitialMapForArrayFunction);
__ CmpObjectType(ecx, MAP_TYPE, ecx);
__ Assert(equal, AbortReason::kUnexpectedInitialMapForArrayFunction);
}
// Figure out the right elements kind
__ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
// Load the map's "bit field 2" into |result|. We only need the first byte,
// but the following masking takes care of that anyway.
__ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset));
// Retrieve elements_kind from bit field 2.
__ DecodeField<Map::ElementsKindBits>(ecx);
if (FLAG_debug_code) {
Label done;
__ cmp(ecx, Immediate(PACKED_ELEMENTS));
__ j(equal, &done);
__ cmp(ecx, Immediate(HOLEY_ELEMENTS));
__ Assert(
equal,
AbortReason::kInvalidElementsKindForInternalArrayOrInternalPackedArray);
__ bind(&done);
}
Label fast_elements_case;
__ cmp(ecx, Immediate(PACKED_ELEMENTS));
__ j(equal, &fast_elements_case);
GenerateCase(masm, HOLEY_ELEMENTS);
__ bind(&fast_elements_case);
GenerateCase(masm, PACKED_ELEMENTS);
}
// Generates an Operand for saving parameters after PrepareCallApiFunction.
static Operand ApiParameterOperand(int index) {
return Operand(esp, index * kPointerSize);
}
// Prepares stack to put arguments (aligns and so on). Reserves
// space for return value if needed (assumes the return value is a handle).
// Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1)
// etc. Saves context (esi). If space was reserved for return value then
// stores the pointer to the reserved slot into esi.
static void PrepareCallApiFunction(MacroAssembler* masm, int argc) {
__ EnterApiExitFrame(argc);
if (__ emit_debug_code()) {
__ mov(esi, Immediate(bit_cast<int32_t>(kZapValue)));
}
}
// Calls an API function. Allocates HandleScope, extracts returned value
// from handle and propagates exceptions. Clobbers ebx, edi and
// caller-save registers. Restores context. On return removes
// stack_space * kPointerSize (GCed).
static void CallApiFunctionAndReturn(MacroAssembler* masm,
Register function_address,
ExternalReference thunk_ref,
Operand thunk_last_arg, int stack_space,
Operand* stack_space_operand,
Operand return_value_operand) {
Isolate* isolate = masm->isolate();
ExternalReference next_address =
ExternalReference::handle_scope_next_address(isolate);
ExternalReference limit_address =
ExternalReference::handle_scope_limit_address(isolate);
ExternalReference level_address =
ExternalReference::handle_scope_level_address(isolate);
DCHECK(edx == function_address);
// Allocate HandleScope in callee-save registers.
__ mov(ebx, Operand::StaticVariable(next_address));
__ mov(edi, Operand::StaticVariable(limit_address));
__ add(Operand::StaticVariable(level_address), Immediate(1));
if (FLAG_log_timer_events) {
FrameScope frame(masm, StackFrame::MANUAL);
__ PushSafepointRegisters();
__ PrepareCallCFunction(1, eax);
__ mov(Operand(esp, 0),
Immediate(ExternalReference::isolate_address(isolate)));
__ CallCFunction(ExternalReference::log_enter_external_function(isolate),
1);
__ PopSafepointRegisters();
}
Label profiler_disabled;
Label end_profiler_check;
__ mov(eax, Immediate(ExternalReference::is_profiling_address(isolate)));
__ cmpb(Operand(eax, 0), Immediate(0));
__ j(zero, &profiler_disabled);
// Additional parameter is the address of the actual getter function.
__ mov(thunk_last_arg, function_address);
// Call the api function.
__ mov(eax, Immediate(thunk_ref));
__ call(eax);
__ jmp(&end_profiler_check);
__ bind(&profiler_disabled);
// Call the api function.
__ call(function_address);
__ bind(&end_profiler_check);
if (FLAG_log_timer_events) {
FrameScope frame(masm, StackFrame::MANUAL);
__ PushSafepointRegisters();
__ PrepareCallCFunction(1, eax);
__ mov(Operand(esp, 0),
Immediate(ExternalReference::isolate_address(isolate)));
__ CallCFunction(ExternalReference::log_leave_external_function(isolate),
1);
__ PopSafepointRegisters();
}
Label prologue;
// Load the value from ReturnValue
__ mov(eax, return_value_operand);
Label promote_scheduled_exception;
Label delete_allocated_handles;
Label leave_exit_frame;
__ bind(&prologue);
// No more valid handles (the result handle was the last one). Restore
// previous handle scope.
__ mov(Operand::StaticVariable(next_address), ebx);
__ sub(Operand::StaticVariable(level_address), Immediate(1));
__ Assert(above_equal, AbortReason::kInvalidHandleScopeLevel);
__ cmp(edi, Operand::StaticVariable(limit_address));
__ j(not_equal, &delete_allocated_handles);
// Leave the API exit frame.
__ bind(&leave_exit_frame);
if (stack_space_operand != nullptr) {
__ mov(ebx, *stack_space_operand);
}
__ LeaveApiExitFrame();
// Check if the function scheduled an exception.
ExternalReference scheduled_exception_address =
ExternalReference::scheduled_exception_address(isolate);
__ cmp(Operand::StaticVariable(scheduled_exception_address),
Immediate(isolate->factory()->the_hole_value()));
__ j(not_equal, &promote_scheduled_exception);
#if DEBUG
// Check if the function returned a valid JavaScript value.
Label ok;
Register return_value = eax;
Register map = ecx;
__ JumpIfSmi(return_value, &ok, Label::kNear);
__ mov(map, FieldOperand(return_value, HeapObject::kMapOffset));
__ CmpInstanceType(map, LAST_NAME_TYPE);
__ j(below_equal, &ok, Label::kNear);
__ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE);
__ j(above_equal, &ok, Label::kNear);
__ cmp(map, isolate->factory()->heap_number_map());
__ j(equal, &ok, Label::kNear);
__ cmp(return_value, isolate->factory()->undefined_value());
__ j(equal, &ok, Label::kNear);
__ cmp(return_value, isolate->factory()->true_value());
__ j(equal, &ok, Label::kNear);
__ cmp(return_value, isolate->factory()->false_value());
__ j(equal, &ok, Label::kNear);
__ cmp(return_value, isolate->factory()->null_value());
__ j(equal, &ok, Label::kNear);
__ Abort(AbortReason::kAPICallReturnedInvalidObject);
__ bind(&ok);
#endif
if (stack_space_operand != nullptr) {
DCHECK_EQ(0, stack_space);
__ pop(ecx);
__ add(esp, ebx);
__ jmp(ecx);
} else {
__ ret(stack_space * kPointerSize);
}
// Re-throw by promoting a scheduled exception.
__ bind(&promote_scheduled_exception);
__ TailCallRuntime(Runtime::kPromoteScheduledException);
// HandleScope limit has changed. Delete allocated extensions.
ExternalReference delete_extensions =
ExternalReference::delete_handle_scope_extensions(isolate);
__ bind(&delete_allocated_handles);
__ mov(Operand::StaticVariable(limit_address), edi);
__ mov(edi, eax);
__ mov(Operand(esp, 0),
Immediate(ExternalReference::isolate_address(isolate)));
__ mov(eax, Immediate(delete_extensions));
__ call(eax);
__ mov(eax, edi);
__ jmp(&leave_exit_frame);
}
void CallApiCallbackStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- ebx : call_data
// -- ecx : holder
// -- edx : api_function_address
// -- esi : context
// --
// -- esp[0] : return address
// -- esp[4] : last argument
// -- ...
// -- esp[argc * 4] : first argument
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
Register call_data = ebx;
Register holder = ecx;
Register api_function_address = edx;
Register return_address = eax;
typedef FunctionCallbackArguments FCA;
STATIC_ASSERT(FCA::kArgsLength == 6);
STATIC_ASSERT(FCA::kNewTargetIndex == 5);
STATIC_ASSERT(FCA::kDataIndex == 4);
STATIC_ASSERT(FCA::kReturnValueOffset == 3);
STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
STATIC_ASSERT(FCA::kIsolateIndex == 1);
STATIC_ASSERT(FCA::kHolderIndex == 0);
__ pop(return_address);
// new target
__ PushRoot(Heap::kUndefinedValueRootIndex);
// call data
__ push(call_data);
// return value
__ PushRoot(Heap::kUndefinedValueRootIndex);
// return value default
__ PushRoot(Heap::kUndefinedValueRootIndex);
// isolate
__ push(Immediate(ExternalReference::isolate_address(isolate())));
// holder
__ push(holder);
Register scratch = call_data;
__ mov(scratch, esp);
// push return address
__ push(return_address);
// API function gets reference to the v8::Arguments. If CPU profiler
// is enabled wrapper function will be called and we need to pass
// address of the callback as additional parameter, always allocate
// space for it.
const int kApiArgc = 1 + 1;
// Allocate the v8::Arguments structure in the arguments' space since
// it's not controlled by GC.
const int kApiStackSpace = 3;
PrepareCallApiFunction(masm, kApiArgc + kApiStackSpace);
// FunctionCallbackInfo::implicit_args_.
__ mov(ApiParameterOperand(2), scratch);
__ add(scratch, Immediate((argc() + FCA::kArgsLength - 1) * kPointerSize));
// FunctionCallbackInfo::values_.
__ mov(ApiParameterOperand(3), scratch);
// FunctionCallbackInfo::length_.
__ Move(ApiParameterOperand(4), Immediate(argc()));
// v8::InvocationCallback's argument.
__ lea(scratch, ApiParameterOperand(2));
__ mov(ApiParameterOperand(0), scratch);
ExternalReference thunk_ref =
ExternalReference::invoke_function_callback(masm->isolate());
// Stores return the first js argument
int return_value_offset = 2 + FCA::kReturnValueOffset;
Operand return_value_operand(ebp, return_value_offset * kPointerSize);
const int stack_space = argc() + FCA::kArgsLength + 1;
Operand* stack_space_operand = nullptr;
CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
ApiParameterOperand(1), stack_space,
stack_space_operand, return_value_operand);
}
void CallApiGetterStub::Generate(MacroAssembler* masm) {
// Build v8::PropertyCallbackInfo::args_ array on the stack and push property
// name below the exit frame to make GC aware of them.
STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
Register receiver = ApiGetterDescriptor::ReceiverRegister();
Register holder = ApiGetterDescriptor::HolderRegister();
Register callback = ApiGetterDescriptor::CallbackRegister();
Register scratch = ebx;
DCHECK(!AreAliased(receiver, holder, callback, scratch));
__ pop(scratch); // Pop return address to extend the frame.
__ push(receiver);
__ push(FieldOperand(callback, AccessorInfo::kDataOffset));
__ PushRoot(Heap::kUndefinedValueRootIndex); // ReturnValue
// ReturnValue default value
__ PushRoot(Heap::kUndefinedValueRootIndex);
__ push(Immediate(ExternalReference::isolate_address(isolate())));
__ push(holder);
__ push(Immediate(Smi::kZero)); // should_throw_on_error -> false
__ push(FieldOperand(callback, AccessorInfo::kNameOffset));
__ push(scratch); // Restore return address.
// v8::PropertyCallbackInfo::args_ array and name handle.
const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
// Allocate v8::PropertyCallbackInfo object, arguments for callback and
// space for optional callback address parameter (in case CPU profiler is
// active) in non-GCed stack space.
const int kApiArgc = 3 + 1;
// Load address of v8::PropertyAccessorInfo::args_ array.
__ lea(scratch, Operand(esp, 2 * kPointerSize));
PrepareCallApiFunction(masm, kApiArgc);
// Create v8::PropertyCallbackInfo object on the stack and initialize
// it's args_ field.
Operand info_object = ApiParameterOperand(3);
__ mov(info_object, scratch);
// Name as handle.
__ sub(scratch, Immediate(kPointerSize));
__ mov(ApiParameterOperand(0), scratch);
// Arguments pointer.
__ lea(scratch, info_object);
__ mov(ApiParameterOperand(1), scratch);
// Reserve space for optional callback address parameter.
Operand thunk_last_arg = ApiParameterOperand(2);
ExternalReference thunk_ref =
ExternalReference::invoke_accessor_getter_callback(isolate());
__ mov(scratch, FieldOperand(callback, AccessorInfo::kJsGetterOffset));
Register function_address = edx;
__ mov(function_address,
FieldOperand(scratch, Foreign::kForeignAddressOffset));
// +3 is to skip prolog, return address and name handle.
Operand return_value_operand(
ebp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
CallApiFunctionAndReturn(masm, function_address, thunk_ref, thunk_last_arg,
kStackUnwindSpace, nullptr, return_value_operand);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_IA32