blob: d12c35682e8a36339f7f9ee66cec15ef9bab4cfb [file] [log] [blame]
// Copyright 2019 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/regexp/regexp-compiler.h"
#include "src/execution/isolate.h"
#include "src/regexp/regexp.h"
#ifdef V8_INTL_SUPPORT
#include "src/regexp/special-case.h"
#endif // V8_INTL_SUPPORT
#include "src/strings/unicode-inl.h"
#include "src/zone/zone-list-inl.h"
#ifdef V8_INTL_SUPPORT
#include "unicode/locid.h"
#include "unicode/uniset.h"
#include "unicode/utypes.h"
#endif // V8_INTL_SUPPORT
namespace v8 {
namespace internal {
using namespace regexp_compiler_constants; // NOLINT(build/namespaces)
// -------------------------------------------------------------------
// Tree to graph conversion
RegExpNode* RegExpAtom::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
ZoneList<TextElement>* elms =
new (compiler->zone()) ZoneList<TextElement>(1, compiler->zone());
elms->Add(TextElement::Atom(this), compiler->zone());
return new (compiler->zone())
TextNode(elms, compiler->read_backward(), on_success);
}
RegExpNode* RegExpText::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
return new (compiler->zone())
TextNode(elements(), compiler->read_backward(), on_success);
}
static bool CompareInverseRanges(ZoneList<CharacterRange>* ranges,
const int* special_class, int length) {
length--; // Remove final marker.
DCHECK_EQ(kRangeEndMarker, special_class[length]);
DCHECK_NE(0, ranges->length());
DCHECK_NE(0, length);
DCHECK_NE(0, special_class[0]);
if (ranges->length() != (length >> 1) + 1) {
return false;
}
CharacterRange range = ranges->at(0);
if (range.from() != 0) {
return false;
}
for (int i = 0; i < length; i += 2) {
if (special_class[i] != (range.to() + 1)) {
return false;
}
range = ranges->at((i >> 1) + 1);
if (special_class[i + 1] != range.from()) {
return false;
}
}
if (range.to() != String::kMaxCodePoint) {
return false;
}
return true;
}
static bool CompareRanges(ZoneList<CharacterRange>* ranges,
const int* special_class, int length) {
length--; // Remove final marker.
DCHECK_EQ(kRangeEndMarker, special_class[length]);
if (ranges->length() * 2 != length) {
return false;
}
for (int i = 0; i < length; i += 2) {
CharacterRange range = ranges->at(i >> 1);
if (range.from() != special_class[i] ||
range.to() != special_class[i + 1] - 1) {
return false;
}
}
return true;
}
bool RegExpCharacterClass::is_standard(Zone* zone) {
// TODO(lrn): Remove need for this function, by not throwing away information
// along the way.
if (is_negated()) {
return false;
}
if (set_.is_standard()) {
return true;
}
if (CompareRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) {
set_.set_standard_set_type('s');
return true;
}
if (CompareInverseRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) {
set_.set_standard_set_type('S');
return true;
}
if (CompareInverseRanges(set_.ranges(zone), kLineTerminatorRanges,
kLineTerminatorRangeCount)) {
set_.set_standard_set_type('.');
return true;
}
if (CompareRanges(set_.ranges(zone), kLineTerminatorRanges,
kLineTerminatorRangeCount)) {
set_.set_standard_set_type('n');
return true;
}
if (CompareRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) {
set_.set_standard_set_type('w');
return true;
}
if (CompareInverseRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) {
set_.set_standard_set_type('W');
return true;
}
return false;
}
UnicodeRangeSplitter::UnicodeRangeSplitter(ZoneList<CharacterRange>* base) {
// The unicode range splitter categorizes given character ranges into:
// - Code points from the BMP representable by one code unit.
// - Code points outside the BMP that need to be split into surrogate pairs.
// - Lone lead surrogates.
// - Lone trail surrogates.
// Lone surrogates are valid code points, even though no actual characters.
// They require special matching to make sure we do not split surrogate pairs.
for (int i = 0; i < base->length(); i++) AddRange(base->at(i));
}
void UnicodeRangeSplitter::AddRange(CharacterRange range) {
static constexpr uc32 kBmp1Start = 0;
static constexpr uc32 kBmp1End = kLeadSurrogateStart - 1;
static constexpr uc32 kBmp2Start = kTrailSurrogateEnd + 1;
static constexpr uc32 kBmp2End = kNonBmpStart - 1;
// Ends are all inclusive.
STATIC_ASSERT(kBmp1Start == 0);
STATIC_ASSERT(kBmp1Start < kBmp1End);
STATIC_ASSERT(kBmp1End + 1 == kLeadSurrogateStart);
STATIC_ASSERT(kLeadSurrogateStart < kLeadSurrogateEnd);
STATIC_ASSERT(kLeadSurrogateEnd + 1 == kTrailSurrogateStart);
STATIC_ASSERT(kTrailSurrogateStart < kTrailSurrogateEnd);
STATIC_ASSERT(kTrailSurrogateEnd + 1 == kBmp2Start);
STATIC_ASSERT(kBmp2Start < kBmp2End);
STATIC_ASSERT(kBmp2End + 1 == kNonBmpStart);
STATIC_ASSERT(kNonBmpStart < kNonBmpEnd);
static constexpr uc32 kStarts[] = {
kBmp1Start, kLeadSurrogateStart, kTrailSurrogateStart,
kBmp2Start, kNonBmpStart,
};
static constexpr uc32 kEnds[] = {
kBmp1End, kLeadSurrogateEnd, kTrailSurrogateEnd, kBmp2End, kNonBmpEnd,
};
CharacterRangeVector* const kTargets[] = {
&bmp_, &lead_surrogates_, &trail_surrogates_, &bmp_, &non_bmp_,
};
static constexpr int kCount = arraysize(kStarts);
STATIC_ASSERT(kCount == arraysize(kEnds));
STATIC_ASSERT(kCount == arraysize(kTargets));
for (int i = 0; i < kCount; i++) {
if (kStarts[i] > range.to()) break;
const uc32 from = std::max(kStarts[i], range.from());
const uc32 to = std::min(kEnds[i], range.to());
if (from > to) continue;
kTargets[i]->emplace_back(CharacterRange::Range(from, to));
}
}
namespace {
// Translates between new and old V8-isms (SmallVector, ZoneList).
ZoneList<CharacterRange>* ToCanonicalZoneList(
const UnicodeRangeSplitter::CharacterRangeVector* v, Zone* zone) {
if (v->empty()) return nullptr;
ZoneList<CharacterRange>* result =
new (zone) ZoneList<CharacterRange>(static_cast<int>(v->size()), zone);
for (size_t i = 0; i < v->size(); i++) {
result->Add(v->at(i), zone);
}
CharacterRange::Canonicalize(result);
return result;
}
void AddBmpCharacters(RegExpCompiler* compiler, ChoiceNode* result,
RegExpNode* on_success, UnicodeRangeSplitter* splitter) {
ZoneList<CharacterRange>* bmp =
ToCanonicalZoneList(splitter->bmp(), compiler->zone());
if (bmp == nullptr) return;
JSRegExp::Flags default_flags = JSRegExp::Flags();
result->AddAlternative(GuardedAlternative(TextNode::CreateForCharacterRanges(
compiler->zone(), bmp, compiler->read_backward(), on_success,
default_flags)));
}
void AddNonBmpSurrogatePairs(RegExpCompiler* compiler, ChoiceNode* result,
RegExpNode* on_success,
UnicodeRangeSplitter* splitter) {
ZoneList<CharacterRange>* non_bmp =
ToCanonicalZoneList(splitter->non_bmp(), compiler->zone());
if (non_bmp == nullptr) return;
DCHECK(!compiler->one_byte());
Zone* zone = compiler->zone();
JSRegExp::Flags default_flags = JSRegExp::Flags();
CharacterRange::Canonicalize(non_bmp);
for (int i = 0; i < non_bmp->length(); i++) {
// Match surrogate pair.
// E.g. [\u10005-\u11005] becomes
// \ud800[\udc05-\udfff]|
// [\ud801-\ud803][\udc00-\udfff]|
// \ud804[\udc00-\udc05]
uc32 from = non_bmp->at(i).from();
uc32 to = non_bmp->at(i).to();
uc16 from_l = unibrow::Utf16::LeadSurrogate(from);
uc16 from_t = unibrow::Utf16::TrailSurrogate(from);
uc16 to_l = unibrow::Utf16::LeadSurrogate(to);
uc16 to_t = unibrow::Utf16::TrailSurrogate(to);
if (from_l == to_l) {
// The lead surrogate is the same.
result->AddAlternative(
GuardedAlternative(TextNode::CreateForSurrogatePair(
zone, CharacterRange::Singleton(from_l),
CharacterRange::Range(from_t, to_t), compiler->read_backward(),
on_success, default_flags)));
} else {
if (from_t != kTrailSurrogateStart) {
// Add [from_l][from_t-\udfff]
result->AddAlternative(
GuardedAlternative(TextNode::CreateForSurrogatePair(
zone, CharacterRange::Singleton(from_l),
CharacterRange::Range(from_t, kTrailSurrogateEnd),
compiler->read_backward(), on_success, default_flags)));
from_l++;
}
if (to_t != kTrailSurrogateEnd) {
// Add [to_l][\udc00-to_t]
result->AddAlternative(
GuardedAlternative(TextNode::CreateForSurrogatePair(
zone, CharacterRange::Singleton(to_l),
CharacterRange::Range(kTrailSurrogateStart, to_t),
compiler->read_backward(), on_success, default_flags)));
to_l--;
}
if (from_l <= to_l) {
// Add [from_l-to_l][\udc00-\udfff]
result->AddAlternative(
GuardedAlternative(TextNode::CreateForSurrogatePair(
zone, CharacterRange::Range(from_l, to_l),
CharacterRange::Range(kTrailSurrogateStart, kTrailSurrogateEnd),
compiler->read_backward(), on_success, default_flags)));
}
}
}
}
RegExpNode* NegativeLookaroundAgainstReadDirectionAndMatch(
RegExpCompiler* compiler, ZoneList<CharacterRange>* lookbehind,
ZoneList<CharacterRange>* match, RegExpNode* on_success, bool read_backward,
JSRegExp::Flags flags) {
Zone* zone = compiler->zone();
RegExpNode* match_node = TextNode::CreateForCharacterRanges(
zone, match, read_backward, on_success, flags);
int stack_register = compiler->UnicodeLookaroundStackRegister();
int position_register = compiler->UnicodeLookaroundPositionRegister();
RegExpLookaround::Builder lookaround(false, match_node, stack_register,
position_register);
RegExpNode* negative_match = TextNode::CreateForCharacterRanges(
zone, lookbehind, !read_backward, lookaround.on_match_success(), flags);
return lookaround.ForMatch(negative_match);
}
RegExpNode* MatchAndNegativeLookaroundInReadDirection(
RegExpCompiler* compiler, ZoneList<CharacterRange>* match,
ZoneList<CharacterRange>* lookahead, RegExpNode* on_success,
bool read_backward, JSRegExp::Flags flags) {
Zone* zone = compiler->zone();
int stack_register = compiler->UnicodeLookaroundStackRegister();
int position_register = compiler->UnicodeLookaroundPositionRegister();
RegExpLookaround::Builder lookaround(false, on_success, stack_register,
position_register);
RegExpNode* negative_match = TextNode::CreateForCharacterRanges(
zone, lookahead, read_backward, lookaround.on_match_success(), flags);
return TextNode::CreateForCharacterRanges(
zone, match, read_backward, lookaround.ForMatch(negative_match), flags);
}
void AddLoneLeadSurrogates(RegExpCompiler* compiler, ChoiceNode* result,
RegExpNode* on_success,
UnicodeRangeSplitter* splitter) {
JSRegExp::Flags default_flags = JSRegExp::Flags();
ZoneList<CharacterRange>* lead_surrogates =
ToCanonicalZoneList(splitter->lead_surrogates(), compiler->zone());
if (lead_surrogates == nullptr) return;
Zone* zone = compiler->zone();
// E.g. \ud801 becomes \ud801(?![\udc00-\udfff]).
ZoneList<CharacterRange>* trail_surrogates = CharacterRange::List(
zone, CharacterRange::Range(kTrailSurrogateStart, kTrailSurrogateEnd));
RegExpNode* match;
if (compiler->read_backward()) {
// Reading backward. Assert that reading forward, there is no trail
// surrogate, and then backward match the lead surrogate.
match = NegativeLookaroundAgainstReadDirectionAndMatch(
compiler, trail_surrogates, lead_surrogates, on_success, true,
default_flags);
} else {
// Reading forward. Forward match the lead surrogate and assert that
// no trail surrogate follows.
match = MatchAndNegativeLookaroundInReadDirection(
compiler, lead_surrogates, trail_surrogates, on_success, false,
default_flags);
}
result->AddAlternative(GuardedAlternative(match));
}
void AddLoneTrailSurrogates(RegExpCompiler* compiler, ChoiceNode* result,
RegExpNode* on_success,
UnicodeRangeSplitter* splitter) {
JSRegExp::Flags default_flags = JSRegExp::Flags();
ZoneList<CharacterRange>* trail_surrogates =
ToCanonicalZoneList(splitter->trail_surrogates(), compiler->zone());
if (trail_surrogates == nullptr) return;
Zone* zone = compiler->zone();
// E.g. \udc01 becomes (?<![\ud800-\udbff])\udc01
ZoneList<CharacterRange>* lead_surrogates = CharacterRange::List(
zone, CharacterRange::Range(kLeadSurrogateStart, kLeadSurrogateEnd));
RegExpNode* match;
if (compiler->read_backward()) {
// Reading backward. Backward match the trail surrogate and assert that no
// lead surrogate precedes it.
match = MatchAndNegativeLookaroundInReadDirection(
compiler, trail_surrogates, lead_surrogates, on_success, true,
default_flags);
} else {
// Reading forward. Assert that reading backward, there is no lead
// surrogate, and then forward match the trail surrogate.
match = NegativeLookaroundAgainstReadDirectionAndMatch(
compiler, lead_surrogates, trail_surrogates, on_success, false,
default_flags);
}
result->AddAlternative(GuardedAlternative(match));
}
RegExpNode* UnanchoredAdvance(RegExpCompiler* compiler,
RegExpNode* on_success) {
// This implements ES2015 21.2.5.2.3, AdvanceStringIndex.
DCHECK(!compiler->read_backward());
Zone* zone = compiler->zone();
// Advance any character. If the character happens to be a lead surrogate and
// we advanced into the middle of a surrogate pair, it will work out, as
// nothing will match from there. We will have to advance again, consuming
// the associated trail surrogate.
ZoneList<CharacterRange>* range = CharacterRange::List(
zone, CharacterRange::Range(0, String::kMaxUtf16CodeUnit));
JSRegExp::Flags default_flags = JSRegExp::Flags();
return TextNode::CreateForCharacterRanges(zone, range, false, on_success,
default_flags);
}
void AddUnicodeCaseEquivalents(ZoneList<CharacterRange>* ranges, Zone* zone) {
#ifdef V8_INTL_SUPPORT
DCHECK(CharacterRange::IsCanonical(ranges));
// Micro-optimization to avoid passing large ranges to UnicodeSet::closeOver.
// See also https://crbug.com/v8/6727.
// TODO(jgruber): This only covers the special case of the {0,0x10FFFF} range,
// which we use frequently internally. But large ranges can also easily be
// created by the user. We might want to have a more general caching mechanism
// for such ranges.
if (ranges->length() == 1 && ranges->at(0).IsEverything(kNonBmpEnd)) return;
// Use ICU to compute the case fold closure over the ranges.
icu::UnicodeSet set;
for (int i = 0; i < ranges->length(); i++) {
set.add(ranges->at(i).from(), ranges->at(i).to());
}
ranges->Clear();
set.closeOver(USET_CASE_INSENSITIVE);
// Full case mapping map single characters to multiple characters.
// Those are represented as strings in the set. Remove them so that
// we end up with only simple and common case mappings.
set.removeAllStrings();
for (int i = 0; i < set.getRangeCount(); i++) {
ranges->Add(CharacterRange::Range(set.getRangeStart(i), set.getRangeEnd(i)),
zone);
}
// No errors and everything we collected have been ranges.
CharacterRange::Canonicalize(ranges);
#endif // V8_INTL_SUPPORT
}
} // namespace
RegExpNode* RegExpCharacterClass::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
set_.Canonicalize();
Zone* zone = compiler->zone();
ZoneList<CharacterRange>* ranges = this->ranges(zone);
if (NeedsUnicodeCaseEquivalents(flags_)) {
AddUnicodeCaseEquivalents(ranges, zone);
}
if (IsUnicode(flags_) && !compiler->one_byte() &&
!contains_split_surrogate()) {
if (is_negated()) {
ZoneList<CharacterRange>* negated =
new (zone) ZoneList<CharacterRange>(2, zone);
CharacterRange::Negate(ranges, negated, zone);
ranges = negated;
}
if (ranges->length() == 0) {
JSRegExp::Flags default_flags;
RegExpCharacterClass* fail =
new (zone) RegExpCharacterClass(zone, ranges, default_flags);
return new (zone) TextNode(fail, compiler->read_backward(), on_success);
}
if (standard_type() == '*') {
return UnanchoredAdvance(compiler, on_success);
} else {
ChoiceNode* result = new (zone) ChoiceNode(2, zone);
UnicodeRangeSplitter splitter(ranges);
AddBmpCharacters(compiler, result, on_success, &splitter);
AddNonBmpSurrogatePairs(compiler, result, on_success, &splitter);
AddLoneLeadSurrogates(compiler, result, on_success, &splitter);
AddLoneTrailSurrogates(compiler, result, on_success, &splitter);
return result;
}
} else {
return new (zone) TextNode(this, compiler->read_backward(), on_success);
}
}
int CompareFirstChar(RegExpTree* const* a, RegExpTree* const* b) {
RegExpAtom* atom1 = (*a)->AsAtom();
RegExpAtom* atom2 = (*b)->AsAtom();
uc16 character1 = atom1->data().at(0);
uc16 character2 = atom2->data().at(0);
if (character1 < character2) return -1;
if (character1 > character2) return 1;
return 0;
}
#ifdef V8_INTL_SUPPORT
// Case Insensitve comparesion
int CompareFirstCharCaseInsensitve(RegExpTree* const* a, RegExpTree* const* b) {
RegExpAtom* atom1 = (*a)->AsAtom();
RegExpAtom* atom2 = (*b)->AsAtom();
icu::UnicodeString character1(atom1->data().at(0));
return character1.caseCompare(atom2->data().at(0), U_FOLD_CASE_DEFAULT);
}
#else
static unibrow::uchar Canonical(
unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize,
unibrow::uchar c) {
unibrow::uchar chars[unibrow::Ecma262Canonicalize::kMaxWidth];
int length = canonicalize->get(c, '\0', chars);
DCHECK_LE(length, 1);
unibrow::uchar canonical = c;
if (length == 1) canonical = chars[0];
return canonical;
}
int CompareFirstCharCaseIndependent(
unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize,
RegExpTree* const* a, RegExpTree* const* b) {
RegExpAtom* atom1 = (*a)->AsAtom();
RegExpAtom* atom2 = (*b)->AsAtom();
unibrow::uchar character1 = atom1->data().at(0);
unibrow::uchar character2 = atom2->data().at(0);
if (character1 == character2) return 0;
if (character1 >= 'a' || character2 >= 'a') {
character1 = Canonical(canonicalize, character1);
character2 = Canonical(canonicalize, character2);
}
return static_cast<int>(character1) - static_cast<int>(character2);
}
#endif // V8_INTL_SUPPORT
// We can stable sort runs of atoms, since the order does not matter if they
// start with different characters.
// Returns true if any consecutive atoms were found.
bool RegExpDisjunction::SortConsecutiveAtoms(RegExpCompiler* compiler) {
ZoneList<RegExpTree*>* alternatives = this->alternatives();
int length = alternatives->length();
bool found_consecutive_atoms = false;
for (int i = 0; i < length; i++) {
while (i < length) {
RegExpTree* alternative = alternatives->at(i);
if (alternative->IsAtom()) break;
i++;
}
// i is length or it is the index of an atom.
if (i == length) break;
int first_atom = i;
JSRegExp::Flags flags = alternatives->at(i)->AsAtom()->flags();
i++;
while (i < length) {
RegExpTree* alternative = alternatives->at(i);
if (!alternative->IsAtom()) break;
if (alternative->AsAtom()->flags() != flags) break;
i++;
}
// Sort atoms to get ones with common prefixes together.
// This step is more tricky if we are in a case-independent regexp,
// because it would change /is|I/ to /I|is/, and order matters when
// the regexp parts don't match only disjoint starting points. To fix
// this we have a version of CompareFirstChar that uses case-
// independent character classes for comparison.
DCHECK_LT(first_atom, alternatives->length());
DCHECK_LE(i, alternatives->length());
DCHECK_LE(first_atom, i);
if (IgnoreCase(flags)) {
#ifdef V8_INTL_SUPPORT
alternatives->StableSort(CompareFirstCharCaseInsensitve, first_atom,
i - first_atom);
#else
unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize =
compiler->isolate()->regexp_macro_assembler_canonicalize();
auto compare_closure = [canonicalize](RegExpTree* const* a,
RegExpTree* const* b) {
return CompareFirstCharCaseIndependent(canonicalize, a, b);
};
alternatives->StableSort(compare_closure, first_atom, i - first_atom);
#endif // V8_INTL_SUPPORT
} else {
alternatives->StableSort(CompareFirstChar, first_atom, i - first_atom);
}
if (i - first_atom > 1) found_consecutive_atoms = true;
}
return found_consecutive_atoms;
}
// Optimizes ab|ac|az to a(?:b|c|d).
void RegExpDisjunction::RationalizeConsecutiveAtoms(RegExpCompiler* compiler) {
Zone* zone = compiler->zone();
ZoneList<RegExpTree*>* alternatives = this->alternatives();
int length = alternatives->length();
int write_posn = 0;
int i = 0;
while (i < length) {
RegExpTree* alternative = alternatives->at(i);
if (!alternative->IsAtom()) {
alternatives->at(write_posn++) = alternatives->at(i);
i++;
continue;
}
RegExpAtom* const atom = alternative->AsAtom();
JSRegExp::Flags flags = atom->flags();
#ifdef V8_INTL_SUPPORT
icu::UnicodeString common_prefix(atom->data().at(0));
#else
unibrow::uchar common_prefix = atom->data().at(0);
#endif // V8_INTL_SUPPORT
int first_with_prefix = i;
int prefix_length = atom->length();
i++;
while (i < length) {
alternative = alternatives->at(i);
if (!alternative->IsAtom()) break;
RegExpAtom* const atom = alternative->AsAtom();
if (atom->flags() != flags) break;
#ifdef V8_INTL_SUPPORT
icu::UnicodeString new_prefix(atom->data().at(0));
if (new_prefix != common_prefix) {
if (!IgnoreCase(flags)) break;
if (common_prefix.caseCompare(new_prefix, U_FOLD_CASE_DEFAULT) != 0)
break;
}
#else
unibrow::uchar new_prefix = atom->data().at(0);
if (new_prefix != common_prefix) {
if (!IgnoreCase(flags)) break;
unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize =
compiler->isolate()->regexp_macro_assembler_canonicalize();
new_prefix = Canonical(canonicalize, new_prefix);
common_prefix = Canonical(canonicalize, common_prefix);
if (new_prefix != common_prefix) break;
}
#endif // V8_INTL_SUPPORT
prefix_length = Min(prefix_length, atom->length());
i++;
}
if (i > first_with_prefix + 2) {
// Found worthwhile run of alternatives with common prefix of at least one
// character. The sorting function above did not sort on more than one
// character for reasons of correctness, but there may still be a longer
// common prefix if the terms were similar or presorted in the input.
// Find out how long the common prefix is.
int run_length = i - first_with_prefix;
RegExpAtom* const atom = alternatives->at(first_with_prefix)->AsAtom();
for (int j = 1; j < run_length && prefix_length > 1; j++) {
RegExpAtom* old_atom =
alternatives->at(j + first_with_prefix)->AsAtom();
for (int k = 1; k < prefix_length; k++) {
if (atom->data().at(k) != old_atom->data().at(k)) {
prefix_length = k;
break;
}
}
}
RegExpAtom* prefix = new (zone)
RegExpAtom(atom->data().SubVector(0, prefix_length), flags);
ZoneList<RegExpTree*>* pair = new (zone) ZoneList<RegExpTree*>(2, zone);
pair->Add(prefix, zone);
ZoneList<RegExpTree*>* suffixes =
new (zone) ZoneList<RegExpTree*>(run_length, zone);
for (int j = 0; j < run_length; j++) {
RegExpAtom* old_atom =
alternatives->at(j + first_with_prefix)->AsAtom();
int len = old_atom->length();
if (len == prefix_length) {
suffixes->Add(new (zone) RegExpEmpty(), zone);
} else {
RegExpTree* suffix = new (zone) RegExpAtom(
old_atom->data().SubVector(prefix_length, old_atom->length()),
flags);
suffixes->Add(suffix, zone);
}
}
pair->Add(new (zone) RegExpDisjunction(suffixes), zone);
alternatives->at(write_posn++) = new (zone) RegExpAlternative(pair);
} else {
// Just copy any non-worthwhile alternatives.
for (int j = first_with_prefix; j < i; j++) {
alternatives->at(write_posn++) = alternatives->at(j);
}
}
}
alternatives->Rewind(write_posn); // Trim end of array.
}
// Optimizes b|c|z to [bcz].
void RegExpDisjunction::FixSingleCharacterDisjunctions(
RegExpCompiler* compiler) {
Zone* zone = compiler->zone();
ZoneList<RegExpTree*>* alternatives = this->alternatives();
int length = alternatives->length();
int write_posn = 0;
int i = 0;
while (i < length) {
RegExpTree* alternative = alternatives->at(i);
if (!alternative->IsAtom()) {
alternatives->at(write_posn++) = alternatives->at(i);
i++;
continue;
}
RegExpAtom* const atom = alternative->AsAtom();
if (atom->length() != 1) {
alternatives->at(write_posn++) = alternatives->at(i);
i++;
continue;
}
JSRegExp::Flags flags = atom->flags();
DCHECK_IMPLIES(IsUnicode(flags),
!unibrow::Utf16::IsLeadSurrogate(atom->data().at(0)));
bool contains_trail_surrogate =
unibrow::Utf16::IsTrailSurrogate(atom->data().at(0));
int first_in_run = i;
i++;
// Find a run of single-character atom alternatives that have identical
// flags (case independence and unicode-ness).
while (i < length) {
alternative = alternatives->at(i);
if (!alternative->IsAtom()) break;
RegExpAtom* const atom = alternative->AsAtom();
if (atom->length() != 1) break;
if (atom->flags() != flags) break;
DCHECK_IMPLIES(IsUnicode(flags),
!unibrow::Utf16::IsLeadSurrogate(atom->data().at(0)));
contains_trail_surrogate |=
unibrow::Utf16::IsTrailSurrogate(atom->data().at(0));
i++;
}
if (i > first_in_run + 1) {
// Found non-trivial run of single-character alternatives.
int run_length = i - first_in_run;
ZoneList<CharacterRange>* ranges =
new (zone) ZoneList<CharacterRange>(2, zone);
for (int j = 0; j < run_length; j++) {
RegExpAtom* old_atom = alternatives->at(j + first_in_run)->AsAtom();
DCHECK_EQ(old_atom->length(), 1);
ranges->Add(CharacterRange::Singleton(old_atom->data().at(0)), zone);
}
RegExpCharacterClass::CharacterClassFlags character_class_flags;
if (IsUnicode(flags) && contains_trail_surrogate) {
character_class_flags = RegExpCharacterClass::CONTAINS_SPLIT_SURROGATE;
}
alternatives->at(write_posn++) = new (zone)
RegExpCharacterClass(zone, ranges, flags, character_class_flags);
} else {
// Just copy any trivial alternatives.
for (int j = first_in_run; j < i; j++) {
alternatives->at(write_posn++) = alternatives->at(j);
}
}
}
alternatives->Rewind(write_posn); // Trim end of array.
}
RegExpNode* RegExpDisjunction::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
ZoneList<RegExpTree*>* alternatives = this->alternatives();
if (alternatives->length() > 2) {
bool found_consecutive_atoms = SortConsecutiveAtoms(compiler);
if (found_consecutive_atoms) RationalizeConsecutiveAtoms(compiler);
FixSingleCharacterDisjunctions(compiler);
if (alternatives->length() == 1) {
return alternatives->at(0)->ToNode(compiler, on_success);
}
}
int length = alternatives->length();
ChoiceNode* result =
new (compiler->zone()) ChoiceNode(length, compiler->zone());
for (int i = 0; i < length; i++) {
GuardedAlternative alternative(
alternatives->at(i)->ToNode(compiler, on_success));
result->AddAlternative(alternative);
}
return result;
}
RegExpNode* RegExpQuantifier::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
return ToNode(min(), max(), is_greedy(), body(), compiler, on_success);
}
namespace {
// Desugar \b to (?<=\w)(?=\W)|(?<=\W)(?=\w) and
// \B to (?<=\w)(?=\w)|(?<=\W)(?=\W)
RegExpNode* BoundaryAssertionAsLookaround(RegExpCompiler* compiler,
RegExpNode* on_success,
RegExpAssertion::AssertionType type,
JSRegExp::Flags flags) {
DCHECK(NeedsUnicodeCaseEquivalents(flags));
Zone* zone = compiler->zone();
ZoneList<CharacterRange>* word_range =
new (zone) ZoneList<CharacterRange>(2, zone);
CharacterRange::AddClassEscape('w', word_range, true, zone);
int stack_register = compiler->UnicodeLookaroundStackRegister();
int position_register = compiler->UnicodeLookaroundPositionRegister();
ChoiceNode* result = new (zone) ChoiceNode(2, zone);
// Add two choices. The (non-)boundary could start with a word or
// a non-word-character.
for (int i = 0; i < 2; i++) {
bool lookbehind_for_word = i == 0;
bool lookahead_for_word =
(type == RegExpAssertion::BOUNDARY) ^ lookbehind_for_word;
// Look to the left.
RegExpLookaround::Builder lookbehind(lookbehind_for_word, on_success,
stack_register, position_register);
RegExpNode* backward = TextNode::CreateForCharacterRanges(
zone, word_range, true, lookbehind.on_match_success(), flags);
// Look to the right.
RegExpLookaround::Builder lookahead(lookahead_for_word,
lookbehind.ForMatch(backward),
stack_register, position_register);
RegExpNode* forward = TextNode::CreateForCharacterRanges(
zone, word_range, false, lookahead.on_match_success(), flags);
result->AddAlternative(GuardedAlternative(lookahead.ForMatch(forward)));
}
return result;
}
} // anonymous namespace
RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
NodeInfo info;
Zone* zone = compiler->zone();
switch (assertion_type()) {
case START_OF_LINE:
return AssertionNode::AfterNewline(on_success);
case START_OF_INPUT:
return AssertionNode::AtStart(on_success);
case BOUNDARY:
return NeedsUnicodeCaseEquivalents(flags_)
? BoundaryAssertionAsLookaround(compiler, on_success, BOUNDARY,
flags_)
: AssertionNode::AtBoundary(on_success);
case NON_BOUNDARY:
return NeedsUnicodeCaseEquivalents(flags_)
? BoundaryAssertionAsLookaround(compiler, on_success,
NON_BOUNDARY, flags_)
: AssertionNode::AtNonBoundary(on_success);
case END_OF_INPUT:
return AssertionNode::AtEnd(on_success);
case END_OF_LINE: {
// Compile $ in multiline regexps as an alternation with a positive
// lookahead in one side and an end-of-input on the other side.
// We need two registers for the lookahead.
int stack_pointer_register = compiler->AllocateRegister();
int position_register = compiler->AllocateRegister();
// The ChoiceNode to distinguish between a newline and end-of-input.
ChoiceNode* result = new (zone) ChoiceNode(2, zone);
// Create a newline atom.
ZoneList<CharacterRange>* newline_ranges =
new (zone) ZoneList<CharacterRange>(3, zone);
CharacterRange::AddClassEscape('n', newline_ranges, false, zone);
JSRegExp::Flags default_flags = JSRegExp::Flags();
RegExpCharacterClass* newline_atom =
new (zone) RegExpCharacterClass('n', default_flags);
TextNode* newline_matcher =
new (zone) TextNode(newline_atom, false,
ActionNode::PositiveSubmatchSuccess(
stack_pointer_register, position_register,
0, // No captures inside.
-1, // Ignored if no captures.
on_success));
// Create an end-of-input matcher.
RegExpNode* end_of_line = ActionNode::BeginSubmatch(
stack_pointer_register, position_register, newline_matcher);
// Add the two alternatives to the ChoiceNode.
GuardedAlternative eol_alternative(end_of_line);
result->AddAlternative(eol_alternative);
GuardedAlternative end_alternative(AssertionNode::AtEnd(on_success));
result->AddAlternative(end_alternative);
return result;
}
default:
UNREACHABLE();
}
return on_success;
}
RegExpNode* RegExpBackReference::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
return new (compiler->zone())
BackReferenceNode(RegExpCapture::StartRegister(index()),
RegExpCapture::EndRegister(index()), flags_,
compiler->read_backward(), on_success);
}
RegExpNode* RegExpEmpty::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
return on_success;
}
RegExpLookaround::Builder::Builder(bool is_positive, RegExpNode* on_success,
int stack_pointer_register,
int position_register,
int capture_register_count,
int capture_register_start)
: is_positive_(is_positive),
on_success_(on_success),
stack_pointer_register_(stack_pointer_register),
position_register_(position_register) {
if (is_positive_) {
on_match_success_ = ActionNode::PositiveSubmatchSuccess(
stack_pointer_register, position_register, capture_register_count,
capture_register_start, on_success_);
} else {
Zone* zone = on_success_->zone();
on_match_success_ = new (zone) NegativeSubmatchSuccess(
stack_pointer_register, position_register, capture_register_count,
capture_register_start, zone);
}
}
RegExpNode* RegExpLookaround::Builder::ForMatch(RegExpNode* match) {
if (is_positive_) {
return ActionNode::BeginSubmatch(stack_pointer_register_,
position_register_, match);
} else {
Zone* zone = on_success_->zone();
// We use a ChoiceNode to represent the negative lookaround. The first
// alternative is the negative match. On success, the end node backtracks.
// On failure, the second alternative is tried and leads to success.
// NegativeLookaheadChoiceNode is a special ChoiceNode that ignores the
// first exit when calculating quick checks.
ChoiceNode* choice_node = new (zone) NegativeLookaroundChoiceNode(
GuardedAlternative(match), GuardedAlternative(on_success_), zone);
return ActionNode::BeginSubmatch(stack_pointer_register_,
position_register_, choice_node);
}
}
RegExpNode* RegExpLookaround::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
int stack_pointer_register = compiler->AllocateRegister();
int position_register = compiler->AllocateRegister();
const int registers_per_capture = 2;
const int register_of_first_capture = 2;
int register_count = capture_count_ * registers_per_capture;
int register_start =
register_of_first_capture + capture_from_ * registers_per_capture;
RegExpNode* result;
bool was_reading_backward = compiler->read_backward();
compiler->set_read_backward(type() == LOOKBEHIND);
Builder builder(is_positive(), on_success, stack_pointer_register,
position_register, register_count, register_start);
RegExpNode* match = body_->ToNode(compiler, builder.on_match_success());
result = builder.ForMatch(match);
compiler->set_read_backward(was_reading_backward);
return result;
}
RegExpNode* RegExpCapture::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
return ToNode(body(), index(), compiler, on_success);
}
RegExpNode* RegExpCapture::ToNode(RegExpTree* body, int index,
RegExpCompiler* compiler,
RegExpNode* on_success) {
DCHECK_NOT_NULL(body);
int start_reg = RegExpCapture::StartRegister(index);
int end_reg = RegExpCapture::EndRegister(index);
if (compiler->read_backward()) std::swap(start_reg, end_reg);
RegExpNode* store_end = ActionNode::StorePosition(end_reg, true, on_success);
RegExpNode* body_node = body->ToNode(compiler, store_end);
return ActionNode::StorePosition(start_reg, true, body_node);
}
namespace {
class AssertionSequenceRewriter final {
public:
// TODO(jgruber): Consider moving this to a separate AST tree rewriter pass
// instead of sprinkling rewrites into the AST->Node conversion process.
static void MaybeRewrite(ZoneList<RegExpTree*>* terms, Zone* zone) {
AssertionSequenceRewriter rewriter(terms, zone);
static constexpr int kNoIndex = -1;
int from = kNoIndex;
for (int i = 0; i < terms->length(); i++) {
RegExpTree* t = terms->at(i);
if (from == kNoIndex && t->IsAssertion()) {
from = i; // Start a sequence.
} else if (from != kNoIndex && !t->IsAssertion()) {
// Terminate and process the sequence.
if (i - from > 1) rewriter.Rewrite(from, i);
from = kNoIndex;
}
}
if (from != kNoIndex && terms->length() - from > 1) {
rewriter.Rewrite(from, terms->length());
}
}
// All assertions are zero width. A consecutive sequence of assertions is
// order-independent. There's two ways we can optimize here:
// 1. fold all identical assertions.
// 2. if any assertion combinations are known to fail (e.g. \b\B), the entire
// sequence fails.
void Rewrite(int from, int to) {
DCHECK_GT(to, from + 1);
// Bitfield of all seen assertions.
uint32_t seen_assertions = 0;
STATIC_ASSERT(RegExpAssertion::LAST_TYPE < kUInt32Size * kBitsPerByte);
// Flags must match for folding.
JSRegExp::Flags flags = terms_->at(from)->AsAssertion()->flags();
bool saw_mismatched_flags = false;
for (int i = from; i < to; i++) {
RegExpAssertion* t = terms_->at(i)->AsAssertion();
if (t->flags() != flags) saw_mismatched_flags = true;
const uint32_t bit = 1 << t->assertion_type();
if ((seen_assertions & bit) && !saw_mismatched_flags) {
// Fold duplicates.
terms_->Set(i, new (zone_) RegExpEmpty());
}
seen_assertions |= bit;
}
// Collapse failures.
const uint32_t always_fails_mask =
1 << RegExpAssertion::BOUNDARY | 1 << RegExpAssertion::NON_BOUNDARY;
if ((seen_assertions & always_fails_mask) == always_fails_mask) {
ReplaceSequenceWithFailure(from, to);
}
}
void ReplaceSequenceWithFailure(int from, int to) {
// Replace the entire sequence with a single node that always fails.
// TODO(jgruber): Consider adding an explicit Fail kind. Until then, the
// negated '*' (everything) range serves the purpose.
ZoneList<CharacterRange>* ranges =
new (zone_) ZoneList<CharacterRange>(0, zone_);
RegExpCharacterClass* cc =
new (zone_) RegExpCharacterClass(zone_, ranges, JSRegExp::Flags());
terms_->Set(from, cc);
// Zero out the rest.
RegExpEmpty* empty = new (zone_) RegExpEmpty();
for (int i = from + 1; i < to; i++) terms_->Set(i, empty);
}
private:
AssertionSequenceRewriter(ZoneList<RegExpTree*>* terms, Zone* zone)
: zone_(zone), terms_(terms) {}
Zone* zone_;
ZoneList<RegExpTree*>* terms_;
};
} // namespace
RegExpNode* RegExpAlternative::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
ZoneList<RegExpTree*>* children = nodes();
AssertionSequenceRewriter::MaybeRewrite(children, compiler->zone());
RegExpNode* current = on_success;
if (compiler->read_backward()) {
for (int i = 0; i < children->length(); i++) {
current = children->at(i)->ToNode(compiler, current);
}
} else {
for (int i = children->length() - 1; i >= 0; i--) {
current = children->at(i)->ToNode(compiler, current);
}
}
return current;
}
static void AddClass(const int* elmv, int elmc,
ZoneList<CharacterRange>* ranges, Zone* zone) {
elmc--;
DCHECK_EQ(kRangeEndMarker, elmv[elmc]);
for (int i = 0; i < elmc; i += 2) {
DCHECK(elmv[i] < elmv[i + 1]);
ranges->Add(CharacterRange::Range(elmv[i], elmv[i + 1] - 1), zone);
}
}
static void AddClassNegated(const int* elmv, int elmc,
ZoneList<CharacterRange>* ranges, Zone* zone) {
elmc--;
DCHECK_EQ(kRangeEndMarker, elmv[elmc]);
DCHECK_NE(0x0000, elmv[0]);
DCHECK_NE(String::kMaxCodePoint, elmv[elmc - 1]);
uc16 last = 0x0000;
for (int i = 0; i < elmc; i += 2) {
DCHECK(last <= elmv[i] - 1);
DCHECK(elmv[i] < elmv[i + 1]);
ranges->Add(CharacterRange::Range(last, elmv[i] - 1), zone);
last = elmv[i + 1];
}
ranges->Add(CharacterRange::Range(last, String::kMaxCodePoint), zone);
}
void CharacterRange::AddClassEscape(char type, ZoneList<CharacterRange>* ranges,
bool add_unicode_case_equivalents,
Zone* zone) {
if (add_unicode_case_equivalents && (type == 'w' || type == 'W')) {
// See #sec-runtime-semantics-wordcharacters-abstract-operation
// In case of unicode and ignore_case, we need to create the closure over
// case equivalent characters before negating.
ZoneList<CharacterRange>* new_ranges =
new (zone) ZoneList<CharacterRange>(2, zone);
AddClass(kWordRanges, kWordRangeCount, new_ranges, zone);
AddUnicodeCaseEquivalents(new_ranges, zone);
if (type == 'W') {
ZoneList<CharacterRange>* negated =
new (zone) ZoneList<CharacterRange>(2, zone);
CharacterRange::Negate(new_ranges, negated, zone);
new_ranges = negated;
}
ranges->AddAll(*new_ranges, zone);
return;
}
AddClassEscape(type, ranges, zone);
}
void CharacterRange::AddClassEscape(char type, ZoneList<CharacterRange>* ranges,
Zone* zone) {
switch (type) {
case 's':
AddClass(kSpaceRanges, kSpaceRangeCount, ranges, zone);
break;
case 'S':
AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges, zone);
break;
case 'w':
AddClass(kWordRanges, kWordRangeCount, ranges, zone);
break;
case 'W':
AddClassNegated(kWordRanges, kWordRangeCount, ranges, zone);
break;
case 'd':
AddClass(kDigitRanges, kDigitRangeCount, ranges, zone);
break;
case 'D':
AddClassNegated(kDigitRanges, kDigitRangeCount, ranges, zone);
break;
case '.':
AddClassNegated(kLineTerminatorRanges, kLineTerminatorRangeCount, ranges,
zone);
break;
// This is not a character range as defined by the spec but a
// convenient shorthand for a character class that matches any
// character.
case '*':
ranges->Add(CharacterRange::Everything(), zone);
break;
// This is the set of characters matched by the $ and ^ symbols
// in multiline mode.
case 'n':
AddClass(kLineTerminatorRanges, kLineTerminatorRangeCount, ranges, zone);
break;
default:
UNREACHABLE();
}
}
Vector<const int> CharacterRange::GetWordBounds() {
return Vector<const int>(kWordRanges, kWordRangeCount - 1);
}
#ifdef V8_INTL_SUPPORT
struct IgnoreSet {
IgnoreSet() : set(BuildIgnoreSet()) {}
const icu::UnicodeSet set;
};
struct SpecialAddSet {
SpecialAddSet() : set(BuildSpecialAddSet()) {}
const icu::UnicodeSet set;
};
icu::UnicodeSet BuildAsciiAToZSet() {
icu::UnicodeSet set('a', 'z');
set.add('A', 'Z');
set.freeze();
return set;
}
struct AsciiAToZSet {
AsciiAToZSet() : set(BuildAsciiAToZSet()) {}
const icu::UnicodeSet set;
};
static base::LazyInstance<IgnoreSet>::type ignore_set =
LAZY_INSTANCE_INITIALIZER;
static base::LazyInstance<SpecialAddSet>::type special_add_set =
LAZY_INSTANCE_INITIALIZER;
static base::LazyInstance<AsciiAToZSet>::type ascii_a_to_z_set =
LAZY_INSTANCE_INITIALIZER;
#endif // V8_INTL_SUPPORT
// static
void CharacterRange::AddCaseEquivalents(Isolate* isolate, Zone* zone,
ZoneList<CharacterRange>* ranges,
bool is_one_byte) {
CharacterRange::Canonicalize(ranges);
int range_count = ranges->length();
#ifdef V8_INTL_SUPPORT
icu::UnicodeSet others;
for (int i = 0; i < range_count; i++) {
CharacterRange range = ranges->at(i);
uc32 from = range.from();
if (from > String::kMaxUtf16CodeUnit) continue;
uc32 to = Min(range.to(), String::kMaxUtf16CodeUnit);
// Nothing to be done for surrogates.
if (from >= kLeadSurrogateStart && to <= kTrailSurrogateEnd) continue;
if (is_one_byte && !RangeContainsLatin1Equivalents(range)) {
if (from > String::kMaxOneByteCharCode) continue;
if (to > String::kMaxOneByteCharCode) to = String::kMaxOneByteCharCode;
}
others.add(from, to);
}
// Set of characters already added to ranges that do not need to be added
// again.
icu::UnicodeSet already_added(others);
// Set of characters in ranges that are in the 52 ASCII characters [a-zA-Z].
icu::UnicodeSet in_ascii_a_to_z(others);
in_ascii_a_to_z.retainAll(ascii_a_to_z_set.Pointer()->set);
// Remove all chars in [a-zA-Z] from others.
others.removeAll(in_ascii_a_to_z);
// Set of characters in ranges that are overlapping with special add set.
icu::UnicodeSet in_special_add(others);
in_special_add.retainAll(special_add_set.Pointer()->set);
others.removeAll(in_special_add);
// Ignore all chars in ignore set.
others.removeAll(ignore_set.Pointer()->set);
// For most of the chars in ranges that is still in others, find the case
// equivlant set by calling closeOver(USET_CASE_INSENSITIVE).
others.closeOver(USET_CASE_INSENSITIVE);
// Because closeOver(USET_CASE_INSENSITIVE) may add ASCII [a-zA-Z] to others,
// but ECMA262 "i" mode won't consider that, remove them from others.
// Ex: U+017F add 'S' and 's' to others.
others.removeAll(ascii_a_to_z_set.Pointer()->set);
// Special handling for in_ascii_a_to_z.
for (int32_t i = 0; i < in_ascii_a_to_z.getRangeCount(); i++) {
UChar32 start = in_ascii_a_to_z.getRangeStart(i);
UChar32 end = in_ascii_a_to_z.getRangeEnd(i);
// Check if it is uppercase A-Z by checking bit 6.
if (start & 0x0020) {
// Add the lowercases
others.add(start & 0x005F, end & 0x005F);
} else {
// Add the uppercases
others.add(start | 0x0020, end | 0x0020);
}
}
// Special handling for chars in "Special Add" set.
for (int32_t i = 0; i < in_special_add.getRangeCount(); i++) {
UChar32 end = in_special_add.getRangeEnd(i);
for (UChar32 ch = in_special_add.getRangeStart(i); ch <= end; ch++) {
// Add the uppercase of this character if itself is not an uppercase
// character.
// Note: The if condiction cannot be u_islower(ch) because ch could be
// neither uppercase nor lowercase but Mn.
if (!u_isupper(ch)) {
others.add(u_toupper(ch));
}
icu::UnicodeSet candidates(ch, ch);
candidates.closeOver(USET_CASE_INSENSITIVE);
for (int32_t j = 0; j < candidates.getRangeCount(); j++) {
UChar32 end2 = candidates.getRangeEnd(j);
for (UChar32 ch2 = candidates.getRangeStart(j); ch2 <= end2; ch2++) {
// Add character that is not uppercase to others.
if (!u_isupper(ch2)) {
others.add(ch2);
}
}
}
}
}
// Remove all characters which already in the ranges.
others.removeAll(already_added);
// Add others to the ranges
for (int32_t i = 0; i < others.getRangeCount(); i++) {
UChar32 from = others.getRangeStart(i);
UChar32 to = others.getRangeEnd(i);
if (from == to) {
ranges->Add(CharacterRange::Singleton(from), zone);
} else {
ranges->Add(CharacterRange::Range(from, to), zone);
}
}
#else
for (int i = 0; i < range_count; i++) {
CharacterRange range = ranges->at(i);
uc32 bottom = range.from();
if (bottom > String::kMaxUtf16CodeUnit) continue;
uc32 top = Min(range.to(), String::kMaxUtf16CodeUnit);
// Nothing to be done for surrogates.
if (bottom >= kLeadSurrogateStart && top <= kTrailSurrogateEnd) continue;
if (is_one_byte && !RangeContainsLatin1Equivalents(range)) {
if (bottom > String::kMaxOneByteCharCode) continue;
if (top > String::kMaxOneByteCharCode) top = String::kMaxOneByteCharCode;
}
unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
if (top == bottom) {
// If this is a singleton we just expand the one character.
int length = isolate->jsregexp_uncanonicalize()->get(bottom, '\0', chars);
for (int i = 0; i < length; i++) {
uc32 chr = chars[i];
if (chr != bottom) {
ranges->Add(CharacterRange::Singleton(chars[i]), zone);
}
}
} else {
// If this is a range we expand the characters block by block, expanding
// contiguous subranges (blocks) one at a time. The approach is as
// follows. For a given start character we look up the remainder of the
// block that contains it (represented by the end point), for instance we
// find 'z' if the character is 'c'. A block is characterized by the
// property that all characters uncanonicalize in the same way, except
// that each entry in the result is incremented by the distance from the
// first element. So a-z is a block because 'a' uncanonicalizes to ['a',
// 'A'] and the k'th letter uncanonicalizes to ['a' + k, 'A' + k]. Once
// we've found the end point we look up its uncanonicalization and
// produce a range for each element. For instance for [c-f] we look up
// ['z', 'Z'] and produce [c-f] and [C-F]. We then only add a range if
// it is not already contained in the input, so [c-f] will be skipped but
// [C-F] will be added. If this range is not completely contained in a
// block we do this for all the blocks covered by the range (handling
// characters that is not in a block as a "singleton block").
unibrow::uchar equivalents[unibrow::Ecma262UnCanonicalize::kMaxWidth];
int pos = bottom;
while (pos <= top) {
int length =
isolate->jsregexp_canonrange()->get(pos, '\0', equivalents);
uc32 block_end;
if (length == 0) {
block_end = pos;
} else {
DCHECK_EQ(1, length);
block_end = equivalents[0];
}
int end = (block_end > top) ? top : block_end;
length = isolate->jsregexp_uncanonicalize()->get(block_end, '\0',
equivalents);
for (int i = 0; i < length; i++) {
uc32 c = equivalents[i];
uc32 range_from = c - (block_end - pos);
uc32 range_to = c - (block_end - end);
if (!(bottom <= range_from && range_to <= top)) {
ranges->Add(CharacterRange::Range(range_from, range_to), zone);
}
}
pos = end + 1;
}
}
}
#endif // V8_INTL_SUPPORT
}
bool CharacterRange::IsCanonical(ZoneList<CharacterRange>* ranges) {
DCHECK_NOT_NULL(ranges);
int n = ranges->length();
if (n <= 1) return true;
int max = ranges->at(0).to();
for (int i = 1; i < n; i++) {
CharacterRange next_range = ranges->at(i);
if (next_range.from() <= max + 1) return false;
max = next_range.to();
}
return true;
}
ZoneList<CharacterRange>* CharacterSet::ranges(Zone* zone) {
if (ranges_ == nullptr) {
ranges_ = new (zone) ZoneList<CharacterRange>(2, zone);
CharacterRange::AddClassEscape(standard_set_type_, ranges_, false, zone);
}
return ranges_;
}
// Move a number of elements in a zonelist to another position
// in the same list. Handles overlapping source and target areas.
static void MoveRanges(ZoneList<CharacterRange>* list, int from, int to,
int count) {
// Ranges are potentially overlapping.
if (from < to) {
for (int i = count - 1; i >= 0; i--) {
list->at(to + i) = list->at(from + i);
}
} else {
for (int i = 0; i < count; i++) {
list->at(to + i) = list->at(from + i);
}
}
}
static int InsertRangeInCanonicalList(ZoneList<CharacterRange>* list, int count,
CharacterRange insert) {
// Inserts a range into list[0..count[, which must be sorted
// by from value and non-overlapping and non-adjacent, using at most
// list[0..count] for the result. Returns the number of resulting
// canonicalized ranges. Inserting a range may collapse existing ranges into
// fewer ranges, so the return value can be anything in the range 1..count+1.
uc32 from = insert.from();
uc32 to = insert.to();
int start_pos = 0;
int end_pos = count;
for (int i = count - 1; i >= 0; i--) {
CharacterRange current = list->at(i);
if (current.from() > to + 1) {
end_pos = i;
} else if (current.to() + 1 < from) {
start_pos = i + 1;
break;
}
}
// Inserted range overlaps, or is adjacent to, ranges at positions
// [start_pos..end_pos[. Ranges before start_pos or at or after end_pos are
// not affected by the insertion.
// If start_pos == end_pos, the range must be inserted before start_pos.
// if start_pos < end_pos, the entire range from start_pos to end_pos
// must be merged with the insert range.
if (start_pos == end_pos) {
// Insert between existing ranges at position start_pos.
if (start_pos < count) {
MoveRanges(list, start_pos, start_pos + 1, count - start_pos);
}
list->at(start_pos) = insert;
return count + 1;
}
if (start_pos + 1 == end_pos) {
// Replace single existing range at position start_pos.
CharacterRange to_replace = list->at(start_pos);
int new_from = Min(to_replace.from(), from);
int new_to = Max(to_replace.to(), to);
list->at(start_pos) = CharacterRange::Range(new_from, new_to);
return count;
}
// Replace a number of existing ranges from start_pos to end_pos - 1.
// Move the remaining ranges down.
int new_from = Min(list->at(start_pos).from(), from);
int new_to = Max(list->at(end_pos - 1).to(), to);
if (end_pos < count) {
MoveRanges(list, end_pos, start_pos + 1, count - end_pos);
}
list->at(start_pos) = CharacterRange::Range(new_from, new_to);
return count - (end_pos - start_pos) + 1;
}
void CharacterSet::Canonicalize() {
// Special/default classes are always considered canonical. The result
// of calling ranges() will be sorted.
if (ranges_ == nullptr) return;
CharacterRange::Canonicalize(ranges_);
}
void CharacterRange::Canonicalize(ZoneList<CharacterRange>* character_ranges) {
if (character_ranges->length() <= 1) return;
// Check whether ranges are already canonical (increasing, non-overlapping,
// non-adjacent).
int n = character_ranges->length();
int max = character_ranges->at(0).to();
int i = 1;
while (i < n) {
CharacterRange current = character_ranges->at(i);
if (current.from() <= max + 1) {
break;
}
max = current.to();
i++;
}
// Canonical until the i'th range. If that's all of them, we are done.
if (i == n) return;
// The ranges at index i and forward are not canonicalized. Make them so by
// doing the equivalent of insertion sort (inserting each into the previous
// list, in order).
// Notice that inserting a range can reduce the number of ranges in the
// result due to combining of adjacent and overlapping ranges.
int read = i; // Range to insert.
int num_canonical = i; // Length of canonicalized part of list.
do {
num_canonical = InsertRangeInCanonicalList(character_ranges, num_canonical,
character_ranges->at(read));
read++;
} while (read < n);
character_ranges->Rewind(num_canonical);
DCHECK(CharacterRange::IsCanonical(character_ranges));
}
void CharacterRange::Negate(ZoneList<CharacterRange>* ranges,
ZoneList<CharacterRange>* negated_ranges,
Zone* zone) {
DCHECK(CharacterRange::IsCanonical(ranges));
DCHECK_EQ(0, negated_ranges->length());
int range_count = ranges->length();
uc32 from = 0;
int i = 0;
if (range_count > 0 && ranges->at(0).from() == 0) {
from = ranges->at(0).to() + 1;
i = 1;
}
while (i < range_count) {
CharacterRange range = ranges->at(i);
negated_ranges->Add(CharacterRange::Range(from, range.from() - 1), zone);
from = range.to() + 1;
i++;
}
if (from < String::kMaxCodePoint) {
negated_ranges->Add(CharacterRange::Range(from, String::kMaxCodePoint),
zone);
}
}
// Scoped object to keep track of how much we unroll quantifier loops in the
// regexp graph generator.
class RegExpExpansionLimiter {
public:
static const int kMaxExpansionFactor = 6;
RegExpExpansionLimiter(RegExpCompiler* compiler, int factor)
: compiler_(compiler),
saved_expansion_factor_(compiler->current_expansion_factor()),
ok_to_expand_(saved_expansion_factor_ <= kMaxExpansionFactor) {
DCHECK_LT(0, factor);
if (ok_to_expand_) {
if (factor > kMaxExpansionFactor) {
// Avoid integer overflow of the current expansion factor.
ok_to_expand_ = false;
compiler->set_current_expansion_factor(kMaxExpansionFactor + 1);
} else {
int new_factor = saved_expansion_factor_ * factor;
ok_to_expand_ = (new_factor <= kMaxExpansionFactor);
compiler->set_current_expansion_factor(new_factor);
}
}
}
~RegExpExpansionLimiter() {
compiler_->set_current_expansion_factor(saved_expansion_factor_);
}
bool ok_to_expand() { return ok_to_expand_; }
private:
RegExpCompiler* compiler_;
int saved_expansion_factor_;
bool ok_to_expand_;
DISALLOW_IMPLICIT_CONSTRUCTORS(RegExpExpansionLimiter);
};
RegExpNode* RegExpQuantifier::ToNode(int min, int max, bool is_greedy,
RegExpTree* body, RegExpCompiler* compiler,
RegExpNode* on_success,
bool not_at_start) {
// x{f, t} becomes this:
//
// (r++)<-.
// | `
// | (x)
// v ^
// (r=0)-->(?)---/ [if r < t]
// |
// [if r >= f] \----> ...
//
// 15.10.2.5 RepeatMatcher algorithm.
// The parser has already eliminated the case where max is 0. In the case
// where max_match is zero the parser has removed the quantifier if min was
// > 0 and removed the atom if min was 0. See AddQuantifierToAtom.
// If we know that we cannot match zero length then things are a little
// simpler since we don't need to make the special zero length match check
// from step 2.1. If the min and max are small we can unroll a little in
// this case.
static const int kMaxUnrolledMinMatches = 3; // Unroll (foo)+ and (foo){3,}
static const int kMaxUnrolledMaxMatches = 3; // Unroll (foo)? and (foo){x,3}
if (max == 0) return on_success; // This can happen due to recursion.
bool body_can_be_empty = (body->min_match() == 0);
int body_start_reg = RegExpCompiler::kNoRegister;
Interval capture_registers = body->CaptureRegisters();
bool needs_capture_clearing = !capture_registers.is_empty();
Zone* zone = compiler->zone();
if (body_can_be_empty) {
body_start_reg = compiler->AllocateRegister();
} else if (compiler->optimize() && !needs_capture_clearing) {
// Only unroll if there are no captures and the body can't be
// empty.
{
RegExpExpansionLimiter limiter(compiler, min + ((max != min) ? 1 : 0));
if (min > 0 && min <= kMaxUnrolledMinMatches && limiter.ok_to_expand()) {
int new_max = (max == kInfinity) ? max : max - min;
// Recurse once to get the loop or optional matches after the fixed
// ones.
RegExpNode* answer =
ToNode(0, new_max, is_greedy, body, compiler, on_success, true);
// Unroll the forced matches from 0 to min. This can cause chains of
// TextNodes (which the parser does not generate). These should be
// combined if it turns out they hinder good code generation.
for (int i = 0; i < min; i++) {
answer = body->ToNode(compiler, answer);
}
return answer;
}
}
if (max <= kMaxUnrolledMaxMatches && min == 0) {
DCHECK_LT(0, max); // Due to the 'if' above.
RegExpExpansionLimiter limiter(compiler, max);
if (limiter.ok_to_expand()) {
// Unroll the optional matches up to max.
RegExpNode* answer = on_success;
for (int i = 0; i < max; i++) {
ChoiceNode* alternation = new (zone) ChoiceNode(2, zone);
if (is_greedy) {
alternation->AddAlternative(
GuardedAlternative(body->ToNode(compiler, answer)));
alternation->AddAlternative(GuardedAlternative(on_success));
} else {
alternation->AddAlternative(GuardedAlternative(on_success));
alternation->AddAlternative(
GuardedAlternative(body->ToNode(compiler, answer)));
}
answer = alternation;
if (not_at_start && !compiler->read_backward()) {
alternation->set_not_at_start();
}
}
return answer;
}
}
}
bool has_min = min > 0;
bool has_max = max < RegExpTree::kInfinity;
bool needs_counter = has_min || has_max;
int reg_ctr = needs_counter ? compiler->AllocateRegister()
: RegExpCompiler::kNoRegister;
LoopChoiceNode* center = new (zone)
LoopChoiceNode(body->min_match() == 0, compiler->read_backward(), zone);
if (not_at_start && !compiler->read_backward()) center->set_not_at_start();
RegExpNode* loop_return =
needs_counter ? static_cast<RegExpNode*>(
ActionNode::IncrementRegister(reg_ctr, center))
: static_cast<RegExpNode*>(center);
if (body_can_be_empty) {
// If the body can be empty we need to check if it was and then
// backtrack.
loop_return =
ActionNode::EmptyMatchCheck(body_start_reg, reg_ctr, min, loop_return);
}
RegExpNode* body_node = body->ToNode(compiler, loop_return);
if (body_can_be_empty) {
// If the body can be empty we need to store the start position
// so we can bail out if it was empty.
body_node = ActionNode::StorePosition(body_start_reg, false, body_node);
}
if (needs_capture_clearing) {
// Before entering the body of this loop we need to clear captures.
body_node = ActionNode::ClearCaptures(capture_registers, body_node);
}
GuardedAlternative body_alt(body_node);
if (has_max) {
Guard* body_guard = new (zone) Guard(reg_ctr, Guard::LT, max);
body_alt.AddGuard(body_guard, zone);
}
GuardedAlternative rest_alt(on_success);
if (has_min) {
Guard* rest_guard = new (compiler->zone()) Guard(reg_ctr, Guard::GEQ, min);
rest_alt.AddGuard(rest_guard, zone);
}
if (is_greedy) {
center->AddLoopAlternative(body_alt);
center->AddContinueAlternative(rest_alt);
} else {
center->AddContinueAlternative(rest_alt);
center->AddLoopAlternative(body_alt);
}
if (needs_counter) {
return ActionNode::SetRegister(reg_ctr, 0, center);
} else {
return center;
}
}
} // namespace internal
} // namespace v8